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Abstract 
 

We introduce a right-to-left digit serial algorithm for 
the integer power operation y

x  where  and x y are 
positive integers. For n-bit words the algorithm utilizes 
O(n) additions and does not require use of a multiplier. 
We describe a hardware implementation and evaluate the 
effectiveness employing a Synopsys tool set with a 
standard cell implementation. Out digit serial algorithm 
compares favorably with a popular iterative square and 
multiply algorithm implemented with the same tool set. 
 
1. Introduction 

 
Algorithm for computing the powering operation 

y
z x=  where y  is a positive integer has been the subject 
of considerable research. The binary squaring method 
determines 2 4 8

, , , ,...x x x x  and processes the bits of y  
right-to-left to multiply by the appropriate binary powers 
of x  to determine y

x . This algorithm has been described 
in many popular texts [9][10][11]. Knuth [11] traces this 
“fast” algorithm back to al-Kashi in the 15th century.  

We are interested in the particular case where ,x y  and 
the result z  are all non-negative k-bit integers. For 
typical word sizes such as k = 8,  16, 32, 64, 128,…, this 
integer valued powering operation is proposed to 
supplement the integer addition and multiplication 
operations. The squaring algorithm may be implemented 
in hardware with microcode and a fast multiplier much 
like the floating-point transcendental operations in the 
Pentium and Athlon processors.     

For implementation in hardware there is a need for a 
simpler algorithm that avoids the use of a large multiplier. 
There is a further need for a right-to-left digit serial 
algorithm that requires less time for lower precision 
operations when a family of precision levels is 
implemented in hardware.  

In this paper, we introduce a novel digit serial algorithm 
for evaluation of the integer power operation y

x  that does 
not require a multiplier. The algorithm employs 
conversion of   x  to a discrete log format [2], bit serial 
multiplication with the discrete log value providing the 
“recoded multiplier bits” and the exponent y  being the 

multiplicand, and bit serial deconversion of y
x [6] to 

provide the result z .  
The paper is organized as follows. We present some 

number theoretic background material on the integer 
power operation and review the foundations for the 
algorithms in Section 2. In Section 3, we present our digit 
serial integer power algorithm. Section 4 contains a 
hardware implementation of our proposed algorithm 
while Section 5 provides area and delay estimates from 
the standard cell synthesis.  Conclusions are presented in 
Section 6. 
 
2. A Digital Serial Integer Power Algorithm 

 
The inheritance principle [8] for integer operations on 

binary operands informally states that the k-low order bits 
of the result depend only on the k-low order bits of the 
operands for all 1k ! . This principle provides the basis 
for right-to-left digit serial integer operations. 
Specifically, assume we have determined the low order 
(k-1)-bits of the result from the  (k-1) low order operand 
input bits. Incorporating the k-th bits of the operands, the 
k-th result bit can then be determined with the (k-1) lower 
order result bits “inherited” from the preceding serial 
computation.  

For a binary integer operand 
1 2 2 1 0

..
n n

x b b b b b! != , the 
modular notation 

1 2 2 1 02
..k k k

x b b b b b! !=  is employed  [4] 
herein to denote the value of the standard low order k- bit 
string for all 1 k n! ! , and the inheritance principle can 
then be stated more formally. 

 
Inheritance Principle: The integer operation z x y= !  

has the inheritance property if for all non negative 
integers ,x y , 

k2 2 2 2
 for all 1.k k kz x y k= ! "             (1) 

 
Integer addition and multiplication clearly have the 

inheritance property, as evidenced in the traditional right-
to-left “carry ripple” algorithms. To establish a foundation 
for our digit serial integer power algorithm, we note here 
without proof that the operation y

x  satisfies the 
inheritance property given appropriate exception handling 
for zero valued operands.  



Note that x  has a unique factorization into odd and 
even terms 2

p
x n=  with n odd. It is straightforward to 

show [1,3] that the 2
2
k!  members of the sequence 

2
0 1 2 2 1
3 ,3 ,3 ,...,3

k!
!  reduce modulo 2k  to a sequence of 

distinct odd numbers covering half the odd numbers 
in [1, 2 1]

k
! . The complementary values 

2
( 1) 3

k

s e
!  for 

{0,1}s! , 2
0 2 1

k
e

!
" " !  cover the other half of the odd 

numbers. For example for 5k = , the reduced sequence is 
1,3,9,27,17,19,25,11, and the complementary sequence is 
31,29,23,5,15,13,7,21. Thus every odd k -bit integer is 
uniquely represented by the exponent pair ( , )s e  termed 
the Discrete Logarithmic System (DLS) representation.  

Efficient solutions of the integer-to-discrete-log 
conversion and deconversion operations are presented at 
the algorithmic level in [1,2,6]. These methods employ k  
sequential steps of a table lookup exponent recoding 
operation interleaved with a shift-and-add modulo 2k  
operation. 

Binary-to-discrete log conversion refers to 
determining the pair ( , )s e  given the k ! bit odd 
integer n , and deconversion refers to determining n given 
the pair ( , )s e , where n , s , e  satisfy

2
( 1) 3

k

s e
n = ! . For 

conversion, s  is determined by conditional 
complementation to obtain a normalized n congruent to 1 
or 3 (mod 8). This reduces the conversion operation to the 
determination of the discrete log dlg( )e n=  for 

n congruent to 1 or 3 (mod 8), with 2
0 2 1

k
e

!
" " ! . The 

deconversion problem reduces to evaluating the 
exponential residue operation determining n  
where

2

 3  
k

e
n = . For completeness here we review 

algorithms from [2,6] demonstrating that both the 
exponential residue operation (determining n  given e ) 
and the discrete log operation (determining e  given n ) 
can be performed by a series of less than k table-assisted 
shift-and-add operations employing exponent recoding. 
 
2.1 Additive Based Exponentiation Modulo 2k 

 

2
| 3 | k
e can be computed using the well known 

square-and-multiply method. This entails successively 

computing 2

2
| 3 | k , 4

2
| 3 | k , …, 2

2
| 3 |

k

k , by squarings. 
Then, the unit bits of the binary representation of e  select 

the corresponding residues 2

2
| 3 | ,

l

k l k< , so then 
2

| 3 | k
e is 

obtained as the reduced product of these residues.  
 

Table 1: Two Ones Discrete Log Table for k = 8 

 
We note that similar methods lead to the correct 

result when the exponent e  is recoded as a sum of 
elements 22

| | ki
e ! "= #  [6]. In this case 

2
| 3 | k
e can be 

computed as
2 2

| 3 | | 3 |ik k

e !"= . Of course, this presents an 

advantage if the 
i

!  and/or corresponding powers {3 }i
!  

are precomputed and available by table lookup. In [6] it is 
shown that any exponent e  can be expressed as a sum 
of dlg(2 1)i

+ ’s termed the two-ones discrete logs. 

Since dlg(2 1)3 2 1
i

i+
= + , it follows that the corresponding 

multiplications can be performed as a series of shift-and-
add operations. This works if the two-ones dlg’s are pre-
computed and stored in a table such as Table 1. Algorithm 
1 determines the unique set of dlg(2 1)i

+ ’s whose sum 
modulo 2k-2 equals e . It thus allows efficient conversion 
from DLS-to-binary. In the algorithmic description that 
follows, index notation is used for the corresponding bit 
of the standard binary representation. 

 
Algorithm 1: Deconversion Algorithm (EXP) 
Stimulus: 3 4 2 1 0, ..

k k
k e e e e e e! !=  

Response: 
2

3
k

e  

Method: L1: if bit( 0,e )=1 then : 11y = ; : 1q e= !  
  L2: else : 1z = ; :q e=  
  L3: end 
  L4: for : 1 to 3i k= !  do 
  L5:  if bit( ,i q )=1 then 

2 1
i
+  dlg(2 1)i

+  check i 
Bin. Dec. Bin. Dec.  

0 0000 0001 1 0000 0000 0 
16

0

2

 3  1=  

1 0000 0011 3 0000 0001 1 
16

1

2

 3  3=  

2 0000 0101 5 N/A N/A N/A 
3 0000 1001 9 0000 0010 2 

16

2

2

 3  9=  

4 0001 0001 17 1011 0100 7604 
16

7604

2

 3  17=

 
5 0010 0001 33 0010 1000 15912 

16

15912

2

 3  33=

 
6 0100 0001 65 0101 0000 10064 

16

10064

2

 3  65=

 
7 1000 0001 129 1010 0000 15008 

16

15008

2

 3  129=

 



  L6:   
2

: ( 2) kz z z i= + << +   

   2: dlg(2 1)i
q q

+
= ! +  

  L7: end 
  L8: end 
  L9: return z 
 
Please note that lines L1 − L3 correspond to initialization. 
The product z is set to either 1 or binary 11 
(corresponding to 

0
1e =  or

0
0e = ). The working variable 

exponent q  is always set in such a way that z corresponds 
– for each iteration – to 3 raised to the exponent ( e q! ) 
and the least significant i bits of q  are all 0s. The 
algorithmic step of lines L4 − L8 represents updating q  

by subtracting 2dlg(2 1)i+
+ , which simply represents the 

exponent of  3 that reduces to 2
2 1
i+

+ . This is followed by 
updating the product z to reflect the changes in 
exponent, 2

2
: (2 1)

k

i
z z

+
= ! + . Eventually, after ( 2k ! ) 

steps, q becomes 0 and the "product" z corresponds 

to 0

2 2

3 3
k k

e e!
= . The values 2dlg(2 1)i+

+  can be stored 

in a lookup table and this method is practical for large 
64,128,...,k =  since the table has only k entries. 

 
2.2 Additive Based Discrete Logarithm Modulo 2k 

Computing the discrete logarithm for certain k ! bit 
odd integers x  can be accomplished using a method [2] 
that is essentially the dual of the exponentiation method 
of Section 3.1. The key idea is to express x , if possible, 
as a product of two-ones residues:

2
| (2 1) | k

i
x = +!  for 

selected i ’s. Once this is done, the discrete logarithm can 
be computed as the corresponding sum: 

22
dlg( ) dlg( (2 1)) | dlg(2 1) | k

i i
x != + = +"# [2]. The 

solution involves identifying the cases when x  can be 
expressed as such a product and finding the corresponding 
unique set of two-ones residues. It is shown in [2] that x  
can be expressed as a two-ones residue product as long as 
x  is congruent with 1 or 3 modulo 8. Note that for the 
remaining odd residues, corresponding to x  congruent 
with 5 or 7 modulo 8, their additive inverses 

2
| | kx!  are 

congruent with 1 or 3 modulo 8. The method in [2] 
identifies the set of two-ones residues and thus it is the 
core of a digit serial conversion method from binary to 
DLS. 
 
 
 
Algorithm 2: Binary to DLS Conversion Algorithm 
(DLG)  

Stimulus: 1 2 2 1 0, ..
k k

k x x x x x x! !=  with 
0
1x =  

Response: discrete log of x , expressed as an (s, e) 
pair:

2
| ( 1) 3 | k

s e
x = ! . 

Method: L1: if
8
{1,3}x !  then : 0s = ; 

  L2: else : 1s = ; : 2
k

x x= !  
  L3: end 
  L4: : 1p = ; : 0e =  
   L5: for : 1,3 to 1i k= !  do 
  L6:  if bit( ,i x )=bit( ,i p ) then 
  L7:   

2
: kp p p i= + << ;   

   : dlg(2 1)i
e e= + +  

   L8: end 
  L9:end 
  L10: Result: (s, e ). 

 
The initialization stage is performed in lines L1 − L4. 

If x  is not congruent with 1 or 3 modulo 8, the arithmetic 
sign is considered (i.e. s := 1 in L2) and the algorithm 
determines the dlg of the complement 

2

2
k

k
x!  (i.e. 

: 2
k

x x= ! in L2).  
The second stage contains the main iteration step and 

is represented by lines L5 − L9, where both p and the 
exponent e  are updated. p is conceptually updated 
as (2 1)i
p p= ! + , while the exponent e  is updated by 

subtracting the corresponding values dlg(2 1)i
+ , looked 

up from a table. 
The final result is computed in line L10 as the sign s 

and the exponent e . The updating of e  and p in lines L7 
can be performed concurrently. As can be seen by 
inspection of Algorithm 2, the time complexity is 
essentially k dependent shift-and-add modulo 2k 
operations. 

 
2.3 Existing “Fast” Binary Squaring Algorithm  
 

The existing fast algorithm is based on the fact 

that
1

0

2

k
i

i

i

y y
!

=

=" . So that we can get the formula 

1

0 11
0 0 11

2

2 22

2
2

2

...

k
i

i k
i k

k k

k

y
y yyyz x x x x x

!

!
= !
"

= = = # # #  

e.g.
0 1 2 3

10 0 2 1 2 0 2 1 2 2 8
3 3 3 3

! + ! + ! + !
= = ! , the algorithm is 

given in the following. 
 
Algorithm 3: Binary Squaring Powering ( y

x ) 
Stimulus: 1 2 2 1, .. 1

k k
k x x x x x! != ,

1 2 2 1 0
..k ky y y y y y! !=  



Response:
2

| | k
yz x= . 

 
L1: : 1z = ; :q x= ; 
L2: for : 0 to 1i k= !  do 
L3:  if bit ( , ) 1i y =  then  

L4  : ( ) mod  2kz z q= !  
L5 end 
L6: : ( )mod 2kq q q= !  
L7:end 
 
 
3. Proposed Feedback Shift Add (FSA) 
Algorithm  
 

Based on previous work, we know that any number 
can be converted to a triple ( , , )s p e  where 2

p
x n=  with 

n odd [2,6]. So  that 

2 2 2
(( 1) 2 3 ) ( 1) 2 3

k k k

y s p e y sy py eyz x= = ! = !  

In the above formula, ( 1)sy! determines the sign. 2 py  
determines the number ( py ) of least significant zeros. 
Without loss of generality, we focus on odd numbers in 
the following discussion. For odd numbers, we need to 
calculate e y!  for term 3ey . Then we can convert the 

2
( 1) 3

k

sy ey
!  back to binary to get z . The block diagram 

for such an approach is shown in Figure 1.  

Encoding
(DLG)

e   y
Decoding

(EXP)
x z

y

e x ey

 
 

Figure 1. A Serial Version of Proposed algorithm 
 

In Figure 1, we calculate the yth power of operand x in 
a serial fashion. That is we start multiplication and 
decoding after we obtain the entire value of e . A better 
technique is a pipelined arrangement of the sub-
operations in which multiplication and decoding starts 
when the first bit of e  is available. For every available bit 
of e , a bit of the intermediate product is generated 
followed by a bit of z  being produced. This method is 
referred to as the pipelined algorithm and is described in 
the following algorithm. 
 
Algorithm 4: Additive Digit Serial Powering ( y

x ) 
Stimulus: 1 2 2 1, .. 1

k k
k x x x x x! != ,

1 2 2 1 0
..k ky y y y y y! !=   

Response:
2

| | k
yz x= . 

Method 

L1: if
8
{1,3}x !  then : 0s = ; 

L2: else : 1s = ; : 2
k

x x= !  
L3: end 
L4: : 1p = ; : 0;e = : 1z = ; : 0;q = ;t e=  
L5.  if bit(1, x )=bit(1, p ) then 
L6:  

2
: 1 kp p p= + << ; : dlg(3)e e= +  

L7:  if bit( 0, y )=1 then 

L8:    
2

: 1 kz z z= + << ; 

L9:  end 
L10:   end 
L11: for : 3 to 1i k= !  do 
L12:  if bit( ,i x )=bit( ,i p ) then //update for DLG 

L13:   
2

: kp p p i= + << ; : dlg(2 1)i
e e= + +  

L14: end 
L15: 1t t= << ; 
L16:  if(bit( 2,i e! )=1) 
L17:   m m t= + //accumulator. 
L18 end  
L19:  if bit( 2,i m! )=1 then  
L20:   2 ( 2)q q i= + << !  
L21:  if bit( ,i q )=1 then //update for EXP 

L22:   
2

: ky y y i= + << ;   

L23:  : dlg(2 1)i
q q= ! +   

L24: end 
L25:end 
 

The initialization stage is performed in lines L1 − L4. 
All the required initialization for both stages of the 
algorithm is performed here.  

The second stage (L5 − L10) actually performs the 
computation for 1i = .  

The third stage contains the main iteration step and is 
represented by lines L11 − L24. The third stage can be 
separated into 3 sub-stages. Both p and the exponent e  
are updated (i.e. L12 − L14) which generates one bit of d  
according to the DLG algorithm. The second sub-stage   
(i.e. L15 − L19) corresponds to the accumulator used to 
implement e y! . The third stage updates z  according to 
EXP algorithm (i.e. L19 − L24). 

The final result is obtained at line L25. As can be 
seen by inspection of the algorithm, the time complexity 
is essentially k dependent shift-and-add modulo 2k 
operations. 
 
 
4. Hardware Implementation  
 



The state diagram of a controller for a hardware 
implementation is given in Figure 2. There are 6 states 
available, Load, Init, Loop_DLG, Loop_ACC, 
Loop_EXP and Ready. The Load state is also a reset 
state. It accepts input when the load signal is asserted and 
also performs all the initialization operations in lines L1 − 
L4. The Init state corresponds to the second stage (L5 − 
L10) in the previous algorithm. The Loop_DLG, 
Loop_ACC, Loop_EXP states correspond to the 3 sub-
stages in the previous algorithm. The loop count goes 
from 3 to k, with a maximum of k-3 iterations. The Ready 
state is the state that outputs the result. The circuit 
automatically transitions into the Load state after Ready 
state.  

There are three major components in the circuit, a 
controller, ROM lookup table, and a computation 
datapath.  

The controller consists of a counter and state control 
block Finite State Machine (FSM). The FSM will start 
and stop the counting procedure. The output of the 
counter, count, is used for purposes such as address 
generation for the ROM, index production for the bit 
checker and loop controller and feedback to the FSM for 
state transition. The ROM is used as lookup table for the 
dlg(! ) function.  The major components in the datapath 
are adders, shifters and units called bit-checkers that are 
used to check if a certain bit is true or false. The output of 
the bit-checker will control the operation of the adders 
and shifters. If the output is false, no operation will be 
performed, otherwise, registers holding , , ,p e z q  will be 
updated by the shifter and adder. The modulo operation 
given in previous algorithm is handled by limiting the size 
of , , ,p e z q . The size of , , ,p e z q  are set to k. Thus, while 
updating , , ,p e z q , the result values may be longer than 
the specified size (or overflow). We can simply ignore the 
overflowed bits since this computation is performed 
modulo 2k. 

Load

Loop_ACC

Loop_EXP

Ready

Count < Bound

Init

Loop_DLG

 
Figure 2. Controller State Transition  

Diagram 

 
5. Experimental Results  
 

In order to evaluate the effectiveness of our method as 
compared to the well-known “fast” squaring method, we 
described each method in Verilog RTL and synthesized 
the circuits using the Synopsys tool set based on a 
standard cell library from Synopsys [5] and a standard 
cell library from the OSU[7]. Since the results from the 
two standard cell libraries were similar, we only list the 
result based on the standard cell library from Synopsys.  

 
Table 2. Comparison of layout result 

  speed(ns) core area 
  our fast our fast 

8 2.05 2.4 23386.4 8207.48 
16 2.41 3.45 40306.7 26076.3 
32 2.75 4.55 109135 79409.1 
64 3.52 5.55 184725 302942 

128 3.8 6.8 371366 1.26E+06 
 
We implemented five designs corresponding to k=8, 

16, 32, 64, 128 respectively. We also implemented the 
existing fast algorithm described in Section 2.3. Table 2 
compares the results of our algorithm with the existing 
fast algorithm for different k values. We also plot the 
trend of two algorithm in Figure 3 (speed) and Figure 4 
(area). It is seen that for all k values, our algorithm is 
faster than the existing fast algorithm when each 
algorithm is synthesized with the standard cell library. 
Regarding area, our method takes more space for small 
word sizes but increases slowly compared with the 
existing fast algorithm. Thus when 64k ! , our algorithm 
takes less area.  It should be noted that the area values 
reported here are only the net area required by the total 
cell area since we did not route the resulting circuits, thus 
additional area required by routing is not included. 

 

speed

0
1
2
3
4
5
6
7
8

8 16 32 64 128

our
fast

 
Figure 3. Speed trend of two algorithms 
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Figure 4. Area trend of two algorithms 

 
6. Conclusion and future work  

 
We presented a novel algorithm for computing the 

powering operation modulo 2k. The algorithm has a 
critical path of less than k shift-and-add modulo 2k 
operations. To evaluate the effectiveness of the method, 
we compare the standard cell synthesis results for the 
algorithm when k=8, 16, 32, 64, 128 respectively. The 
experimental results confirm that the algorithm is an 
effective way of calculating the discrete logarithm of a 
value modulo 2k. 

The bottle beck in the new digit serial algorithm is 
the use of repetitive large shifts to implement the 
compound product 

2
(2 1)

k

i
+!  for selected 'i s using at 

most 1k !  additions. Further work in out laboratory is 
addressed at reducing the shift penalty for realizing this 
product to further improve our synthesis results. 
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