
Genetic Algorithms vs� Simulated Annealing� A
Comparison of Approaches for Solving the Circuit

Partitioning Problem

by

Theodore W� Manikas

James T� Cain

Technical Report ������
May ����

Department of Electrical Engineering
The University of Pittsburgh

Pittsburgh� PA �����

Abstract

An important stage in circuit design is placement� where components are assigned

to physical locations on a chip� A popular contemporary method for placement is

the use of simulated annealing� While this approach has been shown to produce good

placement solutions� recent work in genetic algorithms has produced promising results�

The purpose of this study is to determine which approach will result in better placement

solutions�

A simpli�ed model of the placement problem� circuit partitioning� was tested on

three circuits with both a genetic algorithm and a simulated annealing algorithm�

When compared with simulated annealing� the genetic algorithm was found to produce

similar results for one circuit� and better results for the other two circuits� Based on

these results� genetic algorithms may also yield better results than simulated annealing

when applied to the placement problem�

Group A Group B

Figure �� Graph representation of circuit partitioning	

� Introduction

An important stage in circuit design is placement� where components are assigned to physical
locations on a chip	 A popular contemporary method for placement is the use of simulated
annealing
Sechen���	 While this approach has produced good results� recent work in ge�
netic algorithms has also produced promising results
Cohoon ���� Shahookar ���� Sait ���	
The purpose of this study is to determine which approach� genetic algorithms or simulated
annealing� will result in better placement solutions	

A simple model of the placement problem is the circuit partitioning problem	 A circuit
may be represented by a graph G�
V�E� where the vertex set V represents the components
of the circuit� and edge set E represents the interconnections between components	 The par�
titioning process splits the circuit into groups of relatively equal sizes	 The objective is assign
components to groups such that the number of interconnections between groups is minimal	
An example of a circuit partition is shown in Figure �	 The number of interconnections
between groups is called a cutsize� thus the goal is to minimize the cutsize	

Partitioning was tested on three circuits using both genetic algorithm and simulated
annealing approaches	 This report describes the method used for this experiment� and
discusses the results	

�

� Method

Both a genetic algorithm and simulated annealing approach were tested on a set of circuits	
This chapter explains both approaches� and describes the method used for testing these
approaches	

��� Genetic Algorithm

A genetic algorithm
Holland��� is an iterative procedure that maintains a population of
individuals� these individuals are candidate solutions to the problem being solved	 Each
iteration of the algorithm is called a generation	 During each generation� the individuals
of the current population are rated for their e�ectiveness as solutions	 Based on these
ratings� a new population of candidate solutions is formed using speci�c genetic operators	
Each individual is represented by a string� or chromosome� each string consists of characters

genes which have speci�c values
alleles	 The ordering of characters on the string is
signi�cant� the speci�c positions on the string are called loci	

A genetic algorithm for partitioning� based on Bui�s approach���� was used for this study

Figure �	 A graph partitioning solution is encoded as a binary string of C genes� where C
� total number of components	 Each gene represents a component� and the allele represents
the group
� or �� where the component is assigned	 For example� the chromosome �������
represents a graph of �ve components� components � and � are in partition �� while compo�
nents �� � and � are in partition �	 The following sections explain the steps of the genetic
algorithm	

Create Initial Population

A population of P chromosomes are randomly generated to create an initial population	
Individuals are created by generating a random number in the range � to �C � �� each
individual must represent a valid partitioning solution	 A valid partitioning solution is
balanced� each group has approximately the same number of components	

Select Parents

Each individual has a �tness value� which is a measure of the quality of the solution
represented by the individual	 The formula from Bui��� is used to calculate the �tness value
F for individual i�

�

GENETIC ALGORITHM
begin

create initial population of size P
repeat

select parent � and parent � from the population
o�spring � crossover
parent ��parent �
mutation
o�spring
update population

until stopping criteria met
report the best answer

end

Figure �� Genetic algorithm	

Fi �
Cw � Ci �
Cw � Cb

�

where Cw is the largest cutsize in the population� Cb is the smallest cutsize in the popu�
lation� and Ci is the cutsize of individual i	

Each individual is considered for selection as a parent� the probability of selection of
a particular individual is proportional to its �tness value	 Bui��� recommends that the
probability that the best individual is chosen should be � times the probability that the worst
individual is chosen	 Thus� the P chromosomes are sorted in ascending order according to
their �tness values� and a probability distribution function is created	 The probability factor
r is found by

r � �
�

P��

Assume that the probabilities assigned to each individual is a geometric progression�
where the sum of all these probabilities S is given by

S � � � r � r� � � � �� rP�� �
� � rP

�� r

Therefore� the probability that chromosome i is selected� Prfig� is found by

�

0 1 1 0 1 0 1

1 1 0 1 0 1 1

0 1 1 1 0 1 1

0 1 1 0 1 0 0Offspring 2

Offspring 1

Parent 2

Parent 1

Figure �� Crossover example	

Prfig �
ri��

S

Crossover

After two parents are selected� crossover is performed on the parents to create two o��
spring	 A chromosome split point is randomly selected� and is used to split each parent
chromosome in half	 The �rst o�spring is created by concatenating the left half of the �rst
parent and the right half of the second parent� while the second o�spring is created by con�
catenating the left half of the �rst parent and the complement of the right half of the second
parent	 An example of crossover is shown in Figure �	

Mutation

Each o�spring must meet the same constraints as its parents� the number of ones and
zeroes in the bit pattern should be nearly equal	 However� the crossover operation may
produce an o�spring that do not meet this requirement	 An o�spring is altered via mutation�
which randomly adjusts bits in the o�spring so that its bit pattern is valid	 The mutation
procedure determines the value b� which is the absolute value of the di�erence in the number
of ones and zeroes	 A bit location on the o�spring is randomly selected� then starting at that
location� b bits are complemented
zeroes become ones� ones become zeroes	 This operation
results in o�spring that represent valid partitions	

Update Population

�

The creation of two o�spring increases the size of the population to P ��	 Since we want
to maintain a constaint population size of P� two individuals will need to be eliminated from
the population	 The goal of the algorithm is to converge to the best quality solution� thus
the two individuals with the lowest �tness values are removed from the population	

Stopping Criteria

Bui��� uses a swing value W to determine when the algorithm stops	 If there is no
improvement after W generations� then the algorithm stops	 No improvement means that
there are no changes in the maximum �tness value of the population	 The �nal solution is
the individual with the highest �tness value	

��� Simulated Annealing

Simulated annealing
Kirkpatrick��� is an iterative procedure that continuously updates
one candidate solution until a termination condition is reached	 A simulated annealing
algorithm for circuit partitioning was created� and is shown in Figure �	 A candidate solution
is randomly generated� and the algorithm starts at a high starting temperature T�	 The
following sections explain the steps of the simulated annealing algorithm	

Calculate Gain

The gain of a partitioning solution is calculated by use of the ratio cut formula
Wei����

Gain �
cutsize

jAj � jBj

where jAj � the number of vertices in group A� and jBj � the number of vertices in
group B	

Accepting Vertex Moves

M is the number of move states per iteration	 For each move state� a vertex is randomly
selected as a candidate to move from its original group to the other group	 When a vertex V
is randomly selected for movement from one partition to another� its score� or acceptance of

�

begin

T � T�
tstop � ts
Current Gain � Calculate Gain

while tstop � � do

Accept Move � FALSE
for i � � to M do

randomly select vertex V to move from one partition to another
New Gain � Calculate Gain

�Gain � New Gain�Current Gain
if Accept Gain Change
�Gain�T then
Current Gain � New Gain
Accept Move � TRUE

else

return V to original partition
if Accept Move then
tstop � ts

else

tstop � tstop � �
T � T � �

end

Figure �� Simulated annealing algorithm	

�

Accept Gain Change��Gain�T�
begin

if move results in unbalanced partition then
reject move

else if �Gain � � then
accept move

else

R � random number
� � R � �

Y � e
��Gain

T

if R � Y then

accept move
else

reject move
end

Figure �� Simulated annealing scoring function

move� is evaluated according to the function shown in Figure �	 A move is always rejected
if it will result in an unbalanced partition� while a move is always accepted if it will improve
the solution	 Otherwise� a move is randomly accepted� with the probability of acceptance
dependent on the system temperature T	 The higher the temperature� the greater the prob�
ability that an inferior move will be selected	 This process allows the candidate solution to
explore more regions of the solution space at the early stages of the algorithm	 The objective
is to keep the solution from converging to a local optimum	

Stopping Criteria

After each iteration� the temperature T is scaled by a cooling factor �� where � � � � �	
The algorithm stops if there have been no changes to the solution after ts iterations	

� Experiment and Results

Three circuits were selected for data sets� the graphical representations of these circuits are
shown in Figures �� �� and �	 For the genetic algorithm�the population size P and swing
value W were varied during testing	 For simulated annealing� the starting temperature T��
cooling factor �� number of move state M� and stopping value ts	 were varied during testing	
Each set of parameter combinations forms a treatment� there were approximately �� trials

�

Circuit P W
� f����������g f������g
� f������������g f������g
� f�����g f������g

Table �� Experimental parameter ranges for the genetic algorithm	

Circuit T� � M ts
� f����g f�	���	���	���g f�������g f������g
� f���������������g f�	���	���	���g f�������g f������g
� f����g f�	���g f��g f���g

Table �� Experimental parameter ranges for simulated annealing	

per treatment	 The parameter ranges used for each circuit are shown in Table � for the
genetic algorithm� and in Table � for the simulated annealing algorithm	

For each graph� the mean cutsizes of the genetic algorithm and simulated annealing are
compared	 We want to estimate the di�erences between the means with a ��� degree of
con�dence	 According to Freund���� if �x� and �x� are the values of the means of independent
random samples of size n� and n� from the normal populations with known variances ��

�
and

��

�
� then

�x� � �x�� z��� �

s
��

�

n�
�
��

�

n�
� �� � �� �
�x� � �x� � z��� �

s
��

�

n�
�
��

�

n�

is a
�� ����� con�dence interval for the di�erence between the population means	

For a ��� con�dence interval�
� � � � ����� so � � ����� and ��� � �����	 From
the z�tables for standard normal distribution
Table III in Freund���� z����� � ����	 For this
study� index � refers to the genetic algorithm� while index � refers to the simulated annealing
method	 Table � shows the results� which are used to calculate the con�dence intervals	 A
bar graph that compares the mean cutsizes is shown in Figure �	

For data set �� the ��� con�dence interval is

Circuit �x� �� n� �x� �� n�
� �	��� �	��� ��� �	��� �	��� ���
� �	��� �	��� ��� �	��� �	��� ����
� �	��� �	��� ��� �	��� �	��� ��

Table �� Table of results	

�

Genetic Algorithm
Simulated Annealing

9

8

7

6

5

4

3

2

1

0

Circuit 1 Circuit 2 Circuit 3

Mean Cutsizes

Figure �� Comparison of mean cutsizes	

�

������ � �� � �� � ������

Since both limits are negative� we can conclude that� with ��� con�dence� the genetic
algorithm produces a solution with a smaller average cutsize than simulated annealing	

For data set �� the ��� con�dence interval is

����� � �� � �� � �����

Both limits are positive� but the di�erence is less than one	 Since cutsizes are integer
values� no signi�cant di�erence can be found between the genetic algorithm and simulated
annealing	

For data set �� the ��� con�dence interval is

������ � �� � �� � ������

Since both limits are negative� we can conclude that� with ��� con�dence� the genetic
algorithm produces a solution with a smaller average cutsize than simulated annealing	

Thus� the genetic algorithm produced a smaller average cutsize than simulated annealing
for circuits � and �� while no signi�cant di�erence was found between the methods when
applied to circuit �	

��

31

4

5

2

Figure �� Graph �

��

1

2

3

4

5

6

7

8 16

15

14

13

12

11

10

9

Figure �� Graph �

��

� Conclusion

Based on the results of the study� the genetic algorithm was shown to produce solutions equal
to or better than simulated annealing� when applied to the circuit partitioning problem	
Recall that the circuit partitioning problem was used to model the placement problem	
Simulated annealing is a popular contemporary placement method� however� the results of
this study indicate that genetic algorithms may lead to better results	

References

��� Sechen� C	 and Sangiovanni�Vincentelli� A	 �The TimberWolf Placement and Routing
Package�	 IEEE Journal of Solid�State Circuits� Vol	 SC��� No	 �� pp	 �������� April
����	

��� Cohoon� J	P	 and Paris� W	D	 �Genetic Placement�	 IEEE Trans� on Computer�Aided
Design of Integrated Circuits� Vol	 CAD�� No	 �� pp	 �������� November ����	

��� Shahookar� K	 and Mazumder� P	 �A Genetic Approach to Standard Cell Placement
Using Meta�Genetic Parameter Optimization�	 IEEE Trans� on Computer�Aided Design
of Integrated Circuits� Vol	 � No	 �� pp	 �������� May ����	

��� Sait� et al	 �Timing Driven Genetic Algorithm for Standard�cell Placement�	 In Proc�
��th Phoenix Conf� on Computers and Communications� pp	 �������	 IEEE� ����	

��� Holland� John H	 Adaptation in Natural and Arti�cial Systems	 An Introductory Analysis
with Applications to Biology� Control� and Arti�cial Intelligence	 University of Michigan
Press� ����	

��� Bui� T	 and Moon� B	 �Genetic Algorithms for Graph Bisection�	 Technical Report
CS������� Pennsylvania State University� Dept	 of Computer Science� April ����	

��� Kirkpatrick� Gelatt� and Vecchi	 �Optimization by Simulated Annealing�	 Science� Vol	
��� No	 ����� pp	 �������� May ����	

��� Wei� Y	 and Cheng� C	 �Ratio Cut Partitioning for Hierarchical Designs�	 IEEE Trans�
on Computer�Aided Design of Integrated Circuits� Vol	 �� No	 �� pp	 �������� July ����	

��� Freund� John	 Mathematical Statistics� chapter ��	 Prentice�Hall� �th edition� ����	

��

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure �� Graph �

��

