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Abstract 

As the design and manufacturing process has continued to fracture across multiple countries and 

companies, there is increasing concern that malicious hardware may be inserted into mission critical 

systems.  Hardware Trojans are malicious changes to a circuit or system that compromise its 

functionality.  They may create errors, leak information, or even destroy the chip.  Much previous 

research has focused on Trojans inserted at the manufacturing stage through changes in the masks.  

However, malicious changes at the RTL are also possible and may be even more damaging as they may 

affect multiple generations of chips.  Unfortunately, methods used to detect Trojans after manufacturing 

are likely to be entirely ineffective if Trojans are inserted earlier in the design cycle.  Thus, research 

focused on Trojans inserted at the RTL or gate level is needed.  In this paper, we will discuss several 

example Trojans that may be inserted in 3
rd

 party IP and will analyze their stealth and effect on circuit 

complexity.  Unlike most Trojans inserted at manufacturing, Trojans inserted at the RTL may decrease 

this complexity.  We will then explore the ability of ATPG (Automatic Test Pattern Generation) test sets 

to aid in the detection of these Trojans. 

1. Introduction 

Over the past several years, the Department of Defense has expressed significant concern that circuits 

used in military applications are becoming increasingly susceptible to compromise through the insertion 

of hardware Trojans and the counterfeiting of parts.  Hardware Trojans consist of malicious changes to a 

design that alter its functionality in an adverse way.  For example, a Trojan may cause an error in the 

outputs for particular inputs or environmental conditions.  Alternatively, it could leak secret information, 

such as the encryption key, for particular input sequences.  In other cases, it could cause the chip to reset 

or even destroy itself.  Because the impact of a hardware Trojan could be catastrophic in a mission-

critical application, steps must be taken to either prevent the insertion of Trojans or to detect Trojans once 

they have been inserted. 

Trojans may be theoretically be inserted at any stage of the design cycle from the creation of the 

specification through manufacturing [1], [2].  However, the majority of the research to date has focused 

primarily on Trojans inserted at manufacturing.  The large percentage of parts manufactured overseas 

provides new opportunities for foreign agents or organizations to compromise chips by changing the 

masks used to make them.  It is assumed that these Trojans would generally consist of small amounts of 

additional logic.  Unlike defects, they would be intelligently inserted with the intention of making them 

difficult or impossible to detect with the standard logic tests applied in manufacturing.  For example, 

Trojan activation might occur only with a very rare combination of internal signal values that are unlikely 

to be produced during testing.  As a result, much previous research has focused on the impact the Trojan 

would have on power or delay even when the Trojan is not entirely activated.  Multiple statistical 

techniques have been proposed to separate such changes from normal process variations (e.g. [3–5]).   

However, instead of inserting Trojans at the manufacturing stage, Trojans could also be inserted at 

the RTL in third party IP or by a malicious insider.  In fact, insertion at the RTL provides multiple 

advantages to the attacker.  For example, the complex reverse engineering that would need to be done to 

insert meaningful Trojans at the mask level would likely be easier or unnecessary when the RTL is 



available to the attacker.  In addition, every copy of the device—possibly over multiple generations of 

parts—would contain the Trojan, making the effort and risk of inserting it more worthwhile.  

Furthermore, because power and timing analysis tools would always operate on a version of the circuit 

that already contains the Trojan, they cannot be used for Trojan detection.  However, ATPG (Automatic 

Test Pattern Generation) tests will become much more useful at the RTL. 

Trojans inserted at the RTL also may differ from Trojans inserted at the mask level in another 

important way.  Specifically, although Trojans inserted at the mask level often are assumed to add gates 

to a logic circuit, at the RTL, a particularly stealthy Trojan is more likely to remove functional 

complexity from the circuit.  In some cases, they may also be capable of manipulating internal state 

machines so that the functional effect of the Trojan trigger does not appear for multiple cycles after 

triggering has occurred—making them even more difficult to detect. 

In this paper, we will describe a sample of Trojans inserted at the RTL.  We will explore how 

combinational and sequential Trojans may either add complexity to the circuit or remove complexity 

from the circuit.  We will also explore how standard ATPG tools can be harnessed to create test 

sequences that will promote Trojan activation and detection under different circumstances. 

2. Previous Work 

Although most of the work in Trojan detection has focused on the manufacturing stage, there has also 

been recent work on hardware Trojan detection at the RTL.  For example, Hicks et al. [6] identify two 

possible stages where Trojans can be inserted at the pre-fabrication level: either by a rogue employee, or 

in the software of third-party IP.  The assumption is that the Trojan is inserted during the design phase at 

the RTL level and that it is digitally triggered.  Hicks’ approach uses design verification to identify 

“suspect” circuitry as possible hardware Trojans; a suspect circuit is one that is not used or activated by 

the design verification tests.  The method was tested on a variation of the SPARC processor circuit, with 

Trojan models developed by the authors.    

More recently, the authors of [7] also focused on Trojan detection in 3rd party IP through also 

focused on using design verification techniques—both formal and simulation-based, as well as limited 

sequential ATPG to identify suspect circuit locations and attempt to detect Trojans in an RS-232 circuit. 

Banga and Hsaio [8] also used equivalence checking to identify possible hardware Trojans in gate 

level circuits.  Their method compares a “suspect” circuit with a “spec” circuit (an unoptimized circuit 

quickly generated from the original system specification).  The assumption is that the Trojan is inserted 

during the design phase at either the RTL or gate level, and that it is digitally triggered.  They further 

assume that triggering is rare and use both functional patterns and an n-detect test set to remove faults 

from consideration that they consider too easy to detect.  A SAT (Satisfiability) solver is then used to 

check for equivalence among faulted, unfaulted, and “spec” versions of the circuit.  Finally a radius-based 

analysis is used to further refine the search space for Trojans.   

The authors of [9] inserted Trojans into RTL code that was programmed into an FPGA.  They 

considered the stealth of their design to be based on the number of hardware resources (LUT’s and 

FF’s)—indicating that the design was not made significantly bigger, as well as the power drawn by the 

FPGA.   

However, to the best of our knowledge, no one has yet explicitly explored the differences in the types 

of Trojans that may be inserted at the RTL, how they affect circuit complexity, and how an attacker may 

make RTL/gate level Trojans at the design stage or in 3rd party IP particularly stealthy.  In this paper, we 

will explore some of the characteristics such Trojans may have and what may be required to detect them. 

3. Inserting Trojans at Manufacturing 

Logical Trojans inserted at the manufacturing stage are generally assumed to consist of two 

components: a trigger and a payload.  For example, consider Fig. 1.  Assume that this is a part of a much 



larger circuit and that in this circuit B and C are highly skewed toward logic 1’s.  The Trojan corresponds 

to the shaded gates.  The NOR gate forms the trigger.  When both of the inputs to this gate are set equal to 

a logic 0, the output of the NOR gate becomes 1, and the Trojan is activated.  In contrast, the XOR gate 

corresponds to the payload.  It is spliced into a normal signal line of the circuit, and when the Trojan is 

activated, it complements the value on that signal line—causing an error. 

 

Figure 1 

Although this is a very simple example, much more complex forms of Trojans are possible.  For 

example, Trojans may be designed with counters so that they only trigger once a given pattern has been 

seen multiple times.  Instead of inserting a simple one-bit error, they may totally change the output—for 

example, bypassing the encryption hardware and placing the plaintext on the data bus. 

In general, Trojans inserted at the mask level share certain characteristics: 

1) An attacker who wants his Trojan to have a functionally important impact must reverse engineer the 

design from the GDSII data.  He needs to discover what signals to alter and which signals (if any) 

should be used to create the trigger. 

2) The attacker must ensure that the overall size of the circuit does not increase.  Any extra gates and 

routes should be placed in such a way as to leave the majority of the mask unchanged. 

3) At the mask level, a Trojan may be made almost arbitrarily difficult to detect with traditional ATPG 

test patterns.  Any extra logic added by the attacker will not appear in the netlist used to create the 

patterns.  As a result the Trojan cannot be explicitly targeted during ATPG.  An intelligent attacker 

can thus make it almost impossible to fortuitously detect the Trojan if the trigger or observation 

conditions are sufficiently difficult to satisfy.  In addition, dynamic Trojans that make use of counters 

may be impossible to detect through structural scan-based ATPG as the attacker is highly unlikely to 

place the counter on the scan chain. 

4) Although ATPG tests are unlikely to be able to detect the Trojan, other aspects of the Trojan, in 

particular power draw and delay, are likely to change whether or not the Trojan is explicitly active.  

For example, assume that a trigger corresponds to a 10-input AND gate.  It may be very difficult to 

activate the AND gate by chance.  However, if it is made from multiple smaller gates, the individual 

gates may switch even if the large AND gate does not.  Added fanout from signal lines used to create 

the trigger and the insertion of additional gates into circuit paths to form the payload also add to 

circuit delay.  As a result, multiple researchers have studied methods for the detection Trojans based 

upon the power or delay that they add to the circuit (e.g. [4–5,9-12]). 

5) Finally, although this paper is currently focusing on Trojans that actively change the circuit logic and 

functionality, it is also possible to include non-logical Trojans at the manufacturing stage.  For 

example, a Trojan could consist of an antenna inserted into an unused space of the design that 
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radiates the value on a particular signal. 

4. Inserting Trojans at the RTL 

There are obviously similarities between Trojans inserted at the RTL (or the synthesized gate level) 

and Trojans inserted at manufacturing.  However, in other ways they can be very different.  

Some characteristics of Trojans inserted at the RTL include: 

1) A Trojan writer who is not the primary designer may still need to reverse engineer part of the design 

in order to create a Trojan with the desired functional impact.  However, in this case, the reverse 

engineering can be performed at a higher level of abstraction—likely making it considerably easier 

than extracting information from GDSII data.   

2) This reverse engineering may not be needed if the Trojan writer is also the designer (and seller) of the 

third party IP. 

3) Trojans at the RTL are likely to still be designed to be difficult to excite/observe with random or 

functional pattern sequences.  For example, they may still trigger on rare combinations of circuit 

conditions.  This means that they will likely be very difficult to trigger with random/weighted random 

pattern sequences traditionally run for design verification. 

4) One way other researchers have suggested could be used to identify potential Trojan circuitry in RTL 

code involves finding portions of the code with low code coverage during design verification.  The 

assumption is that the Trojan code would be written to be so difficult to activate that it the lines of 

code corresponding to the Trojan would not be executed.  However, a good Trojan writer could write 

a Trojan such that even if every statement in the code was executed at least once, the Trojan might 

still not be triggered.  For example, consider the following pseudo RTL code:  

Assign f2 = data_now_calculated & (A & B & C & D & E)’ 

 

Assign data_bus = calculated_data & (f2 XNOR data_now_calculated) + 

key & (f2 XOR data_now_collected) 

 

Assign data_ready = data_now_calculated 

 

In this piece of code, the variables A, B, C, D, and E represent different events that together 

comprise the Trojan trigger condition.  If all of the events are asserted (i.e. the variables are equal to 

1), then the new variable f2 is set equal to 0.  Otherwise, f2 is equal to “data_now_calculated.”  To 

avoid branch structures, the data bus is assigned its value through a form of Shannon’s expansion 

theorem.  If the value of f2 is the same as the value of “data_now_calculated,” as should almost 

always be true (and is always true when the Trojan is inactive), the value assigned to the data_bus is 

the expected “calculated_data.”  However, if all the events are asserted, f2 will be different from the 

value of data_now_calculated (when that signal is asserted), and instead of the calculated data, the 

key will be placed on the data_bus and potentially available to a saboteur. 

Clearly, every line of this code will be executed by any simulation that enters this section.  Thus, 

line coverage will be complete.  There are no branches, so branch coverage will not be affected.  

Finally, every individual variable (aside from the key) will toggle on a regular basis in this or another 

part of the code—providing high toggle coverage. Thus, it is very possible that design verification 

sequences that attain high coverage according to traditional metrics will never activate this Trojan. 

5) Trojans inserted at manufacturing generally add logic to the circuit.  To some extent, this adds to the 

circuit complexity.  In contrast, Trojans at the RTL may become stealthier if they can remove logic 

from the design and thus decrease complexity.  In addition, Trojans at the RTL may become stealthier 

by delaying the Trojan effect for multiple clock cycles after the trigger condition has been met. 



5. Making Trojans Difficult to Detect Through ATPG 

Trojans consisting of extra gates inserted at manufacturing are hard to activate with ATPG patterns 

because the netlist used to generate the fault list does not contain the trigger logic.  It is therefore 

impossible to for the ATPG tool to deterministically trigger the Trojan.  For example, consider again the 

example circuit now shown in Figure 2.  The stuck-at fault T sa0 will not be located in the fault list 

because none of the Trojan circuitry was in the original netlist.  As a result, the ATPG tool is incapable of 

targeting this fault and activating the Trojan deterministically.  In contrast, removing logic from a circuit 

is likely to be relatively easy to detect with traditional structural tests if the Trojan is inserted at the mask 

level and the original Trojan-free circuit is used to generate the tests.  For example, if the Trojan writer 

chose to remove the OR gate with inputs A and G1 and directly connected A and F, a test for G1 sa0 

would detect the error. 

 

Figure 2:  ATPG Netlist when Trojan is inserted at Manufacturing 

The scenario is very different for Trojans inserted at the design stage.  When Trojans are inserted in 

the RTL or gate level version of a design, they are inserted directly into the netlist that will be used to 

generate tests.  As a result, the Trojan logic will appear in the fault list.  If the ATPG tool generates a test 

set that attains 100% fault coverage, then a Trojan consisting of extra logic will be guaranteed to be 

activated and the effect propagated to an output or flip flop.  For example, for the circuit in Figure 3, if 

the Trojan were inserted at the RTL instead of at the gate level, the input pattern XX00XX would be 

deterministically selected as one of the tests so that T sa0 could be detected.  Detection of the Trojan then 

requires determining the functional implication of this test and the fault effect. 
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Figure 3: ATPG Netlist when Trojan is inserted at RTL. 

However, there is another way a Trojan writer may choose to enter a Trojan at the RTL.  Specifically, 

in some cases, the attacker may be able to insert a Trojan by removing logic.  For example, For example, 

consider the following example circuit containing a Trojan: 

module missileDet_T(detonate,inputData); 

 input [31:0] inputData; 

 output detonate; 

 

 parameter detSeq = 32'h53756B75; 

 parameter Trojan = 32'h53756B65; 

 

 assign detonate = (inputData == detSeq || inputData == 

Trojan)?1:0; 

 

endmodule 

 

We created this Trojan benchmark, RWT08a, as a combinationally-triggered Trojan inspired by an 

example from [9].  In [9], the Trojan replaces all inputs corresponding to “Moscow” with “Boston.”  

Thus, if a message is sent to “target Moscow,” it is changed to “target Boston.”  In our experiments, we 

created a simple missile controller that detonates the missile when a 32-bit pattern is input to the circuit.  

The Trojan is triggered when an alternate pattern, which differs from the original pattern by only 1 bit, is 

input to the circuit.  Thus, there are two possible patterns that can detonate the missile: the original 

(intended) pattern and the “secret” (Trojan) pattern.  The Verilog code for this circuit is shown above, 

where the original pattern is “detSeq” and the Trojan pattern is “Trojan”.  Note that minimal code is 

required to implant the Trojan into the circuit and that even when the Trojan is not activated, every line in 

the circuit may be executed. 

In our original implementation of this Trojan, the detSeq differed significantly from the Trojan 

sequence.  This led to the addition of extra logic to serve as the Trojan trigger.  However, in this version 

of the Trojan, the two sequences only differ by a single bit.  This means that the 5th bit from the right 

becomes a don’t care, and the detection logic for the sequence becomes simpler.  There is simply one less 

input needed on the AND gate that identifies the detonation sequence.  As a result, there is no trigger line 
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present in the circuit, and there is no fault that ATPG can explicitly target to activate the Trojan.   

More generally, good functional locations for an attacker to insert a Trojan in a logic function at the 

RTL would correspond to boundaries between 0’s and 1’s on a K-map.  If the boundary is erased or 

moved by changing both sides to either 0 or both sides to 1, this is likely to allow the circuit to be further 

simplified.  The error caused by the Trojan will not be able to be explicitly targeted by a testing tool, and 

the change may be difficult-to-detect with simulation-based verification methods, especially if this 

boundary is not associated with a known corner case.  Of course, the changed minterm should still be 

unlikely to be hit by chance during functional test and verification.  If not, it will likely be detected 

anyway unless other steps were taken to conceal its effects. 

Finally, Trojans may become even more difficult to detect if the Trojan effect is not seen for multiple 

cycles after the Trojan was triggered.  For example, consider again the missile detonation circuit.  

However, in this case assume that a particular string must be received a character at a time over several 

clock cycles to cause the missile to detonate.  Specifically, the sequence “FIRE” must be received over 4 

clock cycles.  If any other sequence is received, the machine returns to the waiting state.  A state machine 

corresponding to this behavior is shown in Figure 4. 

 

Figure 4:  Trojan Inserted into State Machine 

The Trojan-free machine is shown on the left.  In the circuit containing the Trojan, an alternate 

sequence may cause the detonation as well: “GIRE.”  Because the letters “F” and “G” in ASCII only 

differ by one bit, the next state logic leaving the “Start” state is simpler than the original Trojan-free 

logic.  Once again, there is no trigger signal for the ATPG tool to target.  Furthermore, although a faulty 

transition may occur between the “Start” state and the 2nd state, this does not affect a true output (i.e. the 

detonator in this case), but only state elements.  This makes the determination of the functional impact of 

even a test pattern that does activate the Trojan more difficult.  We must either simulate for four clock 

cycles, or we must have detailed information about what constitutes a valid next state in each case.  Of 

course, even more complicated Trojans are possible.  For example, a single Trojan could involve multiple 

interacting state machines. 

6. Experiments 

In the following experiments, our goal was to explore the ability of the Synopsys ATPG tool 

TetraMAX [13] to generate test patterns that would both excite and propagate Trojan effects.  The circuits 

were written in Verilog and then synthesized to obtain a gate level version.  We first studied two 
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combinational circuits with Trojans.  RWT08 added two Trojan triggers to the circuit—each of which 

added logic.  The second Trojan RWT08a (already described in previous sections), made the logic 

simpler.  Table 1 provides information regarding the test sets generated and the ability of the patterns to 

activate the Trojan.   

Table 1: Combinational Circuits with Trojans 
Trojan # of 

Gates 

Function #of 

Faults 

# Test 

Pattern

s 

CPU 

Time 

Fault 

Coverage 

Sequences 

Detected? 

Troj Good 

RWT08 26 Bad Output 274 55 0.00 100 Yes Yes 

RWT08a 11 Bad Output 170 37 0.00 100 Yes No 

 

In the case of the Trojan that added logic (RWT08), both the Original (Good) and Trojan (Bad) inputs 

combinations were generated and applied during test.  Thus, the Trojan was detected.  In the case of the 

second circuit, the logic became simpler when the Trojan was added.  One of the inputs became a “don’t 

care.”  This means that the ATPG tool didn’t have any preference for selecting the Trojan or Trojan-free 

input combination when generating a test for the detonation output stuck-at 0.  That bit was randomly 

filled.  In this case, we were lucky.  The Trojan input combination was randomly selected, and we 

detected the Trojan.  The input combination originally intended by the designer was not used during test. 

Next, we began investigating sequential circuits.  FSM_Jenn was a state machine similar to that 

shown in Figure 4.  Once again an alternate Trojan sequence was inserted.  This sequence differed from 

the original by only 1 bit in the first letter of the sequence.  Table 2 shows the results obtained when 

sequential ATPG patterns were generated with TetraMax.  In this case, both the Trojan sequence and the 

original sequence were used.  This is fortunate as there is no guarantee that this would necessarily have 

been the case. 

 

Table 2: Trojan Detection with Sequential ATPG 
Trojan # 

Gates 

# of 

Flip 

Flops 

Function # of 

Faults 

# Test 

Patterns 

CPU 

Time 

Fault 

Coverage 

Detected? 

Good Troj 

FSM_Jenn 18 3 Bad 

Output 

172 24 50.84 97.67 Yes Yes 

 
Unfortunately, sequential ATPG is time consuming (even for relatively small circuits.)  Thus, up to a 

point, it is preferable to insert scan chains into the design and use combinational scan-based ATPG 

instead.  Results from some of these experiments are shown in Table 3.  Once again, FSM_Jenn could 

have asserted the output for either the original intended sequence or the one corresponding to the Trojan.  

Once again we were lucky, and the Trojan was selected. 

We then repeated this experiment for two RS232 Trojan circuit benchmarks that are freely available 

from TrustHub [14].  The first Trojan (RS232-TG09C14PI0) contained 8 combinational gates.  The 

trigger occurred when 20 signals were high and the payload changed two bits of the output.   

The second Trojan (RS232-TG1AS1BPI0) contained 4 flip-flops and 10 combinational gates.  The 

trigger occurred when 24 signals were high, and the payload changes one bit of the output.  Note that the 

TrustHub benchmarks were generally designed for detecting Trojans inserted at manufacturing.  Thus, the 

flip-flops were not placed on the scan chain in the original benchmark.  Because our Trojans are inserted 

in the RTL, the scan insertion tool would see the flip-flops and would place them on the scan chain.  

Thus, they were on the scan chain in our experiment.  

As one can see from Table 3, both RS232 Trojans were easily detected.   



 

Table 3: Sequential Trojans Circuits Tested with Scan-Based ATPG 
Trojan # 

Gate

s 

# of 

Flip 

Flops 

Function # 

Faults 

# Test 

Patterns 

CPU 

Time 

Fault 

Coverage 

Detected? 

Good Troj 

FSM_Jenn 18 3 Bad 

Output 

172 31 0.00 100 No Yes 

RS232-

TG09C14P

I0 

152 58 Bad 

Output 

71 71 0.01 98.40 Yes 

RS232-

TG1AS1B

PI0 

65 62 Bad 

Output 

1886 69 0.01 98.56 Yes 

 

7. Conclusions 

Trojan detection and insertion have important differences as one moves from considering Trojans 

inserted at manufacturing to those inserted in the RTL.  In particular, Trojans inserted in the RTL become 

stealthier when they remove logic from the circuit.  In the future, we will expand this investigation to new 

larger circuits and a variety of Trojans.  We will also further explore the tradeoffs between different types 

of sequential and combinational ATPG for effective Trojan detection. 
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