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Abstract—Design for medical system reliability has become an 
area of increasing importance.   Medical system threats, which 
include system failures as well as malicious attacks, often have 
interdependent events that can adversely affect system operation. 
To address these problems, we build upon our previous threat 
cataloging methodology such that a large number of 
interdependent threats can be efficiently cataloged and analyzed 
for common features.  Our approach utilizes Multiple-Valued 
Logic for describing the state of a large system and a multiple-
valued decision diagram (MDD) for the threat catalog and 
analysis. 

Keywords—medical system analysis, threat cataloging, MDD, 
threat probability analysis. 

I. INTRODUCTION 
The Institute of Medicine shocked the medical community 

in 2000 when it reported that more than two million serious 
medical errors occur every year. This put the goal of patient 
safety Quality Improvement (QI) at the top priority of the 
health care industry [20]. As a result, Probabilistic Risk 
Assessment (PRA) techniques that use fault trees to model the 
combination of multiple failures that lead to a specific adverse 
outcome were adapted from aviation and other industrial fault 
tolerant disciplines [21].  Since adverse outcomes in patient 
safety are the result of a combination of machine and human 
errors, a PRA variant technique called Sociotechnical 
Probabilistic Risk Assessment (ST-PRA) has been promoted 
[1]. 

Recent events have demonstrated our vulnerability to 
system threats, both natural and man-made.   Therefore, more 
emphasis has been placed on design for security, security 
assessment, disaster recovery, and disaster tolerance in addition 
to ongoing efforts in the established area of fault tolerance.  
While the term “threats” is commonly used to indicate areas of 
possible system security violations, in this paper we expand the 
definition of threats to include any item that has the potential to 
adversely affect system operation, such as faults.   For medical 
systems, health care delivery relies upon a complex series of 
interactions between medical providers, equipment, and 
patients [1].  Specific medical system threat examples include 

component failures [2], misdiagnosis of the patient’s 
symptoms, wrong treatment strategy selection, and errors in 
administration of the treatment [3]. Therefore, it is necessary to 
catalog and characterize anticipated system threats in order to 
formulate appropriate countermeasures during the design and 
implementation of a disaster tolerant system.   

Disaster tolerant systems differ from fault tolerant systems 
since they are designed with the assumption that failures can 
occur due to threats that can result in either single or massive 
numbers of individual faults.  Traditional fault tolerance system 
design usually relies on fault models that represent single 
points of failure for the entire system. In contrast, a disaster-
tolerant system can still function with some degree of 
normality even in the presence of multiple or cascading faults 
[4, 5].   

Various tree-like data structures have been developed to 
represent possible system threats, such as fault trees [6] or 
attack trees [7].  Specific medical applications of these tree 
structures include assessment of radiation treatment systems [3] 
and patient safety risks [1].  However, these structures are 
based on a binary model whereby a system either operates in a 
fully functional or a complete failure mode.  The binary model 
limits the effectiveness of how such trees can be used to 
represent threats in a disaster tolerant system.    

Modeling different operational modes other than the binary 
case of failure or normal operation are critical in analyzing 
large systems in the presence of threats.  For example, radiation 
treatment systems have many complex interactions between 
their components, with multiple operational modes [3].  In 
order to effectively catalog these system threats, it is necessary 
to determine the probabilities of these threats based on various 
system stimuli, including input conditions and their 
probabilities. 

As part of our preliminary research on large-scale system 
threat assessment, we developed threat tree models [8].  Threat 
trees are a superset of fault and attack trees since they are based 
on multiple-valued (MV) or radix-p valued algebras over a 
finite and discrete set of values [9].  The additional logic states 
allow for more complicated interactions to be modeled.  In 
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particular, these additional states can represent partial failures 
or degraded performance in a system, which are critical in 
analyzing large systems in the presence of threats.   

We have also applied multiple-valued logic decision 
diagrams to threat trees to determine large-scale system threat 
probabilities [10]. Our initial approach assumed that system 
components operated independently. However, this assumption 
does not hold for all systems.  In particular, medical systems 
often have many interdependent components, which means that 
the conditional probabilities of system threats must also be 
considered [1]. Therefore, we have expanded our initial threat 
assessment approach to address this concern. 

The structure of this paper is the following: First, 
background information on decision diagram models is 
provided. Next, an approach is presented using decision 
diagram models to determine conditional system threat 
probabilities.  Finally, a medical delivery system example is 
used to illustrate these concepts. 

II. DECISION DIAGRAMS  
A common structure for fault representation is the decision 

diagram, which is a rooted directed acyclic graph (DAG) that 
can be used to represent large switching functions in an 
efficient manner. Decision diagrams are well-suited for 
compact representation of a large number of threats and due to 
their canonical structure, efficient algorithms are formulated 
that analyze threats and identify those that pose the greatest 
threat to the system.    For binary-valued logic, the binary 
decision diagram (BDD) is a well-known structure [11] that has 
been applied to many areas including the representation of fault 
trees [12-17].  Furthermore, efficient software is readily 
available to manipulate BDDs and a variety of heuristics and 
strategies have been adapted for use with fault trees [12, 13, 
15].  Fig. 1 shows a BDD for the function f(A,B) = A and B. 

 

Figure 1.  BDD for AND function. 

In the case of Multiple-Valued Logic (MVL), an extension 
to the BDD construct has been developed and implemented 
called the Multiple-Valued Decision Diagram (MDD).  
Consider a totally-specified p-valued function with n inputs, 
f(x0, x1, …, xn) where each dependent variable �� � � ���	�
� �
	
.  f(x) can be efficiently represented by an MDD.   Similar to 
BDD, the MDD is also a DAG and it contains a maximum of p 
terminal nodes, where each terminal node is labeled by a 

distinct logic value in the range [0, p-1].  Every non-terminal 
node is labeled by an input variable, and has p outgoing edges, 
where each edge corresponds to each logic value.  MDD can be 
minimized using various techniques that were developed for 
BDD, thus allowing the representation of exceptionally large 
number of such functions [18].   Fig. 2 shows an example of an 
MDD for the radix-3 function f = min(A,B), while Table I 
shows the  corresponding truth table. 

Figure 2.  MDD for radix-3 MIN function. 

 

TABLE I.  TRUTH TABLE FOR MDD. 

A B f 
0 X 0 
1 0 0 
1 1 1 
1 2 1 
2 0 0 
2 1 1 
2 2 2 

 

III. APPLICATION OF CONDITIONAL PROBABILITY 
After developing a decision diagram to model system 

behavior, the next step is to add information to this diagram to 
help determine the probabilities of system output events, based 
on the given probabilities of system input events. 

From general probability theory [19], the conditional 
probability of event B given the occurrence of event A is given 
in (1). For a binary system, P(A) = probability that A = 1, while 
P(A’) = probability that A = 0.  Assuming that conditional 
probability applies to inputs A and B of the BDD in Fig. 1, we 
can add conditional probabilities to the edges as shown in Fig. 
3. 

 

������ �
��� � ��
����

 (1) 

Output f = 1 requires both A = 1 and B = 1.  The probability 
of f = 1 is ��� � �� � ���������� from (1). 
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Output f = 0 if either of the following conditions is true: 

1. A = 0, with probability P(A’) 

2. A = 1 and B = 0, with probability ��� � ��� �
����������� 

Applying the Total Probability Rule [19], we get the 
probability of f  = 0 in (2). Therefore, the output probability for 
f = 0 is the sum of the probabilities for each possible condition 
that produces f = 0. 

 ��� � �� � ����� � ��� � ��� 

� ����� � ����������� 
(2) 

 

.   

Figure 3.  BDD for AND function with conditional probabilities. 

A. Expansion to MDD’s 
Traditional probability theory assumes radix-2 systems: 

either an event X is true (X=1) or false (X=0).  For general 
radix-p systems, we develop the notation Xj, which indicates 
that event X has state j (� � ���
 � � � 	�).  Therefore, we can 
modify the conditional probability equation of (1) to handle 
radix-p events as shown in (3). 

 
�������� �

���� � ���
�����

 

��  ! �"� # � ���
 � $ � 	� 

(3) 

Given function f(A,B), what are the output probabilities of 
function f?  For our radix-3 example of Fig. 2, we have P(fj) = 
probability that output f = j, where � � ���	�%�.  Output f = 2 
only if both inputs A and B are 2.  More specifically, we have 
the output probability shown in (4). 

 ���&� � ���& � �&� � ���&����&��&� (4) 

Output f = 1 if any of the following conditions are true: 

1. A = 1 and B = 1, with probability '�() � *)� �
'�()�'�*)�()� 

2. A = 1 and B = 2, with probability '�() � *&� �
'�()�'�*&�()� 

3. A = 2 and B = 1, with probability '�(& � *)� �
'�(&�'�*)�(&� 

Applying the Total Probability Rule as described earlier, we 
obtain (5).  Therefore, the output probability for f = 1 is the 
sum of the probabilities for each possible condition that 
produces f  = 1. 

���)� � ���) � �)� � ���) � �&� � ���& � �)�
� ���	����	��	� � ���	����%��	�

� ���%����	��%� 
(5) 

Output f = 0 if any of the following conditions are true: 

1. A = 0, with probability P(A0) 

2. A = 1 and B = 0, with probability '�() � *+� �
'�()�'�*+�()� 

3. A = 2 and B = 0, with probability '�(& � *+� �
'�(&�'�*+�(&� 

Using the Total Probability Rule, we obtain the output 
probability for f = 0 using (6). 

���+� � ���+� � ���) � �+� � ���& � �+� 
� ����� � ���	�������	� � ���%�������%� 

(6) 

Fig. 4 shows the probabilities applied to the associated 
edges of the example of Fig. 2.  Note that P(B1,2) = P(B1) + 
P(B2).  The output probabilities are calculated by traversing the 
MDD using a depth-first search, and adding the total output 
probability components.   

If events A and B are independent, then '�*, � (-� �
'�*,�'�(-�.  The conditional probability equation reduces to 
'�*,�(-� � '�*,�.   This becomes the case described in our 
previous paper [10]. 

Figure 4.  Probabilities applied to MDD of Fig. 2. 

IV. APPLICATION EXAMPLE 
We demonstrate the techniques of this paper using a patient 

safety example that assesses the risk of medication delivery to a 
patient within the hospital environment. It is interesting to note 
that ST-PRA analysis of medication delivery has been 
extensively published in the medical literature, using a binary 
outcome of the process indicating success or failure [1, 22].  
We extend the outcome of the medication delivery process to 
radix-3 with the following system states:  2 – successful 
medication delivery; 1 – benign (or partial) failure; and 0 – 
harmful failure.  We assume, of course, that once the medical 
team identifies a benign failure outcome, they will repeat the 
process to insure proper patient care [21]. 
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We model the medication delivery process as being 
composed of two sub-processes A and P, as shown in Fig. 5. 
Sub-process A models the medication administration process, 
and it takes into accounts faults in the medication pump 
equipment, the pump monitoring/alarm system and the nursing 
team in charge of the process.  Sub-process A is adapted from a 
binary ST-PRA example discussed in [1].   Sub-process P 
models the medication prescription process which takes into 
accounts faults in the associated medical equipment used for 
patient data and medical diagnostic equipment, the nursing 
team that access the medical data and perform medical test, and 
the doctor who diagnoses the patient illness and prescribe the 
medication. Sub-process P follows an example in [22] with the 
addition of the medical diagnostic equipment and electronic 
medical records. 

 

Figure 5.  Ternary Threat Tree Analysis of Medication Delivery. 

Fig. 5 illustrates the need for conditional probabilities 
analysis due to the apparent dependencies between sub-
processes A and P.  Line 1 relates to the dependencies of faults 
occurring in the medication pump equipment and the electronic 
medical data computers and the medical diagnostic equipment.  
With today’s online sophistication, the pump equipment may 
be subject to the same cyber threat as the computers performing 
the medical tests and retaining the medical data. In addition, the 
same technician may be in charge of repairing and maintaining 
all the medical equipment in the patient vicinity.  Line 2 relates 
to the dependencies through the nursing teams.  The same 
potentially over extended and tired nurse might be involved in 
the medical tests that helps determine the proper prescription as 
well as in the actual medication administration sub-process. 
Alternatively, inadequate nursing procedures in a given 
hospital may correlate failures even if there are different 
nursing teams involved in the two sub-processes. 

The total medication delivery condition C is found by C = 
min(P,A).  All sub-processes are radix-3, with states and 
probabilities as shown in Table II.  We chose probabilities for 
this example that are useful in demonstrating our proposed 
technique rather than attempting to use strictly realistic medical 
values. The columns in Table II represent probability values for 

the condition of the prescription sub process P, while the rows 
represent probability values for the medication administration 
sub-process A.  For row j and column k, the number in the 
table cell is the probability of the intersection of input A = j and 
P = k.  For instance, ���+ � �&� � �.��/.  This value is the 
probability that the medication administration sub-process is 
failing, while the medication prescription sub-process P is 
successful.  The “total” row indicates the independent 
probability values of Pk, while the “total” column indicates the 
independent probability values of Aj.  For instance, P(A0) = 
0.045 and P(P2) = 0.9.   

Since the total medication delivery condition C = min(P,A), 
we can use the MDD of Fig. 4, substituting variable P 
(prescription) for A and variable A (administration) for B.  If P 
= 0 (wrong and harmful prescription), then C = 0, regardless of 
the value of A.  From Table II, P(P0) = 0.04.  Similarly, P(P1) = 
0.16 and P(P2) = 0.9. 

TABLE II.  PROBABILITES AND STATES FOR MEDICATION DELIVERY 
SYSTEM. 

 P 

0 1 2 total 

A 

0 0.025 0.015 0.005 0.045 
1 0.01 0.03 0.045 0.085 
2 0.005 0.015 0.85 0.87 

total 0.04 0.06 0.9 1 
 

Using our notation, P(A0|P1) is the conditional probability 
that sub-process A is at state 0 (harmful failure), given that 
system P is at state 1 (benign failure).   From Table II, we have 
the following probabilities as shown in (7) – (9). 

 ���+ � �)� � �.�	/ 
 

(7) 

 ���)� � �.�0 
 

(8) 

 
���+��)� �

���+ � �)�
���)�

�
�.�	/
�.�0

� �.%/ 
 

(9) 

Developing the other conditional probabilities, we obtain 
the MDD shown in Fig. 6. 
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Figure 6.  MDD for the Medication Delivery Example.  

Using the approach described in Section III, the output 
probabilities are calculated as shown in (10) – (12): 

 ��1+� � �.�2 � ��.�0���.%/� � ��.3���.��/0�
� �.�0 

(10) 

 ��1)� � ��.�0���.4/� � ��.3���.�/� � �.�3 (11) 

 ��1&� � ��.3���.3222� � �.5/ (12) 

Now, if we assume that sub-process A is independent of 
sub-process P, then '�(,�'-� � '�(,�.   From Table II, P(A0) = 
0.045, P(A1) = 0.085, and P(A2) = 0.87.  This results in the 
modified MDD shown in Fig. 7. 

Figure 7.  MDD for the Medication Delivery System, assuming independent 
probabilities.  

Next, the output probabilities are calculated as shown in 
(13) – (15): 

 ��1+� � �.�2 � ��.�0���.�2/� � ��.3���.�2/�
� �.�5 

(13) 

 ��1)� � ��.�0���.3//� � ��.3���.�5/� � �.	6 (14) 

 ��1&� � ��.3���.54� � �.45 (15) 

Note the differences in output probabilities, depending on 
whether the input probabilities are independent or conditional.  
Therefore, it is important to consider the interdependence of 
input conditions to obtain a more accurate model of system 
operation when performing threat analysis. 

V. CONCLUSION 
The challenge of system threat determination in medical 

systems is crucial for patient care quality improvement. In this 
work we have shown how to model system threat probabilities 
using edge weights on MDD’s, with emphasis on conditional 
probabilities. Our approach allows efficient determination of 
overall system state probabilities and can accommodate 
complex systems with the efficient scalability of modern MDD 
packages.  

We have demonstrated the importance of accounting for 
conditional probabilities and lay out the mechanism to take 
them into account in conjunction with the MDD analysis of 
other systems. While we have focused on medical system 
threat analysis, the framework discussed in this paper can be 
further applied to general large system risk analysis which is 
useful in the determination of the initial system element 
probability values. 

We also plan to investigate the use of mixed-radix MDDs 
to model medical threats that cannot be explored with a fixed 
radix. 
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