
Autonomous Local Path Planning for a Mobile Robot
 Using a Genetic Algorithm
Kamran H. Sedighi, Kaveh Ashenayi, Theodore W. Manikas,

Roger L. Wainwright, Heng-Ming Tai
Electrical Engineering and Computer Science Dept.

University of Tulsa
Tulsa, OK 74104

Email: kash@utulsa.edu

Abstract- This paper presents results of our work in
development of a genetic algorithm based path-planning
algorithm for local obstacle avoidance (local feasible path) of a
mobile robot in a given search space. The method tries to find
not only a valid path but also an optimal one. The objectives
are to minimize the length of the path and the number of
turns. The proposed path-planning method allows a free
movement of the robot in any direction so that the path-
planner can handle complicated search spaces.

A. Global vs. Local Path-Planning

 Global path planning requires the environment to be
completely known and the terrain should be static. In this
approach the algorithm generates a complete path from the
start point to the destination point before the robot starts its
motion. On the other hand, local path planning means that
path planning is done while the robot is moving; in other
words, the algorithm is capable of producing a new path in
response to environmental changes. Assuming that there
are no obstacles in the navigation area, the shortest path
between the start point and the end point is a straight line.
The robot will proceed along this path until an obstacle is
detected. At this point, our path-planning algorithm is
utilized to find a feasible path around the obstacle. After
avoiding the obstacle, the robot continues to navigate
toward the end-point along a straight line (in our system
the robot moves in a vertical or horizontal direction, not
diagonally; hence, it will try to approximate a straight line)
until (1) the robot detects another obstacle or (2) the
desired position is reached. An example of local path
planning is shown in Figure 1.

I. INTRODUCTION

During the last century, automation has become an
extremely fast growing phenomenon impacting almost all
facets of everyday life. Recently, robots have become a
major part of this trend. Therefore, autonomously
navigating robots have become increasingly important
[1,3]. Motion planning [2] is one of the important tasks in
intelligent control of an autonomous mobile robot [7-9].
The work presented here is part of a larger project to build
an autonomous path-planning robot. This research is
motivated by earlier work in this field of interest [4-6] by
the same research team. This paper presents the research
and simulation results of a genetic algorithm based path-
planning software. The algorithm uses an improved,
modified version of previous encoding techniques [4-6].

 Columns

 1 2 3 4 5 6 7 8 9

Rows 1 x
 2
 3
 4 x
 5
 6
 7 x
 8
 9 x

II. ROBOT PATH PLANNING

The path-planning problem is usually defined as follows
[2]: “Given a robot and a description of an environment,
plan a path between two specific locations. The path must
be collision-free (feasible) and satisfy certain optimization
criteria.” In other words, path planning is generating a
collision-free path in an environment with obstacles and
optimizing it with respect to some criterion.

The research presented in this paper is part of a project
to build an autonomous mobile robot, which can be used as
a platform for various applications. This project is divided
into three major areas: visual detection of the environment,
path planning, and control of the robot. The path-planning
component is again divided in two sections: global path
planning and local path planning. Running simulations on
both global and local path planning in different
environments will determine which approach yields the
best performance.

Figure 1. Path-planning example for local obstacle avoidance,
applied on a subsection of the search space.

B. Genetic Algorithm Technique for Robot Path
Planning

Robot path planning is part of a larger class of problems

pertaining to scheduling and routing, and is known to be
NP-hard (NP-complete) [10]. Thus, a heuristic
optimization approach is recommended as shown by
Hwang [11]. One of these approaches is the use of genetic
algorithms. A genetic algorithm (GA) is an evolutionary
problem solving method, where the solution to a problem
evolves after a number of iterations. A proposed solution
with the GA method to the path-planning problem is the
best feasible path among the pool of all possible solutions.

There have been several contemporary applications of
genetic algorithms to the robot navigation problem. One
approach is to combine fuzzy logic with genetic algorithms
[15, 16, 17]. In this approach, the genotype structure
represents fuzzy rules that guide the robot navigation, so
the genetic algorithm evolves the best set of rules. While
this approach can produce a feasible path through an
uncertain environment, the genotype structure becomes
very complex, as it needs to represent a variety of fuzzy
rules. A complex genotype structure can take a long time
to process in a genetic algorithm, which affects the real-
time performance of the robot during navigation.

Another approach is to use genotype structures that
represent local distance and direction, as opposed to
representing an entire path [18, 19, 8, 3]. While these are
simple to process and allow for faster real-time
performance, the local viewpoint of these methods may not
allow the robot to reach its target. Some methods have
relatively simple genotype structures that can represent
feasible paths, but require complex decoders and fitness
functions [20, 2, 9]. This can also affect real-time
response.

Simplifying the models used to represent navigation
paths will reduce the processing time of the genetic
algorithm. Thus, our research has focused on improving
the genetic algorithm performance by simplifying the
genotype structure.

III. GENETIC ALGORITHM-BASED LOCAL
PATH-PLANNER STRUCTURE

A. Genetic Algorithm

Genetic algorithms [10,12-14] are a class of adaptive
methods that can be used to solve search and optimization
problems involving large search spaces. The search is
performed using the idea of simulated evolution (survival
of the fittest). These algorithms maintain and manipulate
“generations” of potential solutions or “populations”. With
each generation, the best solutions (as determined by a
problem specific fitness function) are genetically
manipulated to form the solution set for the following
generation. As in nature, solutions are combined (via
crossover) and/or undergo random mutation.

The following are general specifications for our GA-
based local path-planning approach:

1) A map of the room in which the path planning
takes place is known. The path planner will
determine the length and the width of the search
space and then apply a grid system to the room,
similar to a chessboard. Thus, the room is
divided into rows and columns. In our approach
we assume the number of rows is equal to the
number of columns. The locations of known
obstacles are marked as “occupied cells” in the
grid.

2) The row and column coordinates of the start-point

and the end-point of the desired robot’s
movement are also known.

3) The robot is allowed to move on all “free” cells,

where the center of the robot moves along an
imaginary line from the center of one cell to the
center of another cell.

B. Different Types of Robot Movement

Assume a robot is required to navigate from the upper-
left corner of a room to the lower-right corner, as shown in
Figure 1. In order for the robot to do this task, generally,
there are two types of robot movements: Row-Wise and
Column-Wise.

B.1) Row-Wised Movement: In a row-based movement,
the robot starts moving row by row from the start-point to
the end-point. In other words, any horizontal line in the
search space will meet the path only once. Therefore, in
this movement, the robot always has to go forward and it
does not have the capability of going back (up) to the
previous row.

B.2) Column-Wised Movement: In a column-based
movement, the robot will start moving toward its
destination column by column to the right. In other words,
any vertical line in the search space will meet the path only
once. Therefore, In this movement, the robot always has to
move from left to right, and it does not have the capability
of moving back to the left.

C. Encoding Technique

The chromosome structure must have sufficient
information about the entire path from the start point to the
end-point in order to be able to represent it. The previous
genotype by a member of our research group, T. Geisler,
[4,5] contained only two variables, which will be discussed
later, Path-Location and Path-Direction. That encoding
technique allowed only row-wise movements. Next, Aditia
Hermanu, another member of our research group, [6]
modified the genotype by introducing a new instruction
flag for each path, called Path-Flag. This Flag instructs the
next movement type for each step of the movement.
Therefore, this genotype allowed the robot to plan either a

row-wise or a column-wise movement according to the
search space arrangements. But, neither of these two
previous structures was able to combine both row-wise and
column-wise paths while planning for a single path. This
caused the robot to fail for complex environments that
required the robot to move both row-wise and column-
wise within those search spaces. Thus, the encoding that
we have applied in this paper to address the path-planning
problem consists of four variables: Path-Flag, Path-
Location, Path-Direction, and Path-Switch. While the
previous work required either a row-wise or column-wise
movement, the new genotype is able to plan both row-wise
and column-wise within a single search space. Hence, the
path has more flexibility to switch between the two
movement modes.

On the other hand, for the column-wise movement
(Path-Flag = 1), a gene’s position within a chromosome
corresponds to a column-number (x-coordinate). Then, the
value stored in that gene corresponds to a row-number (y-
coordinate). Therefore, path-location is an integer variable
whose value is in the range of 1 to the total number of
rows or columns of the scanned environment. The length
of all chromosomes is therefore also known and fixed,
since the total number of rows or columns directly
corresponds to the total number of genes within a
chromosome. Since these numbers are always equal, the
chromosome’s length stays the same independent of the
nature of the next step, row- wise or column-wise. Using
this approach, we can avoid using varying-length
chromosomes, which is more difficult to implement. For
instance, for an n x n grid system, the chromosome’s
length would be n, and the value stored in each gene would
be an integer number between 1 and n. A complete
chromosome therefore represents a ‘path’ from a cell in the
first row to a cell in the last row (for a row-wise
movement) or a ‘path’ from a cell in the first column to a
cell in the last column (for a column-wise movement), as
shown in Figures 2 and 3

C.1) Gene Structure: Path-Flag: The proposed

genotype consists of a 1-bit flag for each chromosome.
The main responsibility of this bit is to tell the robot
whether the next step of the movement is row-wise or
column-wise. The value stored at this variable is of type
Boolean (0 or 1). If the value is 0, then the decoder
considers it as a row-wise instruction; however, if it is 1,
then the next step will be considered as a column-wise
movement. At the very beginning, this bit tells the robot to
start off the first step toward the destination on a row-
based, or a column-based movement. During the entire
robot movement, the decoder will check this instruction bit
before each movement step. The next movement type will
be based on the information provided by this flag.

Gene Path-Location:

C.2) Gene Structure: Path-Location: The encoding

technique uses the information of a gene’s position, as well
as the value stored at that position as a y (x)- and an x (y)-
coordinate, depending on the instruction flag (0 = row-
wise or 1 = column-wise). These coordinates define the
location of the robot within the search space. For example,
if the robot is required to go row-wise (Path-Flag = 0), a
gene’s position within a chromosome corresponds to a
row-number (y- coordinate). The value, stored in a gene, in
a variable called path-location, corresponds to a column-
number (x-coordinate).

Figure 2. Example of Path-Location for row-wise movement

3 3 5 1 2 6

 1 x
 2 x
 3 x x
 4
 5 x
 6 x

Path-Flag:

Figure 3. Example of Path-Location for column-wise movement

C.3) Gene Structure: Path-Direction: The gene

structure described so far only represents vertices (‘corner
points’ or ‘intermediate steps’) of a path. To send a robot
on a straight line directly from a center of one vertex to the
center of the next vertex would mean that the robot moves
on a diagonal line across many adjacent cells. This could
cause problems if not all adjacent cells that the robot is to
traverse going from one cell to the next are free of
obstacles, as shown in Figure 4.

A better approach is to go to the side (horizontal) first,
turn, and then go down (vertical), or vice versa. To
indicate the first direction the robot will turn to proceed to
the next vertex, a second variable called Path-Direction is
added to the gene structure. Direction is a two-state
variable (Boolean), which has either the value 1 or 0 for
horizontal or vertical directions respectively. The length of
the direction array is one less than the length of the

3 3 5 1 2 6

1 2 3 4 5 6
 x
 x
 x
x
 x
 x

0

1

Path-Flag:

Gene Path-Location:

location array, since there is no direction instruction for
the last location.

Figure 4. Problem with diagonal movement of the robot

Figure 5 shows the same search space as Figure 4. Now

the connection, and therefore the path, from one vertex to
the next one is not a diagonal line, but a combination of a
horizontal / vertical movement. Since the first direction
that the robot turns to can be either horizontal (solid line)
or vertical (dotted line), there are two possible ways to get
from one vertex to the next one for each step. The
introduced variable Path-direction indicates which of the
two ways the robot will use to go to the next vertex.

Figure 5. The path with horizontal / vertical instead of diagonal
movement

It is obvious in Figure 5, one exception where the path-

direction variable will not affect the robot movement
direction is when the two consecutive movement steps are
either in the same column (for the row-wise movement) or
in the same row (for column-wise movement). In either
case, there is only one way to go from one vertex to the
next one, which is a straight horizontal or vertical line.

C.4) Gene Structure: Path-Switch: As discussed earlier,

the previous work by a member of our group, T. Geisler
[4,5], only allowed row-wise movements. Next, Aditia
Hermanu [6] modified the genotype so that the robot was
able to plan either a row-wise or a column-wise movement
according to the search space arrangements. But, none of
the previous research was able to combine both row-wise
and column-wise paths while planning for a single path.
This caused the robot to fail for complex environments that

required the robot to move both row-wise and column-
wise within those search spaces. For example, consider
Figure 6 with two different search space environments.

x
 x
 x
 x
 x
 x

 (a)
 (b)

Figure 6. Examples of (a) an easy search space; (b) complex
search space

Notice from the environment in Figure 6a, either row-
wise or column-wise movement can address this problem
since it does not have a complex obstacle arrangement. On
the other hand, the environment in Figure 6b requires both
row-wise and column-wise movement in order to be
traversed. Therefore, it is considered a more complex
search space compared to the search space shown in Figure
6a. Our previous research was not able to address this type
of environment.

In order to overcome this movement restriction, we
added the fourth variable, called Path-Switch, to the
genotype. This variable enables the robot to switch back
and forth between a row-wise (r.w.) and a column-wise
(c.w.) movement in a single path. This array contains two
switching numbers. Therefore, the robot can switch a
maximum of two times from row-wise to column-wise and
vice versa within a search space. The values that are stored
in this array are integers and are in the range of 1 to the
total length or width of the environment. The numbers
stored in this array indicate the location where the robot
has to switch from r.w. to c.w. movement or vice versa.

Following summarizes the points on the switching
array:

 This array always contains 2 switching
numbers, which does not necessarily mean that
we always have 2 switching points, as illustrated
later.
 The switching numbers could be any
number from 1 to the total number of the search
space rows or columns.
 The switching numbers are integer type.
 The number stored in each switching point
indicates the location of the gene in which the
robot has to switch. For instance, switching
numbers 2,5 means the robot is switching two
times: first at gene locations 2, then at location 5.
 For n x n environment, path-switch i,j
translates into:
¾ No switching points if i=j=n
¾ One switching point if i j=n

x
 x
 x
 x
 x
 x

¾ One switching point if i=j n
¾ Two switching points if i j n

IV. GA ELEMENTS

A. Fitness Evaluation

The population of paths is evaluated during each
generation. The evaluation is based on the paths’ fitness,
which depends on how suitable the solution (path) is
according to the problem. In preliminary evaluation, the
values for the path length, the number of turns, and the
number of infeasible steps (collisions) are determined for
each path in the population. The reason for considering the
number of turns is that the total number of turns has a
direct impact on the overall time needed for the robot to
travel from the starting point to the end-point. If the path
has numerous turns, the robot has to slow down for each
turn; therefore, the total movement time will increase.
These values are set in relation to the entire population and
therefore are represented as fractional values from 0 to 1,
where 1 indicates the optimal fitness value. The shortest
path length in the population corresponds to length-fitness
fLength = 1.0; the longest path in the population corresponds
to fLength = 0. The greatest number of infeasible steps
(collisions) corresponds to fcollisions = 0; the least number of
infeasible steps corresponds to fcollisions = 1.0 and same for
fnumberofTurns. fLength is the fitness value associated to the
path length, fcollisions is the fitness value associated with the
number of infeasible steps (collisions), and fnumberofTurns is
the fitness value associated with the number of turns in the
path.

An attempt was made to weigh each part of a path’s
fitness (length, number of infeasible steps, and number of
turns) according to its importance to the algorithm
objective. A path’s most important feature is the number of
infeasible steps, and it should therefore have the biggest
influence on the path’s fitness. Thus, the other two features
will be multiplied by this fitness value. Recall that all three
values are fractions between 0 and 1. The other two parts
of the path’s fitness are multiplied with a weighing factor
(the value of these factors are determined through
experimentation) and added. This sum will be divided by
the sum of the weighing factors in order to end up with an
over all fitness value between 0 and 1. Finally, the entire
fitness function will be multiplied by 100 to end up with
fitness values between 0 and 100, which is necessary for
the selection process.

f path = fcollisions . [L. fLength + T. fnumberofTurns]. TL +
100

 (1)

f path is the fitness value for the entire path, L is the

weighing factor for fLength and T is the weighing factor for
fnumberofTurns. For our GA, weighing factor L was set to 1and
weighing factor T was set to 2 to emphasize the number of

turns over the path length. Thus by penalizing the turn
fitness more than the length fitness, we reduce the total
number of turns by taking the risk of having a longer path.
This decision underlies the assumption that a turn is more
time intensive than some extra steps, since a robot needs to
slow down and stop for a turn, and accelerate again
afterwards.

A penalty has also been applied for a solution that
contains any infeasible steps to emphasize the importance
of all steps needing to be feasible for a usable result path.
Based on these criteria, the fitness function is modified as
follows for those solutions that contain infeasible steps
(collisions) and will be applied in the proposed path-
planning algorithm:

f path =
()2

1.0
Collisionsofnumber

fpath× (2)

After the fitness value for all chromosomes in the

population have been computed, Rank Selection [10] is
used to determine the parent chromosomes that will be
used for reproduction.

B. Crossover Process

For our GA, two parent chromosomes are combined

applying a single-cross-point, value encoding crossover
[10]. The crossover operator has been modified to produce
two offspring chromosomes with each crossover operation.
This is achieved by using the gene information, which
were not used to build offspring one, in order to build a
second chromosome. Furthermore, the crossover operation
acts only on the location and the direction (with the
instruction flag included) parts of the chromosomes, as it
does not make sense to have single point crossover
operator acting on the two switching points. The function
of the crossover operator is illustrated in Figure 7.

Figure 7. Single-cross-point, value-encoding crossover

C. Mutation

For mutation [10], almost every operation that changes
the order of genes within a chromosome or that changes a
gene’s value (such as location or direction) is a valid
mutation operator.

The mutation operator used here checks with the
mutation probability for every single gene and decides
whether it should be mutated or not. If a gene is to be
mutated, a random number between 1 and the total number

of rows or columns in the search space is assigned to
location, and a random direction, either 1 or 0, is assigned
to direction and to the instruction flag. Unlike the
crossover operator that does not act on the switching
points, mutation operator will affect these points. Using
this mutation method, theoretically, every gene within a
chromosome could be mutated and thus the chromosome
totally changed.

TABLE 1. SUCCESS RATES COMPARISON BETWEEN
THE PROPOSED GA AND THE PREVIOUS METHODS

Elitism [10] was also used in order to keep the best
individual (path) within a generation. If elitism is applied,
the fittest chromosome path is copied to the offspring
population without any changes.

V. SIMULATION RESULTS

After considerable testing, we determined the best
operators and parameters for our GA. Path-planning
simulations were conducted on different sized search
spaces with different obstacle configurations.

Figure 8. Example search space (SPSet01) for path-planning

igure 8 shows an example search space. It is obvious
thi

dif
isler

uired both
ro

om
h

e

simulations

F
s search space is very easy and can be navigated by

previous methods [4-6] via a row–wise movement as well.
The proposed path-planning GA was tested on eight
ferent search spaces (SPSet01 ~ SPSet08) and the

results were compared against those yielded by the Ge
and Hermanu’s path-planning GA [4-6]. For each set of
tests, the GAs were run 15 times and the average success
rates were calculated and are shown in Table 1.

Search spaces 07 and 08 were the two that req
w-wise and column-wise movement of the robot in order

for the robot to get around the obstacles. As shown in
Table 1, only the genotype developed in this research can
address these search spaces as previous genotypes failed to
handle these environments. This is because the new
genotype allows the robot to switch back and forth fr
row-wise to column-wise movement and vice versa, whic
means a free movement of the robot in any direction.
Figure 9 shows two search spaces and compares th
paths evolved by the proposed GA in this paper with
the one developed by Hermanu’s.

Success Rate (%)

Search
space

Geisler’s

GA

Hermanu’

s GA

Proposed

GA

SPSet01 100 93.3 93.3
SPSet02 0.00 86.7 100
SPSet03 73 86.7 100
SPSet04 53 80 100
SPSet05 0.00 100 100
SPSet06 0.00 20 100
SPSet07 0.00 0.00 86.7
SPSet08 0.00 0.00 73.3

Search space SPSet01, as shown in Figure 8, is the

search space with obstacle configuration that can be
addressed only by a row-wise movement. As demonstrated
in Table 1, the proposed GA is able to address this
environment as well. The little difference in the success
rates between the new genotype and the previous ones for
this particular environment is because the previous
genotypes were tuned specifically to address these types of
search spaces. This differs from the new genotype that has
been developed to address all types of environments with
different obstacle arrangements. Figure 10 shows the
resulted paths generated by our new path-planning GA on
different search spaces.

VI. CONCLUSION

Our path-planning genetic algorithm yields the best
performance on the search spaces that can be addressed
with two switching points or less. This meets the needs of
local path planning, which deals only with part of the room
around obstacles. For global path planning, a genotype that
is able to address the more complicated search spaces
(entire room) should be considered.

Future work includes developing a method to address
global path planning, comparing the results against those
presented in this paper for local path planning, and
determining which method yields the best performance.

Finally, the path-planning software will be incorporated
into the overall robot control software and the algorithm
performance will be tested on an actual robot.

 SPSet02 SPSet04

 (a) (b)

Figure 9. Resulted paths for SPSet07 and SPSet08 (a) Proposed
GA (b) Previous method.

 SPSet05 SPSet06
 Figure 10. Examples of the resulted paths on different search

spaces

REFERENCES

[1] Farritor, S. and Dubowsky, S., “A Genetic Algorithm Based
Navigation and Planning Methodology for Planetary
Robot Exploration”, Proceedings of the 7th American
Nuclear Society Conference on Robotics and Remote
Systms, Augusta, GA, 1997

[2] Sugihara, K. and Smith, J., “Genetic Algorithms for

Adaptive Motion Planning of an autonomous Mobile
Robot”, Proceedings of the IEEE International Symposium
on Computational Intelligence in Robotics and
Automation, Monterey, CA, pp. 138-146, 1997

[3] Vadakkepat, P. and Chen, T.K., “Evolutionary Artificial

Potential Fields and Their Application in Real Time Robot
Path Planning”, Proceeding of the 2000 Congress on
Evolutionary Computation, San Diego, CA, pp. 256-264,
2000

[4] Geisler, T. and Manikas, T., “Autonomous Robot

Navigation System Using a Novel Value Encoded Genetic
Algorithm”, Proceeding of IEEE Midwest Symposium on
Circuits and Systems, Tulsa, OK, 2002.

[5] Geisler, T., ”Autonomous Robot Navigation System Using

A Genetic Algorithm with a Novel Value Encoding
Technique”, Master’s Thesis, The University of Tulsa, OK,
2002.

[6] Hermanu, A., “Genetic Algorithm with Modified Novel

Value Encoding Technique for Autonomous Robot
Navigation”, Master’s Thesis, The University of Tulsa,
OK, 2002

[7] Fogel, D.B., “What is evolutionary computation?”, IEEE

Spectrum, pp. 26-32, February 2000

[8] Gallardo, D. and Colomina, O., “A Genetic Algorithm for

Robust Motion Planing”, Eleventh International
Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems, Castellon,
Spain, June, pp. 115-121, 1998

[9] Xiao, J. and Zhang, L., “Adaptive Evolutionary

Planner/Navigator for Mobile Robots”, IEEE Transactions
on Evolutionary Computation, Vol. 1, No. 1, pp. 18-28,
April 1997

[10] Obitko, M., “Genetic Algorithms”, Internet publication,

1998, http://cs.felk.cvut.cz/~xobitko/ga/main.html

[11] Hwang, Y.K., Ahuja, N., “Gross Motion Planning – A

Survey”, ACM Computing Surveys, volume 24, issue 3,
pp. 219-291, September 1992

[12] Trivedi, N., Lai, W. and Zhang, Z., “Optimizing Windows

Layout by Applying a Genetic Algorithm”, Proceedings of
the 2001 Congress on Evolutionary Computation, Seoul,
Korea, pp. 431-435, 2001

[13] Filho, J.L.R. and Treleaven, P.C., “Genetic Algorithm

Programming Environment”, IEEE Computer, pp. 28-43,
June 1994

[14] Srinivas, M. and Patnaik, L.M., “Genetic Algorithms: A
survey”, IEEE computer, pp. 17-26, June 1994

[15] Arsene, C.T.C. and Zalzala, A.M.S., “Control of

Autonomous Robots Using Fuzzy Logic Controllers
Tuned by Genetic Algorithms”, Proceedings of the 1999
Congress on Evolutionary Computation (CEC99), pp.
428-435, 1999

[16] Kubota, N., Morioka, T., Kojima, F. and Fukuda, T.,

“Perception-Based Genetic Algorithm for a Mobile Robot
with Fuzzy Controllers”, Proceedings of the 1999
Congress on Evolutionary Computation (CEC99), pp.
397-404, 1999

[17] Pratihar, D.K., Deb, K. and Ghosh, A. “Fuzzy-Genetic

Algorithms and Mobile Robot Navigation among Static
Obstacles”, Proceedings of the 1999 Congress on
Evolutionary Computation (CEC99), pp. 327-334, 1999

[18] Cazangi, R.R. and Figuieredo, M., “Simultaneous

Emergence of Conflicting Basic Behaviors and Their
Coordination in an Evolutionary Autonomous Navigation
System”, Proc. 2002 IEEE Conf. on Evol. Comp. (CEC
'02), IEEE, 2002

[19] Di Gesu, V., Lenzitti, B., Lo Bosco, G. and Tegolo, D., “A

Distributed Architecture for Autonomous Navigation of
Robots”, Proceedings Fifth IEEE International Workshop
on Computer Architectures for Machine Perception, pp.
190 - 194, 2000.

[20] Hocaoglu, C. and Sanderson, A.C., "Planning Multiple

Paths with Evolutionary Speciation", IEEE Trans.
Evolutionary Computation, vol. 5, no. 3, pp. 169-191,
June 2001.

http://cs.felk.cvut.cz/~xobitko/ga/main.html

	Using a Genetic Algorithm
	Kamran H. Sedighi, Kaveh Ashenayi, Theodore W. Manikas,
	Roger L. Wainwright, Heng-Ming Tai
	Introduction
	Robot Path Planning
	
	
	
	Global vs. Local Path-Planning

	Genetic Algorithm Technique for Robot Path Planning
	Genetic Algorithm-Based Local Path-Planner Structure
	
	
	Genetic Algorithm
	Different Types of Robot Movement

	Encoding Technique
	1
	2
	3
	4
	5
	6
	x
	x
	x
	x
	x
	x

	Ga Elements
	
	
	
	Fitness Evaluation

	Mutation

