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Abstract

The size of the largest complete subgraph in a random graph is shown
to be a random variable with a very peaked density. The extent to which
the probability mass for this random variable is in the neighborhood of
a specified threshold function is investigated by closed form inequality
bounds affording numeric examples and by sharp asymptotic formulas for the
limiting behavior.
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I. 1Introduction and Summary

By a random graph G P we shall mean a graph on n vertices where each of
n,

the n(n-1)/2 edges occurs independently with probability p. The clique number

of a graph is the largest number of vertices in any complete subgraph of the

graph, and the random variable Zn D denotes the clique number of the random
b4

raph G .
grap n,p

In 1970 this author [4] utilized the mean and standard deviation of the

number of k-membered complete subgraphs of a random graph to derive the following

bounds on the density function of Z ,
j n-ky (& -1
(k.) ’p

Computational investigation of (1) suggested a very peaked behavior for the

density of Zn D’ and in [5] we presented the asymptotic result that for the
b4

threshold function

e
z(n,1/p) 2 logl/pn logl/plogl/pn + 2 logl/p 5 1

and any € > 0, with Lgi denoting the greatest integer less than or equal to x,
(2) limn+wProb{L;(n,l/p)—§J < Zn,p < lg(n,l/p)+e 1} = 1.

Thus Zn b takes on one of at most two values depending on n,p with probability
>

approaching unity as n»>®. A computational indication of the sharpness of the
approach to the limit was given in [5] by noting that the random graph on 1000
vertices with edge probability .5will have a largest clique of size exactly 15
over 807 of the time.

The distribution of Zn D has recently been the subject of more extensive

3>

investigations. Grimmett and McDiarmid [3] provided a result on the tails of

the distribution of Zn P by showing that the sequence of random variable {Zn 1
b b

satisfies




Z
n,p 2
log n log 1/p

as n > ®

almost surely and in any mean. Bollobds and Erdds [1] describe a measure on
infinite graphs GN,p {N=1,2,3,...} such that the induced subgraph G p o0 the
initial segment of vertices {1,2,..., n} has the same probability as in our
model of random graphs, and they then show that almost every infinite graph
GN,p has at most a finite number of initial segment graphs Gn,p for which

the clique number of Gn,p is not within'a small neighborhood of the threshold
function z(n,1/p). They also obtain a tighter asymptotic upper bound on
‘Prob{Zn’p < (1-¢)z(n,1/p)} than that directly implied by the left hand side of
(1).

Our purposes in this paper are first to derive closed form applicable in-
equality bounds on Prob{Lz(n,l/p)—QJ < Zn,p < Lz(h,l/p)+qJ} which then yield an
asymptotic result somewhat sharper than (2), and secondly to provide a non-

trivial lower bound on the tail Prob{Zl_1 . > Lz(n,l/p)+qj+l}.
b

In section II for N a non-negative integer valued random variable with mean

E(N) and standard deviation ¢ < =, we derive what we term the strong second

moment inequality.

2
EE() E(N)
G) 02+E2(N) " E(N | sampling by weight) < Prob{N#0} < E(N).

The lower bound formulation utilizing the concept of sampling by weight avoids explicit
determination of the second moment and appears better suited to investigation of
structures in random combinatorial configurations, and in section III is immediately
applied to obtain the fundamental inequality (1). Efficient computational utilization
of (1) is exhibited in example 1 where the spiked density function for Z

1000, .5

is shown to satisfy



Probi2 gy 5 < 13} < 0224,
PrOb{ZlOOO,.S < 14} < .1510,

8171 < Prob{zy o o = 15) < .9807,
.0193 < Prob{Z, o0 o = 16} < .0318,
ProbiZ;500,.5 2 177 = 00003,

Closed form approximations to the right and left hand sides of inequality (1)
are then pursued and specific functions €15 Cos and 3 bounded by constants in-
dependent of n are determined in theorems 3 and 4 which yield for specified ranges

of n, p and §,

1,82 1050 %2
Prob{Zn, > z(n,1/p)+8} < Cl(E) (e log l/P)) ’
1 S 9 log n S§+1/2
PrOb{zn,p < z(n,1/p)-1-6} < C3(H) (E"igg—i75?
Theorems 3 and 4 are then utilized to compute Prob{Z = 30} > .9997,
1019, .25

providing numerically sharper evidence of the spiked behavior of Z

Finally for z(n,l/p)+€ < k < 2z(n,1/p), inequalities are derived in theorem 5

k(k-1)/2

which show that Prob{Zn . >k} > (E)p as n>», thus affording a non-trivial

b4

lower bound on Prob{Zn . # [z(n,l/p)J}. Results on the asymptotic behavior of the

density of Zn b obtained from the inequalities of section III are summarized in
b

section IV.



II. The Strong Second Moment Inequality

Let N be a non-negative integer valued random variable with finite mean

E(N). The associated weighted random variable NW is the random variable with

density function {sj} given by

jr.
(4) s, = ~;;————- for j > 1, where r, = Prob{N=i}, i > 0.
J z. ir,

i=1 i

The choice of an integer prescribed by the density {sj} is termed sampling by

weight, and the resulting expectation is given by

© .2
z': J T, o

5) E(N | sampling by weight) = E(NW) = —%—L——~l for z jzr, < w
z1=liri J=1 ’

Theorem 1 (Strong Second Moment Inequality):

Let N be a non-negative integer valued random variable with mean E(N),
standard deviation ¢ < «, and let NW be the associated weighted random variable
with mean E(Nw). Then Prob{N#0} satisfies

E(QN) _ B2(N)
(6) = < Prob{N#0} < E(N).

E(Nw) 02+E2(N) -

Furthermore, the right hand inequality is tight if and only if Prob{N>2} = 0,
and the left hand inequality is tight if and only if Prob{N=k}> 0 for at most

one non-zero value of k.

Proof: For the right hand inequality

o ©

Prob{Nf0} = ] r, < ] ir, = EQN),

i=1 © 7 i=1
where equality is obtained if and only if ri=0 for i>2. To obtain the left hand

inequality note, in general, that 2ij < 12+j2 with equality if and only if i=j.

Thus
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so that

E(N)
2

© jr,
_ 1
j=1 E(N)

< Prob{N#0}

with equality if and only if rk#O for at most one value of k>1. Utilizing

(5), the theorem is complete.

Note that in contrast to the lower bound in (6), a standard application of the
Chebyshev inequality yields only the weaker result Prob{N#0} > 1 - UZ/EZ(N).
Erdos and Spencer successfully utilize the Chebyshev inequality in several
counting problems in [2] terming the technique the '"second moment method".
Thus we refer to the use of the sharper inequality (6) as the "strong second
moment method" and will now contrast the two methods.

For our investigation of cliques in random graphs, we shall be particularly
interested in bounding the Prob{N(n)#0} for a particular sequence N(n), n=1,2,...
of non-negative integer valued random variables. ZLetting N(n) have mean M and
standard deviation o for n>1, the general case of asymptotically increasing

means where Moo On/un > 0 as n > *® is seen to provide the same asymptotic



lower bound on Prob{N(n)#0} by either (6) or the Chebyshev inequality. For
asymptoically decreasing means where I g < 1/2 as n » « the Chebyshev

2

lower bound is trivial, whereas if Z?zlj Prob{N(n)=j}/Prob{N(n)=1} »~ 1 as n » =,

the strong second moment method yields the asymptotic equality

Frob{N(n)#0} = w _+o(u ).

The latter situation is obtained in our application to cliques in random graphs,
as will be demonstrated in theorem 5.

The formulation of the lower bound in (6) in terms of E(Nw) can be useful
for many random combinatorial problems. For the randomly chosen combinatorial
structure Y, let Ai’ i=1,2,..., m denote the occurrence of the ith sub-
structure in Y, and let N denote the number of Ai occurring in Y. Suppose the
symmetries of Y are such that the occurrence of any particular Ai is not favored
by knowledge that exactly k of the m substructures otcur in a chosen structure Y.
That is, assume

Prob{A, |N=k} = Prob{a |N=k} =~ =X for 1 < i <m, 0 <k <m

It is then readily shown that E(N[Al) = E(Nw), which proves the following corollary.

Corollary 1.1: Let N be the number of events {Ai}, i=1,2,..., m that occur when

a sample point of the sample space £ is chosen. If
Prob{Al]N=k} = Prob{Ai]N=k} = %—for 1<i<m 0<k<m,

then

(7 E(N)

< Prob{N#0} < E(N).
E(N Al) - -

This latter formulation of the strong second moment inequality is particularly

appropriate for the investigation of cliques in random graphs.



II1. Bounds on The Clique Number of a Random Graph

For n>1, 0<p<l, let the sample space I be composed of all graphs on

n vertices. The probability of each particular graph Gn peZ where G

m(m-1)/2-m ’

has m edges is then pm(l—p) in our formulation of a random graph.

The clique number of a graph is the number of vertices in a largest com-

plete subgraph of the graph. Let the random variable Zn b denote the clique

b

If a sample graph Gn peZ has a complete

b4

number of the random graph Gn b

b

subgraph on k vertices, then this fact assures that Zn pzk for that sample graph

b

Gn b Application of the strong second moment method yields the following
b

bounds noted in [ 4].

Theorem 2: For n>1, 0<p<l, let Zn b be the clique number of the random

b

graph Gn b’ Then for 1<k<n,

b

k=37 37 -3(-1) /2 n -
(8) j=max{0,2k-n} ™ P = Prob{Zn,P > kP < (p ]
k

Proof: Let the index i=l,2,...,(£) correspond to the (E) k-membered sub-

sets of vertices of the random graph Gn Let Ai denote the event that

b

the random graph restricted to the ith k-membered subset of vertices is a

pk(k—l)/Z

complete graph. Thus Prob{Ai} = for liij(g), and with N denoting

the number of Ai that occur in a random graph,

(9) L OE() = (§>pk(k'l)/2.

It is immediate from the definition of a random graph that

= = = = ._'Q’ 7 n n
Prob{A, [N=2} = Prob{a |N=p} = o for 1<i< (), 0<2< (.
k



The event A_ determines that all edges on a particular set of k of the n

1
vertices must occur, so the event Ai given Al has probability pk(k-l)/z_:’(:,_l)/2

if the 1lst and ith k—membered sets have j vertices is common.

Hence
k n-k, ,k

) ¢ k(k~1)/2-3(3-1)/2
k=373

(10) E(N[Al) ( )p

j=max{0,2k-n}

Noting that Prob{N#0} Prob{Zrl pzk}, equations (9), (10) and corollary 1.1

*

yield the theorem.

Theorem 2 is now utilized to show that the discrete valued random

variable Zn o can have a surprisingly peaked density.
b

Example 1:

Random Graph: GlOOO,.S

Size: n = 1000
5!

Edge probability: p = 1/2

Claim: The maximum clique size in a random graph on 1000
vertices with edge probability 1/2 is usually the single value 15,

more specifically

Prob{zy o g < 13} < .0224,
ProbiZ, q, 5 < 14} < .1510,
.8171 < PrOb{ZlOOO,.S = 15} < .9807,
.0193 < Prob{Zyyq, o = 16} < .0318,
Prob{z > 17} < .00003.

1000, .

(9,1



To verify the claim the upper bound of (8) is utilized

for k=16,17 to derive

16} < (looo)<%> 16x15/2

PrOb{leOO,.S > < 16 = ,0318,
17x16/2
f (1000) (l) _
ProbiZ, oo 5 2 17} < 17 3 .000028.
15x14/2
, 1000 1
Since ( 15 )(5) = 16.96, the upper bound of (8)

is trivial for k=15.
To facilitate the computation of the lower bound in (8)

assuming n>2k, let b = 1/p and

aj(n,k) = <£;§)J;§) bj(j—l)/Z

o for 0<j<k,
(%)
so then
k -1
Prob{Zz > k
n,p 2 b o> {'Z aj(n,k)}
i=0
Now
_ {(n-k) (n—k-1)...(n-2k+1)
OLO(n’k) “ n(n-1)...(n-k+1) >

2]
_ (k=3)°b
%541 (8 = R ek D) %

(n,k) for 0<j<k-1,

so the aj may be readily computed by recursion as illustrated in

table 1.
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\ k=14 k=15 k=16
5 E%%%}%§7%i? a, (1000, 14) E%ii%%%%f{f) & (1000,15) E%gig%%%gzg) a, (1000,16)
0 .20143 .81980 .23171 .79587 .26418 .7710
1 .17351 .16514 .20164 .18441 .23159 .2036
2 .19692 .02865 .23158 03718 .26913 .0472
3 .24795 .00564 .29568 .00861 .34773 .0127
4 .32753 .00139 .39712 .00254 .47358 .0044
5 44171 .00045 .54644 .00101 .66255 .0020
6 .59764 .00020 .75800 .00055 .93772 .0013
7. .80000 .00012 1.04703 .00041 1.32786 .0013
8 1.04383 .00009 1.42367 .00043 1.86330 .0017
9 1.30346 .00010 1.88081 .00062 2.56523 .0032
10 1.51521 .00013 2.37234 .00117 3.42315 .0082
11 1.56097 .00019 2.78071 .00278 4,35374 .0282
12 1.27950 .00031 2.88473 .00774 5.13886 .1230
13 .59345 .00039 2.37862 .02234 5.36281 .6324
14 .00023 1.10890 .05315 b bb462 3.3918
15 .05894 2.08130 15.0754
16 31.3765
Z?.o a, (1000,k) 1.02283 1.17775 51.6839

Table 1: Computation of u3 (n,k) for n=1000, b=1/p=2, k=14,15,16.
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Thus
Prob{Z > 14} > ———2 = 9776,
1000,.5 2 Z 1702283
Prob{z, g0 -5 > 153 > T = -8490,
ProbiZy oo ¢ 2 163 > 3176%35 = .01934,

which along with the previous computed upper bounds verifies the

claim.

This example demonstrates that the value 15 is essentially a threshold
level for the occurrence/non-occurrence of complete subgraphs of the speci-

fied size in the random graph G In general for n > 1, 0 < p = %’< 1,

1000,.5"

let the threshold function z(n,b) be given by

= _ e
(11) z(n,b) = 2 logbn 2 logblogbn + 2 logb >+ 1.

The next two theorems demonstrate that the random graph Gn o will most
likely have a complete subgraph of size k for any k<z(n,l/p)-¢ and most
likely not have a complete subgraph of size k for any k>z(n,l/p)+e for any

£>0.

Theorem 3: Let 0 < p =

o=

< 1, and assume n>2. Let z(n,1/p) be the threshold
function given by (11). For the integer k>1 with z(n,1/p) < k < n, let

§ =k - z(n,1/p) > 0. Then
(éiogbn)6+210gbe
(12) Prob{Z > z(n,1/p) + 8} < ———
n,p - - n6

(546%) /2
poo e

el+6/§%(z(n,l/p) + §)

Proof: Proceeding from theorem 2, a reasonably tight upper bound on (E) pk(k—l)/2

exhibiting the dependence on n,8, and p is desired. Now k! > (%)kVZWk for k > 1

by Stirling's formula, S0

k
(13) M < Do ek 1

T .
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Let z = z(n,1/p), so with k = z+§,

k(k-1)/2 = (k+3) (z=1)/2 + (64+6%)/2,

and from the defining equation (11) for z(n,1/p),

(z-1)/2 _ 2 logbn
p “en

so
2 logbn k+§

2
) p(6+6 )/2-

(1) Sk (k-1)/2 =<

en

Substituting (13) and (14) into the right hand side of (7),
' 2 log,n k, 2 logbn\d (6+62)/2
(15) rob{Zn > k} f( P

sP k > ( en ) /Egif——__

From (11) with k = z+6,

- T - e _
2 logbn = k-6 + 2 logblogbn 2 logb 5 1.
long logvu
Noting that 1+ x < e* for all real x and u =w for u,v,w > O,

2
2 log,n k 2 logb(giogbn)—l—é k
) =1+ .

. 2
2 log, (log,n)-1-6
< e b e b

21 )2 logbe
(g ogbn

= s

1+6
e

and substitution into (15) yields

§+2 log, e
2
(=3log. n) b (6+62)/2
e b p
Prob{Z > z481 < 4
{ n,p - z+8} - n(S el+6V2W(z+6)

which is equation (12).
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To investigate the lower bound in (8) note in example 1 (Table 1)
k=15,16 that the terms aj(n,k) are first decreasing and then increasing
in j. The next lemma shows that for sufficiently large n with k in the
neighborhood of z(n,1/p), the sequence az(n,k), a3(n,k),..., ak(n,k) is

at first sharply decreasing through some term am(n,k), where

1 3 . , .

Z{z—l) <m < Z{z—l)+l, and the sequence is then sharply increasing from
am(n,k) (or am+l(n,k) if am(n,k) = am+l(n,k)) through ak(n,k). This be-

havior is pronounced so that the sum Z?=2aj(n,k) is dominated by the

initial and terminal terms.

Lemma: For O < p <-% < 1, let n and k be chosen so that with the
threshold function z=z(n,b) given by (11),
6
(1) n > (2 logbn) s

(ii) 2 logbn > evb ,

e b
(1ii) =z > 21 G >
(iv) %z <k < 2z,
and let
-k, k
ATHEE L.
(16) o, = —K=37737 G 3G-D2 g0 9 <5 <k
j n. -
(k)
Then
k 1
(17) .}j o < (a, + ) (1 + =777 )
j=2 n

for



—1b-

Proof: For n sufficiently large conditions (i)-(iii) must hold.

£

1
5 + 5 s SO from (11) 2 logbn > z.

From (ii) logblogbn > logb

Thus conditions (i)-{(iv) tacitly require

(18) nl/6 > 2 logbn >z > 21,
(19) 4 logbn >k > 19.
.. . . (z-1)/2 _
The defining equation (11) for z yields b = en/(2 logbn),
so from (16)
23
o .2 z-1
J+l _ (k-1) ( en < 5 < ke
(20) aj (i+1) (n-2k+j+1) 2 logbn for 2 <3 < k1.
The range j = 2,3,...,k will be treated in three cases.

Case 1: Let 2 < j fr(z—l)/4 . From (20), (19), (18), noting n > 105k,
o, 2 1/2

(21) j+1 < k en /
uj - 3(n-2k) \2 logbn

6— 1/4
sel/2 [(2 log, n) '! 1

- 3(1-2k/n) n R 1/4
n
<3 for 2 < j < (z=1)/4
S T174 =z '
n
Let m < k be the largest index such that o, > 04 > il > o - Now

z > 21 implies m > 6, so from (18), (19)
m

(22) jzz aj <o, o, ka4

3 9k
<0 (l 3t 1/2)

7
“2(1 + 1/4)
n

IA
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Case 2: Let (%)(z—l) < j < k-1 . Utilizing (20), (19), (18),

a. 3/2
(23) J+1 N 1 en /
a, = (j+1l)n \2 log n
i b
3/2 1/2
e n

iv

2 (2 1ogbn)5/2

> ' for 2 (z-1) < <kl

Let m' > 2 be the smallest index such that o , < o_, < ...
- m m'+1

Since z > 21 and k > 22

k-3 > Zz - (Eig) 2-%(2—1) s

b

8 8

so (23) holds for k-3 < j < k-1 . Thus using (18), (19),

K
(24) jzm, ST T T R TS B
1 1 K
< o (l + + + )
N Y T VI V1

+

< ]_ __l__
2 “k( 1/12
n

Case 3: %(z-l) -1<3¢< %(z—l) . Using (i)-(iv) and (20),

sy il GeimD PG (e2kegil)
OLj+1/o‘j (k-—j)z(j+2)(n—2k+j+2)
. 2 \
i 8Y f{_5&\f_1L
2 \l‘z) \ )‘l Ak
21
g ( '7)*’

v/

1 for-%(z—l) -1<3 f‘%(z—l)
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Along with the results of cases 1 and 2, this confirms that
Ogs Ogy weny Oy is strictly decreasing through some term o s

%(z—l) <m f-%(z—l)+l, and then strictly increasing from term

o (or Y if o = am+l) through Oy Thus from (22), (24) and
(18),
Kk ,
1 /
(26) Z ocj < (l + 1/12) (0‘2 + ockw ,
j=2 n

proving the lemma.

Theorem 4: For 0 < p < %—< 1, let n and k be chosen so that with

the threshold function z=z(n,b) given by (1),
(i) n> (2 logbn)6 .

(ii) 2 logbn > evb ,

b
b_l) b

(iii) =z
, 7
(iv) e <k <z.

> 21 (

Then for § = z-k > 0,

C% logbn)6+l/2 (62—6)/2 (1ogbn)4
(27) Prob{z < z-1-8} < 3 - 6b + 10b
n,p - - n 2
n
Proof: From the left hand side of (8),
-k, /k
Kk GO Lo
k-3’37 i(i-1)/2
Prob{z >k} >1/ ) — b R
n,p - =0
k n~-k, k, _ /D
Since 2j=0 (k—j)(j) = () and b > 1,
n-k, /k
k () ‘s
k- 3G-D/2
Prob{Z < k-1} < ) *‘%ﬁ‘J (b D
n,P =0 ()

A5 E
ko k=103 L3G-1D/2,
n
L

1A
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and by the preceeding lemma
X 1
(28) Prob{Zn,p f k—'l} f jzz (Xj f ((X,2 + (Xk) (l + ;—l—/—l—z‘)

Conditions (i)-(iv) of theorem 4 yield k < z < 2 1ogbn, so from (16)

4
S S P i il
2 - 22 - 2 2
n n
Note that o = l/({(l)‘pk(k—l)/2 is the inverse of the expected

number of k-membered complete subgraphs.

1/6

Utilizing Stirling's formula noting n >k >19 ,
1 k! k k v21k el/12k k k 1/2
< ——— < (=) —/—— <{—} (2.52)k .
n\- k - ‘en k - \en
(%) o

(:-)

With 6 = z-k > 0, k(k-1)/2 = (k=8)(z-1)/2 + (8°=8)/2 and from (11)

b(z_l)/2 = en/(2 logbn), SO

k
k(k-1)/2 (k 1/2
b <EH) (2.52)k

tA

(30) O

8

2 log. n 2
(——z;;li— (2.52) (2 logbn)l/zb(6 -8)/2

tA

5 § +1/2
(-log n)

e b
6

n

2
(4.16) (8 —8)/2

tA

Thus from (28), (29), (30) with n > 216 implied by (i)-(iv),

(g log n)é +1/2 ) . .
Prob {Z < k-1} < e b/ 6b(6 -8)/2 + Ogbn)
n,p - - 8 5

n n

10b

proving the theorem.
The following numeric example employs the results of theorems

3 and 4 to show how peaked the density of Zn o can be for large n.
b
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Example 2: Random Graph: G 10
T 1077, .25
Size: n = 10lO
Edge Probability: p= .25
Threshold Function: z = 30.608
We wish to bound the probability that Z | has the
10
107, .25
value 30Q. From inequality (12) we determine
Prob{z . > 31} < .000145.
1077, .25
10 . . ‘s
Now 2 log410 = 33.219 and conditions (i)-(iii) of theorem

4 are verified.

Thus from inequality (27),

Prob{z . < 29} < .000068
1077, .25
and we obtain
Prob{z ., = 30} > .9997
107, .25

Heving established the fact that the density of Zn . is

peaked in the neighborhood of the threshold function z(n,1/p),
it is of interest to ask if inequality (8) yields any immediate

insight into the tails of the density of Zn . For values of

Kk (k=1)/2 ’

k > z(n,1/p) where (E)p << 1, the discussion of the strong

second moment method in section II suggests that both bounds of
inequality (8) may be quite good if the cliques of size k do not
come in bursts. In example 1 the bounds of (8) yielded the result

.0193 < Prob{z > 16} < .0318 for k=16> z(1000,2) = 15.18.

1000, .5
Utilizing the preceeding lemma, the next theorem shows that for

k(k-1)/2

z(n,1/p) < k < 2z(n,1/p) with (E)p << 1 and sufficiently large n,

the two bounds of inequality (8) are indeed quite close.
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Theorem 5: For 0 < p = % < 1, let n and k be chosen so that with the
threshold function z = z(n,l/p) given by (11),

(i) n > 2 (logbn)6 s

(ii) 2 logbn > e/g_,

(iii) =

1v

b
(iv) 2z < k < 2z .
Then

(31) E(N) (1 - 2E(N)) < Prob{z_ b 2 k} < E(N)

b

S
1/12
n
_ oy k{k-1)/2 .
where E(N) = (k)p )/ is the expected number of k membered complete

subgraphs of Gn

»D

Proof: From (8), (16) and (17)

1 1
Prob{Zn . > k} > . > i
’ L+2; o0y 1+ (o) +a)d+ n1/12)

From (16), conditions (i)-(iv), and (18),

4

Q,2 f _..._.k;_b_ < l s
2n2
and from (16)
-1 _ ,n, k(k-1)/2 _
oo = (Dp = E(M)
Thus
Prob{z > k} > 1
ro n’p - - (2 + OLk)(l + l )
1/12
n
-1
x
- A+ 20,7+ )
k L1712
1
> E) (1 - _T7I§ - 2EQ(Y)) ’
n

and the theorem follows.
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IV. Asymptotic Value of the Clique Number of a Random Graph

The bounds of theorems 3 and 4 may be utilized to derive the following

asymptotic behavior for the clique number of a random graph.

Theorem 6: For 0 < p = %—< land n >1 let z = 2 logbn -2 logblogbn + 2 10gb %-+ 1.

Then for any ¢ > 0, the maximum clique size Z of the random graph Gn o satisfies
b b

(n ", (nm)*

£ 2

(35) Prob{|z-¢| < Z < l;+§J} = 1-0
- n,p -~ n n

2

- 1 2
where ¢ = max {=, b

%} and LXJ denotes the greatest integer in x.

Proof: For n > 2, let § = Lz+§J + 1-z, so from (12)

Prob{Zz < Lz+qj} = 1 - Prob{Z > Lz+qj + 17
l’l,p - n’ -
= 1 - Prob{Z > z+48}
n,p -
5 §+2 logbe
(=1log, n)
> l - e___b_
- § 1/2
n z

Now € is constant and € < §

I A

1+ ¢ for all n, so

2 1
e +— - =
b 2
(Xn n) in

€
n

\%
=

Prob{Zn’p < lz+ely > 1 -0

For n sufficiently large so that conditions (i)-(iii) of theorem 4 and

8% = z - |z-¢] < z/8 are satisfied, utilizing (27)
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Lz—E_l - 13

Prob{|z-¢] < Zn,p}

it
=

- ProbiZz
n

I A

b

=1 - Prob{Zn < z=1-8%}

Y -

%
(glog n)6 +1/2
e b
> 1 - — 6b
z 5%

n ‘ n

4
(6% —ewy/2 _ (togym)

5 10b.

Again ¢ is constant and e

VA

8% < 1 + ¢ for all n above, so

]
=

\P 3 2

(en n)€ + %- (g n)4
Prob{ | z- z ) - o — + A
ro ]_Z 8_' i n O . 0 >

and the theorem follows.
In theorem 5 of the previous section the strong second moment method was

utilized to obtain a lower bound on Prob{Zn > k} for k » z. This result is

now utilized to provide an asymptotic lower bound on the tail Prob{Zn b > LZ+QJ+1}

of order comparable to the asymptotic upper bound on the tails implicit in theorem
6.

Theorem 7: For 0 < p = %—< 1, n>1, let z = z(n,1/p) be given by (11). For any

e > 0, there exist constants ¢ = c(e,p), M = M(e,p) such that for all n > M,

1/2+4¢
36 P (20 n)
(36) rOb{Zn,p > Lg+qj+l} > e
n
Proof: For 0 < p< land n = 1,2,..., let k = k(n) be uniquely determined by
z+e < k < z+et+l. By Stirling's formula there exists ¢y 0, Ml > 1 such that
k
n eny 1
(k) > e GO for n > M,.

Yk
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Let 8§ = 6(n) = k~z < l+e, so utilizing (14) there exists ¢, > 0 such that

2 logbn k+6

> ¢, (——) for n > 2.

k(k-1)/2
P - 72 en

Now k < 2 logbn < 2k for sufficiently large n, so there exists c_, > 0 and M2

3
such that
k(k-1)/2
) = (% pRD/
§
2 logbn 1

> c,C —_— - for n > M

172 en JE 1

1/2+¢

> ¢ (4 n) for n > M.

3 nl+€ 2

The choice of k = k(n) > z+e assures by theorem 3 that E(N) - 0 as n > =, so

from theorem 5 Prob{Zrl . > k} >~ E(N) as n > =, and the theorem follows.

3
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