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Abstract—Many military and space operations are phased 
missions, which contain non-overlapping phases.  One approach 
for assessing phased mission system reliability is to apply binary 
decision diagrams (BDD’s).   While the BDD is an efficient 
structure for probability analysis, it cannot accurately represent 
all aspects of complex systems and processes as it assumes all 
phases follow binary logic.  It is of great interest to ascertain if a 
system or process is to be successful during the planning and 
design stage.  The concept and assessment of partial success when 
a system or process is in a degraded state is desirable and an 
objective of the methods presented here.  To address the 
limitation of current analysis methods, we introduce the 
application of multiple-valued logic models to phased mission 
system analysis.  These models identify the various levels of 
system operations and yield more information about the overall 
system operating states. 
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I.  INTRODUCTION 
A phased mission system consists of consecutive non-

overlapping stages, or phases, where various tasks are 
performed in each phase.  Examples of phased missions 
include military aircraft or ship operations, and space vehicle 
missions.   The phases are usually executed in sequential order, 
so that the success of a given phase often depends on the 
success of its preceding phase [1], [2].   Analyses of phased 
missions require determining the failure probability of each 
phase as well as the entire mission.  However, for large 
systems, the analysis process can become computationally 
expensive [3], [4]. 

For critical systems such as phased missions, it is important 
to assess the probability of success in the event of subsystem 
failure.  Complete mission failure constitutes a disaster whereas 
complete mission success can sometimes be achieved even 
while some subsystems have failed.  A complete disaster or 
failure of a component does not necessarily result in mission 
failure.  Disaster tolerance is a superset of the more established 
approaches commonly referred to as fault tolerance.  Models 
for disaster tolerance differ from those for fault tolerance since 
they assume that failures can occur due to massive numbers of 
individual faults occurring simultaneously or in a rapidly 

cascading manner as well as single points of failure. Therefore, 
a disaster-tolerant system can withstand a catastrophic 
subsystem failure and still function with some degree of 
normality [5], [6].  A phased mission system that is disaster-
tolerant should be able to complete most of its mission despite 
the presence of phase failures. 

A common approach for failure analysis of phased mission 
systems is to use fault trees, which have the form of binary 
logic circuits but are not intended as circuits, rather as a 
structure for fault analysis [1], [3], [4].  Fig. 1a shows an 
example of a simple binary fault tree. For fault trees, a logic 
level 1 indicates system failure, while a logic level 0 indicates 
no system failure [7]. If component C fails, then the entire 
system fails.  Also, the system fails if both components A and 
B fail.  Most past approaches for mission analyses do not 
adequately account for the presence of subsystem failure or 
degradation while still allowing for overall mission success due 
to the use of binary decision processes such as the use of fault 
trees. 

For large systems, fault trees are often converted to binary 
decision diagrams for more efficient fault analysis.    Decision 
diagrams are rooted directed acyclic graphs (DAG) that can be 
used to represent large switching functions in an efficient 
manner [8].  Efficient software is readily available to 
manipulate BDDs and a variety of heuristics and strategies 
have been adapted for use with fault trees [9-11].  Fig. 1b 
shows the corresponding BDD for the fault tree of Fig. 1a.  The 
internal nodes are the components (A,B,C), and the leaf nodes 
are the resultant logic values for f(A,B,C).  The edge weights 
are the logic values for the components. 

Fault trees and BDD’s have been applied to phased mission 
system analysis [1-4].  However, a limitation of fault trees is 
their binary structure, which means that system phase 
operations can only be modeled as fully operational or 
completely failed.  However, there may be mission phases that 
are partially operational, which will not adversely affect the 
overall success of the mission.   Modeling different operational 
modes other than just the binary case of failure or normal 
operation are critical in analyzing the disaster-tolerance of 
phased mission systems.   To address these issues, we propose 
the application of multiple-valued logic decision diagrams 



(MDD) [14] and apply graph algorithms that compute the 
probability of mission success while also modeling mission 
component degradation or failure.  Our proposed approach 
differs from previous mission planning approaches in that, to 
the best of our knowledge, this is the first time that multiple-
valued logic has been applied to this problem. 

The motivation for this approach lies in the fact that 
computation of the probability of successful completion of a 
process or function of a complex system can be difficult to 
predict.  Because many components are specified with non-
parametric reliability data, the cumulative effect for the 
reliability of the overall system is generally predicted through 
extensive Monte Carlo simulations or other statistical methods.  
By using an intermediate switching logic model, other 
approaches based on finite decision analysis are possible. 

 
                              (a)                           (b) 

Fig. 1: (a) Fault Tree Example, (b) Corresponding BDD 
 

II. MULTIPLE-VALUED LOGIC MODELS 
Multiple-Valued Logic (MVL) systems are radix-p systems 

where p>2.  For example, a radix-3 or ternary system is 
comprised of three logic values {0,1,2}.  Therefore, the binary 
logical disjunctive (OR) operator generalizes to a MAX 
function, where MAX(x,y,z) denotes the largest absolute logic 
value among the variables {x,y,z}.  Similarly, the binary logical 
conjunctive (AND) operator generalizes to a MIN function, 
where MIN(x,y,z) denotes the smallest absolute value among 
the variables {x,y,z} [12].  Table I shows the truth table for the 
radix-3 function f=MIN(A,B). 

TABLE I.  TRUTH TABLE FOR RADIX-3 MIN FUNCTION. 

A B f 
0 X 0 
1 0 0 
1 1 1 
1 2 1 
2 0 0 
2 1 1 
2 2 2 

 

 

For MVL systems, an extension to the BDD construct has 
been developed and implemented called the Multiple-Valued 
Decision Diagram (MDD) [14].  Consider a totally-specified p-

valued function with n inputs, f(x0,x1,…,xn) where each 
dependent variable represents a value from the canonical logic 
set xi∈{0,1,…,p-1}.  f(x) is thus a finite discrete logic function 
and can be represented by the MDD data structure.   Similar to 
BDD, the MDD is also a DAG and it consists of p terminal 
nodes, where each terminal node is annotated with a distinct 
logic value from the set xi∈{0,1,…,p-1}.  Each non-terminal 
vertex is labeled with an input variable, and has a maximum of 
p outgoing edges, where each edge corresponds to each logic 
value.  The MDDs used in this work are extensions from those 
described in [14] where the extensions allow for non-terminal 
vertices to have fewer than p outgoing edges and to allow for 
the representation of ‘mixed-radix’ vertices.  Mixed radix 
vertices refer to collections of vertices corresponding to 
variables over the set {0,1,…,q} where q<p.  Fig. 2 depicts a 
ternary MDD representing the function f=MIN(A,B) 
corresponding to the truth table given in Table I. 

 
Fig 2: MDD for Example Radix-3 Function 

A. Application to Phased Mission Systems 
To illustrate the application to phased mission systems, we 

use the example given in [1] where the mission utilizes a UAV 
(Unmanned Aerial Vehicle) and a UCAV (Unmanned Combat 
Aerial Vehicle) that are cooperating to perform a military strike 
mission.  The UAV mission has the following phases: 

1. Launch – UAV is launched from its base. 

2. Cruise1 – UAV cruises toward enemy target. 

3. Surveillance – UAV performs surveillance of 
enemy target and transmits data back to base 

4. Cruise2 – UAV returns to base. 

5. Land – UAV lands at base. 

The UCAV mission has the following phases: 

1. Launch – UCAV is launched from base. 

2. Cruise1 – UCAV cruises toward enemy target, 
based on surveillance information received from 
UAV. 

3. Strike – UCAV strikes the enemy target. 

4. Cruise2 – UCAV returns to base. 

5. Land – UCAV lands at base. 



The mission is modeled in [1] with the assumption that 
each mission phase can be classified as a binary outcome 
(1=failure, 0=success).  The mission is considered to be a 
success if each phase is successful.  Since the phases are 
sequential, if one phase fails, then the mission fails regardless 
of the subsequent phases.  Thus, we can develop the truth table 
for the UAV mission as shown in Table II, where X = don’t 
care.  The approach of [1] uses BDD’s to model the mission 
phases.  

TABLE II.  BINARY TRUTH TABLE FOR UAV MISSION SUCCESS. 

Launch Cruise1 Surveillance Cruise2 Land Mission 
Failure 

1 X X X X 1 
0 1 X X X 1 
0 0 1 X X 1 
0 0 0 1 X 1 
0 0 0 0 1 1 
0 0 0 0 0 0 

 

 

Note the UAV mission is a success only if all mission 
phases have been successfully completed.  However, this 
particular mission example utilizes the UCAV subsystem to 
perform its ‘strike phase’ if the UAV Surveillance phase is 
successful.  Therefore, it is not necessary for the UAV to 
successfully complete its Cruise2 and Land phases for the 
UCAV to perform its phases.   

If the UAV is able to complete its first three phases, then its 
mission is a “partial success”.  If the UAV is able to complete 
all its phases, then its mission is a “total success”.  Therefore, 
an alternate approach to the fault tree and corresponding BDD 
model is required to represent all possible phase levels of a 
mission and to allow for a more accurate analysis of the 
mission.   Using a radix-3 MVL model, we let 2=total failure, 
1=partial success, 0=total success.  With these MVL 
assignments, we revise the truth table to represent phased 
mission model as follows: 

1. For simplicity, assume that each phase of the UAV 
mission has logic level 0 or 2 (total success or 
failure).  That is, each phase will have a binary 
outcome.  However, the total mission success will 
have a ternary outcome as mentioned above. 

2. If there is total failure during any of the first three 
phases, then the mission is a total failure. 

3. If the first three phases are successful, then the 
mission is at least a partial success (logic level 1). 

4. If all phases are successful, then the mission is a 
total success (logic level 0). 

The revised truth table is shown in Table III, with the 
corresponding MDD depicted in Fig. 3. 

TABLE III.  RADIX-3 TRUTH TABLE FOR UAV MISSION SUCCESS. 

Launch 
(LN) 

Cruise1 
(C1) 

Surveillance 
(SV) 

Cruise2 
(C2) 

Land 
(LA) 

Mission  
(f) 

2 X X X X 2 
X 2 X X X 2 
X X 2 X X 2 
0 0 0 2 X 1 
0 0 0 0 2 1 
0 0 0 0 0 0 

 

 

Similarly for the UCAV, its mission would be a partial 
success if it were able to successfully complete its first three 
phases (Launch, Cruise1, Strike).  Therefore, we can develop 
the UCAV mission truth table as shown in Table IV.  The 
MDD will have the same structure as Fig. 3, but with the Strike 
node substituting for the Surveillance node. 

TABLE IV.  RADIX-3 TRUTH TABLE FOR UCAV MISSION SUCCESS. 

Launch Cruise1 Strike Cruise2 Land Mission  
2 X X X X 2 
X 2 X X X 2 
X X 2 X X 2 
0 0 0 2 X 1 
0 0 0 0 2 1 
0 0 0 0 0 0 

 

 

The success of the entire mission depends on the success of 
both the UAV and UCAV missions.  If the UCAV is able to 
complete its Strike phase, this means that the UAV was able to 
complete its Surveillance phase.  Therefore, we can develop the 
truth table for the entire mission as follows: 

1. If either of the UAV or UCAV missions are total 
failures, then the entire mission is a total failure. 

2. If both the UAV and UCAV missions are total 
successes, then the entire mission is a total 
success. 

3. Otherwise, the entire mission is a partial success. 

The truth table for the entire mission is shown in Table V, 
and its corresponding MDD is shown in Figure 4. 

 



 
Fig. 3: MDD for UAV Success 

 

TABLE V.  RADIX-3 TRUTH TABLE FOR ENTIRE MISSION SUCCESS. 

UAV UCAV Mission 
Failure 

2 X 2 
X 2 2 
1 1 1 
1 0 1 
0 1 1 
0 0 0 

 

 

 
Fig. 4: MDD for Total Mission Success 

 

B. Probability Analysis 
The next step is to determine probabilities of mission 

success.  Traditional probability theory assumes radix-2 
systems: either an event X is true (X=1) or false (X=0).  For 

general radix-p systems, we develop the notation Xj, which 
indicates that event X has state j (j∈{0,1,…,p-1}).  Thus, the 
probability that the UAV is at level 2 is represented by UAV2, 
while the probability that the UCAV is at level 0 is represented 
by UCAV0.   

Assuming that the system probabilities are independent, we 
can calculate the UAV and UCAV probabilities by traversing 
the MDD’s using the approach of [13]: 

1. Represent phases as nodes A(Launch), B(Cruise1), 
C (Surveillance/Strike), D(Cruise2) and E(Land). 

2. Recall that phase logic levels are either 2 (total 
failure) or 0 (total success). 

The system probability equations become: 

P{mission failure} = P{2} = P{A2} + 
P{A0}P{B2} + P{A0}P{B0}P{C2} (1) 

P{partial mission success} = P{1} = 
P{A0}P{B0}P{C0}P{D2} + 
P{A0}P{B0}P{C0}P{D0}P{E2} 

(2) 

P{total mission success} = P{0} = 
P{A0}P{B0}P{C0}P{D0}P{E0} (3) 

One of the advantages of this approach is that probability 
distributions may be non-parametric and based upon previously 
collected subsystem reliability data.  Likewise, parametric 
distributions may also be used where each MDD variable is 
annotated with the appropriate probability distribution 
parameters.  In this example, we utilize the non-parametric 
probability distribution supplied in [1].  Using these data from 
[1], we have the probability values for each mission phase as 
shown in Table VI.   

TABLE VI.  PROBABILITY VALUES FOR UAV/UCAV PHASES. 

Phase P{0} P{2} 
A 0.99 0.01 
B 0.98 0.02 
C 0.95 0.05 
D 0.98 0.02 
E 0.99 0.01 

 

 

Using (1-3), we can calculate the individual mission 
probabilities of the UAV and UCAV (rounded to 4 significant 
digits) using Eq. 4-6.  The probabilities correspond to MDD of 
Fig. 3.  

P{UAV/UCAV mission failure} = P{2} = P{A2} + 
P{A0}P{B2} + P{A0}P{B0}P{C2} = 
0.01 + (0.99)(0.02) + (0.99)(0.98)(0.05) = 
0.07831 

(4) 

P{UAV/UCAV partial mission success} = P{1} = 
P{A0}P{B0}P{C0}P{D2} + 
P{A0}P{B0}P{C0}P{D0}P{E2} = 
(0.99)(0.98)(0.95)(0.02) + 
(0.99)(0.98)(0.95)(0.98)(0.01) = 0.02747 

(5) 



P{UAV/UCAV total mission success} = P{0} = 
P{A0}P{B0}P{C0}P{D0}P{E0} = 
(0.99)(0.98)(0.95)(0.98)(0.99) = 0.8942 

(6) 

We can also apply the approach of [13] to determine the 
probably of total mission success for the entire system (also 
rounded to 4 significant digits) using Eq. (7-9). We use the 
individual UAV/UCAV mission probabilities determined from 
Eq. 4-6 to determine the overall mission probabilities. These 
probabilities correspond to the MDD in Fig. 4. 

P{mission failure} = P{2} = P{UAV2} + 
P{UAV1}P{UCAV2} + P{UAV0} 
P{UCAV2} = 0.07831 + 
(0.02747)(0.07831) + (0.8942)(0.07831) = 
0.1505 

(7) 

P{partial mission success} = P{1} = 
P{UAV0}P{UCAV1} + 
P{UAV1}P{UCAV0} + 
P{UAV1}P{UCAV1} = 
(0.8942)(0.02747) + (0.02747)(0.8942) + 
(0.02747)(0.02747) = 0.04988 

(8) 

P{total mission success} = P{0} = 
P{UAV0}P{UCAV0} = (0.8942)(0.8942) 
= 0.7996 

(9) 

For our example phased mission system, we can see that the 
probability of at least a partial mission success is 
P{1}+P{0}=0.8495. 

III. CONCLUSION 
Many decision analysis problems are based upon non-

parametric reliability information that is empirically collected.  
When complex processes or systems are analyzed using 
components with individual reliability data, the overall success 
or reliability of the system can be difficult to model. 

Using the example of mission planning analysis, we have 
shown how such calculations can be accomplished 
automatically and efficiently using the concepts of multiple-
valued logic and decision diagram data structures.  We assign 
levels of subsystem degradation to each system component or 
subprocess allowing for MDDs to model either parametric or 
non-parametric reliability distributions.  The use of this model 
then allows overall system success probabilities to be easily 
computed through directed graph traversal algorithms. 

In future work, we intend to utilize the MDD-based model 
as a basis for the application of formal reasoning approaches 
whereby various applicable safety, liveness, and security 
properties can be formed using an appropriate logic framework 
and then formally proven to hold or be violated.  The use of 

formal methods has potential for this application since the 
reliability model for a complex system or process is 
represented as a discrete logic function. 
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