
Built-in Self-Repair in a 3D Die Stack Using

Programmable Logic

Kundan Nepal∗, Xi Shen†, Jennifer Dworak†, Theodore Manikas†, and R. Iris Bahar‡

∗School of Engineering, University of St Thomas, St Paul, MN
†Department of Computer Science and Engineering, Southern Methodist University, Dallas, TX

‡School of Engineering, Brown University, Providence, RI

Abstract—3D stacked integrated circuits hold great promise
for increasing system performance, but difficulties in testing dies
and assembling a 3D stack are leading to yield issues and slowing
the large scale manufacture of these devices. We propose helping
to mitigate these issues by repairing the stack with programmable
logic in FPGAs that have already been included in the stack for
other purposes. Specifically, we propose bypassing the defective
portion of a die by replacing the defective functionality with
functionality on the FPGA. In this paper, we focus on the
replacement of selected defective functional units in an out-
of-order microprocessor. Our simulation results show that not
only can we salvage a device that would otherwise have to be
discarded, but creating multiple copies of the defective partition
in the FPGA can allow us to regain performance even when
the latency of the units in the FPGA is longer than that of the
original defective copy.

I. INTRODUCTION

As circuits approach the limits of Moore’s law, and as

power considerations have placed a limit on increases in clock

frequency, the stacking of bare dies to form a 3D stack has

been proposed as one approach that may allow significant

increases in the performance of integrated circuits and systems.

Performance gains are expected to arise primarily from the fact

that the routes between dies in a stack, which may be as short

as 30 microns, are much shorter than routes from chip to chip

across a board or routes from one end of a chip to another.

Unfortunately, high volume manufacturing has proven dif-

ficult. One of the main problems preventing the large scale

manufacturing of 3D integrated circuits is the difficulty in

testing dies and obtaining high yields [1]. The insertion of

through-silicon vias (TSVs) into a die may damage the die

during the “drill and fill” process or when the silicon is ground

away to expose the TSV so that it can be “micro-bumped”.

The TSVs themselves are difficult to probe without damaging

them—making testing of individual dies difficult as well [2].

Furthermore, dies in the stack may warp due to mechanical

forces during assembly or during normal operation—causing

additional potential error sources [2]. Hot spots in the stack

may affect several dies and cause either temporary incorrect

operation or permanent damage. If we add these issues to

standard problems of test, including test escapes and latent

defects, it becomes apparent that there is great potential for

a defective die to find its way into the stack—either during

assembly or later in the field due to wearout.

If a chip on a board is found to be defective, it is generally

possible to de-solder the chip from the board and replace

it with a working chip. Unfortunately, this strategy will not

work when a defective chip is present in a stack because it

is impossible to remove a chip from the stack once it has

been assembled. Instead, the entire stack is often “killed” by

a single defective chip. The greater the number of chips that

are present in the stack, the more likely this is to occur, and

the greater the financial cost of throwing away the stack. As a

result, the ability to repair the stack could provide a significant

advantage for increasing yields and salvaging a stack—even

if there is some performance degradation.

Fortunately, a 3D stack also provides new opportunities for

repair. Specifically, if a die containing programmable logic is

included in the stack, it may be harnessed to bypass defective

components of other dies. This has the potential to be much

more powerful than simply using an FPGA on a board for

repair. On a board, connections to an FPGA may be limited to

a maximum of 2000 pins, and routes across the board are long.

In a 3D stack, routing between layers is short (on the order

of 30 microns), and 10,000 TSVs (Through-Silicon-Vias) may

be present in a square millimeter [2].

In this paper, we propose the use of an FPGA in the stack as

a resource for replacing defective functionality with working

functionality in the stack. Preferentially, the FPGA will already

be included in the stack for an alternative purpose, such as

performance acceleration, and harnessed for repair only when

necessary. Many levels of granularity for repair are possible—

from replacing the functionality of an entire die to replacing a

single pipeline stage or functional unit. In some cases repair is

mandatory when the only copy of a critical component is found

to be defective. However, even when the lack of a defective

component only causes performance degradation, replacement

of the defective functionality may still be desirable.

In this paper, we will investigate the impact of replacing

defective functional units in a 4-wide superscalar processor.

We will consider both the case where the only copy of

a functional unit present in the original machine becomes

defective and must be replaced as well as the case were one

of multiple copies becomes defective, reducing performance.

Our simulation results show that even when the functional

units implemented in the FPGA are slower than the original

defective copy, the performance loss can often be almost

entirely masked with reasonable overhead.

243978-1-4799-1585-9/13/$31.00 c©2013 IEEE

II. BACKGROUND

A wealth of work has previously been done in fault tolerance

and repair of circuits and systems. For example, Built-In-Self-

Repair (BISR) is a fault tolerance technique that addresses

permanent faults in both memories and logic. Generally, in

addition to core operational components, a set of spare com-

ponents is provided. If a faulty core component is detected, it is

replaced with a spare component [3]. For example, a common

application of BISR is in 2D RAM’s, where spare memory

units [4] or redundant row/columns [5] are implemented. This

approach has also been expanded to 3D stacked memories,

where spare resources are borrowed from adjacent dies [6] and

spare TSVs are used to replace defective TSVs [7]. When not

enough spares are available, configurable fault-tolerant Serial

Links (CSLs) have been proposed for TSV repair [8].

BISR has also been applied to functional modules imple-

mented in 2D circuits. One approach has been to use recon-

figurable modules in FPGAs, such as logic blocks or routing

resources, to replace the defective modules [9], [10]. Another

approach is to use spare functional units on FPGAs [11], such

as spare ALUs [12]. These approaches implement both the

original and spare modules on a single FPGA. In addition,

FPGAs and ASIC hardware may also be implemented on the

same die in an SoC, to provide capabilities for modifying the

design later when design errors are present or specifications

(such as communication standards) change [13].

FPGA companies are already manufacturing FPGAs con-

taining TSVs. For example, Xilinx is currently selling a 2.5D

version of the Virtex 7 FPGA that contains four FPGAs sitting

side-by-side on a silicon interposer [14]. As noted by Xilinx,

this makes the resulting hardware ideal for prototyping and

emulating large processor systems. For example, one problem

with prototyping large systems with multiple FPGAs is the

need to partition the design so that relatively few connections

are needed between the partitions due to limited pin count.

This is much less of an issue in 3D. Furthermore, the delay

and drive strength needed to drive TSVs is much less than

that needed to drive the I/O buffers on a traditional FPGA.

The distances between layers of a 3D stack are also much

shorter than the routes on a board. Although some FPGAs,

such as the Virtex 7, are currently very expensive, other high

performance, low cost FPGAs are available. For example, new

22nm FPGAs are coming to the market that are intended to

approach the performance of a Virtex at much lower cost and at

low power [15]. Similar FPGAs would be a reasonable choice

for inclusion in a 3D stack in the future.

Our paper extends the concept of built-in-self-repair to the

digital logic in 3D stacks. We consider two separate dies in

the stack: the original circuit implemented in an ASIC process

and a separate FPGA die that can be programmed when

needed to create spare functional modules. This approach

harnesses the advantages provided by 3D architectures—

including potentially large numbers of TSV connections and

short distances between dies—to increase the flexibility and

improve the performance of repair. We will also show how

����������	�
��	��

���������	

���������	

���������	

���������	

��
�������
��	������

����

����

Fig. 1. Repair of a partition on the ASIC using the FPGA layer.

our implementation reduces the effect of the possible speed

differential between the ASIC and FPGA. To the best of our

knowledge, our work is the first to propose this type of repair

in 3D.

III. METHODOLOGY

To enable repair of an ASIC or processor using an FPGA

in a 3D stack, advance planning is needed to ensure that the

required support structure is available for the desired repair

options. Specifically, which portions of the stack may be

repaired (and at what level of granularity) should be decided

a priori. Such decisions may be based on the criticality of the

partition that could be repaired, the likelihood of failure, and

tradeoffs involving the overall cost of the repair.

A. Basic Architecture of Replacement

Each partition that may be bypassed and replaced by FPGA

functionality must have appropriate connections to a set of

TSVs that are ultimately connected to the FPGA. Specifically,

once a partition has been identified, driving buffers must be

inserted in the original design to allow each input to the

partition to be alternatively connected to the FPGA. Similarly,

multiplexers must be inserted between the outputs of the

partition being repaired and the downstream part of the circuit

to allow the rest of the circuitry to be driven by the FPGA

instead of by the defective partition. An example is shown

in Figure 1. In this figure, each of the inputs to the partition

fan out not only to the bypassable partition, but to a tri-stated

buffer (or possibly a series of buffers) that is capable of driving

the TSV as well. The driving buffers should be sized so as to

minimize the load and delay seen by the circuit. Each of these

TSVs is connected to the FPGA such that it becomes an input

to the FPGA. The FPGA itself will need to be programmed

to realize the functionality of the partition using those inputs.

The outputs of the FPGA-implemented module will then travel

through other pre-defined TSVs until they reach the level of

the ASIC being repaired. Muxes are used to select the values

sent by the FPGA if the circuit is in repair mode—as indicated

by the value of the select line on the MUX.

B. Tradeoffs and Overhead

1) Reducing TSV Overhead: One of the primary measures

of overhead with this method lies in the need to allocate TSVs

to allow the appropriate signals to be connected between the

ASIC under repair and the FPGA implementing the bypass

244 2013 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)

�����
�����

���
���

���	��
����

���	
	�� ���	
	��

������
������

���	
	��

����
����

���	��
����

���	
	��
��	 ���	��
	����
�

��	����������

��� ���	��
	����
�

��	����������

�����

������������� �������������

�����
�����

���
���

���	��
����

���	
	��

����
�����

���	��
����

���	
	��

����
	��

����
������

���	��
����

����
	��

����
	��

��	 ���	��
	����
�

��	������
����������

��� ���	��
	����
�

��	������
����������

� �

���	
	��

������
������

���	
	��

�������������
�������������

������������!
������������"

Fig. 2. Replacement of bad ALU with (a) single FPGA ALU (b) two FPGA ALUs triggered by rising and falling clock edges respectively.

logic. However, it is important to note that a single set of

TSVs may be shared and used to replace any of several pre-

defined partitions—while possibly restricting the total number

of partitions that can be bypassed at any one time. Partitions

may also be pre-determined in such a way as to reduce the

number of inputs and outputs to/from each partition—further

reducing the number of TSVs needed.

2) Hiding the Speed Differential between the ASIC and

FPGA: In general, FPGAs are often assumed to be slower than

an ASIC. However, in recent years, the speed of FPGAs has

increased dramatically—putting them much closer to ASIC

speeds—especially if an ASIC does not need to be ultra-

high performance or implemented in the latest technology.

Under these conditions, it may be possible to match the

clock frequency in both the ASIC and the FPGA—making the

performance cost of replacement very small. However, even

if the FPGA is inherently slower than the ASIC hardware

it is replacing, we may still be able to hide some of the

additional latency while maintaining throughput by providing

multiple copies of the hardware to be replaced in the FPGA.

For example, in Figure 2, we are assuming that the speed of the

FPGA is approximately one half the speed of the ASIC under

repair. The portion under repair corresponds to a pipeline stage

in a design that does not include feedback to earlier stages of

the pipeline. This pipeline stage takes twice as long to execute

in the FPGA, and thus it has double the latency. If only one

copy is placed in the FPGA, as shown in part (a), we must slow

the speed of the ASIC pipeline by one half because the FPGA

is incapable of accepting a new set of pipeline inputs on every

ASIC clock cycle. However, in part (b), we have implemented

two copies on the FPGA—one of which captures data on the

rising edge of the FPGA clock and one which captures data on

the falling edge. (Note that the clocks should be appropriately

synchronized.) In this case, all odd instructions are processed

by the rising edge triggered FPGA module while all even

instructions are processed by the falling edge triggered FPGA

module. Although the latency of each instruction has increased

by an extra ASIC clock cycle, the rate at which data enters and

leaves the pipeline is maintained at the original speed—hiding

the additional latency while maintaining the same throughput.

This approach is obviously extendable to additional copies

in the FPGA. It is especially useful for repairing functional

units in processor architectures that issue instructions to mul-

tiple functional units of different latencies—allowing them to

complete out-of-order and resolving ordering issues with the

standard Reorder Buffer and Commit logic. In that case, the

additional latency is handled automatically by the underlying

issue and commit hardware.

IV. EXPERIMENTAL RESULTS

If the only copy of a critical component is damaged and

cannot be bypassed in software, the stack becomes unusable

if a hardware-based approach is not available. However, in

other cases, a defective component may cause a loss of

performance that could potentially be mitigated through the

use of spare components implemented in an FPGA. In this

paper we investigate both types of situations under different

FPGA latencies. First, we investigate the case where the only

multiplier or the only integer ALU present in the processor

must be repaired. We follow that by the case where only one

of several ALUs has been damaged.

Parameters Baseline Configuration

Decode/Issue/Commit width 4 (inst/cycle)

Fetch Queue (IFQ) size 16

Register Update Unit (RUU) size 64

Load/Store Queue Size 16

Functional Units (Integer) 1 or 3 ALUs

1 Multiplier/Divider

Functional Units (Floating Pt) 2 ALU

1 Multiplier/Divider

TABLE I
BASELINE PROCESSOR CONFIGURATION.

All our experiments analyzed the effect of repair on the

performance of programs from the SPEC95 [16] integer

benchmark suite using the SimpleScalar [17] simulator. The

SimpleScalar out-of-order processor model (sim-outorder) is

an execution-driven simulation engine that reproduces the

2013 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) 245

Functional Unit Benchmark # of FPGA ALU Latency 2 # of FPGA ALU Latency 3 # of FPGA ALU Latency 4

1 2 3 4 1 2 3 4 1 2 3 4

compress -41.7 -2.2 25.7 39.8 -58.7 -28.1 -1.3 17.1 -68.1 -42.9 -20.3 -1.6

gcc -45.5 -0.6 32.8 57.8 -62.3 -29.0 -0.4 23.4 -71.8 -45.7 -21.7 -0.4

go -38.4 -2.4 18.6 29.8 -55.0 -23.1 -1.8 13.0 -66.5 -38.7 -17.4 -1.6

ALU ijpeg -48.9 -0.1 44.2 83.4 -65.5 -32.2 -0.4 29.8 -74.2 -48.8 -24.5 -0.5

li -46.6 -0.8 33.2 57.1 -62.3 -28.3 0.1 23.4 -72.3 -45.6 -21.9 0.0

perl -47.1 -2.7 31.9 50.6 -62.5 -29.1 -2.3 23.4 -72.4 -47.8 -25.7 -3.9

vortex -44.6 -1.3 32.1 52.3 -61.3 -28.2 -0.4 22.3 -70.9 -44.7 -21.1 -0.7

ALU AVERAGE -44.7 -1.4 31.2 53.0 -61.1 -28.3 -0.9 21.8 -70.9 -44.9 -21.8 -1.3

ijpeg -0.7 0.1 0.2 0.2 -5.1 0.0 0.1 0.2 -8.9 -0.3 0.0 0.2

MULT vortex -0.2 0.1 0.1 0.1 -0.4 0.1 0.1 0.1 -0.6 0.1 0.1 0.1

MULT AVERAGE -0.4 0.1 0.1 0.1 -2.7 0.0 0.1 0.1 -4.7 -0.1 0.1 0.1

TABLE II
UNPIPELINED FPGA ALUS (OR MULTIPLIER) REPLACING ONLY ASIC INTEGER ALU (OR MULTIPLIER)

super-scalar processor’s internal operations and provides a

detailed micro-architectural timing model. For our experi-

ments, we chose a 4-wide processor as the baseline processor

configuration. The details of the configuration are reported in

Table I. Note that depending on the particular experiment, the

number of integer ALUs in the non-defective machine may be

equal to 1 or 3.

In each of our experiments, we allowed the speed discrep-

ancy between the original functional unit and the functional

unit in the FPGA to vary between 2 and 4. For example, in

experiments where the latency of the FPGA is 4, it is assumed

to take four times as many clock cycles for the calculation

to complete and be made available when the calculation is

performed in the FPGA instead of the ASIC. We also varied

the number of copies of the defective functional unit from 1 to

4 in an attempt to hide the additional latency while maintaining

throughput, as described in Section III-B2.

A. Performance impact when repair is necessary

First, we consider the case where the single integer ALU

in the original processor is defective. The performance results

are shown in the top portion of Table II. This table shows the

percentage change in IPC (Instructions Per Cycle) when the

only integer ALU in the ASIC is defective and is replaced

with 1, 2, 3, or 4 unpipelined integer ALUs in the FPGA.

The ALUs in the FPGA were simulated for latencies varying

between 2-4 times the ASIC ALU latency.

As is clear from the table, replacing the single ALU in the

machine with a single slower ALU in the FPGA can have a

significant negative impact on performance. For example, the

third column shows the case where the ALU operations in the

FPGA take twice as long as the original (latency = 2) and

only one copy of the ALU is instantiated in the FPGA. In

that case the performance for the programs drops by 44.7%

on average. However, note that the alternative to the reduced

performance is a completely non-functioning chip. Now, if we

increase the number of FPGA ALUs appropriately, we can

entirely negate the performance loss. For example, as shown

in the next column, if we increase the number of FPGA-based

ALUs to 2 (where each of the ALUs has a latency of 2), the

performance drop is now only 1.4% on average. Furthermore,

if we continue to increase the number of ALUs in the FPGA,

we actually get performance gains. Similar results occur for

benchmark % ALU inst % multiplier inst

compress 61.5 0.0

gcc 79.1 0.0

go 69.1 0.0

ijpeg 80.9 1.2

li 68.4 0.0

perl 71.9 0.0

vortex 80.0 0.2

TABLE III
PERCENTAGES OF INSTRUCTIONS THAT USE THE INTEGER ALU AND THE

INTEGER MULTIPLIER.

FPGAs with latencies of 3 or 4. Unsurprisingly, the number of

copies we need in the FPGA increases as the latency increases.

We next performed similar experiments using the integer

multiplier. The instruction profile in Table III shows that, of

the seven benchmarks tested, only two benchmarks (ijpeg and

vortex) made any use of the built-in integer Multiplier unit.

The performance results for those two benchmarks are shown

in the bottom portion of Table II. (We verified that there was

no effect on the other benchmarks.) Our experiments show

that even if the FPGA multiplier’s latency is three times the

latency of the original ASIC multiplier, having two FPGA

multipliers will restore the performance to the fault-free case.

These experiments indicate that the amount of effort placed

toward repair should be decided in the context of the criticality

of the unit in question. Although some repair is necessary for

these instructions to operate correctly, the fact that they are

used so rarely indicates that fewer resources (i.e. fewer copies)

should generally be used for repair.

B. Performance impact when repair is optional

���

���

����

����

����

����

��	

���
��
� ��
�
 ��
�
� ��
���

��

�
�

	
��

��
��
�

�
��

���
��
��

�

Fig. 3. Performance degradation with the loss of 1 integer ALU when no
repair is performed.

Next, we consider the case where there are 3 integer ALUs

in the ASIC, one of which is defective. Figure 3 shows the

percent performance degradation (measured in Instructions

per cycle (IPC)). Because no repair of the bad ALU is

246 2013 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)

Benchmark # of FPGA ALU Latency 2 # of FPGA ALU Latency 3 # of FPGA ALU Latency 4

1 2 3 4 1 2 3 4 1 2 3 4

compress 3.3 3.3 3.3 3.3 1.8 1.7 1.7 1.7 -0.5 -1.1 -1.1 -1.1

gcc 10.9 12.3 12.3 12.3 7.6 9.3 9.3 9.3 3.3 3.7 3.7 3.7

go 5.1 5.8 5.8 5.8 3.5 3.9 3.9 3.9 1.8 1.7 1.7 1.7

ijpeg 20.9 28.7 28.7 28.7 18.8 24.3 24.3 24.3 16.0 19.6 19.6 19.6

li 10.4 12.7 12.7 12.7 6.8 8.6 8.6 8.6 3.1 4.2 4.2 4.2

perl 5.3 5.2 5.2 5.2 2.6 0.9 0.9 0.9 -2.9 -2.4 -2.4 -2.4

vortex 6.7 7.7 7.7 7.7 12.2 10.4 10.4 10.4 2.5 3.0 3.0 3.0

AVERAGE 8.9 10.8 10.8 10.8 7.6 8.4 8.4 8.4 3.3 4.1 4.1 4.1

TABLE IV
PERCENTAGE IMPROVEMENT IN PERFORMANCE WHEN THE BAD INTEGER ALU IS REPAIRED WITH 1–4 PIPELINED INTEGER ALU OF LATENCY 2–4 ON

THE FPGA. THE IMPROVEMENT IS OVER THE No Repair CASE.

Benchmark # of FPGA ALU Latency 2 # of FPGA ALU Latency 3 # of FPGA ALU Latency 4

1 2 3 4 1 2 3 4 1 2 3 4

compress 2.9 3.3 3.3 3.3 0.1 1.7 1.7 1.7 -1.1 -0.7 -1.1 -1.1

gcc 7.6 11.1 11.9 12.3 3.3 6.2 8.3 9.0 0.0 1.6 2.7 3.4

go 3.6 5.2 5.7 5.8 1.9 3.0 3.5 3.8 0.5 1.0 1.4 1.5

ijpeg 12.9 21.0 26.0 28.7 8.6 14.7 19.1 21.7 6.4 11.1 14.7 16.6

li 7.3 11.0 12.6 12.7 3.0 6.6 8.2 8.6 2.1 2.9 3.5 4.1

perl 3.9 5.4 5.1 5.2 1.4 1.1 1.7 1.2 -0.2 -1.4 -1.8 -3.2

vortex 4.2 6.9 7.7 7.7 7.2 10.5 8.9 10.1 0.6 1.5 2.4 2.8

AVERAGE 6.1 9.1 10.3 10.8 3.6 6.2 7.4 8.0 1.2 2.3 3.1 3.4

TABLE V
PERCENTAGE IMPROVEMENT (OVER THE No Repair CASE) IN PERFORMANCE WHEN THE BAD INTEGER ALU IS REPAIRED WITH 1–4 UNPIPELINED

INTEGER ALU OF LATENCY 2–4 ON THE FPGA.

performed, the system has only two usable integer ALUs.

The performance degradation varies between 5.3% for the

compress benchmark to as high as 20% for vortex; on average

performance decreases 11.3% across the benchmarks.

We then created a new pipelined version of the ALU with

increased latency to represent ALUs that would be imple-

mented on the FPGA. Because they are pipelined, these ALUs

may accept a new calculation on every cycle even though they

may take multiple cycles to complete. (This may occur when

the ASIC and FPGA can execute at the same internal clock

frequency, but the realization of the ALU in the FPGA is

such that we need to pipeline it to utilize that frequency.)

We measured the performance gains of the processor when

different numbers of FPGAs are used for repair over the non-

repair case. The results are shown in Table IV.

On average, we see performance improvement of approx-

imately 8.9% when the the FPGA ALU has a latency of 2

over the no-repair case. The performance improvement falls

to 7.6% and 3.3% when the FPGA ALU latencies increase.

Once again, this indicates that when the increased latency

of the FPGA is too high, a single FPGA for replacement is

not enough. In fact, benchmarks compress and perl show a

slight performance degradation of 0.5% and 2.8% respectively

when the FPGA has a latency of 4. This is because once an

instruction is issued to an ALU, it is tied up within that ALU

until it finishes. No dependent instructions can execute in the

meantime. When the latency of an ALU becomes very long,

in some cases it may actually be better to wait for a shorter

latency ALU to become available. This also appears to be

related to what is happening to the vortex benchmark. That

benchmark has a higher degree of instruction-level parallelism

than others, and its performance appears to be very dependent

on the order in which instructions are issued to the functional

units. When these instructions are issued in a different order

due to changes in instruction latencies, it has a large effect.

From the results of the pipelined experiments shown in

Table IV, we see that adding two FPGA ALUs provides

additional performance improvement. However, adding more

FPGA ALUs (either 3 or 4) produces no additional benefit.

This is to be expected. Our baseline processor is a 4-wide

superscalar. Because there are two working integer ALUs in

the processor, adding two more on the FPGA allows up to

four integer instructions to be issued on any given cycle.

Each of those two FPGA ALUs can accept a new instruction

each cycle because they are pipelined. However, because only

four instructions can be issued in a 4-wide machine, adding

additional ALUs on the FPGA adds no improvement. Overall,

we can conclude that repair with two pipelined FPGA ALUs

appears to be ideal, provided that the latency of the FPGA

ALUs is not too long.

We also ran the same experiments where the added FPGA

ALUs were not pipelined. The addition of unpipelined FPGA

ALUs still results in a performance improvement over the

unrepaired case, as shown in Table V. Because the FPGA

ALU is marked busy and unavailable for a certain number

of cycles when it is in use, the performance improvement

for 1 additional ALU is smaller than in the corresponding

pipelined case – 6.1% instead of 8.9% for latency of 2; 3.6%

instead of 7.6% for latency 3 and 1.2% instead of 3.3% for

latency 4. However, unlike the pipelined FPGA ALU case,

we see that adding 3 and 4 FPGAs can have a positive impact

on the performance. The processor can now take advantage

of the fifth or the sixth additional ALU (which might not

be busy) and issue a ready instruction present on the issue

queue. The gains from the availability of these additional

ALUs makes the unpipelined case approximately match the

peak performance gain of the pipelined case. In many cases,

the final improvement of the repaired version allows it to

closely reach the performance of the non-defective version if

enough FPGA ALUs are added.

C. Overhead

We also wanted to estimate the TSV overhead required for

replacement of an ALU. The addition of ALUs in the FPGA

2013 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) 247

TSV parameters 2011–2014 2015–2018

Min. diameter(μm) 4–8 2–4

Min. pitch(μm) 8–16 4–8

Min. depth(μm) 20–50 20–50

Max. aspect ratio 5:1–10:1 10:1–20:1

of tiers 2–3 2–4

TABLE VI
GLOBAL 3D INTERCONNECT ROADMAP [18].

for repair requires that the output port of the issue queue be

connected to the inputs of the ALU on the FPGA layer via a

TSV to transfer the operands, operation identifier etc. TSVs

also are needed to return the operation results and flags from

the FPGA ALU back to the reorder buffer on the ASIC for an

in-order commit. We estimated that a single issue/commit of an

instruction to/from an ALU will need: 32 bits for operand A,

32 bits for operand B, 16 bits for operation identifier and other

control signals to the ALU (we believe this is an overestimate),

32 bits for the operation result, 8 bits for the operation and

function-unit availability flags and 1 bit for the clock signal.

This brings the total number of signals to be transferred

between the ASIC and FPGA layer to 121. Assuming that

the TSVs are laid out on a NxN array bundle, adding 1 FPGA

ALU would require that we have 121 TSVs arranged in an

11x11 array. Similarly, for adding 4 FPGA ALUs the number

of TSVs is 484 (requiring an array of 22x22 TSVs). The ITRS

roadmap for TSVs is shown in Table VI. Using the diameter, d,

and the pitch, p, of TSVs for the near term (2011–2014) from

the table, we estimate the area for the different TSV arrays

and present the results in Figure 4. For a 22x22 TSV array

resulting from the addition of 4 FPGA ALUs, we estimate

the area to be 69,696μm2 (about 0.28% of a 25mm2 die size)

using the lower range of diameter and pitch and 278,784μm2

(about 1.12% of a 25mm2 die size) using the upper range.

Based on the ITRS roadmap for year 2018, this area overhead

would be as little as 0.07% of a 25mm2 die size. The area

overhead shown in Figure 4 does not include the area of the

buffers and additional circuitry needed for TSVs. The added

overhead associated with the buffers would be significantly

lower compared to the overhead of the TSV bundle as the

TSV cut size is about 5–10 times the height of standard cells

used for logic in 32nm technology [19].

-

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

0

50000

100000

150000

200000

250000

300000

1 2 3 4

O
ve

rh
ea

d
(%

)

To
ta

l T
SV

 A
re

a
(�� ��

m
2)

of FPGA needed for repair

Area (d=4um, p=8um) Area (d=8um, p=16um)

Overhead(d=4um, p=8um) Overhead (d=8um, p=16um)

Fig. 4. Estimate of the TSV area needed to carry signals from the ASIC to
the FPGA layer.

V. CONCLUSION

We propose harnessing resources within an FPGA already

present in a 3D stack for bypass and replacement of defective

portions of the logic in other dies in the stack. We have in-

vestigated cases where repair was mandatory and when repair

can mitigate the corresponding performance loss. Maximizing

this mitigation depends on the speed differential between the

ASIC and the FPGA, whether the units are pipelined or not,

how many copies of the faulty hardware are realized in the

FPGA, and how often the affected functional unit will be used.

However, with appropriate choices, we can often hide almost

the entire performance hit due to a defective component.

Future work will include a more extensive analysis of the

complexity and the cost of implementation with the FPGA.

ACKNOWLEDGMENT

This work was supported in part by NSF under Grants CCF-

0915302, CCF-1110290, CCF-1061164, and CCF-1205176.

REFERENCES

[1] A. Crouch and J. Dworak, “What is 3-D test and how do IEEE standards
help?” Electronic Device Failure Analysis, vol. 13, no. 4, pp. 4–13, 2011.

[2] E. Marinissen and Y. Zorian, “Testing 3D chips containing through-
silicon vias,” in Int. Test Conference (ITC). IEEE, 2009, pp. 1–11.

[3] M. Potkonjak, L. Guerra, and J. Rabaey, “Heterogeneous BISR tech-
niques for yield and reliability enhancement using high level synthesis
transformations,” in Intl. Conf. on Application-Specific Array Processors,
Oct 1993, pp. 454 –465.

[4] C.-S. Hou, J.-F. Li, and T.-W. Tseng, “Memory built-in self-repair
planning framework for rams in socs,” IEEE Tran. Computer-Aided

Design of Integrated Circuits and Systems, vol. 30, no. 11, pp. 1731
–1743, nov. 2011.

[5] S.-K. Lu, C.-L. Yang, Y.-C. Hsiao, and C.-W. Wu, “Efficient BISR
techniques for embedded memories considering cluster faults,” IEEE

Tran. Very Large Scale Integration (VLSI) Systems, vol. 18, no. 2, pp.
184 –193, feb. 2010.

[6] L. Jiang, R. Ye, and Q. Xu, “Yield enhancement for 3d-stacked mem-
ory by redundancy sharing across dies,” in IEEE/ACM Int. Conf. on

Computer-Aided Design, nov. 2010, pp. 230 –234.
[7] L. Jiang, Q. Xu, and B. Eklow, “On effective TSV repair for 3D-stacked

ICs,” in Design, Automation & Test in Europe Conference & Exhibition

(DATE). IEEE, 2012, pp. 793–798.
[8] V. Pasca, L. Anghel, M. Nicolaidis, and M. Benabdenbi, “Csl: Con-

figurable fault tolerant serial links for inter-die communication in 3d
systems,” Journal of Electronic Testing, pp. 1–14, 2012.

[9] S. Mitra, W.-J. Huang, N. Saxena, S.-Y. Yu, and E. McCluskey,
“Reconfigurable architecture for autonomous self-repair,” Design Test

of Computers, IEEE, vol. 21, no. 3, pp. 228 – 240, may-june 2004.
[10] M. Psarakis and A. Apostolakis, “Fault tolerant FPGA processor based

on runtime reconfigurable modules,” in IEEE European Test Symp., May
2012, pp. 1 –6.

[11] J. Emmert, C. Stroud, and M. Abramovici, “Online fault tolerance for
FPGA logic blocks,” IEEE Tran. Very Large Scale Integration (VLSI)

Systems, vol. 15, no. 2, pp. 216 –226, feb. 2007.
[12] S. Di Carlo, A. Miele, P. Prinetto, and A. Trapanese, “Microprocessor

fault-tolerance via on-the-fly partial reconfiguration,” in IEEE European

Test Symposium (ETS), may 2010, pp. 201 –206.
[13] K. Schleupen, S. Lelaich, R. Mannion, Z. Guo, W. Najjar, and F. Vahid,

“Dynamic partial fpga reconfiguration in a prototype microprocessor
system,” in Int. Conf. on Field Programmable Logic and Applications

(FPL), aug. 2007, pp. 533 –536.
[14] P. Dorsey, “Xilinx stacked silicon interconnect technology delivers

breakthrough fpga capacity, bandwidth, and power efficiency,” Xilinx

White Paper: Virtex-7 FPGAs, pp. 1–10, 2010.
[15] P. Clark, “Achronix reveals 22-nm FPGAs, courtesy of Intel,” EE Times,

April 2012. [Online]. Available: http://www.eetimes.com/electronics-
news/4371563/Achronix-22-nm-FPGAs-Intel-process

[16] “SPEC95 benchmark suite http://www.spec.org/cpu95.”
[17] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for

computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67, Feb.
2002.

[18] “The International Technology Roadmap for Semiconductors: 2011,”
http://www.itrs.net.

[19] V. Gerousis, “Physical design implementation for 3D IC: methodology
and tools,” in Intl. symp. on Physical design (ISPD), 2010, pp. 57–57.

248 2013 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

