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On Optimizations of Edge-Valued MDDs for Fast Analysis of
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SUMMARY In the optimization of decision diagrams, variable reorder-
ing approaches are often used to minimize the number of nodes. However,
such approaches are less effective for analysis of multi-state systems given
by monotone structure functions. Thus, in this paper, we propose algo-
rithms to minimize the number of edges in an edge-valued multi-valued de-
cision diagram (EVMDD) for fast analysis of multi-state systems. The pro-
posed algorithms minimize the number of edges by grouping multi-valued
variables into larger-valued variables. By grouping multi-valued variables,
we can reduce the number of nodes as well. To show the effectiveness of
the proposed algorithms, we compare the proposed algorithms with con-
ventional optimization algorithms based on a variable reordering approach.
Experimental results show that the proposed algorithms reduce the number
of edges by up to 15% and the number of nodes by up to 47%, compared to
the conventional ones. This results in a speed-up of the analysis of multi-
state systems by about three times.
key words: minimization algorithm of the number of edges, EVMDDs,
grouping variables for optimization of decision diagrams, multi-state sys-
tems, system analysis using decision diagrams

1. Introduction

Multi-state systems are widely used to model various
fault tolerant systems including computer server systems,
telecommunication systems, water, gas, electrical power
distribution systems, flight control systems, and nuclear
power plant monitoring systems [2], [3], [17], [21], [23]. In
this system model, levels of performance, reliability, safety,
efficiency, power consumption, etc. are represented as states.

To design dependable fault tolerant systems, intensive
analysis of multi-state systems using various assessment
measures for identifying critical components and system
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weaknesses is indispensable. Among them, assessing the
probability of each state of a multi-state system is essential
to the design of a dependable fault tolerant system [21], [23].
Thus, in this paper, we focus on computing the probabilities
of system states. Since this is very time-consuming, many
analysis methods have been proposed to shorten analysis
time. Among them, methods based on binary decision di-
agrams (BDDs) [1], [2], [4], [23] and multi-valued decision
diagrams (MDDs) [9], [15], [20], [21] have attracted much
attention, since they hold promise as fast analysis methods.

In analysis methods based on decision diagrams (DDs),
optimization of DDs is very important to reduce memory
size and runtime for analysis. Most existing optimization
algorithms for DDs use variable reordering approaches [5]–
[7], [11], [12], [18]. However, for analysis of multi-state sys-
tems in which states of some components occur depending
on states of other components [10], the order of some vari-
ables can be fixed. This is because conditional probabilities
P(B|A) are computed to analyze such systems, and P(B|A)
cannot be computed unless the value of A is decided prior to
B. In addition, as we will show in Sect. 5, optimization over
monotone structure functions is surprisingly unaffected by
permuting variables. Thus, another approach that does not
change the order of variables is more robust and effective for
analysis of a wide range of systems.

In this paper, we use a variable grouping approach for
optimization of DDs [13]. In many uses of DDs, minimiza-
tion of the number of nodes is the objective of optimiza-
tion. However, minimization of the number of nodes by
grouping variables is trivial, and it is not always effective
for fast analysis of multi-state systems. Thus, we propose
algorithms to minimize the number of edges in an edge-
valued multi-valued decision diagram (EVMDD) [14], [15]
by grouping multi-valued variables into larger-valued vari-
ables. By grouping variables, we can reduce not only the
number of edges, but also the number of nodes effectively,
resulting in faster analysis of multi-state systems.

This paper is organized as follows: Section 2 defines
multi-state systems, EVMDDs, and variable grouping. Sec-
tion 3 introduces the analysis method of multi-state systems
using MDDs and EVMDDs, and in Sect. 4, we propose al-
gorithms to minimize the number of edges in an EVMDD.
Experimental results are shown in Sect. 5.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers
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2. Preliminaries

This section defines multi-state systems, structure func-
tions, EVMDDs to represent structure functions, and vari-
able grouping.

2.1 Multi-State Systems and Structure Functions

Definition 1: A multi-state system is a model of a system
that represents, as a state, a capability, such as performance,
capacity, or reliability. There are usually more than two
states, and so a multiple-valued analysis is required. When
components in a system are modeled as well, it is called a
multi-state system with multi-state components. In this
paper, it is simply called a multi-state system.

Definition 2: A state of a multi-state system depends only
on states of components in the system. A system with n
components can be considered as a multi-valued function
f (x1, x2, . . . , xn): R1 × R2 × . . . × Rn → M, where each xi

represents a component with ri states, Ri = {0, 1, . . . , ri − 1}
is a set of the states, and M = {0, 1, . . . ,m − 1} is a set of
the m system states. This multi-valued function is called a
structure function of the multi-state system.

Definition 3: A structure function f (x1, x2, . . . , xn) is
monotone increasing iff, for all α, β ∈ Ri, where α ≤ β,

f (x1, x2, . . . , xi−1, α, xi+1, . . . , xn)

≤ f (x1, x2, . . . , xi−1, β, xi+1, . . . , xn).

In many applications, states of a system and its compo-
nents are totally ordered, and a deterioration of a component
in the system causes a deterioration of the whole system.
Thus, structure functions are usually monotone increasing
when a value is assigned to each state in ascending order
(i.e. the worst state is 0 and the best state is m − 1 or ri − 1).

Example 1: Figure 1 (a) shows a multi-state system for an
electrical power distribution system. In this figure, the ther-
mal power plant x1, the hydro power plant x2, and the wind
power plant x3 have three states which correspond to sup-
ply levels: 0 (breakdown), 1 (partially supply), and 2 (fully
supply). And, the system has six states which correspond
to the percentage of area of a town that is blacked out: 0
(complete blackout), 1 (90% blackout), 2 (60% blackout), 3

(a) Multi-state system. (b) Structure function.

Fig. 1 Multi-state system for an electrical power distribution system and
its structure function.

(30% blackout), 4 (10% blackout), and 5 (0% blackout).
In this way, by assigning a value to each state in as-

cending order, we obtain the 6-valued monotone increasing
structure function f shown in Fig. 1 (b). Note that Fig. 1 (b)
shows a part of the 33 = 27 entry table since it is too large
to be included in its entirety.

2.2 Edge-Valued Multi-Valued Decision Diagrams

Definition 4: A multi-valued decision diagram (MDD)
is a rooted directed acyclic graph representing a multi-
valued function f . The MDD is obtained by repeatedly
applying the Shannon expansion to the multi-valued func-
tion [8]. It consists of non-terminal nodes representing sub-
functions obtained from f by assigning values to certain
variables. It also has terminal nodes representing function
values. Each non-terminal node has multiple outgoing edges
that correspond to the values of a multi-valued variable. The
MDD is ordered; i.e., the order of variables along any path
from the root node to a terminal node is the same. In addi-
tion, the MDD is reduced; i.e., the following two reduction
rules are applied to it:

1. Share equivalent sub-graphs.
2. Delete non-terminal nodes whose outgoing edges all

point to the same node v, and redirect edges, that point
to the deleted node, to v.

When an MDD represents a function for which multi-
valued variables have different domains, it is a heteroge-
neous MDD [13]. In the following, the term ‘MDD’ refers
to a heterogeneous MDD.

Definition 5: An edge-valued MDD (EVMDD) [14] is an
extension of the MDD, and represents a multi-valued func-
tion. It consists of one terminal node representing 0 and
non-terminal nodes with edges having integer weights; 0-
edges always have zero weights. In an EVMDD, the func-
tion value is represented as a sum of weights for edges tra-
versed from the root node to the terminal node.

EVMDDs are known as a compact representation for
monotone increasing functions [14].

Example 2: Figure 2 and Fig. 3 show an ordinary MDD

Fig. 2 MDD for the structure function.
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Fig. 3 EVMDD for the structure function.

and an EVMDD for the structure function of Example 1.
For readability, some terminal nodes in the MDD are not
combined.

2.3 Variable Grouping

Definition 6: Let X = (x1, x2, . . . , xn) be an ordered set of
n multi-valued variables. Let

X1 = (x1, x2, . . . , xk1 ),

X2 = (xk1+1, xk1+2, . . . , xk1+k2 ),
...

Xu = (xk1+k2+...+1, xk1+k2+...+2, . . . , xn).

Then, (X1, X2, . . . , Xu) is a grouping of X. Each ordered set
Xi = (x j+1, x j+2, . . . , x j+ki ) forms a super variable whose
domain is {0, 1, . . . , r j+1 × r j+2 × . . .× r j+ki − 1}, where |Xi| =
ki ≥ 1 and k1 + k2 + . . . + ku = n. Note that the order of the
original multi-valued variables is preserved in a grouping.

By considering each super variable Xi as a larger-
valued variable, the original multi-valued function f (x1, x2,
. . . , xn) : R1 × R2 × . . . × Rn → M can be converted into its
larger-valued input function g(X1, X2, . . . , Xu) : P1 × P2 ×
. . .×Pu → M, where Pi = {0, 1, . . . , r j+1×r j+2×. . .×r j+ki−1}.
Example 3: When the multi-valued variables x1, x2, x3 in
Example 1 are grouped into two super variables, we have

X1 = (x1, x2) and X2 = (x3).

Note that since x1 and x2 are 3-valued variables, the super
variable X1 consisting of x1 and x2 is a 9-valued variable.
The EVMDD representing the obtained function g(X1, X2)
is shown in Fig. 4.

3. Analysis Methods Using MDDs and EVMDDs

Definition 7: The probability that a structure function f
has the value σ is denoted by Ps( f = σ), where σ ∈
{0, 1, . . . ,m−1}. The probability that a component xi has the
value γ is denoted by Pc(xi = γ), where γ ∈ {0, 1, . . . , ri−1}.

An analysis of multi-state systems is to solve the fol-
lowing problem:

Fig. 4 EVMDD for the function g(X1, X2).

Problem 1: Given a structure function f of a multi-state
system and the probability of each state of each component
Pc(xi = γ), compute the probability of each state of the
multi-state system Ps( f = σ). For simplicity, we assume
that the probabilities of all component states are indepen-
dent of each other.

3.1 Analysis Method Using MDDs

Problem 1 can be solved using node traversing probabilities
in an MDD that are introduced to compute the average path
length on an MDD [12].

Definition 8: In an MDD, a sequence of edges and nodes
leading from the root node to a terminal node is a path. The
node traversing probability, denoted by NT P(vi), is the
probability that an assignment of values to variables selects
a path that includes the node vi.

Since terminal nodes of an MDD for a structure func-
tion represent system states, node traversing probabilities
of terminal nodes correspond to the probabilities of system
states. The node traversing probabilities can be computed
by visiting each node only once in the breadth first order
from the root node. Thus, the time complexity of this anal-
ysis method is O(NM), where NM is the number of nodes in
an MDD [9], [20], [21].

Example 4: Let us compute node traversing probabilities
for the MDD in Fig. 2. Assume that all states of each com-
ponent occur with the same probability, 1/3.

First, we have NT P(v1) = 1 for the root node v1

since the root node occurs in all paths. Then, we compute
NT P(v2) = NT P(v1)× 1/3, NT P(v3) = NT P(v1)× 1/3, and
NT P(v4) = NT P(v1)×1/3 in a breadth first order. Similarly,
by computing NTPs in a top-down manner, and by sum-
ming all NTPs received from parent nodes at re-convergence
nodes, we have the node traversing probabilities of terminal
nodes: NT P(0) = 1/27, NT P(1) = 2/27 + 1/27 = 1/9,
NT P(2) = 2/27 + 1/9 = 5/27, NT P(3) = 1/9, NT P(4) =
2/9+1/9+1/27 = 10/27, and NT P(5) = 2/27+1/9 = 5/27.
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Fig. 5 Analysis of the multi-state system using EVMDD.

3.2 Analysis Method Using EVMDDs

To solve Problem 1 for large systems more effi-
ciently, a method using EVMDDs has been proposed [15].
The method represents given structure functions using
EVMDDs, and computes probabilities for a structure func-
tion by merging probabilities for sub-functions represented
by nodes in a bottom-up manner.

Example 5: Let us compute the probability of each state
of the multi-state system using the EVMDD in Fig. 5. Note
that this corresponds to the system whose MDD is shown in
Fig. 2. Assume that all states of each component occur with
the same probability, 1/3.

First, we have Ps( fT = 0) = 1 at the terminal node
T . Then, we compute probabilities for a sub-function fv1 at
node v1. Since this node has two edges pointing to T whose
values are 1, and the two edges represent fv1 = 1, we have

Ps( fT = 0) × Pc(x3 = 1) = 1/3,

Ps( fT = 0) × Pc(x3 = 2) = 1/3, and thus,

Ps( fv1 = 1) = Ps( fT = 0) × Pc(x3 = 1)

+Ps( fT = 0) × Pc(x3 = 2)

= 2/3.

Thus, Ps( fv1 = 0) = 1/3 and Ps( fv1 = 1) = 2/3 for v1. At
v2, the probabilities at the terminal node and v1 are multi-
plied by 1/3, and they are merged in each function values of
fv2 . Thus, Ps( fv2 = 0) = 4/9 and Ps( fv2 = 1) = 5/9. Simi-
larly, by performing the same computation at each node in a
bottom-up manner, we have the following at the root node:
Ps( f = 0) = 1/27, Ps( f = 1) = 1/9, Ps( f = 2) = 5/27,
Ps( f = 3) = 1/9, Ps( f = 4) = 10/27, and Ps( f = 5) =
5/27. Note that these probabilities are identical to the node
traversing probabilities at the terminal nodes in Example 4.

The time complexity of this analysis method is O(NE),
where NE is the number of nodes in an EVMDD. Since
in many applications, structure functions are monotone
increasing, the functions are compactly represented by
EVMDDs, and Problem 1 can be solved efficiently.

Fig. 6 EVMDD for a function g(X1), X1 = (x1, x2, . . . , xn).

3.3 Time Complexities of the Analysis Methods

The time complexities of the analysis methods using MDDs
and EVMDDs are O(NM) and O(NE), as shown in the previ-
ous subsections. However, these are rough estimates. More
precisely, the time complexities of the both methods can be
expressed by the following form:

Nγ∑

i=0

⎛⎜⎜⎜⎜⎜⎜⎝αγ(i) +
Rγ(i)∑

j=0

βγ( j)

⎞⎟⎟⎟⎟⎟⎟⎠ , (1)

where αγ(i) is the overhead for merging probabilities at each
node, βγ( j) is the overhead for multiplying probabilities at
each edge, Nγ is the number of nodes in an MDD or an
EVMDD, Rγ(i) is the number of edges of each node, and
γ in this equation is stated to be either M or E for MDDs
or EVMDDs. Let αγ and βγ be the maximum overheads,
and Rγ be the maximum number of edges. Then, (1) can be
approximated as follows:

Nγ(αγ + βγRγ) = αγNγ + βγNγRγ. (2)

Thus, the computation time of the analysis methods can be
shortened by reducing the number of nodes Nγ using al-
gorithms based on variable reordering approaches [5]–[7],
[11], [18].

We can minimize the number of nodes Nγ straightfor-
wardly by grouping all n multi-valued variables of a given
structure function into a super variable as shown in Fig. 6. In
this case, although the number of nodes Nγ is only one, the
number of edges Rγ in the node is rn, where r is the domain
size of each multi-valued variable. Since the time complex-
ity is O(rn) in this example, minimization of the number of
nodes by grouping variables does not always shorten com-
putation time of the analysis methods.

In the optimization based on variable reordering, com-
putation time can be shortened by minimization of the num-
ber of nodes Nγ since the number of edges Rγ in each node
is constant. However, in the optimization based on vari-
able grouping, minimization of Nγ can increase Rγ exces-
sively. Since the NγRγ in (2) denotes the total number of
edges in a decision diagram, minimization of the number of
edges NγRγ is effective in the optimization based on variable
grouping.

4. Minimization of the Number of Edges

Example 6: The EVMDD shown in Fig. 3 has 15 edges.
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Algorithm 1: Minimization of the number of edges by grouping.
1: min edge grouping (EVMDD, the number of variables n) {
2: for(i = n; i ≥ 1; i = i - 1) {
3: min edges =∞ ;
4: for(k = 1; k ≤ limit[i]; k = k + 1) {
5: n edges = nodes(EVMDD, i, k) ×∏k−1

j=0 ri+ j ;
6: n edges = n edges + lower edges[i + k] ;
7: if (min edges > n edges) {
8: min edges = n edges ;
9: register the grouping k ;

10: }
11: }
12: lower table[i] = min edges ;
13: }
14: return lower table[1] ;
15: }

On the other hand, the EVMDD shown in Fig. 4 has 12
edges, and it is the EVMDD with the minimum number of
edges. If all the variables x1, x2, and x3 are grouped into a
single super variable as in Fig. 6, then an EVMDD obtained
by this grouping has 33 = 27 edges.

As shown in Example 6, different groupings of vari-
ables produce EVMDDs with a different number of edges.
Thus, there is an optimum grouping of variables that pro-
duces an EVMDD with the minimum number of edges. This
section formulates a minimization problem of the number of
edges in an EVMDD, and then presents minimization algo-
rithms.

Problem 2: Given an EVMDD representing a structure
function f (x1, x2, . . . , xn), find a grouping of variables
(x1, x2, . . . , xn) that produces an EVMDD with the minimum
number of edges.

Algorithm 1 shows pseudo-code to solve Problem 2.
This algorithm is based on dynamic programing, and
searches for the minimum number of edges for each sub-
EVMDD sequentially from the bottom. In the following,
for simplicity, we assume that the variable order for a given
EVMDD is x1, x2, . . . , xn from the top to the bottom.

Algorithm 1 is efficient because limit[i] prevents un-
necessary iterations of the second for loop. This is shown
by the following theorem.

Theorem 1: Let nodes(EVMDD, i, k) be the number
of nodes in an EVMDD with respect to a super vari-
able that consists of k variables from xi to xi+k−1, and let
edges(EVMDD, i) be the number of edges associated with
nodes in the given EVMDD representing variables from xi

to xn. If, for some value of k, the following relation holds:

nodes(EVMDD, i, k) ×
k−1∏

j=0

ri+ j > edges(EVMDD, i),

then for any k′ ≥ k, the same relation holds:

nodes(EVMDD, i, k′) ×
k′−1∏

j=0

ri+ j > edges(EVMDD, i).

Algorithm 2: Minimization of # of edges by grouping & ordering.
1: min edge g&o (EVMDD, the number of variables n) {
2: cost = min edge grouping(EVMDD, n) ;
3: do {
4: for(all multi-valued variables xi) {
5: best p = current position of xi ;
6: for(all position p) {
7: Move xi to position p ;
8: new cost = min edge grouping(EVMDD, n) ;
9: if (new cost < cost) {

10: cost = n edges ;
11: best p = p ;
12: register the grouping ;
13: }
14: }
15: Move xi to best p ;
16: }
17: } while (cost is reduced) ;
18: }

(Proof) See Appendix.
This theorem states that, once the number of edges in

an EVMDD obtained by grouping variables becomes larger
than that in the original EVMDD, the number of edges can-
not be reduced by grouping more variables. Thus, we can
prune such redundant branching.

In the 5th line, nodes(EVMDD, i, k) denotes the num-
ber of root nodes for sub-EVMDDs from xi to xi+k−1. When
k variables xi, xi+1, . . . , xi+k−1 are grouped into a super vari-
able, each root node for the sub-EVMDDs corresponds to
each node in an EVMDD with respect to the super variable,
which has

∏k−1
j=0 ri+ j edges. That is, the 5th line computes

the number of edges in the EVMDD with respect to the su-
per variable from xi to xi+k−1.

In the 6th line, the table lower edges[i + k] stores
the minimum number of edges computed for the lower-
EVMDD from xi+k to xn. By summing this number and the
number of edges computed in the 5th line, we have the num-
ber of edges in sub-EVMDDs from xi to xn.

The time complexity of Algorithm 1 is O(n2). How-
ever, the coefficient of n2 is very small due to Theorem 1.

Since the proposed algorithm does not change the order
of the original variables, it can be also applied to the anal-
ysis of multi-state systems in which states of some compo-
nents occur depending on states of other components [10].
However, for the analysis of multi-state systems in which
components are independent of each other, we can use both
variable grouping and variable reordering approaches to re-
duce the number of edges furthermore. Algorithm 2 shows
pseudo-code to minimize the number of edges using both
Algorithm 1 and the sifting algorithm [5], [11], [18].

The sifting algorithm iteratively performs the following
basic steps:

1. Change the current variable order.
2. Compute a cost.

Although the number of nodes is usually used as the cost, we
use Algorithm 1 to compute the cost. To minimize the num-
ber of edges heuristically, Algorithm 2 computes the opti-
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Table 1 Number of edges in MDDs and EVMDDs for m-state systems with n 3-state components.

n m CTT w/o optimization Ordering Grouping Ordering & Grouping
MDD EVMDD MDD EVMDD MDD Ratio1 EVMDD Ratio2 MDD EVMDD

5 3 363 27 27 27 27 27 100% 27 100% 27 27
5 10 363 78 51 72 51 75 104% 48 94% 69 48

10 3 88,572 42 42 36 36 42 117% 42 117% 36 36
10 10 88,572 201 168 201 159 195 97% 162 102% 195 153
10 100 88,572 1,497 792 1,497 780 1,455 97% 750 96% 1,455 738
10 1,000 88,572 9,603 2,718 9,603 2,718 9,084 95% 2,364 87% 9,084 2,364
15 3 21,523,359 87 87 87 78 87 100% 87 112% 87 78
15 10 21,523,359 330 312 330 300 327 99% 309 103% 327 297
15 100 21,523,359 2,994 2,121 2,988 1,989 2,949 99% 2,076 104% 2,949 1,944
15 1,000 21,523,359 24,030 10,083 24,030 9,777 23,541 98% 9,597 98% 23,541 9,291
15 10,000 21,523,359 180,420 34,419 180,369 34,413 174,876 97% 31,212 91% 174,798 31,206
15 100,000 21,523,359 1,185,672 188,274 1,185,672 188,274 1,129,887 95% 159,768 85% 1,129,887 159,768
n: Number of 3-state components. m: Number of states for systems.
Ratio1: MDD with grouping /MDD with ordering × 100 (%). Ratio2: EVMDD with grouping / EVMDD with ordering × 100 (%).
The order of variables for MDDs and EVMDDs in “w/o optimization” is x1, x2, . . . , xn (from top to bottom).

Table 2 Number of nodes in MDDs and EVMDDs for m-state systems with n 3-state components.

n m CTT w/o optimization Ordering Grouping Ordering & Grouping
MDD EVMDD MDD EVMDD MDD Ratio1 EVMDD Ratio2 MDD EVMDD

5 3 364 12 10 12 10 10 83% 8 80% 10 8
5 10 364 36 18 34 18 33 97% 15 83% 31 15
10 3 88,573 17 15 15 13 15 100% 13 100% 13 11
10 10 88,573 77 57 77 54 67 87% 47 87% 67 44
10 100 88,573 599 265 599 261 505 84% 171 66% 505 167
10 1,000 88,573 4,201 907 4,201 907 3,300 79% 547 60% 3,300 547
15 3 21,523,360 32 30 32 27 30 94% 28 104% 30 25
15 10 21,523,360 120 105 120 101 117 98% 102 101% 117 98
15 100 21,523,360 1,098 708 1,096 664 1,003 92% 613 92% 1,003 569
15 1,000 21,523,360 9,010 3,362 9,010 3,260 8,119 90% 2,472 76% 8,119 2,370
15 10,000 21,523,360 70,140 11,474 70,123 11,472 61,732 88% 8,219 72% 61,706 8,217
15 100,000 21,523,360 495,224 62,759 495,224 62,759 417,581 84% 33,575 53% 417,581 33,575
Ratio1: MDD with grouping /MDD with ordering × 100 (%). Ratio2: EVMDD with grouping / EVMDD with ordering × 100 (%).

Table 3 Computation time (sec.) to optimize MDDs and EVMDDs for the systems.

n m Ordering Grouping Ordering & Grouping
MDD EVMDD MDD EVMDD MDD EVMDD

5 3 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01
5 10 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01

10 3 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 0.01
10 10 ∗ < 0.01 0.01 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01
10 100 ∗ < 0.01 0.01 ∗ < 0.01 ∗ < 0.01 0.02 0.02
10 1,000 0.03 0.03 ∗ < 0.01 ∗ < 0.01 0.16 0.06
15 3 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01
15 10 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01 0.01
15 100 0.04 0.04 ∗ < 0.01 ∗ < 0.01 0.04 0.07
15 1,000 0.16 0.22 ∗ < 0.01 ∗ < 0.01 0.60 0.54
15 10,000 3.97 1.35 0.05 0.01 31.63 4.16
15 100,000 19.97 3.04 1.13 0.06 385.76 17.42
∗ <: It was shorter than 1 msec., but could not be obtained precisely due to precision of the timer.

mum variable grouping while moving each variable xi to all
possible positions.

5. Experimental Results

To show the effectiveness of the proposed optimization al-
gorithms for fast system analysis, we compare the pro-
posed algorithms with the sifting algorithms for MDDs and
EVMDDs [5], [11], [18]. In this experiment, we use mono-
tone increasing structure functions randomly generated in
[15] as benchmarks. This is because, unfortunately, bench-
mark structure functions of multi-state systems large enough
to show the effectiveness of the proposed algorithms are un-
available. The randomly generated m-state systems with n
3-state components are analyzed using the optimized MDDs

or EVMDDs, as shown in Sect. 3. The algorithms and the
analysis methods are implemented on our own MDD pack-
age, and run on the following computer environment: CPU:
Intel Core2 Quad Q6600 2.4GHz, memory: 4GB, OS: Cen-
tOS 5.7, and C-compiler: gcc -O3 (version 4.1.2).

Tables 1–4 show their experimental results. In these ta-
bles, the columns “w/o optimization,” “Ordering,” “Group-
ing,” and “Ordering & Grouping” show the results obtained
without any optimization, by the sifting algorithms, by Al-
gorithm 1, and by Algorithm 2, respectively. And, for
comparison, Tables 1 and 2 show the number of edges
((3n+1 − 1)/2 − 1) and the number of nodes ((3n+1 − 1)/2)
in a complete ternary tree (CTT) that does not delete redun-
dant nodes nor share equivalent sub-graphs. The tables show
that MDDs and EVMDDs are several orders of magnitude
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Table 4 Computation time (μsec.) to analyze m-state systems with n 3-state components.

n m w/o optimization Ordering Grouping Ordering & Grouping
MDD EVMDD MDD EVMDD MDD Ratio1 EVMDD Ratio2 MDD EVMDD

5 3 0.33 0.96 0.35 0.99 0.34 98% 0.98 98% 0.31 0.95
5 10 1.09 2.24 0.98 2.22 1.01 103% 2.06 92% 0.80 2.07
10 3 0.48 1.55 0.45 1.77 0.65 146% 1.56 88% 0.41 1.72
10 10 2.70 6.61 2.57 7.59 2.95 115% 6.39 84% 2.94 7.05
10 100 24.78 42.32 25.16 41.75 23.37 93% 33.29 80% 23.49 34.40
10 1,000 218.61 258.74 218.30 258.11 179.69 82% 155.89 60% 181.31 154.77
15 3 1.12 3.36 1.15 3.44 1.22 106% 3.11 91% 1.21 3.27
15 10 4.49 12.18 4.59 14.14 4.47 97% 12.48 88% 4.65 14.04
15 100 57.76 95.90 56.08 92.42 53.05 95% 86.76 94% 52.71 83.88
15 1,000 532.28 652.68 532.67 650.26 507.46 95% 500.55 77% 510.78 505.46
15 10,000 4,273.00 3,953.00 4,532.00 3,957.00 3,737.00 82% 2,397.00 61% 3,767.00 2,409.00
15 100,000 61,211.00 55,097.00 61,277.00 56,456.00 41,194.00 67% 18,257.00 32% 41,198.00 18,305.00
Ratio1: MDD with grouping /MDD with ordering × 100 (%). Ratio2: EVMDD with grouping / EVMDD with ordering × 100 (%).
The computation time is an average time obtained by running the same computation 1,000,000 times, and dividing its total time by 1,000,000.

smaller than CTTs.
From these tables, we can see that the sifting algo-

rithms are less effective on the randomly generated mono-
tone increasing systems since they reduce neither the num-
ber of edges nor the number of nodes very much. The dif-
ference between computation times of “w/o optimization”
and “Ordering” in Table 4 is just within the margin of mea-
surement error. On the other hand, Algorithm 1 based on
variable grouping shortens the computation time for analyz-
ing the multi-state systems significantly, especially for large
systems. This is because Algorithm 1 reduces both the num-
ber of edges and the number of nodes.

Surprisingly, the computation time of analysis is re-
duced more than the number of edges and nodes are re-
duced, when m is large. Especially in analysis using
EVMDDs, the computation time is significantly reduced.
This is because a reduction in the number of nodes and
edges reduces the overheads αγ(i) and βγ( j) in (1). In the
analysis method using EVMDDs, probabilities of function
values at each node are merged at its parent node, as shown
in Fig. 5. Thus, the overhead αγ(i) increases as the number
of function values at child nodes increases. Our optimiza-
tion algorithm usually groups nodes near the root node into
one node, as shown in Fig. 4. Since nodes near the root node
tend to have many function values (i.e., large αγ(i)), this
grouping yields a significant reduction in the computation
time of analysis using EVMDDs.

Algorithm 2 using both variable reordering and vari-
able grouping reduces the number of edges even more, but
does not improve the speed of analysis very much. Al-
though Algorithm 2 requires more time to optimize MDDs
or EVMDDs than Algorithm 1, its improvement is small.
On the other hand, Algorithm 1 is the fastest at optimizing
MDDs or EVMDDs among the three algorithms, and its ef-
fect to shorten analysis time is large.

From these results, we can say that the proposed opti-
mization algorithms are very effective for fast system anal-
ysis, since minimization of the number of edges by vari-
able grouping reduces the number of nodes, as well as over-
head for merging probabilities. Particularly, the proposed
algorithms are more effective for the analysis method using

EVMDDs since the overhead is significantly reduced.

6. Conclusion and Comments

This paper proposes minimization algorithms of the num-
ber of edges in an EVMDD for fast analysis of multi-state
systems. The proposed algorithms minimize the number of
edges by grouping multi-valued variables into larger-valued
variables. By grouping multi-valued variables, we can also
reduce the number of nodes and the overhead for merging
probabilities. Experimental results show that the proposed
algorithms reduce the number of edges by up to 15% and
reduces the number of nodes by up to 47%, resulting in
much faster analysis of multi-state systems. Since the algo-
rithm based only on the variable grouping does not change
the order of the original variables, it can also be applied to
the analysis of multi-state systems in which states of some
components occur depending on states of other components.
Therefore, it is robust and effective for analysis of a wide
range of systems. In addition, it can optimize EVMDDs
quickly.
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Appendix: Proof for Theorem 1 [16]

Suppose that for a value of k, the following relation holds:

nodes(EVMDD, i, k) ×
k−1∏

j=0

ri+ j

> edges(EVMDD, i) (A· 1)

Then, we will prove that, for k + 1, (A· 1) also holds.
By multiplying both sides of (A· 1) by ri+k, we have

nodes(EVMDD, i, k) ×
k−1∏

j=0

ri+ j × ri+k

> edges(EVMDD, i) × ri+k, (A· 2)

where ri+k is the number of values of xi+k.
From the definition of a super variable, the number of

edges in an EVMDD with respect to a super variable that
consists of k + 1 variables from xi to xi+k is

nodes(EVMDD, i, k + 1) ×
k∏

j=0

ri+ j.

Since nodes(EVMDD, i, k) is monotone increasing with re-
spect to k, we have

nodes(EVMDD, i, k + 1) ≥ nodes(EVMDD, i, k)

and thus,

nodes(EVMDD, i, k + 1) ×
k∏

j=0

ri+ j

≥ nodes(EVMDD, i, k) ×
k∏

j=0

ri+ j. (A· 3)

From (A· 1), (A· 2), and (A· 3), the relation (A· 1) holds
for k + 1. Therefore, for any k′ ≥ k, the theorem holds.

Shinobu Nagayama received the B.S. and
M.E. degrees from the Meiji University, Kana-
gawa, Japan, in 2000 and 2002, respectively, and
the Ph.D. degree in computer science from the
Kyushu Institute of Technology, Japan, in 2004.
He is now an Associate Professor at Hiroshima
City University, Japan. He received the Out-
standing Contribution Paper Awards from the
IEEE Computer Society Technical Committee
on Multiple-Valued Logic (MVL-TC) in 2005
and 2013 for papers presented at the Interna-

tional Symposium on Multiple-Valued Logic in 2004 and 2012, respec-
tively, the Young Author Award from the IEEE Computer Society Japan
Chapter in 2009, and the Outstanding Paper Award from the Information
Processing Society of Japan (IPS) in 2010 for a paper presented at the IPSJ
Transactions on System LSI Design Methodology. His research interest in-
cludes decision diagrams, analysis of multi-state systems, logic design for
numeric function generators, regular expression matching, and multiple-
valued logic.



2242
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.9 SEPTEMBER 2014

Tsutomu Sasao received the BE, ME,
and PhD degrees in electronics engineering
from Osaka University, Osaka, Japan, in 1972,
1974, and 1977, respectively. He has held
faculty/research positions at Osaka University,
Japan, the IBM T.J. Watson Research Center,
Yorktown Heights, New York, and the Naval
Postgraduate School, Monterey, California. He
is now a Professor of the Department of Com-
puter Science at the Meiji University, Kawasaki,
Japan. His research areas include logic design

and switching theory, representations of logic functions, and multiple-
valued logic. He has published more than nine books on logic design,
including Logic Synthesis and Optimization, Representation of Discrete
Functions, Switching Theory for Logic Synthesis, and Logic Synthesis and
Verification, Kluwer Academic Publishers, 1993, 1996, 1999, and 2001, re-
spectively. He has served as Program Chairman for the IEEE International
Symposium on Multiple-Valued Logic (ISMVL) many times. Also, he was
the Symposium Chairman of the 28th ISMVL held in Fukuoka, Japan, in
1998. He received the NIWA Memorial Award in 1979, Distinctive Con-
tribution Awards from the IEEE Computer Society MVL-TC for papers
presented at ISMVLs in 1986, 1996, 2003 and 2004, and Takeda Techno-
Entrepreneurship Award in 2001. He has served as an Associate Editor of
the IEEE Transactions on Computers. He is a fellow of the IEEE.

Jon T. Butler received the BEE and MEngr
degrees from Rensselaer Polytechnic Institute,
Troy, New York, in 1966 and 1967, respectively.
He received the PhD degree from The Ohio
State University, Columbus, in 1973. Since
1987, he has been a professor at the Naval Post-
graduate School, Monterey, California. In 2010,
he was promoted to Distinguished Professor,
and in 2014, he became a Distinguished Pro-
fessor Emeritus. From 1974 to 1987, he was
at Northwestern University, Evanston, Illinois.

During that time, he served two periods of leave at the Naval Postgraduate
School, first as a National Research Council Senior Postdoctoral Associate
(1980–1981) and second as the NAVALEX Chair Professor (1985–1987).
He served one period of leave as a foreign visiting professor at the Kyushu
Institute of Technology, Iizuka, Japan. His research interests include logic
optimization numeric function generators, Boolean functions for cryptog-
raphy, multi-state systems, multiple-valued logic, and reconfigurable com-
puting. He has served on the editorial boards of the IEEE Transactions on
Computers, Computer, and IEEE Computer Society Press. He has served as
the editor-in-chief of Computer and IEEE Computer Society Press. He re-
ceived the Award of Excellence, the Outstanding Contributed Paper Award,
and a Distinctive Contributed Paper Award for papers presented at the In-
ternational Symposium on Multiple-Valued Logic. He is a life fellow of the
IEEE.

Mitchell A. Thornton received the B.S.
in electrical engineering from Oklahoma State
University, the M.S. in electrical engineering
from the University of Texas at Arlington,
the M.S. in computer science from Southern
Methodist University, and the Ph.D. in computer
engineering from Southern Methodist Univer-
sity in Dallas, Texas. He was employed in in-
dustry full-time at E-Systems, Inc from 1986
to 1991 and left there as a Senior Electronics
Systems Engineer and at the Cyrix Corporation

from 1991 to 1993 as a Design Engineer. He was a faculty member at the
University of Arkansas and Mississippi State University and is now a Pro-
fessor in the departments of electrical engineering and computer science
and engineering at Southern Methodist University. He was designated as
the J. Lindsey Embrey Chair in Computer Science and Engineering in 2004
and as a Gerald Ford Research Fellow at SMU in 2005. At SMU, he also
is the Co-Director of the High Assurance Computing and Networking Re-
search Laboratories (HACNet) at SMU. He has published more than 200
technical articles, 4 books, and is a named inventor on 2 US patents and 3
patents pending and he has consulted with and performed research for a va-
riety of government and industrial organizations. He served as chair of the
IEEE Technical Committee on Multiple-Valued Logic, chair of the IEEE-
USA Licensure and Registration Committee, and chair of the NCEES Ex-
amination Development Committee for electrical engineering professional
licensure. He is a licensed professional engineer in the states of Texas,
Arkansas, and Mississippi. His research interests include physical com-
puter security, electronic design automation, disaster and fault tolerance,
and emerging technology. He is a senior member of the IEEE and ACM
and is the editor of the digital circuits and systems series for Morgan &
Claypool Publishers.

Theodore W. Manikas received the BSEE
degree from Michigan State University, East
Lansing, Michigan, the MSEE degree from
Washington University, Saint Louis, Missouri,
and the PhD degree from the University of Pitts-
burgh, Pennsylvania. He has held a faculty po-
sition at the University of Tulsa, Oklahoma, and
has been a faculty member in the Department
of Computer Science and Engineering at South-
ern Methodist University, Dallas, Texas, USA,
since 2009. His focus areas include computer

architecture, logic optimization, and system reliability and security. He is
a member of the ACM, ASEE, and IEEE, and is a licensed Professional
Engineer in the states of Texas and Oklahoma.


