
https://doi.org/10.1007/s10836-019-05845-5

Repurposing FPGAs for Tester Design to Enhance Field-Testing
in a 3D Stack

Yi Sun1 · Fanchen Zhang1 ·Hui Jiang1 · Kundan Nepal2 · Jennifer Dworak1 · Theodore Manikas1 · R. Iris Bahar3

Received: 13 September 2019 / Accepted: 3 December 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We propose an architecture for a Field Programmable Gate Array (FPGA) based tester for a 3D stacked integrated circuit
(IC). Due to the very short distances between dies in a stack that can make SerDes connections very efficient and the high
density of through silicon vias (TSVs) that may be available, it is possible to connect the FPGA to the die under test through
a very high bandwidth connection that can feed multiple short scan chains. We propose and evaluate two designs that exploit
the underlying structure of the FPGA, allowing it to be used to efficiently store and apply predefined test patterns, reducing
the FPGA resources required and the switching activity in the circuit under test when compared to a more traditional on-chip
decompressor implemented to feed short scan chains. For the largest circuit we studied, the switching activity was reduced
about 80% and the test time by 90%.

Keywords Design for testabiliy (DFT) · Low power test · On-chip decompressor

1 Introduction

Stacked integrated circuits (ICs) have the potential to
implement the functionality of an entire board as a single
packaged chip. The dies are stacked on top of each other and
connected by through silicon vias (TSVs). The intellectual
property of the dies may be from different companies
and may include processors, memory, ASICs (application
specific ICs), and even FPGAs (field programmable gate
arrays) [6]. In addition to dramatically increasing the
functionality contained within a very small form factor,
3D stacked ICs also have significant performance benefits
arising from high-bandwidth, low delay, and low-power
connections that TSVs and bumped connections can provide
[1].

Responsible Editor: T. Xia

This work was supported in part by NSF grant CCF-1814928 and
CCF-1812777.

� Yi Sun
yis@mail.smu.edu

1 Southern Methodist University, Dallas, TX, USA

2 University of St. Thomas, Saint Paul, MN, USA

3 Brown University, Providence, RI, USA

Similar advantages are also obtained in 2.5D multi-
die scenarios, in which multiple dies are laid side-
by-side on a silicon interposer or embedded multi-die
interconnect bridge (EMIB) [21]. 2.5D ICs can provide a
scalable interconnection for core-core, core-memory and
core-accelerator devices [16]. 2.5D systems have already
been produced by multiple manufacturers, including AMD,
which makes a high performance graphics card using 2.5D
technology, and IBM, which is manufacturing server chips
in both 2.5D and true 3D [20].

Including FPGAs in the 3D stack can provide many
advantages. In 2D, an FPGA can often provide the required
performance while meeting area or power constraints.
In addition, the re-programmability of FPGAs allows
designs to be modified easily over a system’s lifetime,
as specifications or standards change, or even as design
errors or enhancements are discovered. Finally, 2D versions
of FPGAs have been used for performance acceleration,
allowing co-processing hardware to be reconfigured “on-
the-fly” when a particular portion of the code can benefit
[7]. It is reasonable to expect that these advantages of
FPGAs will likely carry over into the 3D IC space.

An FPGA can be placed in one layer or multiple layers
in a 3D stack and has the potential to serve different
purposes in a variety of applications. Intel has already
created an embedded multi-die interconnect bridge (EMIB)
used to connect its CPUs to Altera FPGAs to enhance

Journal of Electronic Testing (2019) 35:887–900

/ Published online: 30 ece 2019D mber

http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-019-05845-5&domain=pdf
http://orcid.org/0000-0002-4215-3393
mailto: yis@mail.smu.edu


performance and handle power issues [21]. Altera and
Amkor have proposed a face-to-face packaging approach
consisting of a mother die (FPGA) and daughter die
(ASIC) [24]. Xilinx currently produces FPGAs that contains
multiple FPGAs and other dies sitting side-by-side on a
silicon interposer, aiding in prototyping and emulating large
processor systems [12, 25].

FPGAs have been used to aid in testing for many
years. Boards may be partially tested (even when not
all the chips and firmware are available yet), by adding
more functionality to the load board at the factory or by
connecting chips directly on the board [8]. When used to
test other chips on the board, an FPGA can serve as a
generator of tests for a directly connected chip. For example,
it could be programmed to contain a memory built-in-self
test (MBIST) engine to send read and write commands
to a directly-connected memory chip. Alternatively, it may
also serve as a target for functional or protocol-based
tests–receiving/generating information from/to other chips
based upon their functional behavior.

Just as an FPGA included on a board for other purposes
can provide important test capabilities, an FPGA in a 3D
stack can be repurposed to provide critical testing functions
as well. In fact, the advantages of using an FPGA as a
tester on a board become magnified in the 3D IC space. For
example, an important issue in 3D is how and when to test
each die in the stack. Bandwidth to upper dies is likely to be
limited to a few pins at the base die, and the P1838 Standard
committee is currently investigating protocols and methods
for delivering high-bandwidth test data. These include a
test access port (TAP) and TAP controller on every die, a
serial boundary wrapper on every die interface to conduct
interconnect testing, and a parallel port. However, because
the number of TSVs on a die can be much greater than
the number of pins on a package, it may be possible to
obtain significant additional test bandwidth by using many
TSVs between an FPGA-based tester and the die under
test to transmit test data. These TSVs between the FPGA
and another die may serve as functional communication
buses under normal operation or could have been added
for performance enhancement or repair. In either case, the
high bandwidth available may allow a larger number of
short chains to be accessed directly for scan-based testing,
reducing the overall shift cycles as well as the power
dissipated during test.

In our previous work [27], a tester design that was
intended to take advantage of the underlying FPGA
structure was introduced. Specifically, we considered
the case where specific ATPG (automatic test pattern
generation) patterns should be applied to the die under test
and how those patterns could be efficiently stored in the
lookup tables (LUTs) that form the programmable fabric of
FPGAs. We explored both the FPGA resources required as

well as the the amount of scan flip-flop toggling expended
during scan shift. Power dissipation arising from scan shift
toggling is especially important in 3D stack structures,
where excess toggling may generate heat that is difficult to
remove from the stack. Excessive toggling can also cause
brownouts when the di/dt exceeds the capacity of power
rails that have limited connections to the board. Reducing
the power consumption also increases the allowable thermal
budgets in a stack, allowing more ICs to pass thermal tests,
increasing the number of the chips that can be stacked
together, and allowing the integration of more functionality
in a single stacked IC [14].

While the work presented in [27] served as a good
initial exploration of the proposed approach, multiple issues
remained to be explored. In this article we expand the work
of [27] in several ways to better demonstrate the benefits
of our approach. More specifically, we make the following
contributions:

– We explicitly extract the interior circuit toggling during
shift to better estimate dynamic power and test time
using our approach.

– We investigate the tradeoff between reducing power
dissipation and more efficiently storing patterns in
the FPGA’s lookup tables by more efficiently dealing
with don’t cares. In particular, we consider adjacent
fill merging (ADJCOM) and an “X”-retained merging
algorithm (XRET) in our analysis.

– We explicitly investigate the use of multiple-input
signature registers (MISRs) for capturing test responses
and obtain data for MISR overhead along with the effect
of aliasing on fault coverage.

The rest of this paper is organized as follows. Section 2
provides additional details on previous work in FPGA
testers and 3D test. Section 3 introduces the implementation
for our testers using the generic fabric of the FPGA.
Section 4 introduces the adjacent fill merging algorithm
(ADJCOM) to prioritize the reduction of scan shift toggling
and accompanying reduction in shift power dissipation
while Section 5 introduces the “X”-retained merging
algorithm (XRET) to prioritize the more efficient use of
FPGA resources. Section 6 analyzes MISR aliasing and test
time reduction. Section 7 concludes the paper.

2 PreviousWork

Replacing traditional test and measurement equipment with
FPGAs on boards has been previously shown to help
significantly reduce test costs and allows high-speed testing
because FPGA-based instruments can be reconfigured as
needed and have direct access to the DUT (Design Under
Test) [2]. FPGAs have also been embedded into SoCs

J Electron Test (2019) 35:887–900888



(System on Chips) to provide system test capabilities [11].
Using this approach, the FPGA may be reprogrammed for
different functions at different times, so the FPGAmay be used
to add functionality to the chip, as well as being used as an
embedded tester. In the case of a 3D stacked IC, because the
dies may come from different companies, dedicated embedded
tester logic may be provided by each IP provider. In addition
to providing a means of testing the stack, this approach
may help protect the intellectual property (IP) among the
different companies with IP in the stack. Furthermore, using
an FPGA as a tester in a 3D stack provides significant
additional security advantages over an FPGA on a board
because the inter-die connections are hidden in the stack and
cannot be physically probed. As a result, test data, including
test patterns, may never appear outside of the stack, and side
channel analysis, such as power or thermal analysis, is much
less likely to be effective.

Various methods have been developed for testing 3D
stacks. For example, [23] discusses methods for scan-
chain design and optimization for 3D ICs. They found
that 3D scan-chain optimization achieves significant wire-
length reduction compared to common 2D optimization
approaches. The authors of [10] discuss DFT architecture
and ATPG for interconnect test of 3D memory chips
(DRAMs) and propose serial and parallel TAMs (Test
Access Mechanisms) to communicate between dies. The
serial TAM is used to transport test mode instructions and
low-bandwidth test data, while the parallel TAM is used
for high-bandwidth volume-production test data. There has
also been significant research on the testing of TSVs [22],
test scheduling [19], and the communication of test data
between layers through the JTAG port [13]. However, test
approaches for chip logic in 3D stacks have generally
assumed that all test data will initially be provided through
the bottom die by a tester (ATE).

3 Exploiting the FPGA’s Generic Architecture

As individual dies become more complex, the need for
embedded instruments (such as sensors, hardware monitors,
environment monitors, built-in-self test (BIST) engines,
trace buffers, etc.) will only grow. They are likely to be
needed not only for manufacturing test and failure or yield-
analysis, but also to identify and address aging, wearout, and
thermal issues in the field, and to verify or configure inter-
die communication. An FPGA in a 3D stack may be used
as a controller for these instruments or it may be used to
implement some instruments, such built-in-self-test (BIST)
pattern generators, itself.

One type of BIST pattern generator that may be
implemented either in a die or on an FPGA is an LFSR-
based LBIST (logic BIST) engine. Although adding weights

Fig. 1 Example FPGA-based implementation for storing pattern data
for a single scan chain. This is repeated for multiple chains, with LUTs
possibly shared among chains

and test points can increase the coverage of LBIST, top-
off patterns may still be needed to achieve high coverage.1

Thus, in this section, we describe one possible FPGA-based
tester architecture that is capable of generating specific
patterns to apply to a die-under-test (such as those that may
be needed for top-off) while making use of the underlying
FPGA architecture to reduce the resources needed for the
design.

To meet these goals, our chosen FPGA-based tester
stores the data to be shifted into the chains on different
patterns into 1-bit LUTs on the FPGA. As an example,
Fig. 1 shows how the outputs of a set of LUTs are fed into
a multiplexer’s data inputs. The output of the multiplexer
feeds into one of the scan chains on the ASIC through a
TSV (possibly via a SerDes connection.) A counter is used
to cycle through all of the entries in the LUTs so that they
can be shifted out one-by-one into the chain. This same
architecture is repeated for all chains in the design.

To save on FPGA resources, we can reduce the number
of LUTs by merging the same pattern slice into a single
LUT that can be selected multiple times. Such merging may
occur both among those patterns that will eventually be fed
into a single chain as well as across chains, in which case a
single LUT may fanout to multiple muxes. Each scan chain
would require one set of select lines for its MUX as shown
in Fig. 1.

Note that to maximize the efficiency of mapping scan
data to LUTs, ideally, the scan chain length will match the
number of bits available in the LUT. For example, in our
experiments, we mapped our tester design to an FPGA with

1In order to achieve high test coverage, the number of top off patterns
could be quite significant. Exploring how to decrease the top-off
patterns is left for future work.

J Electron Test (2019) 35:887–900 889



5-input LUTs containing 32 bits. As a result, we used scan
chains of length 32 for each of the circuits when collecting
data for this paper.

Of course, the select line data are also needed. If the
length of each chain is equal to the size of a LUT, one set of
select lines must be stored per mux/chain for each pattern.
For longer chains, more select line values would be needed
so multiple LUTs may be unloaded in sequence during scan
shift. These values may be stored in the FPGA itself, in a
memory located in the stack, in a memory on the board, or
they may be passed to the stack by an external tester.

4 Using Adjacent Fill in Merging Algorithm
to Reduce Power during Test (ADJCOM)

Different approaches may be taken to merge patterns into
LUTs. In particular, how Xs are filled before and/or after
a merge can influence the scan shift power and the LUT
overhead. Because we are interested in reducing the power
during scan shift, we first look at an approach which uses
adjacent fill [5] to minimize switching activity.

4.1 Adjacent Fill Merging Algorithm

The LUT design process starts with a synthesized Verilog
circuit netlist, which undergoes scan insertion with a scan
chain size ideally equal to the size of the FPGA’s lookup
tables. (This will be 32 bits long in our later experiments).
An ATPG pattern set for stuck-at faults is generated in
such a way that any remaining X’s in the patterns are
not automatically filled by the tool but are kept in the
pattern set. ATPG options (such as dynamic compaction)
are used to create the initial compact test set, but on-chip
decompressors are not.

Table 1 shows an example of a pattern set divided
between three chains. These generated patterns are analyzed
and any don’t care “X” is filled with the value of an adjacent
bit. Consider chain 1 pattern 1 (01XX1) shown in Table 1;
we fill the X with 1 (the same value as the second bit)
to decrease the switching activity yielding 01111. This is
called adjacent fill, and the remaining patterns are filled in
a similar manner. These adjacently filled patterns are shown
in Table 2. Our experiments show that the time required for

Table 1 Example original pattern set

Chain 1 Chain 2 Chain 3

Pattern 1 01XX1 100X0 XX1X1

Pattern 2 1XX11 11XX1 110XX

Pattern 3 X0XX0 1X001 1X0XX

Pattern 4 XX11X 101XX X1XX1

Table 2 Example pattern data after adjacent fill

Chain 1 Chain 2 Chain 3

Pattern 1 01111 10000 11111

Pattern 2 11111 11111 11000

Pattern 3 00000 11001 11000

Pattern 4 11111 10111 11111

adjacent fill grows linearly with the number of flip-flops in
the circuit. After adjacent fill, these patterns no longer have
any don’t care bits left and can now be directly assigned to
LUTs.

Fig. 2 Flowchart for LUT and Select Line Reduction using ADJCOM

J Electron Test (2019) 35:887–900890



Fig. 3 Resulting
implementation for patterns
shown in Table 2 after pattern
merging

However, direct assignment of these patterns to LUTs can
be wasteful. There might be cases where after adjacent fill,
there are identical patterns within the same chain or across
different chains (e.g. pattern 11111 in Table 2). Instead of
storing 11111 multiple times we compress the data that
needs to be stored in the LUTs using our Adjacent-Fill and
Compress (ADJCOM) algorithm illustrated in Fig 2.

For each chain, after we do adjacent fill, we determine
what LUTs and mux connections will be needed. Specif-
ically, after ordering the patterns in chain order, we start
selecting patterns one-by-one. If the current pattern is iden-
tical to one already contained in a LUT, no new LUT needs
to be allocated, and a new mux connection may be made,
if required. If they are not the same, we create a new LUT,
attach it to the LUT pool, and attach it to this chain’s mux.
In both cases, we record the appropriate select line index for
this pattern so that the correct mux input (and LUT) will be
selected for this pattern during test. We then check if there
are any remaining patterns left. In summary, for each itera-
tion, we need to keep track of the muxes where each LUT
connects and also when that LUT should be selected (i.e.,
for which patterns) for each chain.

To help illustrate this ADJCOM compression methodol-
ogy, consider the following example consisting of 3 chains,
4 patterns, and 5 bits per chain, with patterns shown in
Table 2. To reduce the LUTs and select lines required, we
must merge the patterns when possible, taking the following
steps:

1. Because the LUT pool is empty, we push the first
pattern of Chain 1 (01111) into the LUT pool. This LUT
is added to the first data input of the mux for Chain 1,
and the select line value for Pattern 1, Chain 1 is set to
0.

2. Pattern 2 of Chain 1 (11111). This pattern cannot be
merged with the LUT pool so we must create a new
LUT. The new LUT is added to the next data input for
the mux of Chain 1, and the select line value 1 for the
pattern is recorded.

Now LUT pool: 01111, 11111. Chain 1 LUTs: 0,1;
Chain 1 Select lines:0,1.

3. Pattern 3 of Chain 1: 00000. 00000 cannot be merged
with LUT0 (01111) or ADJCOM (11111). Add the
pattern to the pool, attach the LUT to the third data input
of the mux of Chain 1, and record the select line value.

NowLUT pool: 01111, 11111, 00000. Chain 1 LUTs:
0,1,2 Chain 1 Select lines:0,1,2.

4. Pattern 4 of Chain 1: 11111. This pattern can be merged
with ADJCOM (11111). Since ADJCOM exists in the
LUT pool and is already attached to this chain’s mux at
data input 1, it does not need to be added to another data
input. However, the select line value 1 must be recorded
for this chain and pattern 4.

Now LUT pool: 01111, 11111, 00000. Chain 1
LUTs: 0,1,2; Chain 1 Select line values :0,1,2,1.

5. Pattern 1 of Chain 2: 10000. This pattern cannot be
merged with the existing LUT pool so we must create a
new LUT. The new LUT is added to the next data input
for the mux of Chain 2 mux, and the select line value 0
for the pattern is recorded.

Now LUT pool: 01111, 11111, 00000, 10000. Chain
1 LUTs: 0,1,2; Chain 1 Select line values :0,1,2,1.
Chain 2 LUTs: 3; Chain 2 Select line values: 0.

This process continues until we have attempted to merge
all of the patterns. The final result is shown in Fig. 3. The
merging process allows LUTs to be shared among chains
and also allows the size of the muxes to be reduced when
the same LUTs can be used multiple times for each chain.

Although this example assumed uncompressed patterns
with many X values, it is still compatible with patterns
with fewer don’t cares at the cost of less merging.2

Eventually, if no X values are available, and if the number of
repeated pattern sequences are small (as could happen with
embedded deterministic test (on-chip decompressor) [18]),

2 By uncompressed, we mean the patterns are generated without an
on-chip decompressor, but still after the dynamic pattern compression
from the ATPG tool.

J Electron Test (2019) 35:887–900 891



Table 3 Characteristics of our opencores.org benchmark circuits

PIs POs FFs Faults Patterns Chains

Quad 36 25 184 7132 40 6

Color 297 34 858 36534 91 29

des56 132 67 193 16050 120 14

fm 10 12 521 23408 365 18

fpu 72 70 5493 276930 254 172

then other variations could be needed. For example, it might
become more efficient to store the patterns directly in the
FPGA memory or to store some of the data (the select line
data) off-chip.

4.2 FPGA Implementation Results and Analysis

To evaluate the effectiveness of our algorithm, we ran sev-
eral experiments on different benchmark circuits obtained
from opencores.org. These circuits were synthesized with

Synopsys Design Compiler using a 90 nm ASIC library.
When generating the test patterns for the circuits, both
inputs and outputs of the circuits were registered.

An ATPG tool was used to insert multiple scan chains of
length 32 (to match the size of the LUTs in our target FPGA)
in each circuit. The scan chains contain only PIs, POs and/or
flip-flops (with the final chain possibly containing fewer
scan cells when the original chain plus the PIs was not
evenly divisible by 32). Stuck-at fault ATPG patterns were
generated as well. Details regarding each of the circuits
studied are provided in Table 3. The table lists the number of
Primary Inputs (PIs), Primary outputs (POs), and Flip flops
(FFs) present in the original circuit as well as the number of
test patterns generated with a target test coverage at 100%
and the number of scan chains used.

Note that these circuits could very easily represent a core
on a chip that needs to be tested using top-off patterns after
LBIST. Furthermore, although the tester design may be used
to apply top-off patterns only, in these experiments we will
store and apply the entire test set for each circuit.

Fig. 4 FPGA-based tester block
diagram

J Electron Test (2019) 35:887–900892



After a test is applied, the capture values of the flip-flops
and primary outputs are shifted out to a MISR (multi-input
signature register). In our experiments, we fill all the values
in the PIs and scan chains with known values and there are
no uninitialized memories or other sources of X’s, so we
can use the MISR as our result compactor to store the test
response.

To provide a proof-of-concept implementation of our
design outlined in Section IV, we mapped the tester
architecture to a Xilinx Artix-7 (XC7A200T) FPGA
device using Xilinx Vivado software. The Artix 7 series
configurable logic block (CLB) provides real 6 and 5
input look-up tables (134,600 LUTs), distributed memory
(2,888Kb), block RAM memory (13,140Kb), shift register
(1.444Kb) logic capabilities, and fast wide multiplexers
(16:1 MUX using 4 LUTs or 1 slice) for efficient FPGA
fabric utilization [26].

These features of the FPGA are important for efficient
implementation of our controller. Figure 4 shows a basic
architecture of the test controller that tries to harness
existing FPGA resources. The structure consists of several
modules — a LUT address generator, a LUT layer, a RAM
address generator, a RAM layer, a multiplexer layer, a scan
register, a signature register (MISR), and a scan enable
signal generator. Our controller will have a fixed set of 5-
input LUTs that each store a 32-bit pattern. These LUTs will
be multiplexed with wide multiplexers. To take advantage
of LUT sharing as described earlier, and to reduce the total
width of multiplexers as much as possible, the select lines
for the multiplexers are predetermined and stored in another
RAM block (implemented as either distributed RAM or
block RAM on the FPGA). The test controller has three
inputs (CLK, RESET and a scan signature from the ASIC),
four outputs (a scan enable signal, a reset sent to the ASIC,
a registered bus feeding scan data to the ASIC via a SerDes
connection, and an output that indicates the test having
passed or failed.)

As noted earlier, we ran experiments on several circuits
from opencores.org to validate the effectiveness of our
approach. Two separate implementations for each circuit
were generated— one where all modules were implemented
as distributed RAM or slice LUTs in the FPGA and a
second where the mux select signals were all grouped into

Table 4 Experiment 1: All modules are distributed RAMs/Slice LUTs

Circuits Max Freq (MHz) Slice LUTs % use LUTs

Quad 254.5 207 0.15%

Color 210.7 2107 1.5%

des56 233.1 797 0.6%

fm 180.4 2515 1.8%

fpu 164.3 11571 9.8%

Table 5 Experiment 2: Mux select lines implemented in block RAMs
(BRAMs)

CKT Max Freq Slice % use Block %use

(MHz) LUT LUTs RAMs BRAMs

Quad 212.7 160 0.1% 1 0.3%

Color 220.9 974 0.7% 3 0.8%

des56 232.1 452 0.3% 1 0.3%

fm 221.5 1725 1.2% 3 0.8%

fpu 200.3 1687 1.1% 30 8.2%

a larger Block RAM (BRAM) in the FPGA. For both
experiments, we used Verilog HDL and synthesized it with
Xilinx Vivado 17.2 with a synthesis goal set to reduce the
overall system area. Results of these two experiments are
shown in Tables 4 and 5. Note that the area results include
all the structures shown in Fig. 4 except the signature
register, golden signature, and XNOR comparison logic.
This signature logic is negligible compared to the rest of the
FPGA-based tester block design.

Table 4 shows that the tester architecture takes up very
little area on the FPGA and that the tester can be operated at
a clock frequency of 164.3 to 254.5 MHz for Experiment 1.
Note that the tester does not need to operate at the speed of
a functional ASIC because the tester is primarily engaging
in scan shift operations, which can occur at a much slower
clock frequency. In fact, a slower clock frequency for scan
shift is likely to be preferable to prevent thermal issues in the
stack during test. The smallest circuit quad used negligible
hardware resources and was the fastest while fpu used the
most resources (9.8% of LUTs available) and could be run
at just over 164.3 MHz. In experiment 1, the speed of the
circuits goes up if less LUTs are used, because more LUTs
means more time need to be used to program the LUTs.
Because the more the LUTs, the more routing it takes to
access to the corresponding LUTs.

Table 5 shows the results for Experiment 2, where we
store the patterns and select lines in LUT and BRAMs
respectively. This results in fewer LUTs compared to
Experiment 1 because all the LUTs of Experiment 1 that
were dedicated to storing the multiplexer select line values
are no longer needed. The corresponding data are now
stored in one or more of the 365 available block RAMs
(BRAMs) instead. Keeping the select lines in BRAMs also
helps to increase the tester speed of three of the circuits.
However, the small size of the quad circuit prevented it from
taking advantage of the BRAMs.

4.3 Data Reduction Using ADJCOM

Another issue we wanted to explore was how much
data reduction we were able to achieve with our current

J Electron Test (2019) 35:887–900 893



FPGA-based architecture. We took a preference in reducing
the number of LUTs, storing only the compressed scan
chain pieces in the LUTs. As a result, the number of bits in
the LUTs should be much less than original data bits. If the
number of select lines needed for each chain MUX was not
too large, then even storing pattern bits and select line bits
should be less.

The data obtained for our 5 circuits is shown in Table 6.
(Note that this does not consider additional bits needed to
implement the actual controller in the FPGA). The first
column corresponds to the circuit name and the second to
the original amount of test data that would need to be stored.
This is simply equal to:

32 × # of chains × # of patterns (1)

including padding, for chains of length 32 bits. Column 3
corresponds to the number of bits stored for pattern pieces
in the LUTs and is equal to the number of LUTs identified
with the algorithm in Section 4.1 multiplied by 32 (LUT
size). Column 4 adds the data for the select line values
on each pattern and is equal to the number of select lines
needed for all chain muxes multiplied by the number of
patterns. Column 5 corresponds to the percent reduction in
data required when Columns 3 and 4 are added together and
compared with the original test data shown in Column 2.
We see larger percentage reduction in the number of bits
needed to store LUTs and select lines as the total original
test data increases. Specifically, we see reduction of 51% for
our largest circuit. This is encouraging. Column 6 compares
Column 2 and 3 to determine the percent reduction in data
storage needed if only the data in the LUTs is considered.
This might be significant if we are worried about the
occupancy of the FPGA but are obtaining the values on the
select lines from an external memory.

Finally, Column 7 compares the amount of data stored for
select bits only (number of total select bits multiplied by the
number of patterns) to the total number of bits in Column 2.
This comparison is most appropriate from the perspective of
howmuch data may need to be stored in an external memory
for feeding to the FPGA. For four of the five circuits tested
we see this reduction in test data to be over 75%.

Table 6 Data storage reduction

Original LUT Select %↓ %↓ %↓
CKT Total Data Line (LUT (LUT (sel

(bits) (bits) (bits) +sel) only) only)

Quad 7680 6624 1260 −2.7% 14% 83%

Color 84448 67424 70034 −63% 20% 17%

des56 53760 25504 9960 34% 53% 81%

fm 210240 80480 50370 38% 62% 76%

fpu 1398016 370272 308610 51% 73% 76%

We thus see that the selected FPGA-based tester
architecture is highly effective at reducing the amount of
test data that may need to be stored in an external memory
or on the FPGA itself. Even more encouraging, the method
appears to scale very well with increasing amounts of test
data.

4.4 Switching Activities

Although we were able to compress our data well enough
in the previous section, the overall compression rate is
considerably less than is often achieved with on-chip
decompressors alone. Of course, it is still possible to write
the decompressor’s incoming channel data to LUTs or
to on-chip memories in the FPGA. However, as already
noted, in the presence of on-chip decompressors, the pattern
sequences applied to the channels may not have any X’s,
making compression in the LUTs very difficult.

There are several reasons why this may not be a
significant problem. First, as already noted, the patterns
stored in the LUTs may correspond only to those top-off
patterns that are needed to get coverage for random-pattern-
resistant faults that are not covered by LBIST engines. This
automatically reduces the test data volume that needs to be
stored.Even if the number of top-off patterns required is
relatively large, as we showed in Table 6, there are multiple
approaches to storing the test data depending on the size and
available resources in the FPGA and off-chip memories that
can help ameliorate the issue.

In addition, one of the reasons why such decompressors
are needed is to reduce the test data bandwidth when the test
inputs and outputs are limited to only a few pins. When an
FPGA in a 3D stack is used, it may be possible to have many
more chains on other dies accessed directly either through
individual TSVs or through TSVs that are implementing
SerDes. SerDes TSV channels are extremely efficient in
3D because of the very short distances between dies. This
means that the test data bandwidth may automatically
be higher in 3D between dies even without an on-chip
decompressor, if we choose not to use one. In addition, if
test patterns are going to be generated or selected within the
stack so that only a subset of all potential patterns in the set
are applied to better match suspected defects or operating
conditions, it might be necessary to set the decompressor to
bypass mode and use patterns stored in the LUTs directly
instead.

Finally, thermal issues during test are likely to be very
problematic in 3D because it may be more difficult for heat
to escape, even with newmaterials proposed to enhance heat
dissipation [15]. Thus, reducing switching activity during
scan shift is very important. Although low power ATPG for
on-chip decompressors is possible with commercial tools,
some approaches to reducing scan shift toggling, such as

J Electron Test (2019) 35:887–900894



Fig. 5 Switching activities for our method vs. on-chip decompressor

adjacent fill, are difficult or impossible to apply in the
presence of on-chip decompressors because they depend on
having a large number of X’s. It may be easier to get low
power test patterns from our approach if enough X’s remain
in the patterns to perform adjacent fill.

To investigate this possibility, we collected data regard-
ing the difference in switching activity obtained both for
patterns shifted in as the output of a power-limited on-chip
decompressor as well as for our original scan patterns with
adjacent fill implemented after merging.

For these experiments we used scan chains of length 32
bits for all the circuits whether generating patterns with
or without an on-chip decompressor. To try to make the
switching activity comparison as fair as possible, more than
200 test sets were created for each circuit with different
low-power parameters when patterns were generated in the
presence of the on-chip decompressor. The pattern set with
the lowest toggling activity that did not lead to a significant
reduction in test coverage was selected for comparison
against our approach. We also used low-power options
to generate patterns for our approach and allowed X’s to
remain in the test set for merging and adjacent fill.

To collect the switching activities, we apply our test
set to each circuit, simulate the circuit, and extract total
switching activity from every node in the circuit using
VCD (value change dump) files. In each case, the switching
activities of flip-flops in the chains as well as any switching
activities that would have been generated in the circuit’s
combinational logic is also included during both shift and
capture. The switching activity reduction achieved using our
ADJCOM approach over the on-chip decompressor during
scan test for each circuit is shown in Fig. 5. The switching
activity reduction is computed using:

%reduction = (1− activityADJCOM

activityon-chip decompressor
)×100% (2)

We see that each circuit shows significant reduction in total
switching activity, with our largest circuit fpu showing an
81% reduction. One possible reason for this is that, when
an on-chip decompressor is used, the ATPG tool tends to

Fig. 6 Flowchart for LUT and Select Line Reduction using XRET

create more patterns than the original pattern set.3 Higher
pattern count translates to more switching activity. Our
approach requires fewer patterns. This, coupled with our
use of adjacent fill, results in lower power consumption
for ADJCOM. It is also encouraging that the associated
tester architecture works better for the largest circuit with
increasing amounts of test data: fpu (Fig. 6).

3Note that the length of the scan chain can have a bearing on the
number of patterns produced from an on-chip decompressor [4] with
larger chains leading to fewer patterns.

J Electron Test (2019) 35:887–900 895



5 X RetainedMerging Algorithm (XRET)

The data storage experiments of Section 4.3 showed that
some circuits did not see as much of a benefit (e.g. circuit
color showed a 63% increase in LUT and Select line data
over the original case). In this section we propose a new
algorithm called X retained merging algorithm (XRET) to
efficiently deal with don’t cares to improve the storage of
LUTs data and select lines on an FPGA.

5.1 Merging with “X” in Pattern Set Retained

In this approach, the don’t care bits in the original pattern
set are retained in order to achieve the maximum pattern
reduction. The way the patterns are merged is different,
such that it significantly improves the results regarding the
number of LUTs (and therefore the area overhead and data
compaction). For each chain, we analyze the patterns that
will be applied to that chain and see if different patterns can
be merged into a single LUT. We also look to see if patterns
across different chains can be merged to reduce the total
number of LUTs. Note that a pattern can only be merged
with a member of the current global list of LUTs (i.e., the
LUT pool), if for all bit positions of the pattern the bits are
compatible between the pattern and the LUT. An X merged
with a defined value (0 or 1) is replaced by the defined value
in the merged LUT. In each case, we need to keep track of
the muxes that each LUT connects to and when that LUT
should be selected (i.e., for which patterns) for each chain.

To help illustrate this compression methodology, con-
sider the same patterns used in Table 1. To reduce the LUTs
and select lines required, we must merge the patterns when
possible, taking the following steps:

– Because the LUT pool is empty, we push the first pat-
tern of Chain 1 (01XX1) into the LUT pool. This LUT
is added to the first data input of Chain 1’s mux, and
the select line value for Pattern 1, Chain 1 is set to 0.

Table 7 Experiment 1—All modules are distributed RAMs/Slice
LUTs

CKT Max Freq Slice % use

(MHz) LUTs LUTs

Quad 270.2 175 0.12%

Color 232.4 1182 0.8%

des56 240.3 578 0.4%

fm 168.2 2074 1.5%

fpu 167.6 2996 2.4%

– Pattern 2 of Chain 1:1XX11. This pattern cannot be
merged with the LUT pool so we must create a new
LUT. The new LUT is added to the next data input for
Chain 1’s mux, and the select line value 1 for the pattern
is recorded. Now LUT pool: 01XX1, 1XX11. Chain 1’s
LUTs: 0,1; Chain 1’s Select lines:0,1.

– Pattern 3 of Chain 1: X0XX0. X0XX0 cannot be
merged with LUT0 (01XX1) or ADJCOM(1XX11).
Add the pattern to the pool, attach the LUT to the third
data input of Chain 1’s mux, and record the select line
value. Now LUT pool: 01XX1, 1XX11, X0XX0. Chain
1’s LUTs: 0,1,2 Chain 1’s Select lines:0,1,2.

– Pattern 4 of Chain 1: XX11X. This pattern can be
merged with LUT0 (01XX1). Create merged pattern
01111 and replace LUT0 in the pool with this merged
pattern. Since LUT0 exists in the LUT pool and is
already attached to this chain’s mux at data input 0,
it does not need to be added to another data input.
However, the select line value 0 must be recorded for
this chain and pattern 4. Now LUT pool: 01111, 1XX11,
X0XX0. Chain 1’s LUTs: 0,1,2; Chain 1’s Select line
values :0,1,2,0.

– Pattern 1 of Chain 2: 100X0. This pattern can be merged
with XRET (X0XX0) to create 100X0. Replace XRET
with this new merged pattern in the pool. Add XRET to

Fig. 7 Resulting
implementation for patterns
shown in Table 1 after pattern
merging

J Electron Test (2019) 35:887–900896



Table 8 Experiment 2— Mux select lines implemented in block
RAMs (BRAMs)

CKT Max Freq Slice % use Block %use

(MHz) LUT LUTs RAMs BRAMs

Quad 229.1 124 0.08% 1 0.3%

Color 251.4 847 0.6% 3 0.8%

des56 273.1 397 0.6% 1 0.3%

fm 247.8 796 0.6% 3 0.8%

fpu 223.6 1387 1.2% 30 8.2%

Chain 2’s MUX 0th data input and record 0 as the select
line value for Chain 2, pattern 1.

This process continues until we have attempted to merge
all of the patterns. To store the final data into the LUTs, we
replace any remaining don’t cares with 1s and 0s using the
adjacent fill technique.

This gives us our final LUT pool: 01111, 10000, 10110,
11001. The resulting implementation is illustrated in Fig. 7.
For this example, we see both a reduction in the LUT bits as
well as the select line bits compared to the implementation
after ADJCOM (Fig. 3).

Table 7 shows that this new merging algorithm takes
up less area on the FPGA compared to the adjacent fill
merging algorithm and that the tester can be operated at
a clock frequency of 167.6 to 270.2 MHz for Experiment
1 where all modules were stored in distributed RAMs or
slice LUTs. Again, the tester does not need to operate at
the speed of a functional ASIC. The circuits used negligible
hardware resources. Our largest circuit fpu showed the most
compression in LUT use (down from 11571 in Table 4) to
2996). Other conclusions that were drawn from Table 4 can
also be applied here.

We also see similar pattern as Table 5 when we run
the XRET algorithm and store the Mux select lines in
block RAMS instead of distributed RAMs. The results
are shown in Table 8. We see across all five circuits a
slight improvement in the max clock frequency and a slight
increase in the slice LUT count.

Table 9 Data storage reduction

Original LUT Select %↓ %↓ %↓
CKT Total data Line (LUT (LUT (sel

(bits) (bits) (bits) +sel) only) only)

Quad 7680 5600 1224 11% 27% 84%

Color 84448 37824 68951 −26% 55% 18%

des56 53760 18496 9480 48% 66% 82%

fm 210240 66368 49275 45% 68% 77%

fpu 1398016 44384 284988 76% 96.8% 79.6%

Fig. 8 Switching Activities for our methods vs. on-chip decompressor

5.2 Data Reduction Using XRET

Using this new XRET algorithm, we repeat the data
storage experiments described earlier in Section 4.3 for the
benchmark circuits. The data storage reduction results for
the circuits is shown in Table 9.

Comparing the results seen in Table 9 with the ones
obtained using ADJCOM (Table 6), we can see that XRET
has a much higher compression rate when the “Xs” are
retained during the merging for all of our circuits across all
three storage scenarios (LUT+slect line bits, LUT only, and
select lines only).

5.3 Switching Activities

The switching activities reduction during scan test for each
circuit is shown in Fig. 8. The blue bars (ADJCOM) and
red bars (XRET) show the percentage of power reduction
compared to an on-chip decompressor. Both approaches
achieve a good amount power reduction. We see that
ADJCOM achieved a slightly higher power reduction
compared to XRET. However, the XRET approach can still
achieve almost the same amount of power reduction as
ADJCOM and while achieving a much better compression
rate. As a result, XRET is a very good option when the
tester needs to achieve good compression rates while still
prioritizing thermal issues during test. Furthermore, we
consider XRET our best option unless power reduction is
the main concern and there are plenty of FPGA resources
available.

In order to obtain a more direct visualization of the
power dissipation, we used Cadence Encounter Test to
automatically generate the layout for all five circuits and
mapped the switching to the location where the cell is
located. Figure 9 shows an IC floorplan with total switching
activity during test for fpu. Note that the two 2D subplots
are divided into 100×100 squares, where each square could
have one or even hundreds of cells. Red squares correspond
to areas of high switching activity while purple/blue squares
correspond to low switching activity areas. The IC floorplan

J Electron Test (2019) 35:887–900 897



Fig. 9 Switching activities in IC
floorplan for fpu using XRET
versus an on-chip decompressor.
The legend shows switching
activity scale – red corresponds
to high switching and
purple/blue low switching
activity

shows that the switching activity is not only low in the case
of XRET but areas of red spots are almost non-existent
compared to the on-chip decompressor case.

6 Test Response and Test Time

The test architecture shown in Fig. 4 contains the LUTs
as well as the select lines for the muxes generated using
either the ADJCOM or XRET algorithms. These are used
to apply the compressed test patterns to the scan chains.
The test response is then captured as a signature using
a multiple-input signature register (MISR). The use of a
MISR is common in DFT architectures to compress the test
responses. Their primary downside arises when unknown
values may be present in the test responses due to partial
scan designs, memory elements, etc., that lead to unknown
values. In our case, no unknowns will be present in any
of our benchmark circuits; however, if they were present
in a design, previously proposed approaches, such as X-
compact [17] could be used to help prevent unknown values
from propagating into and corrupting the signature.

Unfortunately, MISRs are also known to cause some loss
of coverage due to aliasing. In this section, we investigate
the use of a MISR and its effect on the test coverage for the
benchmark circuits and patterns studied. We will show that

Fig. 10 Test time reduction:our Method vs. On-Chip Decompressor

the coverage loss is reasonable and is in line with normal
coverage loss (≤5%) due to a MISR [9].

For our experiments, one MISR per circuit is being used.
The MISR length is dependent on the number of chains in
the ciruit and is computed as:

MISR Length = #of chains + 5. (3)

For example, consider circuit quad. Table 3 earlier showed
that it had 6 scan chains; the number of bits in the MISR
is 11 for this circuit. Each MISR is created using taps
for XNOR gates using a characteristic polynomial and tap
points based on [3]. Table 10 reports the size of the MISR as
well as the test coverage achieved before and after using the
MISR. We see an average coverage reduction of only 1.4%
across the five circuits with coverage reduction ranging
from 0.16% for fm to 3.2% for color.

Our method also uses less test time for the benchmark
circuits than using an on-chip decompressor for 32-bit scan
chains. Test time is especially important in field testing
because a device must be taken offline to perform the
test. Because the FPGA programming to implement the
tester can be done without the circuit-under-test being taken
offline, we do not include the time required to program
the FPGA in our analysis. Figure 10 shows the percentage
of the test time used by the on-chip decompressor that is
needed by our FPGA–based approach. Compared to an on-
chip decompressor for the same scan chain length, we can
reduce the test time by 38% to 90%.

Table 10 Test coverage before and after using MISR

Test Test MISR

Circuit Coverage Coverage MISR XNOR

w/o MISR with MISR Length Tap Points

Quad 99.57% 98.21% 11 9,11

Color 100.00% 96.80% 34 1,2,27,34

des56 99.98% 98.87% 19 1,2,6,19

fm 99.93% 99.77% 23 18,23

fpu 99.18% 97.82% 177 172,174,175,177

J Electron Test (2019) 35:887–900898



7 Conclusions

In this paper we have explored some of the advantages of
using an existing FPGA as a tester in a 3D stack. We have
implemented two different merging algorithms (ADJCOM
and XRET) for an FPGA-based tester design. The two
methods require a very small fraction of FPGA resources for
the circuits studied. We also see a reduction in the switching
activity as well as test time when compared to on-chip
decompressors for both methods.

Furthermore, the proposed technique can take advantage
of the high TSV bandwidth that is likely possible in 3D
die stacks to transmit data to multiple chains in parallel. In
general, most of these advantages should also carry over into
the 2.5D space.

In the future, we plan to more thoroughly explore how the
proposed methods can be implemented in conjunction with
other types of test time and power reduction approaches.
For example, we could consider how the proposed approach
can be combined with other previously proposed techniques
to reduce shift and capture power during test. We could
also explore the ability of the proposed method to select
and possibly even generate new patterns to be applied for
additional coverage after the use of standard LBIST test
sessions.

References

1. Agrawal M, Chakrabarty K (2013) Test-cost optimiza-
tion and test-flow selection for 3d-stacked ics. In: Proc
IEEE 31st VLSI Test Symposium (VTS), pp 1–6.
https://doi.org/10.1109/VTS.2013.6548941

2. Aleksejev I, Devadze S, Jutman A, Shibin K (2015) Virtual
reconfigurable scan-chains on fpgas for optimized board test.
In: Proc 16th Latin-american Test Symposium (LATS), pp 1–6.
https://doi.org/10.1109/LATW.2015.7102411

3. Alfke P (1996) Efficient shift registers, LFSR counters, and
long pseudorandom sequence generators. Tech. rep., Xil-
inx. https://www.xilinx.com/support/documentation/application
notes/xapp052.pdf/

4. Chakravadhanula K, Chickermane V, Cunningham P, Foutz
B, Meehl D, Milano L, Papameletis C, Scott D, Wilcox S
(2017) Advancing test compression to the physical dimension.
In: Proc IEEE International Test Conference (ITC), pp 1–10.
https://doi.org/10.1109/TEST.2017.8242035

5. Chandra A, Kapur R (2008) Bounded adjacent fill for low capture
power scan testing. In: Proc 26th IEEE VLSI Test Symposium
(VTS), pp 131–138. https://doi.org/10.1109/VTS.2008.47

6. Chaware R, Nagarajan K, Ramalingam S (2012) Assembly and
reliability challenges in 3D integration of 28nm FPGA die on a
large high density 65nm passive interposer. In: Proc IEEE 62nd
Electronic Components and Technology Conference, pp 279–283.
https://doi.org/10.1109/ECTC.2012.6248841

7. Claus C, Ahmed R, Altenried F, Stechele W (2010) Towards
rapid dynamic partial reconfiguration in video-based driver
assistance systems. In: Sirisuk P, Morgan F, El-Ghazawi T,

Amano H (eds) Reconfigurable Computing: Architectures, Tools
and Applications. Springer, Berlin, pp 55–67

8. Crouch AL, Potter JC, Khoche A, Dworak J (2013)
Fpga-based embedded tester with a p1687 command,
control, and observe-system. IEEE Des Test 30(5):6–14.
https://doi.org/10.1109/MDAT.2013.2278531

9. Debany WH, Gorniak MJ, Daskiewich DE, Macera AR, Kwiat
KA, Dussault HB (1992) Empirical bounds on fault coverage loss
due to LFSR aliasing. In: Proc IEEE VLSI Test Symposium, pp
143–148. https://doi.org/10.1109/VTEST.1992.232739

10. Deutsch S, Keller B, Chickermane V, Mukherjee S, Sood N, Goel
SK, Chen J, Mehta A, Lee F, Marinissen EJ (2012) Dft architec-
ture and ATPG for interconnect tests of JEDECwide-I/O memory-
on-logic die stacks. In: Proc IEEE International Test Conference
(ITC), pp 1–10. https://doi.org/10.1109/TEST.2012.6401569

11. Devadze S, Jutman A, Aleksejev I, Ubar R (2009) Fast extended
test access via JTAG and FPGAs. In: Proc International Test
Conference, pp 1–7. https://doi.org/10.1109/TEST.2009.5355668

12. Dorsey P (2010) White paper: Xilinx stacked silicon interconnect
technology delivers breakthrough fpga capacity, bandwidth, and
power efficiency. Tech. rep., Xilinx

13. Fkih Y, Vivet P, Rouzeyre B, Flottes M, Di Natale G
(2013) A JTAG based 3D DfT architecture using automatic
die detection. In: Proc 9th Conference on ph.d. Research
in Microelectronics and Electronics (PRIME), pp 341–344.
https://doi.org/10.1109/PRIME.2013.6603184

14. Lau JH, Yue TG (2009) Thermal management of 3D IC
integration with TSV (through silicon via). In: Proc 59th
Electronic Components and Technology Conference, pp 635–640.
https://doi.org/10.1109/ECTC.2009.5074080

15. Loeblein M, Tsang SH, Han Y, Zhang X, Teo EHT (2016)
Heat dissipation enhancement of 2.5D package with 3D
graphene and 3D boron nitride networks as thermal interface
material (TIM). In: Proc 2016 IEEE 66th Electronic Com-
ponents and Technology Conference (ECTC), pp 707–713.
https://doi.org/10.1109/ECTC.2016.85

16. Manoj PDS, Lin J, Zhu S, Yin Y, Liu X, Huang X, Song C,
Zhang W, Yan M, Yu Z, Yu H (2017) A scalable network-on-
chip microprocessor with 2.5d integrated memory and accelerator.
IEEE Trans Circuits Syst I, Reg Papers 64(6):1432–1443.
https://doi.org/10.1109/TCSI.2016.2647322

17. Mitra S, Kim KS (2002) X-compact: an efficient
response compaction technique for test cost reduction. In:
Proc International Test Conference (ITC), pp 311–320.
https://doi.org/10.1109/TEST.2002.1041774

18. Rajski J, Tyszer J, Kassab M, Mukherjee N, Thompson R, Tsai
K-h, Hertwig A, Tamarapalli N, Mrugalski G, Eide G, Qian J
(2002) Embedded deterministic test for low cost manufacturing
test. In: Proc International Test Conference (ITC), pp 301–310.
https://doi.org/10.1109/TEST.2002.1041773

19. Roy SK, Ghosh P, Rahaman H, Giri C (2014) Session
based core test scheduling for 3D SOCs. In: Proc IEEE
Computer Society Annual Symposium on VLSI, pp 196–201.
https://doi.org/10.1109/ISVLSI.2014.61

20. Sperling E Is the 2.5D supply chain ready? Semi-
conductor Engineering https://semiengineering.com/
is-the-stacked-die-supply-chain-ready/ Accessed: 2019-11-26

21. Sperling E Thinking outside the chip. Semiconductor Engi-
neering https://semiengineering.com/thinking-outside-the-chip/
Accessed: 2019-11-26

22. Wang C, Zhou J, Weerasekera R, Zhao B, Liu X, Roy-
annez P, Je M (2015) Bist methodology, architecture and
circuits for pre-bond tsv testing in 3d stacking ic sys-
tems. IEEE Trans Circuits Syst I, Reg Papers 62(1):139–148.
https://doi.org/10.1109/TCSI.2014.2354752

J Electron Test (2019) 35:887–900 899

https://doi.org/10.1109/VTS.2013.6548941
https://doi.org/10.1109/LATW.2015.7102411
https://www.xilinx.com/support/documentation/application_notes/xapp052.pdf/
https://doi.org/10.1109/TEST.2017.8242035
https://doi.org/10.1109/VTS.2008.47
https://doi.org/10.1109/ECTC.2012.6248841
https://doi.org/10.1109/MDAT.2013.2278531
https://doi.org/10.1109/VTEST.1992.232739
https://doi.org/10.1109/TEST.2012.6401569
https://doi.org/10.1109/TEST.2009.5355668
https://doi.org/10.1109/PRIME.2013.6603184
https://doi.org/10.1109/ECTC.2009.5074080
https://doi.org/10.1109/ECTC.2016.85
https://doi.org/10.1109/TCSI.2016.2647322
https://doi.org/10.1109/TEST.2002.1041774
https://doi.org/10.1109/TEST.2002.1041773
https://doi.org/10.1109/ISVLSI.2014.61
https://semiengineering.com/is-the-stacked-die-supply-chain-ready/
https://semiengineering.com/is-the-stacked-die-supply-chain-ready/
https://semiengineering.com/thinking-outside-the-chip/
https://doi.org/10.1109/TCSI.2014.2354752


23. Wu X, Falkenstern P, Chakrabarty K, Xie Y (2009) Scan-
chain design and optimization for three-dimensional inte-
grated circuits. J Emerg Technol Comput Syst 5(2):9:1–9:26.
https://doi.org/10.1145/1543438.1543442

24. Xie J, Patterson D (2013) Realizing 3D IC integration with
face-to-face stacking. Chip Scale Review 17(3):16–19

25. Xilinx: 3D ICs. https://www.xilinx.com/products/silicon-devices/
3dic.html. Accessed: 2019-07-27

26. Xilinx: UG 474: 7 series FPGAs configurable logic block
user guide. https://www.xilinx.com/support/documentation/user
guides/ug474 7Series CLB.pdf. Accessed: 2019-06-17

27. Zhang F, Sun Y, Shen X, Nepal K, Dworak J, Manikas T,
Gui P, Bahar RI, Crouch A, Potter J (2016) Using existing
reconfigurable logic in 3D die stacks for test. In: Proc
IEEE 25th North Atlantic Test Workshop (NATW), pp 46–52.
https://doi.org/10.1109/NATW.2016.15

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Yi Sun received the B.S. degree in electrical engineering from
Chongqing University, Chongqing, China, the M.S.E.E. degree from
Southern Methodist University, Dallas, TX, USA, 2013 and 2016
respectively. She is currently working as a Research Assistant in her
PhD program in Southern Methodist University.Her current research
interests include manufacturing and in-field testing and hard-ware
security.

Fanchen Zhang received his B.S. degree in Telecommunication Engi-
neering from Harbin Institute of Technology in Harbin, Heilongjiang
province, China, M.S. degree in electrical engineering, and PhD
degree in computer engineering from Southern Methodist Univer-
sity in Dallas, TX, USA in 2001, 2012 and 2018. He is currently a
Hardware Engineer at Cisco Systems, Inc. in San Jose, CA, USA.
His work includes semiconductor Design-for-Test (DFT), pre-silicon
verification tests, post-silicon validation and debug.

Hui Jiang received her B.S. degree in electrical engineering from
Shandong University, Weihai, Shandong, China in 2014 and M.S.
degree in computer engineering from Southern Methodist University,
in Dallas, TX, USA in 2016. Now, she is in her third year pursuing
her Ph.D. degree in computer engineering in Southern Methodist
University. Her current research area is Design for Test and hardware
security.

Kundan Nepal received the B.S. degree in electrical engineering
from Trinity College, Hartford, CT, USA, the M.S.E.E. degree from
the University of Southern California, Los Angeles, CA, USA,
and the Ph.D. degree in electrical and computer engineering from
Brown University, Providence, RI, USA, in 2002, 2003, and 2007,
respectively. He is currently an Associate Professor of Electrical &
Computer Engineering at the University of St. Thomas, St Paul,
MN, USA. His current research interests include embedded systems,
defect/fault tolerant circuits and systems, nanometer digital VLSI
system design, and reconfigurable computing.

Jennifer Dworak received her B.S., M.S., and PhD degrees in
electrical engineering from Texas A&M University, College Station,
TX, USA in 1998, 2000, and 2004 respectively. She is currently an
Associate Professor of Electrical & Computer Engineering at Southern
Methodist University in Dallas, TX, USA. Her current research
interests include manufacturing and in-field testing, reliable systems,
and hardware security.

Theodore Manikas received the B.S. degree in electrical engineering
from Michigan State University, the M.S. degree in electrical
engineering from Washington University (St. Louis) and the Ph.D.
degree in electrical engineering from the University of Pittsburgh. He
has been with Southern Methodist University since 2009 and is a
Clinical Professor in the Department of Computer Science. His current
research interests include system security and testing. He is a Licensed
Professional Engineer in Texas and Oklahoma.

R. Iris Bahar received the B.S. and M.S. degrees in computer
engineering from the University of Illinois at Urbana-Champaign,
Urbana, IL, USA, and the Ph.D. degree in electrical and computer
engineering from the University of Colorado, Boulder, Boulder, CO,
USA. In between her M.S. and Ph.D. studies, she spent 5 years with
Digital Equipment Corporation, Hudson, MA, USA, researching on
microprocessor hardware design. Since 1996, she has been with the
School of Engineering, Brown University, Providence, RI, USA, where
she is currently a Professor of Engineering and Computer Science.
Her research interests include computer architecture, computer-aided
design for synthesis, verification, and low-power applications, and
design, test, and reliability issues for nanoscale systems.

J Electron Test (2019) 35:887–900900

https://doi.org/10.1145/1543438.1543442
https://www.xilinx.com/products/silicon-devices/3dic.html
https://www.xilinx.com/products/silicon-devices/3dic.html
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://doi.org/10.1109/NATW.2016.15

	Repurposing FPGAs for Tester Design to Enhance Field-Testing in a 3D Stack 
	Abstract
	Introduction
	Previous Work
	Exploiting the FPGA's Generic Architecture
	Using Adjacent Fill in Merging Algorithm to Reduce Power during Test (ADJCOM)
	Adjacent Fill Merging Algorithm
	FPGA Implementation Results and Analysis
	Data Reduction Using ADJCOM
	Switching Activities

	X Retained Merging Algorithm (XRET)
	Merging with ``X'' in Pattern Set Retained
	Data Reduction Using XRET
	Switching Activities

	Test Response and Test Time
	Conclusions
	References
	Publisher's Note


