
A Digit Serial Algorithm for the Integer Power Operation

Abstract

We introduce a right-to-left digit serial algorithm for
the integer power operation y

x where and x y are
positive integers. For n-bit words the algorithm utilizes
O(n) additions and does not require use of a multiplier.
We describe a hardware implementation and evaluate the
effectiveness employing a Synopsys tool set with a
standard cell implementation. Out digit serial algorithm
compares favorably with a popular iterative square and
multiply algorithm implemented with the same tool set.

1. Introduction

Algorithm for computing the powering operation

y
z x= where y is a positive integer has been the subject
of considerable research. The binary squaring method
determines 2 4 8

, , , ,...x x x x and processes the bits of y
right-to-left to multiply by the appropriate binary powers
of x to determine y

x . This algorithm has been described
in many popular texts [9][10][11]. Knuth [11] traces this
“fast” algorithm back to al-Kashi in the 15th century.

We are interested in the particular case where ,x y and
the result z are all non-negative k-bit integers. For
typical word sizes such as k = 8, 16, 32, 64, 128,…, this
integer valued powering operation is proposed to
supplement the integer addition and multiplication
operations. The squaring algorithm may be implemented
in hardware with microcode and a fast multiplier much
like the floating-point transcendental operations in the
Pentium and Athlon processors.

For implementation in hardware there is a need for a
simpler algorithm that avoids the use of a large multiplier.
There is a further need for a right-to-left digit serial
algorithm that requires less time for lower precision
operations when a family of precision levels is
implemented in hardware.

In this paper, we introduce a novel digit serial algorithm
for evaluation of the integer power operation y

x that does
not require a multiplier. The algorithm employs
conversion of x to a discrete log format [2], bit serial
multiplication with the discrete log value providing the
“recoded multiplier bits” and the exponent y being the

multiplicand, and bit serial deconversion of y
x [6] to

provide the result z .
The paper is organized as follows. We present some

number theoretic background material on the integer
power operation and review the foundations for the
algorithms in Section 2. In Section 3, we present our digit
serial integer power algorithm. Section 4 contains a
hardware implementation of our proposed algorithm
while Section 5 provides area and delay estimates from
the standard cell synthesis. Conclusions are presented in
Section 6.

2. A Digital Serial Integer Power Algorithm

The inheritance principle [8] for integer operations on

binary operands informally states that the k-low order bits
of the result depend only on the k-low order bits of the
operands for all 1k ! . This principle provides the basis
for right-to-left digit serial integer operations.
Specifically, assume we have determined the low order
(k-1)-bits of the result from the (k-1) low order operand
input bits. Incorporating the k-th bits of the operands, the
k-th result bit can then be determined with the (k-1) lower
order result bits “inherited” from the preceding serial
computation.

For a binary integer operand
1 2 2 1 0

..
n n

x b b b b b! != , the
modular notation

1 2 2 1 02
..k k k

x b b b b b! != is employed [4]
herein to denote the value of the standard low order k- bit
string for all 1 k n! ! , and the inheritance principle can
then be stated more formally.

Inheritance Principle: The integer operation z x y= !

has the inheritance property if for all non negative
integers ,x y ,

k2 2 2 2
 for all 1.k k kz x y k= ! " (1)

Integer addition and multiplication clearly have the

inheritance property, as evidenced in the traditional right-
to-left “carry ripple” algorithms. To establish a foundation
for our digit serial integer power algorithm, we note here
without proof that the operation y

x satisfies the
inheritance property given appropriate exception handling
for zero valued operands.

Note that x has a unique factorization into odd and
even terms 2

p
x n= with n odd. It is straightforward to

show [1,3] that the 2
2
k! members of the sequence

2
0 1 2 2 1
3 ,3 ,3 ,...,3

k!
! reduce modulo 2k to a sequence of

distinct odd numbers covering half the odd numbers
in [1, 2 1]

k
! . The complementary values

2
(1) 3

k

s e
! for

{0,1}s! , 2
0 2 1

k
e

!
" " ! cover the other half of the odd

numbers. For example for 5k = , the reduced sequence is
1,3,9,27,17,19,25,11, and the complementary sequence is
31,29,23,5,15,13,7,21. Thus every odd k -bit integer is
uniquely represented by the exponent pair (,)s e termed
the Discrete Logarithmic System (DLS) representation.

Efficient solutions of the integer-to-discrete-log
conversion and deconversion operations are presented at
the algorithmic level in [1,2,6]. These methods employ k
sequential steps of a table lookup exponent recoding
operation interleaved with a shift-and-add modulo 2k
operation.

Binary-to-discrete log conversion refers to
determining the pair (,)s e given the k ! bit odd
integer n , and deconversion refers to determining n given
the pair (,)s e , where n , s , e satisfy

2
(1) 3

k

s e
n = ! . For

conversion, s is determined by conditional
complementation to obtain a normalized n congruent to 1
or 3 (mod 8). This reduces the conversion operation to the
determination of the discrete log dlg()e n= for

n congruent to 1 or 3 (mod 8), with 2
0 2 1

k
e

!
" " ! . The

deconversion problem reduces to evaluating the
exponential residue operation determining n
where

2

 3
k

e
n = . For completeness here we review

algorithms from [2,6] demonstrating that both the
exponential residue operation (determining n given e)
and the discrete log operation (determining e given n)
can be performed by a series of less than k table-assisted
shift-and-add operations employing exponent recoding.

2.1 Additive Based Exponentiation Modulo 2k

2
| 3 | k
e can be computed using the well known

square-and-multiply method. This entails successively

computing 2

2
| 3 | k , 4

2
| 3 | k , …, 2

2
| 3 |

k

k , by squarings.
Then, the unit bits of the binary representation of e select

the corresponding residues 2

2
| 3 | ,

l

k l k< , so then
2

| 3 | k
e is

obtained as the reduced product of these residues.

Table 1: Two Ones Discrete Log Table for k = 8

We note that similar methods lead to the correct

result when the exponent e is recoded as a sum of
elements 22

| | ki
e ! "= # [6]. In this case

2
| 3 | k
e can be

computed as
2 2

| 3 | | 3 |ik k

e !"= . Of course, this presents an

advantage if the
i

! and/or corresponding powers {3 }i
!

are precomputed and available by table lookup. In [6] it is
shown that any exponent e can be expressed as a sum
of dlg(2 1)i

+ ’s termed the two-ones discrete logs.

Since dlg(2 1)3 2 1
i

i+
= + , it follows that the corresponding

multiplications can be performed as a series of shift-and-
add operations. This works if the two-ones dlg’s are pre-
computed and stored in a table such as Table 1. Algorithm
1 determines the unique set of dlg(2 1)i

+ ’s whose sum
modulo 2k-2 equals e . It thus allows efficient conversion
from DLS-to-binary. In the algorithmic description that
follows, index notation is used for the corresponding bit
of the standard binary representation.

Algorithm 1: Deconversion Algorithm (EXP)
Stimulus: 3 4 2 1 0, ..

k k
k e e e e e e! !=

Response:
2

3
k

e

Method: L1: if bit(0,e)=1 then : 11y = ; : 1q e= !
 L2: else : 1z = ; :q e=
 L3: end
 L4: for : 1 to 3i k= ! do
 L5: if bit(,i q)=1 then

2 1
i
+ dlg(2 1)i

+ check i
Bin. Dec. Bin. Dec.

0 0000 0001 1 0000 0000 0
16

0

2

 3 1=

1 0000 0011 3 0000 0001 1
16

1

2

 3 3=

2 0000 0101 5 N/A N/A N/A
3 0000 1001 9 0000 0010 2

16

2

2

 3 9=

4 0001 0001 17 1011 0100 7604
16

7604

2

 3 17=

5 0010 0001 33 0010 1000 15912

16

15912

2

 3 33=

6 0100 0001 65 0101 0000 10064

16

10064

2

 3 65=

7 1000 0001 129 1010 0000 15008

16

15008

2

 3 129=

 L6:
2

: (2) kz z z i= + << +

 2: dlg(2 1)i
q q

+
= ! +

 L7: end
 L8: end
 L9: return z

Please note that lines L1 − L3 correspond to initialization.
The product z is set to either 1 or binary 11
(corresponding to

0
1e = or

0
0e =). The working variable

exponent q is always set in such a way that z corresponds
– for each iteration – to 3 raised to the exponent (e q!)
and the least significant i bits of q are all 0s. The
algorithmic step of lines L4 − L8 represents updating q

by subtracting 2dlg(2 1)i+
+ , which simply represents the

exponent of 3 that reduces to 2
2 1
i+

+ . This is followed by
updating the product z to reflect the changes in
exponent, 2

2
: (2 1)

k

i
z z

+
= ! + . Eventually, after (2k !)

steps, q becomes 0 and the "product" z corresponds

to 0

2 2

3 3
k k

e e!
= . The values 2dlg(2 1)i+

+ can be stored

in a lookup table and this method is practical for large
64,128,...,k = since the table has only k entries.

2.2 Additive Based Discrete Logarithm Modulo 2k

Computing the discrete logarithm for certain k ! bit
odd integers x can be accomplished using a method [2]
that is essentially the dual of the exponentiation method
of Section 3.1. The key idea is to express x , if possible,
as a product of two-ones residues:

2
| (2 1) | k

i
x = +! for

selected i ’s. Once this is done, the discrete logarithm can
be computed as the corresponding sum:

22
dlg() dlg((2 1)) | dlg(2 1) | k

i i
x != + = +"# [2]. The

solution involves identifying the cases when x can be
expressed as such a product and finding the corresponding
unique set of two-ones residues. It is shown in [2] that x
can be expressed as a two-ones residue product as long as
x is congruent with 1 or 3 modulo 8. Note that for the
remaining odd residues, corresponding to x congruent
with 5 or 7 modulo 8, their additive inverses

2
| | kx! are

congruent with 1 or 3 modulo 8. The method in [2]
identifies the set of two-ones residues and thus it is the
core of a digit serial conversion method from binary to
DLS.

Algorithm 2: Binary to DLS Conversion Algorithm
(DLG)

Stimulus: 1 2 2 1 0, ..
k k

k x x x x x x! != with
0
1x =

Response: discrete log of x , expressed as an (s, e)
pair:

2
| (1) 3 | k

s e
x = ! .

Method: L1: if
8
{1,3}x ! then : 0s = ;

 L2: else : 1s = ; : 2
k

x x= !
 L3: end
 L4: : 1p = ; : 0e =
 L5: for : 1,3 to 1i k= ! do
 L6: if bit(,i x)=bit(,i p) then
 L7:

2
: kp p p i= + << ;

 : dlg(2 1)i
e e= + +

 L8: end
 L9:end
 L10: Result: (s, e).

The initialization stage is performed in lines L1 − L4.

If x is not congruent with 1 or 3 modulo 8, the arithmetic
sign is considered (i.e. s := 1 in L2) and the algorithm
determines the dlg of the complement

2

2
k

k
x! (i.e.

: 2
k

x x= ! in L2).
The second stage contains the main iteration step and

is represented by lines L5 − L9, where both p and the
exponent e are updated. p is conceptually updated
as (2 1)i
p p= ! + , while the exponent e is updated by

subtracting the corresponding values dlg(2 1)i
+ , looked

up from a table.
The final result is computed in line L10 as the sign s

and the exponent e . The updating of e and p in lines L7
can be performed concurrently. As can be seen by
inspection of Algorithm 2, the time complexity is
essentially k dependent shift-and-add modulo 2k
operations.

2.3 Existing “Fast” Binary Squaring Algorithm

The existing fast algorithm is based on the fact

that
1

0

2

k
i

i

i

y y
!

=

=" . So that we can get the formula

1

0 11
0 0 11

2

2 22

2
2

2

...

k
i

i k
i k

k k

k

y
y yyyz x x x x x

!

!
= !
"

= = = # # #

e.g.
0 1 2 3

10 0 2 1 2 0 2 1 2 2 8
3 3 3 3

! + ! + ! + !
= = ! , the algorithm is

given in the following.

Algorithm 3: Binary Squaring Powering (y

x)
Stimulus: 1 2 2 1, .. 1

k k
k x x x x x! != ,

1 2 2 1 0
..k ky y y y y y! !=

Response:
2

| | k
yz x= .

L1: : 1z = ; :q x= ;
L2: for : 0 to 1i k= ! do
L3: if bit (,) 1i y = then

L4 : () mod 2kz z q= !
L5 end
L6: : ()mod 2kq q q= !
L7:end

3. Proposed Feedback Shift Add (FSA)
Algorithm

Based on previous work, we know that any number
can be converted to a triple (, ,)s p e where 2

p
x n= with

n odd [2,6]. So that

2 2 2
((1) 2 3) (1) 2 3

k k k

y s p e y sy py eyz x= = ! = !

In the above formula, (1)sy! determines the sign. 2 py
determines the number (py) of least significant zeros.
Without loss of generality, we focus on odd numbers in
the following discussion. For odd numbers, we need to
calculate e y! for term 3ey . Then we can convert the

2
(1) 3

k

sy ey
! back to binary to get z . The block diagram

for such an approach is shown in Figure 1.

Encoding
(DLG)

e y
Decoding

(EXP)
x z

y

e x ey

Figure 1. A Serial Version of Proposed algorithm

In Figure 1, we calculate the yth power of operand x in
a serial fashion. That is we start multiplication and
decoding after we obtain the entire value of e . A better
technique is a pipelined arrangement of the sub-
operations in which multiplication and decoding starts
when the first bit of e is available. For every available bit
of e , a bit of the intermediate product is generated
followed by a bit of z being produced. This method is
referred to as the pipelined algorithm and is described in
the following algorithm.

Algorithm 4: Additive Digit Serial Powering (y

x)
Stimulus: 1 2 2 1, .. 1

k k
k x x x x x! != ,

1 2 2 1 0
..k ky y y y y y! !=

Response:
2

| | k
yz x= .

Method

L1: if
8
{1,3}x ! then : 0s = ;

L2: else : 1s = ; : 2
k

x x= !
L3: end
L4: : 1p = ; : 0;e = : 1z = ; : 0;q = ;t e=
L5. if bit(1, x)=bit(1, p) then
L6:

2
: 1 kp p p= + << ; : dlg(3)e e= +

L7: if bit(0, y)=1 then

L8:
2

: 1 kz z z= + << ;

L9: end
L10: end
L11: for : 3 to 1i k= ! do
L12: if bit(,i x)=bit(,i p) then //update for DLG

L13:
2

: kp p p i= + << ; : dlg(2 1)i
e e= + +

L14: end
L15: 1t t= << ;
L16: if(bit(2,i e!)=1)
L17: m m t= + //accumulator.
L18 end
L19: if bit(2,i m!)=1 then
L20: 2 (2)q q i= + << !
L21: if bit(,i q)=1 then //update for EXP

L22:
2

: ky y y i= + << ;

L23: : dlg(2 1)i
q q= ! +

L24: end
L25:end

The initialization stage is performed in lines L1 − L4.
All the required initialization for both stages of the
algorithm is performed here.

The second stage (L5 − L10) actually performs the
computation for 1i = .

The third stage contains the main iteration step and is
represented by lines L11 − L24. The third stage can be
separated into 3 sub-stages. Both p and the exponent e
are updated (i.e. L12 − L14) which generates one bit of d
according to the DLG algorithm. The second sub-stage
(i.e. L15 − L19) corresponds to the accumulator used to
implement e y! . The third stage updates z according to
EXP algorithm (i.e. L19 − L24).

The final result is obtained at line L25. As can be
seen by inspection of the algorithm, the time complexity
is essentially k dependent shift-and-add modulo 2k
operations.

4. Hardware Implementation

The state diagram of a controller for a hardware
implementation is given in Figure 2. There are 6 states
available, Load, Init, Loop_DLG, Loop_ACC,
Loop_EXP and Ready. The Load state is also a reset
state. It accepts input when the load signal is asserted and
also performs all the initialization operations in lines L1 −
L4. The Init state corresponds to the second stage (L5 −
L10) in the previous algorithm. The Loop_DLG,
Loop_ACC, Loop_EXP states correspond to the 3 sub-
stages in the previous algorithm. The loop count goes
from 3 to k, with a maximum of k-3 iterations. The Ready
state is the state that outputs the result. The circuit
automatically transitions into the Load state after Ready
state.

There are three major components in the circuit, a
controller, ROM lookup table, and a computation
datapath.

The controller consists of a counter and state control
block Finite State Machine (FSM). The FSM will start
and stop the counting procedure. The output of the
counter, count, is used for purposes such as address
generation for the ROM, index production for the bit
checker and loop controller and feedback to the FSM for
state transition. The ROM is used as lookup table for the
dlg(!) function. The major components in the datapath
are adders, shifters and units called bit-checkers that are
used to check if a certain bit is true or false. The output of
the bit-checker will control the operation of the adders
and shifters. If the output is false, no operation will be
performed, otherwise, registers holding , , ,p e z q will be
updated by the shifter and adder. The modulo operation
given in previous algorithm is handled by limiting the size
of , , ,p e z q . The size of , , ,p e z q are set to k. Thus, while
updating , , ,p e z q , the result values may be longer than
the specified size (or overflow). We can simply ignore the
overflowed bits since this computation is performed
modulo 2k.

Load

Loop_ACC

Loop_EXP

Ready

Count < Bound

Init

Loop_DLG

Figure 2. Controller State Transition

Diagram

5. Experimental Results

In order to evaluate the effectiveness of our method as
compared to the well-known “fast” squaring method, we
described each method in Verilog RTL and synthesized
the circuits using the Synopsys tool set based on a
standard cell library from Synopsys [5] and a standard
cell library from the OSU[7]. Since the results from the
two standard cell libraries were similar, we only list the
result based on the standard cell library from Synopsys.

Table 2. Comparison of layout result

 speed(ns) core area
 our fast our fast

8 2.05 2.4 23386.4 8207.48
16 2.41 3.45 40306.7 26076.3
32 2.75 4.55 109135 79409.1
64 3.52 5.55 184725 302942

128 3.8 6.8 371366 1.26E+06

We implemented five designs corresponding to k=8,

16, 32, 64, 128 respectively. We also implemented the
existing fast algorithm described in Section 2.3. Table 2
compares the results of our algorithm with the existing
fast algorithm for different k values. We also plot the
trend of two algorithm in Figure 3 (speed) and Figure 4
(area). It is seen that for all k values, our algorithm is
faster than the existing fast algorithm when each
algorithm is synthesized with the standard cell library.
Regarding area, our method takes more space for small
word sizes but increases slowly compared with the
existing fast algorithm. Thus when 64k ! , our algorithm
takes less area. It should be noted that the area values
reported here are only the net area required by the total
cell area since we did not route the resulting circuits, thus
additional area required by routing is not included.

speed

0
1
2
3
4
5
6
7
8

8 16 32 64 128

our
fast

Figure 3. Speed trend of two algorithms

area

0
200000
400000
600000
800000
1000000
1200000
1400000

8 16 32 64 128

our
fast

Figure 4. Area trend of two algorithms

6. Conclusion and future work

We presented a novel algorithm for computing the

powering operation modulo 2k. The algorithm has a
critical path of less than k shift-and-add modulo 2k
operations. To evaluate the effectiveness of the method,
we compare the standard cell synthesis results for the
algorithm when k=8, 16, 32, 64, 128 respectively. The
experimental results confirm that the algorithm is an
effective way of calculating the discrete logarithm of a
value modulo 2k.

The bottle beck in the new digit serial algorithm is
the use of repetitive large shifts to implement the
compound product

2
(2 1)

k

i
+! for selected 'i s using at

most 1k ! additions. Further work in out laboratory is
addressed at reducing the shift penalty for realizing this
product to further improve our synthesis results.

Acknowledgement
We would like to thank the Synopsys Corporation for the
donation of their tools and the use of their standard cell
library. We would also like to thanks for Dr. James Stine
from OSU who provided us a standard cell library.

7. References
[1] A. Fit-Florea, D. W. Matula, “A Digit-Serial Algorithm for

the Discrete Logarithm Modulo 2k ”, Proc. ASAP, IEEE,
2004, pp. 236-246.

[2] A. Fit-Florea, D. W. Matula, M. Thornton, “Additive Bit-
serial Algorithm for the Discrete Logarithm Modulo 2k ”,
IEE Electronics Letters Jan. 2005, Vol. 41, No. 2, pp: 57-
59.

[3] Benschop N. F., “Multiplier for the multiplication of at
least two figures in an original format” US Patent Nr.
5,923,888, July 13, 1999.

[4] Szabo, N. S., Tanaka, R.I., “Residue arithmetic and its
applications to computer technology”, McGraw-Hill Book
Company, 1967.

[5] Synopsys Design/physical Compiler Student Guide. 2003.
[6] A. Fit-Florea, D. W. Matula, M. Thornton, “Addition-

Based Exponentiation Modulo 2k ”, IEE Electronics
Letters, Jan. 2005, Vol. 41, No. 2, pp: 56-57.

[7] L J.E. Stine, J. Grad, I. Castellanos, J. Blank, V.
Dave, M. Prakash, N. Illiev, N. Jachimiec: A
Framework for High-Level Synthesis of System-on-
Chip Designs, Proceedings. 2005 IEEE International
Conference on Microelectronic Systems Education,
2005. 12-13 June 2005, pages 67-68.

[8] D. W. Matula, A. Fit-Florea, M. Thornton, “Table Loopup
Structures for Multiplicative Inverses Modulo 2k ”, 17th
Symp. Comp.Arith., June 27-29, 2005, pp. 130-135,.

[9] T. Cormen, C. Leiserson, R. Rivest, C. Stein, “Introduction
to Algorithm”, 2nd edition, The MIT Press, 2001, pp. 879-
880.

[10] B. Parhami, “Computer Arithmetic Algorithms and
Hardware Designs”, Oxford University Press, 2000, pp.
383-384.

[11] D. Knuth, “The Art of Computer Programming:
Seminumerical Algorithms” Addison Wesley, Vol. 2, 2nd
Edition, 1981, pp: 441-466.

