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Abstract- This paper presents results of our work in 
development of a genetic algorithm based path-planning 
algorithm for local obstacle avoidance (local feasible path) of a 
mobile robot in a given search space. The method tries to find 
not only a valid path but also an optimal one. The objectives 
are to minimize the length of the path and the number of 
turns.  The proposed path-planning method allows a free 
movement of the robot in any direction so that the path-
planner can handle complicated search spaces. 

A.  Global vs. Local Path-Planning 
 

 Global path planning requires the environment to be 
completely known and the terrain should be static. In this 
approach the algorithm generates a complete path from the 
start point to the destination point before the robot starts its 
motion. On the other hand, local path planning means that 
path planning is done while the robot is moving; in other 
words, the algorithm is capable of producing a new path in 
response to environmental changes. Assuming that there 
are no obstacles in the navigation area, the shortest path 
between the start point and the end point is a straight line. 
The robot will proceed along this path until an obstacle is 
detected. At this point, our path-planning algorithm is 
utilized to find a feasible path around the obstacle. After 
avoiding the obstacle, the robot continues to navigate 
toward the end-point along a straight line (in our system 
the robot moves in a vertical or horizontal direction, not 
diagonally; hence, it will try to approximate a straight line) 
until (1) the robot detects another obstacle or (2) the 
desired position is reached.  An example of local path 
planning is shown in Figure 1. 

I. INTRODUCTION 

During the last century, automation has become an 
extremely fast growing phenomenon impacting almost all 
facets of everyday life. Recently, robots have become a 
major part of this trend. Therefore, autonomously 
navigating robots have become increasingly important 
[1,3]. Motion planning [2] is one of the important tasks in 
intelligent control of an autonomous mobile robot [7-9]. 
The work presented here is part of a larger project to build 
an autonomous path-planning robot.  This research is 
motivated by earlier work in this field of interest [4-6] by 
the same research team. This paper presents the research 
and simulation results of a genetic algorithm based path-
planning software. The algorithm uses an improved, 
modified version of previous encoding techniques [4-6]. 
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II. ROBOT PATH PLANNING 

The path-planning problem is usually defined as follows 
[2]: “Given a robot and a description of an environment, 
plan a path between two specific locations. The path must 
be collision-free (feasible) and satisfy certain optimization 
criteria.” In other words, path planning is generating a 
collision-free path in an environment with obstacles and 
optimizing it with respect to some criterion.  

The research presented in this paper is part of a project 
to build an autonomous mobile robot, which can be used as 
a platform for various applications.  This project is divided 
into three major areas: visual detection of the environment, 
path planning, and control of the robot. The path-planning 
component is again divided in two sections: global path 
planning and local path planning. Running simulations on 
both global and local path planning in different 
environments will determine which approach yields the 
best performance. 

Figure 1.  Path-planning example for local obstacle avoidance, 
applied on a subsection of the search space. 

 

 

 
 
 



B. Genetic Algorithm Technique for Robot Path 
Planning 

 
Robot path planning is part of a larger class of problems 

pertaining to scheduling and routing, and is known to be 
NP-hard (NP-complete) [10]. Thus, a heuristic 
optimization approach is recommended as shown by 
Hwang [11]. One of these approaches is the use of genetic 
algorithms. A genetic algorithm (GA) is an evolutionary 
problem solving method, where the solution to a problem 
evolves after a number of iterations. A proposed solution 
with the GA method to the path-planning problem is the 
best feasible path among the pool of all possible solutions. 

There have been several contemporary applications of 
genetic algorithms to the robot navigation problem. One 
approach is to combine fuzzy logic with genetic algorithms 
[15, 16, 17]. In this approach, the genotype structure 
represents fuzzy rules that guide the robot navigation, so 
the genetic algorithm evolves the best set of rules. While 
this approach can produce a feasible path through an 
uncertain environment, the genotype structure becomes 
very complex, as it needs to represent a variety of fuzzy 
rules.   A complex genotype structure can take a long time 
to process in a genetic algorithm, which affects the real-
time performance of the robot during navigation.    

Another approach is to use genotype structures that 
represent local distance and direction, as opposed to 
representing an entire path [18, 19, 8, 3].  While these are 
simple to process and allow for faster real-time 
performance, the local viewpoint of these methods may not 
allow the robot to reach its target. Some methods have 
relatively simple genotype structures that can represent 
feasible paths, but require complex decoders and fitness 
functions [20, 2, 9].  This can also affect real-time 
response.     

Simplifying the models used to represent navigation 
paths will reduce the processing time of the genetic 
algorithm.  Thus, our research has focused on improving 
the genetic algorithm performance by simplifying the 
genotype structure. 

III. GENETIC ALGORITHM-BASED LOCAL 
PATH-PLANNER STRUCTURE 

A. Genetic Algorithm 
 

Genetic algorithms [10,12-14] are a class of adaptive 
methods that can be used to solve search and optimization 
problems involving large search spaces. The search is 
performed using the idea of simulated evolution (survival 
of the fittest). These algorithms maintain and manipulate 
“generations” of potential solutions or “populations”. With 
each generation, the best solutions (as determined by a 
problem specific fitness function) are genetically 
manipulated to form the solution set for the following 
generation. As in nature, solutions are combined (via 
crossover) and/or undergo random mutation.  

The following are general specifications for our GA-
based local path-planning approach: 

1)   A map of the room in which the path planning 
takes place is known. The path planner will 
determine the length and the width of the search 
space and then apply a grid system to the room, 
similar to a chessboard. Thus, the room is 
divided into rows and columns. In our approach 
we assume the number of rows is equal to the 
number of columns.  The locations of known 
obstacles are marked as “occupied cells” in the 
grid. 

 
2)   The row and column coordinates of the start-point 

and the end-point of the desired robot’s 
movement are also known.  

 
3)  The robot is allowed to move on all “free” cells, 

where the center of the robot moves along an 
imaginary line from the center of one cell to the 
center of another cell. 

B. Different Types of Robot Movement 
 

Assume a robot is required to navigate from the upper-
left corner of a room to the lower-right corner, as shown in 
Figure 1. In order for the robot to do this task, generally, 
there are two types of robot movements: Row-Wise and 
Column-Wise. 

B.1) Row-Wised Movement: In a row-based movement, 
the robot starts moving row by row from the start-point to 
the end-point. In other words, any horizontal line in the 
search space will meet the path only once. Therefore, in 
this movement, the robot always has to go forward and it 
does not have the capability of going back (up) to the 
previous row. 

B.2) Column-Wised Movement: In a column-based 
movement, the robot will start moving toward its 
destination column by column to the right. In other words, 
any vertical line in the search space will meet the path only 
once. Therefore, In this movement, the robot always has to 
move from left to right, and it does not have the capability 
of moving back to the left. 

C. Encoding Technique 
 

The chromosome structure must have sufficient 
information about the entire path from the start point to the 
end-point in order to be able to represent it. The previous 
genotype by a member of our research group, T. Geisler, 
[4,5] contained only two variables, which will be discussed 
later, Path-Location and Path-Direction. That encoding 
technique allowed only row-wise movements. Next, Aditia 
Hermanu, another member of our research group, [6] 
modified the genotype by introducing a new instruction 
flag for each path, called Path-Flag. This Flag instructs the 
next movement type for each step of the movement. 
Therefore, this genotype allowed the robot to plan either a 



row-wise or a column-wise movement according to the 
search space arrangements. But, neither of these two 
previous structures was able to combine both row-wise and 
column-wise paths while planning for a single path. This 
caused the robot to fail for complex environments that 
required the robot to move both row-wise and column-
wise within those search spaces.  Thus, the encoding that 
we have applied in this paper to address the path-planning 
problem consists of four variables: Path-Flag, Path-
Location, Path-Direction, and Path-Switch. While the 
previous work required either a row-wise or column-wise 
movement, the new genotype is able to plan both row-wise 
and column-wise within a single search space. Hence, the 
path has more flexibility to switch between the two 
movement modes. 

On the other hand, for the column-wise movement 
(Path-Flag = 1), a gene’s position within a chromosome 
corresponds to a column-number (x-coordinate). Then, the 
value stored in that gene corresponds to a row-number (y-
coordinate). Therefore, path-location is an integer variable 
whose value is in the range of 1 to the total number of 
rows or columns of the scanned environment. The length 
of all chromosomes is therefore also known and fixed, 
since the total number of rows or columns directly 
corresponds to the total number of genes within a 
chromosome. Since these numbers are always equal, the 
chromosome’s length stays the same independent of the 
nature of the next step, row- wise or column-wise. Using 
this approach, we can avoid using varying-length 
chromosomes, which is more difficult to implement. For 
instance, for an n x n grid system, the chromosome’s 
length would be n, and the value stored in each gene would 
be an integer number between 1 and n. A complete 
chromosome therefore represents a ‘path’ from a cell in the 
first row to a cell in the last row (for a row-wise 
movement) or a ‘path’ from a cell in the first column to a 
cell in the last column (for a column-wise movement), as 
shown in Figures 2 and 3 

 
C.1) Gene Structure: Path-Flag: The proposed 

genotype consists of a 1-bit flag for each chromosome. 
The main responsibility of this bit is to tell the robot 
whether the next step of the movement is row-wise or 
column-wise. The value stored at this variable is of type 
Boolean (0 or 1). If the value is 0, then the decoder 
considers it as a row-wise instruction; however, if it is 1, 
then the next step will be considered as a column-wise 
movement. At the very beginning, this bit tells the robot to 
start off the first step toward the destination on a row-
based, or a column-based movement. During the entire 
robot movement, the decoder will check this instruction bit 
before each movement step. The next movement type will 
be based on the information provided by this flag.   

 
Gene Path-Location:  

 

 
C.2) Gene Structure: Path-Location: The encoding 

technique uses the information of a gene’s position, as well 
as the value stored at that position as a y (x)- and an x (y)-
coordinate, depending on the instruction flag (0 = row-
wise or 1 = column-wise). These coordinates define the 
location of the robot within the search space. For example, 
if the robot is required to go row-wise (Path-Flag = 0), a 
gene’s position within a chromosome corresponds to a 
row-number (y- coordinate). The value, stored in a gene, in 
a variable called path-location, corresponds to a column-
number (x-coordinate).  

 
 

 
 

 
 
 

 
 
 
 
 
 
Figure 2.  Example of Path-Location for row-wise movement 
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Figure 3.  Example of Path-Location for column-wise movement 

 
C.3) Gene Structure: Path-Direction: The gene 

structure described so far only represents vertices (‘corner 
points’ or ‘intermediate steps’) of a path. To send a robot 
on a straight line directly from a center of one vertex to the 
center of the next vertex would mean that the robot moves 
on a diagonal line across many adjacent cells. This could 
cause problems if not all adjacent cells that the robot is to 
traverse going from one cell to the next are free of 
obstacles, as shown in Figure 4. 

A better approach is to go to the side (horizontal) first, 
turn, and then go down (vertical), or vice versa. To 
indicate the first direction the robot will turn to proceed to 
the next vertex, a second variable called Path-Direction is 
added to the gene structure. Direction is a two-state 
variable (Boolean), which has either the value 1 or 0 for 
horizontal or vertical directions respectively. The length of 
the direction array is one less than the length of the 
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location array, since there is no direction instruction for 
the last location. 

 
 
 
 
 
 
 
 

 
 
Figure 4.  Problem with diagonal movement of the robot 

 
Figure 5 shows the same search space as Figure 4. Now 

the connection, and therefore the path, from one vertex to 
the next one is not a diagonal line, but a combination of a 
horizontal / vertical movement. Since the first direction 
that the robot turns to can be either horizontal (solid line) 
or vertical (dotted line), there are two possible ways to get 
from one vertex to the next one for each step. The 
introduced variable Path-direction indicates which of the 
two ways the robot will use to go to the next vertex. 
 

 
 
 
 
 
 

 
 
 

Figure 5.  The path with horizontal / vertical instead of diagonal 
movement 

 
It is obvious in Figure 5, one exception where the path-

direction variable will not affect the robot movement 
direction is when the two consecutive movement steps are 
either in the same column (for the row-wise movement) or 
in the same row (for column-wise movement). In either 
case, there is only one way to go from one vertex to the 
next one, which is a straight horizontal or vertical line. 

 
C.4) Gene Structure: Path-Switch: As discussed earlier, 

the previous work by a member of our group, T. Geisler 
[4,5], only allowed row-wise movements. Next, Aditia 
Hermanu [6] modified the genotype so that the robot was 
able to plan either a row-wise or a column-wise movement 
according to the search space arrangements. But, none of 
the previous research was able to combine both row-wise 
and column-wise paths while planning for a single path. 
This caused the robot to fail for complex environments that 

required the robot to move both row-wise and column-
wise within those search spaces. For example, consider 
Figure 6 with two different search space environments.  
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Figure 6.  Examples of (a) an easy search space; (b) complex 
search space 

Notice from the environment in Figure 6a, either row-
wise or column-wise movement can address this problem 
since it does not have a complex obstacle arrangement. On 
the other hand, the environment in Figure 6b requires both 
row-wise and column-wise movement in order to be 
traversed. Therefore, it is considered a more complex 
search space compared to the search space shown in Figure 
6a. Our previous research was not able to address this type 
of environment. 

In order to overcome this movement restriction, we 
added the fourth variable, called Path-Switch, to the 
genotype. This variable enables the robot to switch back 
and forth between a row-wise (r.w.) and a column-wise 
(c.w.) movement in a single path. This array contains two 
switching numbers. Therefore, the robot can switch a 
maximum of two times from row-wise to column-wise and 
vice versa within a search space. The values that are stored 
in this array are integers and are in the range of 1 to the 
total length or width of the environment. The numbers 
stored in this array indicate the location where the robot 
has to switch from r.w. to c.w. movement or vice versa.  

Following summarizes the points on the switching 
array: 

  This array always contains 2 switching 
numbers, which does not necessarily mean that 
we always have 2 switching points, as illustrated 
later. 
  The switching numbers could be any 
number from 1 to the total number of the search 
space rows or columns. 
  The switching numbers are integer type.  
  The number stored in each switching point 
indicates the location of the gene in which the 
robot has to switch. For instance, switching 
numbers 2,5 means the robot is switching two 
times: first at gene locations 2, then at location 5. 
  For n x n environment, path-switch i,j 
translates into: 
¾ No switching points if i=j=n 
¾ One switching point if i j=n 
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¾ One switching point if i=j n 
¾ Two switching points if i j n 

IV. GA ELEMENTS 

A. Fitness Evaluation 
 

The population of paths is evaluated during each 
generation. The evaluation is based on the paths’ fitness, 
which depends on how suitable the solution (path) is 
according to the problem. In preliminary evaluation, the 
values for the path length, the number of turns, and the 
number of infeasible steps (collisions) are determined for 
each path in the population. The reason for considering the 
number of turns is that the total number of turns has a 
direct impact on the overall time needed for the robot to 
travel from the starting point to the end-point. If the path 
has numerous turns, the robot has to slow down for each 
turn; therefore, the total movement time will increase. 
These values are set in relation to the entire population and 
therefore are represented as fractional values from 0 to 1, 
where 1 indicates the optimal fitness value. The shortest 
path length in the population corresponds to length-fitness 
fLength = 1.0; the longest path in the population corresponds 
to fLength = 0. The greatest number of infeasible steps 
(collisions) corresponds to fcollisions = 0; the least number of 
infeasible steps corresponds to fcollisions = 1.0 and same for 
fnumberofTurns.  fLength is the fitness value associated to the 
path length, fcollisions is the fitness value associated with the 
number of infeasible steps (collisions), and fnumberofTurns is 
the fitness value associated with the number of turns in the 
path. 

An attempt was made to weigh each part of a path’s 
fitness (length, number of infeasible steps, and number of 
turns) according to its importance to the algorithm 
objective. A path’s most important feature is the number of 
infeasible steps, and it should therefore have the biggest 
influence on the path’s fitness. Thus, the other two features 
will be multiplied by this fitness value. Recall that all three 
values are fractions between 0 and 1. The other two parts 
of the path’s fitness are multiplied with a weighing factor 
(the value of these factors are determined through 
experimentation) and added. This sum will be divided by 
the sum of the weighing factors in order to end up with an 
over all fitness value between 0 and 1. Finally, the entire 
fitness function will be multiplied by 100 to end up with 
fitness values between 0 and 100, which is necessary for 
the selection process. 

 

f path = fcollisions . [L. fLength + T. fnumberofTurns ]. TL +
100

  (1)     

 
f path is the fitness value for the entire path, L is the 

weighing factor for fLength and T is the weighing factor for 
fnumberofTurns. For our GA, weighing factor L was set to 1and 
weighing factor T was set to 2 to emphasize the number of 

turns over the path length. Thus by penalizing the turn 
fitness more than the length fitness, we reduce the total 
number of turns by taking the risk of having a longer path. 
This decision underlies the assumption that a turn is more 
time intensive than some extra steps, since a robot needs to 
slow down and stop for a turn, and accelerate again 
afterwards.  

A penalty has also been applied for a solution that 
contains any infeasible steps to emphasize the importance 
of all steps needing to be feasible for a usable result path. 
Based on these criteria, the fitness function is modified as 
follows for those solutions that contain infeasible steps 
(collisions) and will be applied in the proposed path-
planning algorithm: 

f path = 
( )2  

1.0
Collisionsofnumber

fpath×           (2)            

 
After the fitness value for all chromosomes in the 

population have been computed, Rank Selection [10] is 
used to determine the parent chromosomes that will be 
used for reproduction. 

B. Crossover Process  

 
For our GA, two parent chromosomes are combined 

applying a single-cross-point, value encoding crossover 
[10]. The crossover operator has been modified to produce 
two offspring chromosomes with each crossover operation. 
This is achieved by using the gene information, which 
were not used to build offspring one, in order to build a 
second chromosome. Furthermore, the crossover operation 
acts only on the location and the direction (with the 
instruction flag included) parts of the chromosomes, as it 
does not make sense to have single point crossover 
operator acting on the two switching points. The function 
of the crossover operator is illustrated in Figure 7. 

Figure 7.  Single-cross-point, value-encoding crossover 

 

C. Mutation 
 

For mutation [10], almost every operation that changes 
the order of genes within a chromosome or that changes a 
gene’s value (such as location or direction) is a valid 
mutation operator. 

The mutation operator used here checks with the 
mutation probability for every single gene and decides 
whether it should be mutated or not. If a gene is to be 
mutated, a random number between 1 and the total number 



of rows or columns in the search space is assigned to 
location, and a random direction, either 1 or 0, is assigned 
to direction and to the instruction flag. Unlike the 
crossover operator that does not act on the switching 
points, mutation operator will affect these points. Using 
this mutation method, theoretically, every gene within a 
chromosome could be mutated and thus the chromosome 
totally changed.  

TABLE 1.  SUCCESS RATES COMPARISON BETWEEN 
THE PROPOSED GA AND THE PREVIOUS METHODS 

Elitism [10] was also used in order to keep the best 
individual (path) within a generation. If elitism is applied, 
the fittest chromosome path is copied to the offspring 
population without any changes. 

V. SIMULATION RESULTS 

After considerable testing, we determined the best 
operators and parameters for our GA. Path-planning 
simulations were conducted on different sized search 
spaces with different obstacle configurations. 

 

Figure 8.  Example search space (SPSet01) for path-planning 
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F
s search space is very easy and can be navigated by 

previous methods [4-6] via a row–wise movement as well. 
The proposed path-planning GA was tested on eight 
ferent search spaces (SPSet01 ~ SPSet08) and the 

results were compared against those yielded by the Ge
and Hermanu’s path-planning GA [4-6]. For each set of 
tests, the GAs were run 15 times and the average success
rates were calculated and are shown in Table 1. 

Search spaces 07 and 08 were the two that req
w-wise and column-wise movement of the robot in order 

for the robot to get around the obstacles. As shown in 
Table 1, only the genotype developed in this research can
address these search spaces as previous genotypes failed to
handle these environments. This is because the new 
genotype allows the robot to switch back and forth fr
row-wise to column-wise movement and vice versa, whic
means a free movement of the robot in any direction.   
Figure 9 shows two search spaces and compares th
paths evolved by the proposed GA in this paper with 
the one developed by Hermanu’s. 
 

 

Success Rate (%) 

Search 
space 

 
Geisler’s 

GA 

 
Hermanu’

s  GA 
 

 
Proposed 

GA 

SPSet01 100 93.3 93.3 
SPSet02 0.00 86.7 100 
SPSet03 73 86.7 100 
SPSet04 53 80 100 
SPSet05 0.00 100 100 
SPSet06 0.00 20 100 
SPSet07 0.00 0.00 86.7 
SPSet08 0.00 0.00 73.3 

 
Search space SPSet01, as shown in Figure 8, is the 

search space with obstacle configuration that can be 
addressed only by a row-wise movement. As demonstrated 
in Table 1, the proposed GA is able to address this 
environment as well. The little difference in the success 
rates between the new genotype and the previous ones for 
this particular environment is because the previous 
genotypes were tuned specifically to address these types of 
search spaces. This differs from the new genotype that has 
been developed to address all types of environments with 
different obstacle arrangements. Figure 10 shows the 
resulted paths generated by our new path-planning GA on 
different search spaces. 

VI. CONCLUSION 

Our path-planning genetic algorithm yields the best 
performance on the search spaces that can be addressed 
with two switching points or less. This meets the needs of 
local path planning, which deals only with part of the room 
around obstacles. For global path planning, a genotype that 
is able to address the more complicated search spaces 
(entire room) should be considered.    

Future work includes developing a method to address 
global path planning, comparing the results against those 
presented in this paper for local path planning, and 
determining which method yields the best performance. 

Finally, the path-planning software will be incorporated 
into the overall robot control software and the algorithm 
performance will be tested on an actual robot. 
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Figure 9.  Resulted paths for SPSet07 and SPSet08 (a) Proposed 
GA (b) Previous method. 
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 Figure 10.  Examples of the resulted paths on different search 

spaces  
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