
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 5, MAY 2015 849

Repairing a 3-D Die-Stack Using Available
Programmable Logic

Kundan Nepal, Senior Member, IEEE, Soha Alhelaly, Jennifer Dworak, Member, IEEE,
R. Iris Bahar, Senior Member, IEEE, Theodore Manikas, Senior Member, IEEE,

and Ping Gui, Senior Member, IEEE

Abstract—3-D die-stacks hold great promise for increasing sys-
tem performance, but difficulties in testing dies and assembling
a 3-D stack are leading to yield issues and slowing the large scale
manufacturing of these devices. In many cases, a single defective
die will kill the entire stack. To help mitigate this issue, we explore
the possibility of repairing a stack that contains a defective die
by utilizing an field programmable gate array (FPGA) that has
already been included in the stack for other purposes, such as
performance enhancement. Specifically, we propose bypassing the
defective portion of a nonprogrammable die by replacing the
defective functionality with functionality on the FPGA. In this
paper, we discuss what additional logic must be added to an
Application-Specific Integrated Circuit (ASIC) die to allow such
a bypass to occur. We then show through detailed simulation of
a 2.5-D Xilinx FPGA how bypassing of logic can be achieved and
throughput maintained even when the two different dies involved
operate at different frequencies. Finally, we explore the perfor-
mance of this technique in a superscalar, out-of-order processor,
where different functional units are marked for replacement. Our
simulation results show that not only can we salvage a device
that would otherwise have to be discarded, but creating multiple
copies of the defective partition in the FPGA can allow us to
regain performance even when the latency of the units in the
FPGA is longer than that of the original defective copy.

Index Terms—3-D, built-in-self-repair (BISR), defects, fault tol-
erance, field programmable gate array (FPGA), programmable
logic.

I. INTRODUCTION

AS CIRCUITS approach the limits of Moore’s law, and as
power considerations have placed a limit on increases in

clock frequency, stacking bare dies to form a 3-D die-stack
has been proposed as one method that will allow significant
increases in system performance to continue. Performance
gains are expected to arise primarily from the fact that the
routes between dies in a stack are much shorter than routes
from chip to chip across a board or routes from one end of
a chip to another. Unfortunately, high volume manufacturing
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has proven difficult. One of the main problems preventing
the large-scale manufacturing of 3-D integrated circuits is
the difficulty in testing dies and obtaining high yields [1].
The insertion of through-silicon vias (TSVs) may damage the
die during the “drill and fill” process or when the silicon is
ground away to expose the TSV so that it can be “micro-
bumped.” The TSVs themselves are difficult to probe without
damaging them—making testing of individual dies difficult
as well [2]. Furthermore, dies in the stack may warp due to
mechanical forces during assembly or during normal oper-
ation, thereby exposing the chip to an additional source of
potential errors [2].

Operating conditions can also cause errors. Hot spots in
the stack are easier to create and harder to dissipate than in
2-D, and they may affect several dies. Such hot spots can
cause either temporary incorrect operation or permanent dam-
age. If we add these issues to standard problems that arise
from imperfect manufacturing test, including test escapes, and
latent defects, it becomes apparent that there is great potential
for a defective die to find its way into the stack—either during
assembly or later in the field due to wearout.

If a chip on a board is found to be defective, it is gener-
ally possible to de-solder the chip from the board and replace
it with a working chip. Unfortunately, this strategy will not
work when a defective chip is present in a stack because it
is impossible to remove a chip from the stack once it has
been assembled. Instead, the entire stack is often “killed” by
a single defective chip. The greater the number of chips that
are present in the stack, the more likely this is to occur, and
the greater the financial cost of throwing away the stack. As a
result, the ability to repair the stack could provide a significant
advantage for increasing yields and salvaging a stack—even
if there is some performance degradation.

Fortunately, a 3-D stack also provides new opportunities for
repair. Specifically, if a die containing programmable logic is
included in the stack, it may be harnessed to bypass defective
components of other dies. This has the potential to be much
more powerful than simply using an field programmable gate
array (FPGA) on a board for repair. On a board, connections
to an FPGA may be limited to a maximum of 2000 pins,
and routes across the board are long. In a 3-D stack, routing
between layers is short and 10 000 TSVs may be present in a
square millimeter.

In this paper, we continue our work begun in [3] on
using an FPGA in the stack as a resource for replacing
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defective functionality in the stack with working functionality.
Preferentially, the FPGA will already be included in the stack
for an alternative purpose, such as performance acceleration,
and harnessed for repair only when necessary. Many levels of
granularity for repair are possible—from replacing the func-
tionality of an entire die to replacing a single pipeline stage
or functional unit. Repair is particularly well-matched to the
repair of functional units in out-of-order processors because
such processors are already designed to naturally handle mul-
tiple functional units with different latencies. In some cases,
repair is mandatory when the only copy of a critical compo-
nent is found to be defective. However, even when the lack of
a defective component only causes performance degradation,
replacement of the defective functionality may still be desirable.

In this paper, we describe the following investigations.
1) We design and analyze the circuitry needed to commu-

nicate between dies for the repair of a pipeline stage
in a multiplier. This circuitry is mapped to two sepa-
rate dies operating at different frequencies in a Xilinx
2.5-D Virtex-7 FPGA using the Xilinx Vivado software
suite, and the timing and synchronization of the resulting
designs are verified through simulation.

2) We show that when different dies in a Xilinx 2.5-D
FPGA are run at different frequencies, it is possible to
use multiple copies of the pipeline stage under repair
to maintain the throughput of the pipeline when the
pipeline does not contain feedback. In particular, we
show that it is possible to maintain the multiplier’s
pipeline throughput when the FPGA die used for repair
is operated at half the frequency of the “original” when
two copies of the faulty pipeline stage are used.

3) We show how the timing overhead of our scheme on the
original application-specified integrated circuit (ASIC)
can be minimized by placing the multiplexers needed
to return data from the FPGA in the scan path instead
of the original functional path for full-scan designs
implemented with Multiplexer (MUX)-D flip-flops.

4) We investigate the area overhead of our repair scheme
on the ASIC layer by using commercial tools from
Synopsys and Cadence to perform layout and TSV inser-
tion for both a repairable and nonrepairable version of
the multiplier design.

5) We describe the impact of replacing defective functional
units in a 4-wide superscalar processor. We consider
both the case where the only copy of a functional unit
present in the original machine becomes defective and
must be replaced as well as the case where one of multiple
copies becomes defective, reducing performance if it is
not repaired. We will show that even when latencies of
the repair units are longer, multiple copies can be used to
reduce or eliminate the performance overhead of repair.

The rest of this paper is organized as follows. Section II
describes previous work in built-in-self-repair (BISR) and
provides information on 3-D die-stacks. Section III gives a
conceptual overview of our repair methodology. Section IV
describes our investigation of TSV timing and design synchro-
nization using simulation of a Xilinx 2.5-D Virtex-7 FPGA.
Section V extends the analysis of the pipelined multiplier to

the ASIC layer to determine the area overhead of the additional
logic and TSVs that are needed for repair. Section VI uses
architectural simulation to explore how the proposed approach
will map to the repair of functional units in an out-of-order
processor. Finally, Section VIII describes the conclusion.

II. BACKGROUND

A. Related Work

A wealth of work has previously been done in fault tolerance
and repair of circuits and systems. For example, BISR is a
fault tolerance technique against permanent faults, where in
addition to operational components, a set of hard-coded, per-
manent spare components is provided. If a faulty component is
detected, it is replaced with a spare component [4]. Other
fault tolerance approaches try to detect and correct errors in
real-time, using fully-replicated shadow pipelines [5], simple
in-order pipelines that check the results of a complex out-
of-order pipeline [6] or specialized checkers [7]. A common
application of BISR is in 2-D RAMs, where spare memory
units [8] or redundant row/columns [9] are implemented. This
approach has been expanded to 3-D stacked memories, where
spare resources are borrowed from adjacent dies [10], [11],
and spare TSVs are used to replace defective TSVs [12], [13].
When not enough spares are available, configurable fault-
tolerant serial links have been proposed for TSV repair [14].

BISR with reconfigurable logic has also been applied to
functional modules implemented in 2-D circuits. One approach
has been to use reconfigurable modules in FPGAs, such as
logic blocks or routing resources, to replace the defective mod-
ules [15]. Another approach is to use spare functional units on
FPGAs [16], such as spare arithmetic logic units (ALUs) [17].
These approaches implement both the original and spare mod-
ules on a single FPGA. FPGAs and ASIC hardware may also
be implemented on the same die in an SoC, to provide capa-
bilities for modifying the design later when design errors are
present or specifications (such as communication standards)
change [18].

This paper extends the concept of BISR to the digital logic
in 3-D stacks. We utilize two separate dies in the 3-D stack:
the original circuit implemented in an ASIC process and a
separate FPGA die that can be programmed when needed to
create spare functional modules. This approach harnesses the
advantages provided by 3-D architectures—including poten-
tially large numbers of TSV connections and short distances
between dies—to increase the flexibility and improve the per-
formance of repair. To the best of our knowledge, we are the
first to propose such an approach.

B. What Kinds of Dies are Present in 3-D Stack?

A 3-D die stack may take one of several forms depending
upon the functionality of the stack and how many companies
are involved in designing the different dies. At one extreme,
a homogeneous stack may contain identical copies of the
same die stacked on top of each other. One example would
be a memory cube, in which almost the entire stack con-
sists of identical dynamic random-access memory (DRAM)
chips placed above a logic base [19]. At the other extreme,



NEPAL et al.: REPAIRING A 3-D DIE-STACK USING AVAILABLE PROGRAMMABLE LOGIC 851

a stack may one day be composed of different dies manu-
factured by different companies for a “competitive socket”
approach [1], [20]. In this case, the stack could consist of
different types of dies—processors, memories, DSPs, ASICs,
FPGAs, and analog dies [21], [22]. In addition, silicon inter-
posers may be placed between dies to allow appropriate TSV
connections. In this approach, a 3-D stack serves as a board
compressed into a single package. In between these two
extremes, a single company may design most or all of the
component dies in the stack. This provides significant flex-
ibility and allows the designers to optimally layout a single
design across multiple vertical layers to improve performance
or reduce problems such as heat transfer. However, even here,
some portions of the stack could be obtained from other com-
panies. This paper focuses primarily on stacks that correspond
to one of the last two cases.

C. FPGAs in 3-D Stack

Advances in FPGA design and manufacturing have made
FPGAs an increasingly viable alternative to ASICs for many
designs in 2-D. Unless the product will have very high volume
or require high performance or area resources, an FPGA often
provides the required functionality at a much more accept-
able cost/die. Furthermore, because an FPGAs programming
can be changed, it is especially useful for telecommunications
or other applications where standards may change over a sys-
tem’s lifetime. Finally, FPGAs have been used for performance
acceleration—allowing co-processing hardware to be reconfig-
ured “on-the-fly” when a particular portion of the code can
benefit from it [23]. These advantages of FPGAs are likely to
carry over into the 3-D IC space, and thus, there are many
reasons other than repair that an FPGA may be present in the
stack. In recent years, Altera and Ankor have proposed a face-
to-face packaging approach dubbed the POSSUM package
configuration consisting of a mother (FPGA die) and daughter
die (ASIC) [24].

FPGA companies are also already manufacturing FPGAs
containing TSVs. For example, Xilinx is currently selling a
2.5-D version of the Virtex-7 FPGA that contains four FPGA
dies sitting side-by-side on a silicon interposer [25]. As noted
by Xilinx, this makes the resulting hardware ideal for prototyp-
ing and emulating large processor systems. For example, one
problem with prototyping large systems with multiple FPGAs
is the need to partition the design so that relatively few con-
nections are needed between the partitions due to limited pin
count. This is much less of an issue in 3-D. Furthermore,
the delay and drive strength needed to drive TSVs is much
less than that needed to drive the I/O buffers on a traditional
FPGA. The distances between layers of a 3-D stack are also
much shorter than the routes on a board.

D. Clock Synchronization in 3-D Stack

As mentioned earlier, an advantage of using 3-D stacks
over standard 2-D integrated circuits is that the TSVs that
connect the stacks have much smaller delay than traditional
bonding wires. For reliable operation, the clock distribu-
tion on the stacked dies often must operate synchronously,
with minimal skew across the die stack [26]. However, the

propagation delays through different TSVs can often vary due
to process and/or temperature effects, which will affect clock
synchronization [27].

Clock synchronization and clock deskewing across multiple
dies in a 3-D stacked IC is an active area of research [26]–[29].
A common approach to address the clock synchronization
problem across multiple dies in a 3-D stack is to use delay-
locked loops (DLLs) to drive the TSVs to help ensure
that the local clock networks on each die are synchronized.
Chuang et al. [28] proposed a dual-delay-locked loop (D-DLL)
for die-to-die clock deskew applications, allowing for a clock
synchronization within 2 ps for 550 MHz–1.5 GHz clock
signals. Ke et al. [27] proposed an approach based on dual-
locking DLL that allows for clock synchronization without the
need to replicate TSV delays. Once the DLL is locked, their
approach continues to fine-tune the two DLLs in an interleaved
manner to maintain the phase alignment. The clock synchro-
nization circuitry has a very small area footprint (0.0044 mm2

and consumes only 1.8 mW of power. Recently, an all-digital
delay-locked loop (ADDLL) for 3-D-IC die-to-die clock syn-
chronization with TSVs was presented in [29]. The authors
proposed ADDLLs with two high resolution delay lines with
digital controlled varactors to compensate for the delay vari-
ations of two TSVs. Two digitally controlled delay lines can
then be used to eliminate clock skew between the clock signals
across two dies.

Recently, researchers at Samsung electronics [30] have pro-
posed an on-chip self-calibration scheme to remove signal
conflict and reduce signal skews among stacked dies in a 3-D
DRAM with TSVs. The calibration method finds the slowest
die and compensates the data output time mismatch among the
stacked dies. Using four stacked 16 G DDR4 DRAM designed
in 25 nm CMOS technology and operational at a supply volt-
age of 1.2 V, the authors were able to measure and compensate
mismatch allowing the memory to operate at speeds of over
2400 Mb/s.

In the case of reconfigurable architectures, Xilinx has also
developed very effective techniques that minimize or eliminate
skew across dies in their 2.5-D FPGAs [31], [32]. The Virtex 7
family, consists of a mixed-mode clock manager module and
PLLs that are used to compensate for the clock network delays
in the stack.

In this paper, we assume that a de-skewing approach such
as those described above is available and focus our efforts on
the architecture and tool flow for repair.

III. METHODOLOGY

To enable repair of an ASIC or processor using an FPGA
in a 3-D stack, advance planning is needed to ensure that the
required support structure is available for the desired repair
options. Which portions of the stack may be repaired (and at
what level of granularity) should be decided a priori.

A. Granularity of Replacement

Repair of a defective 3-D stack may occur at different levels
of granularity. At the highest level, the functionality of an
entire die could theoretically be placed into an FPGA “as is.”
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Fig. 1. Repair of a partition on the ASIC using the FPGA layer.

However, in many cases this may not be possible, especially
when the total functionality of the defective die will not fit
into the space available on the FPGA. Alternatively, only part
of a die’s functionality may be replaced. Depending on the
underlying structure of the defective die, replacement could
occur on the level of a pipeline stage, a functional unit, or any
other module or submodule.

B. Basic Architecture of Replacement

Each partition that may be bypassed and replaced by FPGA
functionality must have appropriate connections to TSVs that
are ultimately connected to the FPGA. Note that such TSVs
do not need to be used solely for repair. For example, when
the repairable partition corresponds to a functional unit in an
out-of-order processor, the same TSVs could be multiplexed
so that they can also be used for performance acceleration.
Specifically, the TSVs can be used to allow the implemen-
tation of new custom instructions on the FPGA. Effectively,
this would allow a hardware implementation of functional-
ity that ordinarily would take multiple instructions if it were
implemented with the original instruction set.

An example of our repair architecture is shown in Fig. 1.
Each of the inputs to the partition fans out not only to the
bypassable partition, but also to a driving buffer or series of
buffers that is capable of driving the TSV. Note that in this
figure a single buffer is used and is tri-stated. The driving
buffers should be sized so as to minimize the load and delay
seen by the circuit. Each of these TSVs is also an input to
the FPGA. The FPGA itself will need to be programmed to
realize the functionality of the partition using those inputs.
The outputs of the FPGA-implemented module will then travel
through other predefined TSVs until they reach the level of the
ASIC being repaired. Multiplexers select the values sent by the
FPGA if the circuit is in repair mode, as indicated by the value
of the select line on the MUX.

C. Reducing the Impact of Inserted Multiplexers on
Circuit Delay

The extra delay inserted by the multiplexers during normal
operation (i.e., when repair is not needed) may be minimized
by placing the additional MUXs in the scan path usually used
for test instead of the normal functional path, as shown in
Fig. 2(b). Fig. 2(a) shows a schematic of a normal MUX-D
flip-flop that is the standard flip-flop used in full-scan designs.
Specifically, to enhance the testability of circuits by making
the flip-flops in the design easily controllable and observable

during test, each flip-flop in the design is concatenated into
one or more shift registers, called scan chains, that allow
values to be shifted directly into and out of the flip-flops
during test.

The select signal for the MUX in a MUX-D flip-flop deter-
mines whether the scan chain is in shift mode or capture mode.
For example, for the MUX-D flip-flop in Fig. 2(a), when the
select line is equal to 0, the MUX will capture the value gen-
erated by the circuit’s functional logic. Thus, the select line
should be equal to 0 during normal functional operation and
when results are being captured by the circuit’s logic during
test. In contrast, when the select line is equal to a logic 1, the
data from the “scan in” input is clocked into the flip-flop. This
allows the flip-flop to take on the value of the previous flip-flop
in the chain. Because scan chains are so effective at making
test effective and efficient, the implementation in Fig. 2(a) is
standard in most of today’s digital designs.

Fig. 2(b) shows the MUX that provides data from the FPGA
in the scan path of the design. No additional circuitry is added
to the normal functional path. Instead, the additional circuitry
is added to the scan path. Because scan shift generally occurs
at a very slow speed (10–40 MHz is not uncommon), this
additional logic in the scan shift path should not hinder scan
shift and may even help to prevent hold-time violations. The
appropriate values on the select lines of both MUXes simply
need to be set correctly when the circuit is in repair mode.

D. CAD Design Flow

In this paper, we choose to motivate our programmable
repair approach using both a pipelined multiplier and a
super-scalar processor as examples. However, the approach is
generally applicable to other types of circuits at various user-
defined levels of granularity. The basic flow of our approach
is shown in Fig. 3 and includes the following steps.

1) Provide a Verilog netlist of an ASIC die to the synthe-
sis software. For this paper, we used Synopsys design
compiler.

2) Identify potential partitions for repair. As mentioned ear-
lier in Section III-A, the repair of the defective die
can occur at any user-defined level of granularity. For
the multiplier example, a partition will correspond to
the combinational logic in a pipeline stage; for the
superscalar processor, the partitions will correspond to
functional units in the execute stage of the processor. In
general, a large circuit could be partitioned into smaller
sub-circuits using a variety of tools and techniques. For
example, a state-of-the-art min-cut partitioning tool such
as hMETIS [33] could be used.

3) Once the circuit partitions have been identified, the
ASIC flow continues with the placement of the synthe-
sized cells, and the insertion and placement of the TSVs,
drivers and MUXes needed to transfer data between the
ASIC level and the FPGA during repair. Cadence EDI
was used for the designs presented in this paper.

While the ASIC design flow completes, the FPGA design
flow will start. The purpose of the FPGA flow is to create a
variety of bitstream files that can be used to implement the
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(a) (b)

Fig. 2. (a) Standard MUX-D flip-flop (b) MUX placement in standard scan path for repair.

Fig. 3. Design flow for repair.

repair of one of the predefined partitions when necessary. The
FPGA flow consists of the following steps.

1) A repairable partition is selected from the list, and a
new circuit netlist with multiple copies of the partition
is created. In the simplest implementation, the number
of copies that are needed is determined by the speed
differential between the FPGA and ASIC clock signals
of the design; however, other aspects, such as the uti-
lization of the component for a typical application can
also affect the ideal number of copies.

2) Additional support registers, multiplexers, etc., are
added to the FPGA design to allow data from the ASIC
layer to multiplex to the appropriate copy and to return
data to the ASIC layer when execution completes.

3) The FPGA design is synthesized and a bit-stream is gen-
erated that can be loaded when repair of the desired
partition is necessary.

4) Steps 1)–3) are repeated until a bitstream for repair of
each of the partitions that are identified as potential
candidates for repair is generated.

IV. INVESTIGATION OF ARCHITECTURE AND TIMING

CHARACTERISTICS OF REPAIR IN 2.5-D FPGA

Several practical issues must be addressed when using an
FPGA for BISR. Among others, this includes the timing

Fig. 4. Pipelined architecture for a multiplier.

and clock synchronization of the design through the TSVs.
Although the operating frequency of FPGAs has increased dra-
matically, allowing them to replace ASICs in some designs,
FPGAs are generally still slower than ASICs. Allowing some
ASIC functionality to be replaced with functionality on the
FPGA could require the ASIC speed to be reduced to the
FPGAs clock frequency. In some applications, the correspond-
ing reduction of performance could still be preferable to a
totally nonfunctioning part.

However, for other designs, this reduction in ASIC clock
frequency may not be required. In particular, for some
pipelined designs, we may be able to handle the additional
latency of computation while maintaining the overall through-
put by instantiating multiple correct copies of the defective
partition in the FPGA and multiplexing among them.

Such an approach is particularly suitable for pipelines without
feedback or for functional units in an out-of-order execution
machine. We will show that, in the case of pipelined circuitry,
where partitions for replacement are defined as pipeline stages,
the lack of feedback from later in the pipeline means that an
increase in latency of the instruction will not cause stalls as
long as that pipeline stage is multiplexed between multiple
correct copies on the FPGA. A new instruction (or data) can
still enter the pipeline on each cycle. Modifications to data
forwarding hardware are also not necessary.

In the case of an out-of-order execution machine, control
logic to handle execution units with different latencies and
allow results to pass between them is already present. Thus,
adding the equivalent of new functional units with slightly
longer latencies does not require an unreasonable number of
changes to the control logic.

A. Mapping the Design to Xilinx 2.5-D Virtex-7
2000T FPGA

We are not aware of any commercial tools that would allow
us to model both an ASIC and an FPGA in a 3-D die-stack.
However, tools do exist for modeling multiple FPGA dies
connected by TSVs. Specifically, Xilinx has recently begun
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Fig. 5. Simulation result of the pipelined multiplier implemented in SLR1.

making 2.5-D Virtex-7 2000T series chips, which consist of
four FPGA dies [also known as super logic regions (SLRs)]
placed next to each other on a single silicon interposer and
connected to each other through TSVs [25]. Although we
do not currently have physical access to a Virtex-7 2000T,
the Vivado software suite provided by Xilinx is still capable
of providing important simulation-based post-implementation
timing information.

One important aspect of these chips is that they allow
circuitry on different SLRs to be run at different clock fre-
quencies. Thus, for our investigation, we allowed one SLR to
contain the logic that would be present on the ASIC while
a second SLR contained the logic for repair of the defective
partition. The second SLR (representing the FPGA) is run at
half the frequency of the first (representing the ASIC).

To provide a proof-of-concept implementation of a pipelined
design, and to investigate the timing and synchronization
issues of passing data between an ASIC and FPGA layer
through TSVs, we investigated repair of a simple pipelined
multiplier with five pipeline stages, as shown in Fig. 4. The
multiplier was generated using the ARITH project website and
pipelined into five stages [34]. No feedback is present in the
pipeline. All communication between the two SLRs occurs
through TSVs. A goal of this portion of the research is to
show that using two copies of the defective partition in the
second SLR can indeed maintain the overall throughput of the
pipelined multiplier when the clock of the second SLR is run
at half the frequency of the first.

B. Timing of the Multiplier Without Repair

The high-level structure of the multiplier is shown in Fig. 4.
The multiplier takes two 32-bit signed numbers as inputs: IN1
and IN2. The signed output is 64-bits and is named PFIN
(for final product). The multiplier contains five pipeline stages:
U1 through U5. Each pair of stages is separated by a pipeline
register (S2 through S5). In addition, both the inputs and out-
puts of the multiplier are registered with pipeline registers
S1 and S6.

Our first task was to determine the maximum clock fre-
quency of the multiplier when the entire multiplier was
placed on a single SLR. This is the best case scenario
because no repair is necessary. To achieve this, the multi-
plier was first synthesized and mapped to a 2.5-D Xilinx
Virtex-7 (xc7v2000tfhg1761) device using Xilinx Vivado
software. All logic, including all stage registers, combinational

TABLE I
PIPELINE TIME-STAMPS FOR DATA BEING CLOCKED INTO EACH

STAGE REGISTER OF ARCHITECTURE SHOWN IN FIG. 4

logic, and all inputs/output were implemented on a single
SLR (SLR1) out of the four available.

Once the design was placed and routed, vivado post-
implementation timing simulation was used to verify circuit
operation using a standard delay format file with annotated
part/net delays. The minimum clock period of the design was
calculated to be 5 ns.

Fig. 5 shows a snapshot of the multiplication timing wave-
forms. The 32-bit signals IN1_PAD and IN2_PAD are the
values at the input pads of the system. Markers are added
to the figure to help point to important aspects of the timing
simulation. The first marker is at 300 ns and shows the values
of IN1 and IN2 taking on the values of 5 and 2, respectively
at the INPUT pads of the device. The I/O pad buffers on the
Virtex-7 have a delay of approximately 2.5 ns, and the inputs
are clocked into stage register S1 at approximately 302.5 ns,
as shown by the second marker.

Based on the pipeline shown in Fig. 4, the output PFIN should
be ready five clock cycles after the input values, IN1 and IN2,
are clocked into the S1 pipeline register. With a 5 ns clock
period, this corresponds to 25 clock cycles. Accordingly, the
next marker shows that the value of PFIN_O_S6REG, which
is the output of register S6, becomes equal to the correct value
of 10(5 ∗ 2 = 10) at approximately 327.5 ns.

The output of the S6 stage register then goes through an
output pad buffer with a delay of another 2.5 ns. The additional
delay through I/O buffers for both the input and output signals
adds approximately 5 ns to the overall computation time. Thus,
the total time between the input pad and output pad of the
multiplier is approximately 30 ns. For clarity, we summarize
the time-stamps for data being clocked into each stage register
in Table I.

C. Architecture and Multiplier Repair

Next, we assume that one of the stages in the pipelined
multiplier is flagged by error monitoring circuitry. The error
monitoring circuit could be based on a number of runtime error
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TABLE II
PIPELINE STAGE TIME-STAMPS FOR REPAIR WITH TWO COPIES ON THE FPGA.

THE FPGA CLOCK IS RUNNING AT HALF THE SPEED OF THE ASIC CLOCK

Fig. 6. Repair of stage U3 done using two copies on the FPGA. The time
stamps at each input, output, and register reflects the time-stamp of Mult2
instruction shown in Table II.

detection approaches (e.g., logic implications [35]–[37], parity
check codes [38], [39], and selective duplication [40], etc.).
For this example, we assume that the error monitoring circuit
is in place in the original ASIC layer and is able to trigger the
dynamic reconfiguration of the FPGA layer for proper repair.
Alternatively, the defective portion could be found through test
either at manufacturing or in the field on startup. As mentioned
earlier, which portion(s) of the circuit can be repaired must be
determined a priori. Let us assume that multiplier stage U3
is faulty and is in need of repair. For repair, we dynamically
reconfigure the FPGA layer with a copy of the U3 stage. Recall
that the original design was all in SLR1 layer of the Virtex-7;
in this experiment, the repair will all be done on SLR2 layer
using the TSVs and silicon interposers present in the Virtex-7
for communication between the two dies.

A number of studies have shown that a design implemented
on an FPGA runs between two to four times slower than a
design running on a dedicated ASIC [41], [42]. If we consider
the delay on the FPGA fabric to be two times the delay of the
ASIC, then a design implemented on the FPGA with a single
replacement unit would require that we slow down the speed
of the ASIC pipeline to one half because the FPGA unit would
not be capable of accepting a new set of pipeline inputs from
ASIC stage register S3 on every ASIC clock cycle.

To maintain throughput, at least two copies on the FPGA
would be needed as shown in Fig. 6, one which captures data
on the rising edge of the FPGA clock and one which cap-
tures data on the falling edge. Note that the ASIC and FPGA
clocks should be appropriately synchronized as mentioned

earlier in Section II-D. This is done automatically by the
Vivado software during clock generation and logic placement
and routing.

In our experiment, the ASIC (represented by SLR1) is run
with a clock period of 5 ns, and the clock period of the FPGA
layer (represented by SLR2) is 10 ns. In this case, all odd
instructions are processed by the rising edge triggered FPGA
module (register S3F1, unit U3F1, and register S4F1 in Fig. 6)
while all even instructions are processed by the falling edge
triggered FPGA module (register S3F2, unit U3F2, and register
S4F2). A multiplexer is used to transfer the result from S4F1
or S4F2 register to the ASIC via a single set of TSVs.

When there were no faulty pipeline stages, the processing
time for data from register S3 to register S4 in Fig. 4 was only
5 ns. With the repair architecture shown in Fig. 6, it takes
5 ns for data in S3 in the ASIC (represented by SLR1) to
transit through the TSVs and eventually be latched by register
S3F1/S3F2 on the FPGA (SLR2). It takes 10 ns for the data
to be processed in one of the replicated FPGA modules and
latched in register in S4F1/S4F2 (in SLR2). Finally, it takes
another 5 ns to transit back to SLR1 (representing the ASIC)
via the multiplexer and TSVs and latch the resulting values in
the S4 register. Thus, repair results in an additional 15 ns total
(three ASIC clock cycles) of latency for each multiplication
operation. However, the pipeline will still be able to accept
new instructions at the original clock rate.

Table II shows the time-stamps (in nanoseconds) extracted
from our Vivado simulation for four different multiply instruc-
tions under the repair scenario illustrated in Fig. 6. We see that
with the repair done using two FPGA units, a new multiply
instruction can appear at the input pad every 5 ns; similarly,
the outputs for a new multiply instruction are also ready every
5 ns. Although the latency of each multiplication instruc-
tion has increased by three ASIC clock cycles, the rate at
which data enters and leaves the pipeline is maintained at the
original speed—helping to hide the additional latency by main-
taining the average throughput. A post-implementation timing
simulation of the repair is shown in Fig. 7.

D. Extension to Slower FPGAs

If we were to assume that the FPGA runs at a speed four
times slower than the ASIC, then to maintain throughput, we
would need four correct copies of the defective partition to
be implemented on the FPGA. The four copies would need
to be run by two separate FPGA clocks with one-fourth the
frequency of the ASIC clock. The two FPGA clocks should
be skewed by 90◦ in relation to each other so that exactly one
of the two FPGA clocks has either a rising edge or falling
edge on each rising edge of the ASIC clock. This will ensure
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Fig. 7. Post implementation timing simulation of stage U3 being repaired using two copies of the FPGA. The original pipeline stages are implemented in
SLR1 region of the Virtex-7 while the repair stage is implemented in SLR2 region. Inputs arrive at input pad at 300 ns and the product is available at the
output pad 345 ns. Throughput is maintained.

Fig. 8. Two quarter speed clocks skewed by 90◦ allow data to be captured
by one of four partition copies on the FPGA on each rising edge of the ASIC
clock.

that the data being passed from register S3 in the ASIC gets
registered for processing in exactly one of the four good copies
on the FPGA.

Fig. 8 shows how these two quarter-speed clocks may be
used to pass data to each of the four good copies of the defec-
tive partition in turn. Specifically, the first copy on the FPGA
registers its input data on the rising edge of the first FPGA
clock. The second copy registers its input data on the ris-
ing edge of the second FPGA clock. Copies 3 and 4 register
their input data on the falling edges of FPGA clocks 1 and 2,
respectively. As shown in the figure, this allows a new set of
input data to be passed to the next FPGA copy of the defec-
tive partition in sequence on each rising edge of the ASIC
clock—allowing the ASIC pipeline to accept new data on each
clock cycle without stalls. Theoretically, such an implementa-
tion would allow the ASIC to continue operating at the original
clock frequency. However, as more copies are used on the
FPGA, care must be taken to ensure that the routing delay
to the extra copies does not exceed the time available. If the
routing delay gets too large, either additional pipeline stages
may be needed on the FPGA or the ASIC clock frequency
may need to be reduced.

V. 3-D LAYOUT RESULTS

To determine the overhead of the required TSVs on the
ASIC layer of our design, we first synthesized both a
“repairable” and “nonrepairable” version of the multiplier
using Synopsys design compiler [43]. We then performed 3-D
layout using Cadence EDI [44]. Our circuits were mapped to
the saed90nm_typ standard cell library files from the Synopsys
90 nm generic library [45].

The nonrepairable version of the multiplier consisted of the
simple pipelined multiplier implemented on one ASIC layer
with no logic added for repair. In contrast, the repairable

version was implemented on two layers. The main layer
(representing the ASIC) contained all of the original multi-
plier circuitry, including the MUXes, TSVs, and TSV drivers
needed for communication with the second layer (which rep-
resents the FPGA). The second layer contained the required
repair logic (i.e., extra registers, copies of the repaired parti-
tion, etc.). A total of 191 signals were routed between layers
arranged in a 14 × 14 TSV array.

Note that driving buffers for the TSVs were inserted auto-
matically during TSV insertion with Cadence EDI and are not
tri-stated as shown in Fig. 1. Also, scan insertion was not
performed, so the added MUXes were placed before simple
D-flip-flops instead of MUX-D scan flip-flops, such as those
shown in Fig. 2.

The total area for the nonrepairable version of the ASIC
after layout was 108 041 µm2. In contrast, the total area of the
primary die that represented the repairable ASIC, including
the TSVs that allowed connection to the second layer was
142 543 µm2. In general, the cost of the extra TSVs is much
larger than the cost of the added logic, and these TSVs add
an approximately 32% area overhead.

A typical TSV area overhead range for 3-D stacks is
15–30%, depending on the size of the circuit and number of
TSVs used in the stack [46]. Our circuit is much smaller than
a typical 3-D die, so 32% area overhead is not unreasonable
under these circumstances. It is also important to remember
that these TSV connections can be shared for the repair of
other portions of the ASIC die (e.g., other pipeline stages or
functional units). Furthermore, these TSV connections can also
serve a dual purpose of providing performance enhancement
when no-repair is necessary. Thus, the cost of the TSVs can be
amortized across multiple possible repairs and enhancements.

VI. REPAIR OF OUT-OF-ORDER PROCESSOR

FUNCTIONAL UNITS

In the previous section, we showed in detail how the pro-
posed approach can be implemented for a defective partition
corresponding to a single pipeline stage in a pipeline with-
out feedback. However, one place where the proposed method
is likely to be especially well-suited is the replacement of
defective functional units in an out-of-order execution micro-
processor. Such processors already contain the control logic
necessary to handle functional units of varying latencies and
pass results between instructions that start and complete their
execution out-of-order. Thus, only minor modifications to this
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TABLE III
BASELINE PROCESSOR CONFIGURATION

logic should be necessary to allow repairs to be implemented.
Furthermore, it is in the execution stage that performance
enhancement is likely to be performed for particular applica-
tions through the temporary implementation of new specialized
functional units on the FPGA. Such performance enhancement
will already require TSV connections to the FPGA, which can
be repurposed for repair when necessary.

Unfortunately, in the case of repair, we still face the prospect
that the time required to communicate data to/from the FPGA
and process that data in the FPGA may be longer than that
required for a nondefective functional unit in the ASIC layer
to complete its computation. Thus, in this portion of the inves-
tigation, we studied the potential performance loss and gains
when one or more copies of a functional unit that operate at a
longer latency is used to replace an original, faster functional
unit. As already stated, we study both the case where repair
is necessary, because only a single copy of the defective unit
exists in the original processor, and the case where repair is
optional, because at least one good copy of the functional unit
is still available.

A. Experimental Setup

All these experiments analyzed the effect of repair on the
performance of applications from the SPEC95 [47] integer
benchmark suite using the SimpleScalar [48] simulator. The
SimpleScalar out-of-order processor model (sim-outorder) is
an execution-driven simulation engine that reproduces the
super-scalar processor’s internal operations and provides a
detailed micro-architectural timing model. For our experi-
ments, we chose a 4-wide processor as the baseline processor
configuration. The details of the configuration are reported in
Table III. Note that depending on the particular experiment,
the number of integer ALUs in the nondefective machine may
be equal to 1 or 3. We explored two scenarios for repair of a
4-wide out-of-order processor.

1) A critical component is damaged and cannot be
bypassed in software, making the entire stack unusable if
a hardware-based approach is not available. We inves-
tigated the case where the only multiplier or the only
integer ALU present in the processor must be repaired.

2) A component is damaged but the original processor
contains multiple copies (1–3 in our experiments). The
defective component may cause a loss of performance
if not repaired. We quantify the performance loss and
explore ways to mitigate performance loss through the
use of spare components implemented in the FPGA.

B. Performance Impact When Repair is Necessary

First, we consider the case where the single integer ALU
in the original processor is defective. The performance results
after repair are shown in the top portion of Table IV. The top
part of Table IV shows the percentage change in instructions
per cycle (IPC) that occurs when the only integer ALU in the
ASIC is defective and is replaced with 1, 2, 3, or 4 unpipelined
integer ALUs in the FPGA. The ALUs in the FPGA were sim-
ulated for latencies varying between 2 and 4 times the ASIC
ALU latency. In this case, the latency is assumed to corre-
spond to the entire time required to send data to the FPGA,
calculate the result, and return the data so that it can be latched
in the ASIC layer. We also varied the number of copies of the
FPGA functional unit from 1 to 4 in an attempt to hide the
additional latency while maintaining throughput, as described
in Section IV.

Clearly, replacing the single ALU in the machine with a
single slower ALU in the FPGA can have a significant neg-
ative impact on performance. For example, the third column
shows the case where the ALU operations take twice as long
when sent to the FPGA (latency = 2) and only one copy of
the ALU is instantiated in the FPGA. In that case the per-
formance for the programs drops by 44.7% on average. Note
that the alternative to the reduced performance is a completely
nonfunctioning chip. However, if we increase the number of
FPGA ALUs appropriately, we can entirely negate the per-
formance loss. As shown in the next column, if we increase
the number of FPGA-based ALUs to 2 (where each of the
ALUs has a latency of 2), the performance drop is now only
1.4% on average. Furthermore, if we continue to increase the
number of ALUs in the FPGA, we actually get performance
gains. Similar results occur for FPGA copies with latencies of
3 or 4. Unsurprisingly, the number of copies we need in the
FPGA increases as the latency increases.

We next performed similar experiments using the integer
multiplier. The instruction profile in Table V shows that, of
the seven benchmarks tested, only two benchmarks (ijpeg and
vortex) made any use of the built-in integer multiplier unit.
The performance results for those two benchmarks are shown
in the bottom portion of Table IV. (We verified that there was
no effect on the other benchmarks.) Our experiments show
that even if the FPGA multiplier’s latency is three times the
latency of the original ASIC multiplier, having two FPGA
multipliers will restore the performance to the fault-free case.
These experiments indicate that the amount of effort placed
toward repair should be decided in the context of the criticality
of the unit in question. Although some repair is necessary
for these instructions to operate correctly, the fact that they
are used so rarely indicates that fewer resources (i.e., fewer
copies) should generally be used for repair.

C. Performance Impact When Repair is Optional

Next, we considered the case where there are three inte-
ger ALUs in the ASIC, one of which is defective. If no
repair of the bad ALU is performed, the system has only two
usable integer ALUs, resulting in a loss of performance. Fig. 9
shows the percent performance degradation (measured in IPC).
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TABLE IV
PERCENTAGE CHANGE IN PERFORMANCE FOR UNPIPELINED FPGA ALU/MULT REPLACING

THE ONLY ASIC INTEGER ALU/MULT UNIT

TABLE V
PERCENTAGES OF INSTRUCTIONS THAT USE THE

INTEGER ALU AND THE INTEGER MULTIPLIER

Fig. 9. Performance degradation with the loss of 1 integer ALU when no
repair is performed.

The performance degradation varies between 5.3% for the
compress benchmark to as high as 20% for vortex; on average
performance decreases 11.3% across the benchmarks.

We then created a new pipelined version of the ALU with
increased latency to represent ALUs that would be imple-
mented on the FPGA. Because they are pipelined, these ALUs
may accept a new calculation on every cycle even though they
may take multiple cycles to complete. This may occur when
the ASIC and FPGA can execute at the same internal clock
frequency, but the realization of the ALU in the FPGA is such
that we need to pipeline it to utilize that frequency and/or han-
dle the propagation time through the TSVs. We measured the
performance gains over the nonrepair case of the processor
when different numbers of FPGAs are used for repair.

The results are shown in Table VI. On average, we see
performance improvement of approximately 8.9% over the no-
repair case when the single FPGA ALU has a latency of 2.
The performance improvement falls to 7.6% and 3.3% when
the FPGA ALU latencies increase. Once again, this indicates
that when the increased latency of the FPGA ALU is too high,
a single copy on the FPGA for replacement is not enough. In
fact, benchmarks compress and perl show a slight performance
degradation of 0.5% and 2.8%, respectively when the FPGA

ALU has a latency of 4. This is because once an instruction is
issued to an ALU, it is tied-up within that ALU until it finishes.
No dependent instructions can execute in the meantime. When
the latency of an ALU becomes very long, in some cases it
may actually be better to wait for a shorter latency ALU to
become available. This also appears to be related to what is
happening to the vortex benchmark. That benchmark has a
higher degree of instruction-level parallelism than others, and
its performance appears to be very dependent on the order
in which instructions are issued to the functional units. When
these instructions are issued in a different order due to changes
in instruction latencies, it has a significant effect.

From the results of the pipelined experiments shown in
Table VI, we see that adding two FPGA ALUs provides
additional performance improvement. However, adding more
FPGA ALUs (either 3 or 4) produces no additional benefit.
This is to be expected. Our baseline processor is a 4-wide
superscalar. Because there are two working integer ALUs in
the processor, adding two more on the FPGA allows up to
four integer instructions to be issued on any given cycle.
Each of those two FPGA ALUs can accept a new instruc-
tion each cycle because they are pipelined. However, because
only four instructions can be issued on each clock cycle in a
4-wide machine, adding additional ALUs on the FPGA adds
no improvement. Overall, we can conclude that repair with
two pipelined FPGA ALUs appears to be ideal, provided that
the latency of the FPGA ALUs is not too long.

We also ran the same experiments where the added FPGA
ALUs were not pipelined. The addition of unpipelined FPGA
ALUs still results in a performance improvement over the
unrepaired case, as shown in Table VII. However, since the
FPGA ALU is marked busy and unavailable for a certain num-
ber of cycles when it is in use, the performance improvement
for 1 additional ALU is smaller than in the corresponding
pipelined case–6.1% instead of 8.9% for latency of 2; 3.6%
instead of 7.6% for latency 3 and 1.2% instead of 3.3%
for latency 4. However, unlike the pipelined FPGA ALU
case, adding 3 and 4 FPGA ALUs can positively impact per-
formance in the nonpipelined case. The processor can take
advantage of a fifth or a sixth ALU (which might not be
busy) and issue a ready instruction present in the issue queue.
The gains from the availability of these additional ALUs
makes the unpipelined case approximately match the peak
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TABLE VI
PERCENTAGE IMPROVEMENT (OVER THE NO REPAIR CASE) IN PERFORMANCE WHEN THE BAD INTEGER

ALU IS REPAIRED WITH 1–4 PIPELINED INTEGER ALU OF LATENCY 2–4 ON THE FPGA

TABLE VII
PERCENTAGE IMPROVEMENT (OVER THE NO REPAIR CASE) IN PERFORMANCE WHEN THE BAD INTEGER

ALU IS REPAIRED WITH 1–4 UNPIPELINED INTEGER ALU OF LATENCY 2–4 ON THE FPGA

performance gain of the pipelined case. For most benchmarks,
the final improvement of the repaired version (when repair
is not mandatory) allows it to closely reach the performance
(within 2%) of the nondefective version if enough FPGA
ALUs (2 pipelined FPGA ALUs or 4 nonpipelined FPGA
ALUs of latency 2) are added.

VII. DIAGNOSIS AND TEST OF FAILING PARTITIONS

Another aspect of 3-D IC repair is the requirement to diag-
nose which portion of a chip is defective so that the right
partition can be bypassed and replaced. In the results presented
in Section VI, we have assumed that some sort of diagnosis
approach exists. Note that diagnosis for repair is easier than
diagnosis for yield learning. Only the defective partition must
be identified. There is no need to identify the exact fault or
defective site.

While, the exact nature of the diagnosis approach in a 3-D
IC stack is outside the scope of this paper and a subject
of our future investigations, [35]–[37] on online error detec-
tion in a 2-D IC could be adapted to identify the location
of some defective behavior in a 3-D stack. For example, we
have previously demonstrated that when logic implications are
used for online-error detection, determining which implication
was violated provides automatic diagnostic data because each
implication can only protect a well-defined subset of all pos-
sible circuit sites [37]. If all the suspected circuit sites are
located within a single partition, the exact partition to be
repaired can be identified automatically. If the suspect sites
are scattered through multiple partitions, then a short test set
applied by the FPGA operating as a tester or another core in
the chip could potentially be used to provide more diagnostic
resolution. Other online error detection schemes may provide
similar information. For example, if a particular functional unit
is protected by parity, then any errors in the parity signature

may automatically be associated with that functional unit. As
a part of future work, we are considering various online-error
detections schemes, how their diagnostic resolution relates to
the partitions we are creating for repairability on the FPGA,
and what kinds of test sets or on-chip data collection may be
needed to increase that resolution.

VIII. CONCLUSION

In this paper, we have described an architecture that will
allow a 3-D stacked IC to be repaired in the presence of
a defective ASIC through the repurposing of programmable
logic already included in the stack for other purposes, such
as performance enhancement. We have investigated bypassing
both a single defective pipeline stage of a multiplier with a
correct copy of the stage on an FPGA as well as bypassing
and replacing a defective functional unit in an out-of-order
microprocessor.

FPGAs often operate at a slower clock speed than ASICs;
however, this paper has shown that the flexibility introduced
by the use of an FPGA can make the performance drop intro-
duced by repair minimal or nonexistent. The key to handling
the clock speed differential is to implement multiple copies
of the defective partition on the FPGA. In particular, even when
the FPGA clock period is one half of the ASIC clock period, a
new instruction can be sent to the FPGA on every clock cycle—
requiring no reduction in the ASIC clock frequency when two
copies of the defective partition are implemented on the FPGA.
Our simulations regarding the repair of functional units in an
out-of-order microprocessor using SimpleScalar show that per-
formance of the repaired version may even exceed the original
performance in some cases if a sufficient number of copies of
a nonpipelined defective functional unit are added for repair.

We have also mapped our proposed architecture to a
3-D stacked IC architecture using commercial tools from
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Synopsys and Cadence. The most significant overhead occurs
due to the need for TSVs to communicate between the ASIC
and FPGA layers. However, our data shows that the TSV area
requirements are reasonable, especially when it is considered
that these same TSVs may be harnessed for multiple purposes.
In particular, the same set of TSVs may be multiplexed and
used to repair multiple potentially defective partitions. The
overhead of the TSVs may even be nonexistent if they were
already included in the design to allow new functional units to
be temporarily added to the machine for performance enhance-
ment. In addition, the timing overhead seen by the original
ASIC due to the introduction of multiplexers used to return
data from the FPGA can be hidden by adding those multi-
plexers to the scan-in pin of a MUX-D flip-flop in a standard
full-scan design.

Our future work will expand the proposed solution to
additional designs and repair scenarios. We will also further
investigate additional shared uses for the FPGA in the stack,
including using the FPGA for built-in-self-test and diagnosis
of stack components.
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