
Vienna University of Economics and Business Administration

Master Thesis

Vienna University of Economics and Business Administration

Author
Bakk. Lukas Helm

Matriculation Number: 0251677

E-Mail: lukas.helm@gmx.at

Coordinator
Priv.Doz. Dr. Michael Hahsler

Institute for Information Business

Vienna, 2.8.2007

Fuzzy Association Rules
An Implementation in R

mailto:lukas.helm@gmx.at

Fuzzy Association Rules

Abstract
The idea of empowering classical association rules by combining them with

fuzzy set theory has already been around since several years. The original idea

derives from attempts to deal with quantitative attributes in a database, where

subdivision of the quantitative values into crisp sets would lead to over- or under-

estimating values near the borders. Fuzzy sets can overcome that problem by al-

lowing partial memberships to the different sets. Fuzzy set theory provides the

tools needed to do the computations in order to be able to deal with the different

data structure. This paper will give an introduction to association rules and fuzzy

set theory, combining the approaches to enable the mining of fuzzy association

rules. Different approaches to fuzzy association rules exist, each of which is pre-

sented. Even though a lot of research has been done on the topic and algo-

rithms have been proposed, not many programs provide the functionality yet. In

the proceeding of this thesis, a package has been developed which can be ap-

plied on quantitative data and demonstrate the mining of fuzzy association rules.

Keywords
Fuzzy Association Rules, Fuzzy Set Theory, Quantitative Association Rules,

Quality Measures, Frequent Patterns, FP-Growth

Contents I

Table of Contents
1 Introduction..1

1.1 Structure... 2

2 Data Mining... 4
2.1 Knowledge Discovery in Databases (KDD)...4

2.1.1 The KDD Process... 5
2.2 Concepts...6

2.2.1 Data Warehousing.. 7
2.2.2 Predictive vs. Descriptive Data Mining..7

2.3 Data Mining Strategies...8
2.3.1 Supervised Learning... 8
2.3.2 Unsupervised Learning...8
2.3.3 Market Basket Analysis..10

2.4 Tasks.. 10
2.5 CRISP-DM Model..11

3 Association Rules...15
3.1 Basics... 16

3.1.1 The Process...17
3.1.2 Research... 18

3.2 Binary Association Rules... 19
3.3 Quantitative Association Rules.. 20
3.4 Algorithms..22

3.4.1 Apriori.. 24
3.4.1.1 Discovering Frequent Itemsets... 24
3.4.1.2 Discovering Association Rules...25

3.4.2 Frequent Pattern Growth (FP-Growth)...26
3.4.2.1 Preprocessing the Data..26
3.4.2.2 Constructing the FP-Tree..27
3.4.2.3 Mining the FP-Tree using FP-Growth.. 28

4 Fuzzy Set Theory... 31
4.1 Crisp and Fuzzy Sets.. 31

4.1.1 Crisp Sets..31
4.1.2 Fuzzy Sets...33

4.1.2.1 Concepts... 35
4.2 Fuzzy Logic..35

Contents II

4.3 Fuzzy Operations..38
4.3.1 Triangular Norms... 40

5 Fuzzy Association Rules..42
5.1 Approaches...43

5.1.1 Quantitative approach...43
5.1.1.1 Fuzzy normalization .. 44

5.1.2 Fuzzy Taxonomic Structures.. 45
5.1.3 Approximate Itemset Approach..46

5.2 Quality Measures..47
5.2.1 Problems... 49

5.3 Discovering Fuzzy Sets.. 50
5.4 Algorithms..52

6 The Project... 56
6.1 Key Facts..57
6.2 Architecture..57
6.3 Approach.. 59

6.3.1 Constructing Fuzzy Sets... 59
6.3.2 Constructing a Dataset for Mining... 61
6.3.3 Calculation of Fuzzy Operations.. 62
6.3.4 Frequent Itemset Generation: the FP-Growth Algorithm...............................63

6.3.4.1 FP-Tree Construction..63
6.3.4.2 FP-Growth.. 64

6.3.5 Generation of Association Rules.. 65
6.4 The Program...65

6.4.1 Mining Frequent Itemsets...70
6.4.2 Generating Association Rules.. 77

6.5 Discussion.. 79

7 Conclusion/Review.. 81

Introduction 1

1 Introduction
In the 1990s, the evolution of information technologies and especially the net-

works like the Internet enabled companies to easily record data from their cus-

tomers. Since then, huge amounts of data have been collected and stored in the

databases of many enterprises. Due to the fact that a lot of business intelligence

is hidden in the data, the companies need tools to find out patterns and regulari-

ties. As many of the databases are very large containing a huge number of tu-

ples and attributes, efficient automated tools are necessary for acquiring useful

information.

Therefore, many data mining tools have been developed that allow a great

variety of analysis techniques, mostly derived from classical statistics. Since its

introduction in [AgIS93], the technique of association rules mining has received

great interest by the data mining community and a lot of research has been

done resulting in the development of many different algorithms. Association

rules are especially useful for conducting a market basket analysis where trans-

action data can be analyzed. Regularities in data of a supermarket for example

can be found in this way. An association rule could be “If a customer buys bread

and milk, he will mostly buy butter as well”. This information is very useful for

business because promotion actions can be designed accordingly.

Association rules mining is especially efficient for its use in the Internet. The

data are easily available and mining can thereby be done quickly. Discovered

rules can help online-shops in personalizing their website and cross-selling their

products by making recommendations. New transactions can be used quickly for

mining and give the company a competitive advantage.

A problem of classical association rules is that not every kind of data can be

used for mining. Rules can only be derived from data containing binary data,

where an item either exists in a transaction or it does not exist. When dealing

with a quantitative database, no association rules can be discovered. This fact

led to the invention of quantitative association rules, where the quantitative at-

tributes are split into intervals and the single elements are either members or

nonmembers of those intervals. With this approach, a binary database can be

constructed out of a quantitative one.

Introduction 2

The quantitative approach allows an item either to be member of an interval

or not. This leads to an under- or overestimation of values that are close to the

borders of such “crisp” sets. To overcome this problem, the approach of fuzzy

association rules has been developed. It allows the intervals to overlap, making

the set fuzzy instead of crisp. Items can then show a partial membership to

more than one set, overcoming the above addressed, so-called “sharp boundary

problem”. The membership of an item is defined by a membership function and

fuzzy set theoretic operations are incorporated to calculate the quality measures

of discovered rules. Using this approach, rules can be discovered that might

have got lost with the standard quantitative approach.

This thesis gives an overview of association rules mining as well as the ap-

proach of fuzzy associations mining and an introduction to fuzzy set theory

which is necessary for mining fuzzy association rules. Additionally, an R-pack-

age for mining fuzzy association rules is introduced that has been developed in

the proceeding of this thesis. The following chapter describes the structure of

the thesis.

1.1 Structure
This thesis is subdivided into five chapters. Chapters one through four provide

the theoretical background necessary to understand fuzzy association rules,

chapter five presents the conducted project with the outcome of an R-package

for fuzzy association rules mining.

1. Data Mining
This chapter contains basic principles, concepts and strategies of data

mining together with a classification of the topics where the role of associ-

ation rules mining is explained. Finally, a process model is presented.

2. Association Rules
The classical concepts of association rules are introduced in this second

chapter. It contains the basics of association rules as well as concepts for

mining them. In the end, algorithms for mining the rules are presented.

3. Fuzzy Set Theory
The third chapter deals with fuzzy set theory which is the basis for the

mining of fuzzy association rules in the subsequent chapters. It compares

Introduction 3

fuzzy sets to crisp sets, gives an introduction on fuzzy logic and the oper-

ations that can be performed on fuzzy sets.

4. Fuzzy Association Rules
This chapter deals with fuzzy association rules. Different approaches to

the term exist which are examined. Also, the modified quality measures

and algorithms derived from classical association rules are introduced.

5. The Project
The last chapter deals with the project conducted for the thesis. Architec-

tures and approaches used for building the tool are described. Finally, a

more detailed description on how the function work and the implementa-

tion itself is given.

Data Mining 4

2 Data Mining
The following chapter will give a brief introduction to data mining (DM). DM is

defined as the discovery of interesting information, patterns or trends from a

large database or data warehouse [HaNe01]. Data mining is a subprocess of

Knowledge Discovery in Databases in which the different available data sources

are analyzed using various data mining algorithms. Speaking of DM we refer to

“a multi-disciplinary field involving machine learning, statistics, databases, artifi-

cial intelligence, information retrieval and visualization” [Liu07].

The two high-level goals that data miners want to achieve are prediction and

description [FaPS96a]:

• Prediction is used to find patterns which can be used to project the future.

• Description represents discovered patterns to the user in a human-under-

standable form.

The gained knowledge is either represented as a model or generalization of

the mined data. Many different data mining techniques have been developed

which will be discussed in more detail later. A great number of these techniques

descend from classical statistics, nevertheless there are newer approaches that

use artificial intelligence approaches. This makes a prediction of trends possible

which would not have been feasible with the traditional statistical methods. In

addition, the data needed to conduct the data mining is widely available in the

age of the Internet and e-commerce.

2.1 Knowledge Discovery in Databases (KDD)
Frawley et al. [FrPM92] state that “Knowledge discovery is the nontrivial extrac-

tion of implicit, previously unknown, and potentially useful information from

data.” In order to get this information, we try to find patterns in the given data

set. To know if a pattern is valuable, the assessment of its interestingness and

certainty is crucial. Patterns that are interesting and certain enough according to

the user's measures are called knowledge. The output of a program that discov-

ers such useful patterns is called discovered knowledge.

According to [FrPM92], KDD exhibits four main characteristics:

Data Mining 5

• High-Level Language: The discovered knowledge is represented in a lan-

guage that does not necessarily have to be directly used by humans, but

its expression should be comprehensible.

• Accuracy: The measure of certainty implies whether the discovered pat-

terns portray the contents of a database properly or not.

• Interestingness: Discovered knowledge is considered interesting if it ful-

fills the predefined biases. By denoting a pattern interesting, we mean

that it is novel, potentially useful and the discovery process is nontrivial.

• Efficiency: Even for large Datasets, the running time of the algorithm is

acceptable and predictable.

Data and patterns are defined in [FaPS96a]: “Here, data is a set of facts and

pattern is an expression in some language describing a subset of the data or a

model applicable to that subset. [...] Patterns should be understandable, if not

immediately then after some post-processing.” The so-called KDD Process con-

sists of several steps that are in place to achieve the defined goals for knowl-

edge discovery.

2.1.1 The KDD Process
The KDD Process is interactive and iterative and requires decisions made by the

user. [FaPS96b] proposes nine basic steps (see Figure 1).

1. Data Understanding: learning the application domain for prior knowledge

and goals of the application.

Figure 1: The KDD Process

Data Mining 6

2. Creating a target data set: selecting the subset of the data on which the

data mining will be performed.

3. Data cleaning and preprocessing: removing noise or outliers, developing

strategies for handling missing data.

4. Data reduction: reduce dimensionality of the data set in order to get rid of

data that is unnecessary for completing the mining task and thereby keep

the computing time low.

5. Selecting the data mining method: the most important task here is to find

the method that will best suit the completion of the KDD goals.

6. Choosing the data mining algorithm: there are many different data mining

algorithms. Deciding on an efficient one to search for patterns in data is

critical and includes decisions about appropriate models and parameters.

7. Data mining: applying the previously chosen algorithm to the data set and

searching for interesting patterns in a particular representational form.

8. Interpreting mined patterns includes the visualization of mined patterns

and a possible return to any of the steps 1-7 if the results are unsatisfac-

tory.

9. Consolidating discovered knowledge: documenting the results and incor-

porating them into another system.

[FaPS96a] emphasizes a distinction between KDD and data mining. While

KDD refers to the overall process of discovering useful knowledge from data,

data mining is “a step in the KDD process consisting of applying data analysis

and discovery algorithms that, under acceptable computational efficiency limita-

tions, produce a particular enumeration of patterns over the data.”

2.2 Concepts
The last decade brought a huge advance in database technology which lead to

a huge amount of data being collected. Thus, we are facing a great chance to

make use of this data by extracting previously unknown patterns. Parallel pro-

cessing constitutes an important technique to realize large-scale data mining ap-

plications because they handle a huge amount of data and therefore involve a

lot of computation [SuSi06].

Data Mining 7

A main goal of data mining is to provide business with information in order to

make predictions for future use. For this reason, data mining emerged in the 80s

and made great progress in the 90s. It still is a research field of great interest.

As a consequence, many different data mining concepts have been developed.

2.2.1 Data Warehousing
Organizations build data warehouses by integrating their different operational

databases. Data warehousing is the process of centralized data management

and retrieval [SuSi06]. The term is relatively new although the concept has been

around for years. It represents a vision of installing a central repository of all or-

ganizational data relevant to data mining. The goal is to ensure easy access by

the user and to allow quick access for data analysis. Data warehousing tech-

niques are already being applied in many companies. Data mining provides the

software and techniques to acquire useful information from the data warehouse.

The data warehouse provides the company with a memory whereas data mining

provides the company with intelligence.

The most important benefit of a data warehouse is to allow data mining in

very large databases at a high level of performance and manageability. It inte-

grates operational databases that might be divergent and thereby hard to ac-

cess allowing much more efficient data mining. Two steps have to be consid-

ered for making a data warehouse valuable:

1. Integrate the internal and external data into the data warehouse with all

the data needed for mining.

2. Organize and present the information in ways that assists complex deci-

sion making.

2.2.2 Predictive vs. Descriptive Data Mining
The two high-level goals in data mining can be defined as prediction and de-

scription [FaPS96c]. Prediction uses some fields or variables in the database to

predict future values of other interesting variables. Description sets its focus on

making the data comprehensible and interpretable. The boundaries between

those two goals are not sharp, because some predictive models can be descrip-

tive meaning that they are understandable and vice versa. Nevertheless, the dis-

tinction can help understanding the overall mining goal.

Data Mining 8

2.3 Data Mining Strategies
According to the goal we want to achieve with data mining, there are several

data mining strategies to choose from. These strategies can be broadly classi-

fied in supervised learning, unsupervised learning and market basket analysis

[RoGe03]. Supervised learning is mainly used for prediction. Several input vari-

ables are used to build models which predict a specified output variable. Super-

vised learning methods either allow only one single or several output attributes.

Unsupervised learning does not have any output variable but rather tries to find

structures in the data by grouping the instances into different classes. The des-

ignation of market basket analysis is to find regularities in data in order to ex-

plore customer behavior. Results can help retailers design promotions or recom-

mendations. This chapter will provide a closer look at these strategies.

2.3.1 Supervised Learning
Supervised learning is used in almost any domain, mainly for the purpose of

prediction. It could also be called classification or inductive learning when used

in association with machine learning. The goal is to create a function out of a

given set of historical training data. This function generates the desired output, it

is for example possible to predict whether a customer will buy a certain product

or not. To be able to compute the function, we need enough training data to

make an accurate prediction. Historically collected data with information about

customers who either bought or did not buy the product after a promotion will

enable us to find out which potential customers will react on a promotion cam-

paign. The data about whether the customer reacted to the campaign or not

serves as our output variable.

2.3.2 Unsupervised Learning
Unlike in supervised learning, we do not want to predict a specific output here,

but rather discover unknown structures that exist within a data set. The tech-

nique used for unsupervised learning is clustering. This technique orders the in-

stances of a data set into groups with similar attributes and values. These

groups of items are called clusters. It is important to notice that instances of one

single cluster are similar to each other, whereas instances of different clusters

Data Mining 9

are very diverse from each other. By clusters we mean subsets of the overall

data set that is being mined. Clusters are created in the mining process without

a priori knowledge of cluster attributes. The following section will introduce the

two basic types of clustering, i.e. hierarchical and partitional clustering.

● Hierarchical Clustering
Hierarchical clustering does not partition the data into the clusters within a

single step. Rather, a series of partitions takes place. The method can be

performed agglomerative or divisive. In the divisive version, the algorithm

starts off with the initial data set as one big cluster and then further parti-

tions the big group into different smaller clusters using distance mea-

sures. The agglomerative version starts by looking at each single element

in the data set and linking the two elements with the lowest distance mea-

sure. Both methods continue until they reach either the single element or

the total set of items (see Figure 2).

● Partitional Clustering
Partitional Clustering is implemented by a well known method, called K-

Means Clustering. Here, cluster centers (centroids) are being defined and

the data points are assigned to the cluster with the nearest centroid. The

algorithm first computes random centers for a predefined number of clus-

ters. Then, it recomputes the centers in order to obtain the best possible

centroids.

Figure 2: Hierarchical Clustering

Data Mining 10

2.3.3 Market Basket Analysis
Marked Basket Analysis could be put under the domain of unsupervised learn-

ing, but in fact it is often treated in literature as a parallel topic. The goal is to

discover interesting relationships between retail products in order to help retail-

ers in identifying cross-sale opportunities. Association rule mining is the most

common approach for performing this task which will be described in more detail

in chapter 3. Such algorithms mainly deal with discovering these items which are

frequently purchased together. The name is derived from a person walking

through a supermarket throwing all the things to buy in a shopping cart. This

“market basket” is then analyzed.

2.4 Tasks
The goals of prediction and description are achieved by using the following pri-

mary data mining tasks [FaPS96c]:

1. Classification: Individual items are placed into predefined groups. The

main task is to find the function that maps data items correctly into the

several classes. For example, a bank might want to classify their cus-

tomers in two groups to foresee which customer will get a loan.

2. Regression: A dependent variable is mapped to an independent vari-

able. Here, a function should be learned that maps data points to real-val-

ued prediction value. Cohesion between different variables can thereby

be discovered. The results are mainly used for prediction, for example

predicting customer's buying behavior after a certain amount of promotion

expenditures.

3. Clustering: Unlike the regression, clustering is a descriptive task rather

than predictive. The goal is to find a finite number of unknown categories

in a data set. An application is the subdivision of the customers in a

database into several homogeneous subcategories to better understand

their behavior. “Closely related to clustering is the task of probability den-

sity estimation which consists of techniques for estimating from data the

joint multivariate probability density function of all of the variables or fields

in the database.“ [FaPS96c]

Data Mining 11

4. Summarization: Mainly, summarization provides methods for giving a

compact description for a data subset. Simple examples are the mean or

standard deviation for all the attributes. More sophisticated methods have

also been developed (cp. [ZeZy96]).

5. Dependency Modeling: This technique attempts to find models describ-

ing significant dependencies between variables. Such dependency mod-

els can exist in two levels: (1) The structural level indicates which vari-

ables rely locally on each other and is often presented in a graphical

form. (2) In the quantitative level, strengths of those relationships can be

discovered. Numerical scales are utilized in this case.

6. Change and Deviation Detection: The goal of this task simply is to de-

tect deviations from previous measurements or normative values.

2.5 CRISP-DM Model
Conceived in 1996, the CRISP-DM (Cross Industry Standard Process for Data

Mining) model has evolved as the standard for conducting data mining activities.

At that time, many different data mining approaches had been developed and

therefore there was a great need for a unified framework. CRSP-DM emerged

as a freely available and non-proprietary framework with a standardized process

(see Figure 3).

Data Mining 12

The model defines six phases to conduct a data mining project which are

[CCKK99]:

1. Business Understanding
Business understanding is the initial phase of the CRISP-DM model.

Most importantly, it focuses on the objectives and requirements of a

project from the business perspective. The actual situation in the compa-

ny is being assessed. After this assessment, the acquired knowledge is

converted into the data mining problem definition which is a plan that ad-

vises the data mining how to deal with these objectives and requirements

of the project

2. Data Understanding
The second phase starts off with a collection of all the available data that

might be relevant for the mining project, followed by activities like describ-

ing and exploring the data in order to get familiar with them. Another im-

portant task is to verify the quality of the data which makes efficient min-

ing possible. This phase helps the participants in getting first insights into

the data set.

Figure 3: The CRISP-DM Model [CCKK99]

Data Mining 13

3. Data Preparation
In the data preparation phase, the relevant data is selected from the over-

all data set discovered in the previous phase. In a second step, the initial

data has to be cleaned, later integrated and formatted. All those activities

aim at constructing the final data set that is adequate for mining. The

tasks in this phase are likely to be performed multiple times in order to

provide a good data set which is crucial for any data mining project.

4. Modeling
The modeling phase deals with selecting possible models for data mining

and calibrating the parameters to optimal values for the specific data min-

ing task. Multiple data mining methods might be adequate for mining all

of which should be tested at this step. Some models have specific re-

quirements for the data, making a step back to the preparation phase

necessary. Discovered models need to be measured and assessed re-

garding the data mining goal they have to suit.

5. Evaluation
After having built the models for mining, the degree to which it meets the

business objectives needs to be measured. A model may have high quali-

ty from a data analysis perspective, but might be deficient in meeting the

requirements of the business. To certify the achievement of these goals,

the model needs further evaluation. The steps for generating the model

are reviewed to assess whether any important task or factor has some-

how been overlooked. The phase ends with a decision on the use of the

data mining results.

6. Deployment
The process does not end with the creation of a correct model. Instead,

the gained knowledge needs to be organized and presented in ways that

the customer can understand and use. In addition, a model has to be

monitored and maintained in order to allow future use. A valid model

might not be valid throughout time because customer behavior changes

and thus the model might need adjustments. The complexity of the de-

ployment phase highly relies on the requirements defined at the begin-

Data Mining 14

ning of the project. Often, the customer will have to deal with the subse-

quent steps which will require further explanation by the developer. The

end of the process is marked by the generation of the final report includ-

ing all the previous deliverables and a summarization and organization of

the results.

Association Rules 15

3 Association Rules
The discovery of association rules constitutes a very important task in the pro-

cess of data mining. Association rules are an important class of regularities with-

in data which have been extensively studied by the data mining community. The

general objective here is to find frequent co-occurrences of items within a set of

transactions. The found co-occurrences are called associations. The idea of dis-

covering such rules is derived from market basket analysis where the goal is to

mine patterns describing the customer's purchase behavior [Liu07].

Today, mining this type of rules is a very important discovery method in the KDD

Process [HiGN00]. A simple association rule could look as follows:

Cheese Beer [support=0.1,confidence=0.8] . Put simply, this rule expresses a

relationship between Beer and Cheese. The support measure states that beer

and cheese appeared together in 10% of all recorded transactions. The confi-

dence measure describes the chance that there is beer in a transaction provided

that there is also cheese. In this case, 80% of all transactions involving cheese

also involved beer. We can thereby assume that people who buy cheese are

also likely to buy beer in the same transaction. Such information can aid retail

companies to discover cross-sale opportunities and guide the category manage-

ment in this way. In addition, it enables companies to make recommendations

which can be especially useful for online retail shops.

Association rule mining is user-centric because its objective is the elicitation

of interesting rules from which knowledge can be derived [CeRo06]. Interesting-

ness of rules means that they are novel, externally significant, unexpected, non-

trivial, and actionable. An association mining system aids the process in order to

facilitate the process, filter and present the rules for further interpretation by the

user.

A lot of interest in association rule mining was ignited by the publications [Ag-

IS93] and [AgSr94] in 1993/94. In those papers, an algorithm for mining associa-

tion rules in large databases has been described. This algorithm will be exam-

ined in greater detail in chapter 3.4. Since then, association rule analysis has

become a mature field of research. The fundamentals of association mining and

itemset identification are well established and accepted.

Association Rules 16

3.1 Basics
We state the problem of mining association rules as follows: I={i1 , i2 , ... , im } is

a set of items, T={t 1 , t 2 , ... , t n} is a set of transactions, each of which contains

items of the itemset I . Thus, each transaction ti is a set of items such that

ti⊆ I . An association rule is an implication of the form: X Y , where X⊂ I ,

Y⊂I and X∩Y=∅ . X (or Y) is a set of items, called itemset [Liu07].

An example for a simple association rule would be {bread }{butter } . This

rule says that if bread was in a transaction, butter was in most cases in that

transaction too. In other words, people who buy bread often buy butter as well.

Such a rule is based on observations of the customer behavior and is a result

from the data stored in transaction databases.

Looking at an association rule of the form X Y , X would be called the an-

tecedent, Y the consequent. It is obvious that the value of the antecedent im-

plies the value of the consequent. The antecedent, also called the “left hand

side” of a rule, can consist either of a single item or of a whole set of items. This

applies for the consequent, also called the “right hand side”, as well.

The most complex task of the whole association rule mining process is the

generation of frequent itemsets. Many different combinations of items have to

be explored which can be a very computation-intensive task, especially in large

databases. As most of the business databases are very large, the need for effi-

cient algorithms that can extract itemsets in a reasonable amount of time is high.

Often, a compromise has to be made between discovering all itemsets and com-

putation time. Generally, only those itemsets that fulfill a certain support require-

ment are taken into consideration. Support and confidence are the two most im-

portant quality measures for evaluating the interestingness of a rule.

Support: The support of the rule X Y is the percentage of transactions in

T that contain X∩Y . It determines how frequent the rule is applicable to the

transaction set T . The support of a rule is represented by the formula

supp X Y =∣X∩Y ∣
n

Association Rules 17

where ∣X∩Y∣ is the number of transactions that contain all the items of the

rule and n is the total number of transactions.

The support is a useful measure to determine whether a set of items occurs

frequently in a database or not. Rules covering only a few transactions might not

be valuable to the business. The above presented formula computes the relative

support value, but there also exists an absolute support. It works similarly but

simply counts the the number of transactions where the tested itemset occurs

without dividing it through the number of tuples.

Confidence: The confidence of a rule describes the percentage of transac-

tions containing X which also contain Y .

conf X Y =∣X∩Y ∣
∣X∣

This is a very important measure to determine whether a rule is interesting or

not. It looks at all transactions which contain a certain item or itemset defined by

the antecedent of the rule. Then, it computes the percentage of the transactions

also including all the items contained in the consequent.

3.1.1 The Process
The process of mining association rules consists of two main parts. First, we

have to identify all the itemsets contained in the data that are adequate for min-

ing association rules. These combinations have to show at least a certain fre-

quency to be worth mining and are thus called frequent itemsets. The second

step will generate rules out of the discovered frequent itemsets.

1. Mining Frequent Patterns
Mining frequent patterns from a given dataset is not a trivial task. All sets

of items that occur at least as frequently as a user-specified minimum

support have to be identified at this step. An important issue is the com-

putation time because when it comes to large databases there might be a

lot of possible itemsets all of which need to be evaluated. Different algo-

rithms attempt to allow efficient discovery of frequent patterns. Some of

those will be presented in chapter 3.4.

Association Rules 18

2. Discovering Association Rules
After having generated all patterns that meet the minimum support re-

quirements, rules can be generated out of them. For doing so, a minimum

confidence has to be defined. The task is to generate all possible rules in

the frequent itemsets and then compare their confidence value with the

minimum confidence (which is again defined by the user). All rules that

meet this requirement are regarded as interesting. Frequent sets that do

not include any interesting rules do not have to be considered anymore.

All the discovered rules can in the end be presented to the user with their

support and confidence values.

3.1.2 Research
The process of mining association rules consists of two parts. The fist part is

discovering frequent itemsets in the data. Secondly, we want to deduce infer-

ences from these itemsets. The first step is the much more complex part, thus

the majority of related research has focused on itemset discovery. Given E dis-

tinct Items within the search space, we have to explore 2∣E∣ possible combina-

tions. Due to the fact that ∣E∣ is often large, naive exploration techniques are

frequently intractable [CeRo06].

Research is focusing on the following topics:

● Restrict the exploration by developing and applying interest measures

and pruning strategies.

● Reducing the IO-cost by making use of hardware advances, enabling

large datasets to become memory resident or techniques like intelligent

sampling.

● Creating useful data structures to make analysis more tractable.

● Producing condensed conclusion sets which allow the whole set to be in-

ferred from a reduced set of inferences, lowering storage and simplifying

user interpretation.

A variety of algorithms for performing the association rule mining task have al-

ready been developed, most of which focus on finding all relevant inferences in

a data set. In addition, increasing attention is given to algorithms that try to im-

Association Rules 19

prove computing time and user interpretation. Important algorithms for mining

association rules will be introduced in chapter 3.4.

3.2 Binary Association Rules
By the term binary association rules, we refer to the classical association rules in

market basket analysis. Here, a product can either be in a transaction or not,

making only boolean values (true or false, represented by 1 and 0) possible. Ev-

ery item in a transaction can thus be defined as a binary attribute with domain

{0,1}. The formal model is defined in [AgIS93] as follows:

“Let I=i1 , i2 ,... , im be a set of binary attributes, called items. Let T be a

database of transactions. Each transaction t is represented as a binary vector,

with t [k]=1 if t bought the item ik , and t [k]=0 otherwise. There is one tuple

in the database for each transaction. Let X be a set of some items in I . We

say that a transaction t satisfies X if for all items ik∈X , t [k]=1 .”

An association rule is, as already stated in chapter 3.1, an implication of the

form X Y where X and Y are sets of items contained in I and Y is not

present in X . We call a rule satisfied in T with the confidence factor 0≤c≤1 if

at least c % of transactions in T that support X also support Y . The notation

X Y ∣c can be used to express that our rule has a confidence factor of c .

In [AgIS93], the problem of rule mining is divided into two subproblems:

● It is necessary to identify all combinations of items that have a transaction

support above a certain threshold, called minsupport. We will call those

sets of items that show a sufficient support large or frequent itemsets,

and those not meeting the threshold small itemsets. Syntactic constraints

can also be taken into consideration, for example if we are only interested

in rules that contain a certain item in the antecedent or the consequent.

● After identifying the itemsets that satisfy the minsupport, it is important to

test whether it satisfies the confidence factor c . Only the previously de-

fined large itemsets have to be tested at this stage. The confidence is

computed by dividing the support of the whole itemset by the support of

the antecedent.

Association Rules 20

After having solved the first problem in finding all relevant large itemsets, the

second part is rather straightforward. In order to discover large itemsets, the

Apriori algorithm was developed as the first and nowadays best known algorithm

for mining association rules. The Apriori and other algorithms will be explored in

greater detail in chapter 3.4.

3.3 Quantitative Association Rules
The previous chapter provided an overview of binary association rules, where

the items can only be represented by boolean values. We will refer to this as the

boolean association rules problem. In reality, a database contains not only bina-

ry attributes, but also quantitative and categorical ones that can not be mined

with the classical technique. Discovering rules in such kind of data can be re-

ferred to as the quantitative association rules problem [SrAg96]. The domain of

a transaction is a subset of the real numbers rather than {0,1}.

A possibility to deal with such a quantitative attribute is to replace it with sev-

eral boolean attributes. If the quantitative attributes are categorical or contain

only few values, mapping them into binary values is straight forward. Conceptu-

ally, instead of having one field for an attribute, we have as many fields as at-

tribute values. In other words, the boolean value corresponding to

〈attibute1 , value1〉 would be 1 if attribute1 had value1 in the original database,

and 0 otherwise. This only works if there is a very limited number of values in

the original data. As the number of different values increases, we will need to

split the values into intervals and map each attribute to the corresponding new

boolean attribute. From now on, a binary algorithm can be used to discover as-

sociation rules.

Looking at the sample database in Table 1, we can see that it is necessary to

create intervals for all the attributes because they are numeric. The procedure is

quite simple. It is just necessary to choose adequate intervals for each row of

the table and then map every single tuple to the corresponding new binary at-

tribute. The new table will have more columns with the exact number depending

on how many intervals have been chosen for each attribute. Table 2 Shows a

mapping table with sample intervals chosen for each attribute.

Association Rules 21

ID Age Income
111 19 900
112 33 1500
113 24 2100
114 37 2500
115 29 1100

Table 1: Sample Database

ID Age: <20 Age: 20-29 Age: >29 Inc: <1000 Inc: 1000-1999 Inc: >1999
111 1 0 0 1 0 0
112 0 0 1 0 1 0
113 0 1 0 0 0 1
114 0 0 1 0 0 1
115 0 1 0 0 1 0

Table 2: Mapping Table

Two problems arise using this mapping method [SrAg96]:

● “MinSupport”: If the number of intervals found for a single quantitative at-

tribute is high, the support of one single of these intervals can be low.

Thus, without lowering the number of intervals some existing rules involv-

ing this attribute might not be found after mapping it to binary attributes

via intervals.

● “MinConfidence”: By building larger intervals in order to cope with the first

problem, we are facing another challenge. The lower the number of inter-

vals is, the more information will get lost. Rules might then appear differ-

ently than in the original data.

We are now confronted with a trade-off situation: if the intervals are too large,

we might not reach the minimum confidence, if they are too small, we might fail

to achieve minimum support. To cope with the “MinSupport” problem, it would

be possible to consider all potential continuous ranges over the ranges of the

quantitative attribute. The “MinConfidence” problem can be overcome by in-

creasing the number of intervals, without encountering the “MinSupport” prob-

lem. This method of increasing the number of intervals while at the same time

combining the adjacent ones generates two new problems:

Association Rules 22

● “ExecTime”: By using the above method, the number of items per record

increases, hence the execution time will increase as well.

● “ManyRules”: If a value has minimum support, any range containing this

value will have minimum support as well. Hence the number of rules will

blow up many of which will not be interesting.

Obviously, there is a trade-off between the different problems. If we build

more intervals for coping with the “MinConfidence” problem, we are facing an in-

crease in the execution time and additionally, many uninteresting rules might be

generated.

3.4 Algorithms
Several algorithms have been developed since the introduction of the Apriori al-

gorithm [AgIS93]. Those algorithms are attempts to improve the efficiency of fre-

quent pattern and/or association rule discovery. Most of the algorithms focus on

either frequent itemset generation or discovering the association rules from the

frequent itemsets. In contrary, Apriori provides solutions for both problems. This

chapter will give a brief overview of some important mining algorithms. Exploring

all the available algorithms for mining association rules would go beyond the

scope of this thesis. Most of the algorithms have been developed for use with bi-

nary association rules, but they will equally work with the above described quan-

titative association rules.

There are two main strategies for developing an association rule mining algo-

rithm. Those are called breadth-first search (BFS) and depth-first search (DFS)

[HiGN00]. We can think of a lattice including all possible combinations of an

itemset (Figure 4).

Association Rules 23

Figure 4: Representation of the Itemsets [HiGN00]

The bold line represents the border between frequent and infrequent item-

sets. All items above the border fulfill the minimum support requirements. It is

the task of the algorithms to discover the location of this border. In BFS, the sup-

port is first determined for all itemsets in a specific level of depth, whereas DFS

recursively descends the structure through several depth levels. Thereby, asso-

ciation rule mining algorithms can be systematized as in Figure 5.

Figure 5: Systematization of Algorithms [HiGN00]

Association Rules 24

3.4.1 Apriori
The Apriori algorithm was the first attempt to mine association rules from a large

dataset. It has been presented in [AgSr94] for the first time. The algorithm can

be used for both, finding frequent patterns and also deriving association rules

from them. Unlike in [AgIS93], rules having more than one element in the conse-

quent are allowed. We will call such rules multi-consequent rules.

3.4.1.1 Discovering Frequent Itemsets
Generation of frequent itemsets, also called large sets here, makes use of the

fact that any subset of a large itemset must as well be large. The number of

items contained in an itemset is called its size, an itemset of size k is called a

k -itemset. Within the itemset, the items are kept in lexicographic order. To rep-

resent the algorithm, the notation in Table 3 will be used.

k -itemset An Itemset having k items
Lk Set of large k -itemsets (those with minimum support).

Each member of this set has two fields: i) itemset and ii) support
count.

C k Set of candidate k -itemsets (potentially large itemsets).
Each member of this set has two fields: i) itemset and ii) support
count.

Table 3: Notation [AgSr94]

Each itemset has a count field associated with it, storing the support value.

The pseudocode of the Apriori algorithm is given in Table 4. Firstly, the

database is passed over in order to count the occurrences of single elements. If

a single element has a support value that is below the defined minimum support,

it does not have to be considered anymore because it hence can never be part

of a large itemset. A subsequent pass k consists of two phases:

1. The discovered large itemsets of pass k−1 , i.e. the sets Lk−1 , are used

to generate the candidate itemsets, C k for the current pass.

2. The database is scanned once more in order to determine the support for

the candidate itemsets C k . If the support is above the minimum support,

the candidates will be added to the large itemsets. Discovering the right

candidates is crucial in order to prevent a long counting duration.

Association Rules 25

1) L1 = {large 1-itemsets};
2) for (k=2 ; Lk−1 ≠∅ ; k) do begin
3) Ck apriori-gen(Lk−1); // New candidates
4) forall transactions t∈D do begin
5) C t = subset C k , t  ; // Candidates contained in t
6) forall candidates c∈C t do
7) c.count++;
8) end
9) Lk = { c∈C k | c.count ≥ minsup}
10) end
11) Answer = U k Lk ;

Table 4: Apriori Algorithm [AgSr94]

The apriori-gen function takes the large itemsets of the previous iteration

as an input. These itemsets are joined together, forming itemsets with one more

item than in the step before. After that, a prune step will remove any itemsets

whose subcombinations have not been part of the discovered sets in former iter-

ations. The candidate sets are being stored in a hash-tree. This tree can either

contain a list of itemsets, which is a leaf node, or a hash table, which is an interi-

or node. The nodes contain the candidate itemset themselves. The subset
function starts from the root node going towards the leaf nodes in order to find

all the candidates contained in a transaction t . The itemsets starting with an

item that is not contained in t will therefore be ignored by the function.

3.4.1.2 Discovering Association Rules
As stated before, association rules are allowed to have multiple elements in the

antecedent as well as in the consequent. Only large itemsets are used to gener-

ate the association rules. The procedure starts with finding all possible subsets

of the large itemset l . For each of those subsets, a rule is setup in the form

al−a  . If the confidence of the rule is as least as big as the user-defined

minimum confidence, the rule is considered to be interesting. All subsets of l

are explored in order not to miss any possible dependencies. But, if a subset a

of l does not generate an interesting rule, the subsets of a do not have to be

explored. This will save computation power that would otherwise be wasted.

Association Rules 26

3.4.2 Frequent Pattern Growth (FP-Growth)
The FP-Growth algorithm allows generating frequent itemsets and tries to avoid

generating a huge amount of candidates that is necessary for the Apriori algo-

rithm. The heart of this algorithm is a compact representation of the original data

set without losing any information. This is achieved by organizing the data in a

tree form, called the Frequent Pattern Tree, FP-Tree in short. The approach

evolved out of the belief that the bottleneck of Apriori-like algorithms is the can-

didate-generation and -testing. The FP-Growth algorithm has been introduced in

[HaPY99]. The algorithm first constructs the tree out of the original data set and

then grows the frequent patterns. For a faster execution, the data should be pre-

processed before applying the algorithm.

3.4.2.1 Preprocessing the Data
The FP-Growth algorithm needs the following preprocessing in order to be effi-

cient: An initial scan over the dataset computes the support of the single items.

As items that have themselves a support value below the minimum support can

never be part of a frequent itemset, they can be discarded from the transactions

[Borg05]. The remaining items are recombined so that they appear in a decreas-

ing order with respect to their support. The algorithm will work just fine without

sorting the dataset, but it will perform much faster after doing so. With an as-

cending order, the algorithm performs even worse than using a random order.

Table 5 gives an example of how a transaction database will be preprocessed

for the FP-Growth algorithm.

Association Rules 27

Original DB Preprocessed DB
abd bda
bcde supp(b) = 6 bde
bd supp(d) = 5 bd

ade supp(e) = 5 dea
ab supp(a) = 4 ba

abe (supp(c) = 2) bea
cde de
be minsupp = 3 be

Table 5: FP-Growth Preprocessing

3.4.2.2 Constructing the FP-Tree
After having preprocessed the data, an FP-Tree can directly be constructed. A

scan over the database has to be made, adding each itemset to the tree. The

first itemset will be the first branch of the tree. In the transaction database of Ta-

ble 5, the first branch of the tree would be the items b, d and a. The second

transaction shares a common prefix with the already existing set in the tree. In

this case, the values along the path of the common prefix will be increased by

one, and the remaining items will make new nodes for the tree. In our example,

only one new node for e will be created. It is simply linked as a child of its ances-

tor. The tree corresponding to the transaction database of Table 5 is shown in

Figure 6. It represents the database in a compact format without the loss of any

information.

Figure 6: FP-Tree

Association Rules 28

Each node of the FP-Tree consists of three fields [HaPY99]:

● item-name: In this field, the name of the item that the node represents is

stored.

● count: The field count represents the accumulated support of the node

within the current path.

● node-link: In order to build the structure of the tree, links have to be built

between the nodes. The field node-link stores the ancestor of the current

node, and null if there is none.

Having that done, mining the database is not necessary anymore, now the

FP-Tree is used for mining. The support of an itemset can easily be determined

by following the path and using the minimum value of count from the nodes. For

example, the support of itemset {b , e} would be 2, whereas the support of item-

set {b , e , a} would only be 1.

3.4.2.3 Mining the FP-Tree using FP-Growth
The FP-Tree provides an efficient structure for mining, although the combinatori-

al problem of mining frequent patterns still has to be solved. For discovering all

frequent itemsets, the FP-Growth algorithm takes a look at each level of depth

of the tree starting from the bottom and generating all possible itemsets that in-

clude nodes in that specific level. After having mined the frequent patterns for

every level, they are stored in the complete set of frequent patterns. The proce-

dure of the algorithm can bee seen in Table 6.

Association Rules 29

Procedure FP-Growth (Tree ,) {
1) if Tree contains a single path P
2) then for each combination (denoted as )
 of the nodes in the path P do
3) generate pattern ∪ with support =

minimum support of nodes in  ;
4) else for each a i in the header of Tree do {
5) generate pattern =a i∪ with

support=ai . support ;
6) construct  's conditional pattern base and

then  's conditional FP-Tree Tree ;
7) if Tree≠∅
8) then call FP-Growth(Tree ,) }
}

Table 6: FP-Growth Algorithm [HaPY99]

FP-Growth takes place at each of these levels. To find all the itemsets involv-

ing a level of depth, the tree is first checked for the number of paths it has. If it is

a single path tree, all possible combinations of the items in it will be generated

and added to the frequent itemsets if they meet the minimum support.

If the tree contains more than one path, the conditional pattern base for the

specific depth is constructed. Looking at depth a in the FP-Tree of Figure 6, the

conditional pattern base will consist of the following itemsets: 〈b ,e :1 〉 , 〈b , d :1〉

and 〈d , e :1 〉 . The itemset is obtained by simply following each path of a up-

wards. Table 7 shows the conditional pattern bases for all depth levels of the

tree.

item conditional pattern base
a {〈b , e :1〉 , 〈b ,d :1〉 〈d , e :1〉}
e {〈b:2 〉 ,〈b ,d :1〉 〈d :1〉}
d {〈b :3〉}
b ∅

Table 7: Conditional Pattern Bases

From the itemsets in the conditional pattern base, a so called conditional FP-

Tree is constructed. This works in the same way as the construction of the initial

tree, using the conditional pattern base as the transaction database. After con-

structing the conditional FP-Tree, the FP-Growth function is called again, mak-

Association Rules 30

ing it a recursive function. The function is called until the tree contains only one

single path or is empty. All the itemsets found in the various conditional FP-

Trees are stored and returned in the end as a list of all frequent itemsets in the

FP-Tree and also in the database, respectively.

Fuzzy Set Theory 31

4 Fuzzy Set Theory
In the mathematical sense, a set is a collection of different items that, in a cer-

tain way, belong together. Georg Cantor, who was a main inventor of the set

theory, defined a set as follows [Cant95]: “By a set we mean an aggregation M

of certain unequal objects m in our opinion or in our thought (which are called

“elements” of M) to a whole.” Such crisp sets do not always satisfy the needs of

real world applications, because they only allow a membership of 1 or 0, i.e.

member or non-member. In the real world, it is not at all times possible to assign

an object clearly to a certain group of objects. Rather, it might lie in between two

different sets.

As an example, we could think of the horsepowers (hp) of a car. Let us as-

sume that we want to divide the horsepowers into the three categories weak,

medium and strong. Using crisp sets, we could state that, for example, a car be-

low 100 hp is weak, a car between 100 and 200 hp is medium and a car over

200 hp is strong. The problem that arises is even though a car with 99 hp is al-

most as strong as a car with 101 hp, it would be classified significantly lower

than the other car. This is called the sharp boundary problem. Fuzzy sets can

help overcome this problem by allowing different degrees of membership, not

only 1 and 0. Objects can thereby be members of more than one set and there-

fore give a more realistic view on such data. The major concepts of fuzzy set

theory will be introduced in this chapter.

4.1 Crisp and Fuzzy Sets

4.1.1 Crisp Sets
Crisp sets have a well defined universe of members. A set can either be de-

scribed by the list method (naming all the members) or by the rule method

(properties that all members have to satisfy). Sets are denoted by capital letters,

their members by lower-case letters. The list method is denoted as follows:

A={a1 , a2 , ... , a n}
For the rule method, we write:

B={b∣bhas properties P1 , P2 , ... ,Pn}

Fuzzy Set Theory 32

If the elements of a set are sets themselves, this set is referred to as a family

of sets. {Ai∣i∈ I } Defines the family of sets where i an I are called the set iden-

tifier and the identification set. The family of sets is also called an indexed set.

Any set A is called a subset of B if every member of A is also a member of

B . This is written as A⊆B . If A⊆B and B⊆A , the two sets contain the same

members and thus are equal. Equal sets are denoted by A=B , the contrary,

namely unequal sets, are written as A≠B . If A⊆B and A≠B are true, this indi-

cates that B contains at least one object that is not a member of A . In this case,

A would be called a proper subset of B and written A⊂B . The empty set that

contains no members is denoted by ∅ .

Elements are assigned to the sets by giving them the values 0 or 1. Every el-

ement that shows a 1 is a member of the set. The number of elements that be-

long to a set is called its cardinality. All sets that have been created by the rule

method might contain an infinite number of elements.

The set containing all members of set B that are not members of set A is

called the relative complement of A with respect to set B , written B−A . If set

B is the universal set, the compliment is absolute and denoted by A .

The union of two sets A and B is a set containing all elements that are in

A or in B , denoted by A∪B , whereas their intersection is a set that contains

only those elements which are members of A and B , denoted by A∩B . Two

elements are disjoint if they do not have any elements in common, that means,

if A∩B=∅ . A collection of disjoint subsets of A is called a partition on A if the

union of those subsets makes the original set A . The partition is denoted by the

symbol A , formally A={Ai∣i∈I , Ai⊆A} .

All of the operations union, intersection and complement apply to several

rules. At first, union and intersection are commutative, that means that the order

of the operands does not affect the result:
A∪B=B∪A , A∩B=B∩A .

The second rule, called associativity, states that union and intersection can

be applied pairwise in any order without changing the result:
A∪B∪C=A∪B∪C=A∪B∪C , A∩B∩C=A∩B∩C=A∩B∩C  .

Fuzzy Set Theory 33

Union and intersection both are idempotent operations because applying any

of those operations on a set with itself will give the same set:
A∪A=A , A∩A=A .

The distributive law is satisfied for both union and intersection in the following

way: A∩B∪C=A∩B∪A∩C  A∪B∩C=A∪B∩A∪C  .

DeMorgan's law constitutes that the complement of the union of two sets

matches the union of their complements:
A∩B=A∪B , A∪B=A∩B .

For further information, see [KlFo88].

4.1.2 Fuzzy Sets
Fuzzy sets can generally be viewed as an extension of the classical crisp sets.

They have been first introduced by Lofti A. Zadeh in 1965 [Zade65].

“Fuzzy sets are generalized sets which allow for a graded membership of

their elements. Usually the real unit interval [0; 1] is chosen as the member-

ship degree structure.” [Gott06]

Crisp sets are discriminating between members and nonmembers of a set by

assigning 0 or 1 to each object of the universal set. Fuzzy sets generalize this

function by assigning values that fall in a specified range, typically 0 to 1, to the

elements. This evolved out of the attempt to build a mathematical model which

can display the vague colloquial language. Fuzzy sets have proofed to be useful

in many areas where the colloquial language is of influence. Let X be the uni-

versal set. The function A is the membership function which defines set A .

Formally: A: X [0,1] .

Fuzzy Set Theory 34

In Figure 7, we see a graph of a crisp set and a fuzzy set. The fuzzy set can

look very different depending on the chosen membership function. Using this

function, it is possible to assign a membership degree to each of the elements in

X . Elements of the set could but are not required to be numbers as long as a

degree of membership can be deduced from them. For the purpose of mining

fuzzy association rules, numeric elements are used for quantitative data, but

other categories might also exist where no numerical elements will be found

(e.g. something is a fruit or a vegetable). It is important to note the fact that

membership grades are not probabilities. One important difference is that the

summation of probabilities on a finite universal set must equal 1, while there is

no such requirement for membership grades [KlFo88].

For many applications, this type of fuzzy sets will suffice. Although, it seems

paradoxical that the measures used to represent fuzziness are themselves pre-

cise real numbers. Therefore, an extension to the concept of fuzzy sets has

been developed, allowing membership grades to become blurred (see Figure 8).

Figure 7: Fuzzy Set

Figure 8: Blurred Fuzzy Set

Fuzzy Set Theory 35

These special sets are called type 2 fuzzy sets, whereas, in this context, ordi-

nary fuzzy sets are named type 1 fuzzy sets. The membership grades of a type

2 fuzzy set are themselves type one fuzzy sets. If the membership grades of a

set are type 2 fuzzy sets, the resulting set will be a type 3 fuzzy sets. Using this

method, even higher grades of fuzzy sets can be defined.

4.1.2.1 Concepts
The following concepts are important when dealing with fuzzy sets [KlFo88]:

● Support: The support of a fuzzy set A is given by a crisp set that con-

tains all of the elements whose membership degree in A is not 0:

supp A={x∈X ∣Ax 0} .The empty fuzzy set has an empty support

set.

● Height: The height of a fuzzy set is defined by the largest membership

value attainable by an element of the set. The fuzzy set is called normal-

ized if at least one of its elements attains the highest membership grade.

● α-cut: The α-cut of a fuzzy set is defined by a crisp set A containing all

elements that have a membership grade to the fuzzy set that is greater

than 0.

● Scalar cardinality: The summation of the membership grades of all ele-

ments in a fuzzy set is called its scalar cardinality.

4.2 Fuzzy Logic
“Fuzzy logic may be viewed as an extension of multivalued logic. Its uses and

objectives, however, are quite different. Thus, the fact that fuzzy logic deals with

approximate rather than precise modes of reasoning implies that, in general, the

chains of reasoning in fuzzy logic are short in length and rigor does not play as

important a role as it does in classical logical systems. In a nutshell, in fuzzy log-

ic everything, including truth, is a matter of degree.” [Zade88]

Fuzzy logic deduces its greater expressive power from including probability

theory and probabilistic logic. According to [Zade88], the main differences be-

tween traditional logic and fuzzy logic are the following:

● Speaking of two-valued logic, a proposition is either true or false. Fuzzy

logic allows truth values to range over fuzzy subsets. Therefore, the fuzzy

Fuzzy Set Theory 36

truth value could be viewed as an imprecise characterization of a numeri-

cal truth value.

● Fuzzy logic allows crisp predicates, as in two-valued logic, but also fuzzy

ones, for example “big”, “tall” or “beautiful”.

● Two-valued logic allows only the two quantifiers “all” and “some” whereas

fuzzy logic allows the use of quantifiers like “most”, “many”, “several”,

“few” and so on. These fuzzy quantifiers can be viewed as a second or-

der fuzzy predicate.

● Both fuzzy and and non-fuzzy predicate-modifiers can be represented by

fuzzy logic. This leads to a system which enables computing with linguis-

tic variables, i.e. variables whose values are words and expressions from

a natural or synthetic language.

● In two-valued logic, a proposition can be qualified by associating it with a

truth value (“true” or “false”), a modal operator (such as “possible” or

“necessary”) “or an intensional operator (such as “know” or “believe”).

Fuzzy logic proposes three different types of qualification:

○ Truth-qualification, for example “not quite true”.

○ Probability-qualification, something is “unlikely”.

○ Possibility-qualification, might be expressed by “almost impossible”.

As an example, we will consider two proportions [Zade96]:
● p1 = Carol lives near Mary

● p2 = Mary live near Pat

In this case, the phrase “lives near” is a fuzzy constraint. To the question

“How far does Carol live from Pat?”, we can now give an answer. This answer

could look like the proportion p3 = Carol lives not far from Pat.
It is obvious that imprecise concepts (as shown above) can be modeled using

fuzzy logic. To demonstrate how fuzzy logic works, an extension of the classical

two-valued logic to a three-valued one is necessary. Besides the values 1 and 0,

we will now add 0.5 to express indeterminacy. To evaluate the primitives

∨ ,∧,⇒ ,⇔ known from two-valued logic, several logics have been developed,

Fuzzy Set Theory 37

with the results differing from each other. Some of the most frequently used log-

ics are presented in Table 8.

Łukasiewicz Bochvar Kleene
a b ∧ ∨ ⇒ ⇐ ∧ ∨ ⇒ ⇐ ∧ ∨ ⇒ ⇐

0 0 0 0 1 1 0 0 1 1 0 0 1 1
0 0.5 0 0.5 1 0.5 0.5 0.5 0.5 0.5 0 0.5 1 0.5
0 1 0 1 1 0 0 1 1 0 0 1 1 0

0.5 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0.5 0.5 0.5
0.5 0.5 0.5 0.5 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 1 0.5 1 1 0.5 0.5 0.5 0.5 0.5 0.5 1 1 0.5
1 0 0 1 0 0 0 1 0 0 0 1 0 0
1 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5
1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 8: Three-Valued Logics

Fuzzy Set Theory 38

The logics differ from each other in the treatment of the new truth value 0.5.

The three-valued logics can be generalized to n -valued logics [KlFo88]. For

such logics, the degree of truth is usually labeled by rational numbers in the in-

terval [0, 1]. The fist person to introduce a n -valued logic was Jan Łukasiewicz

in the 1930s. He proposed his logic as a generalization of three-valued logic with

the primitives defined as follows:

We will use the Łukasiewicz Logic for the fuzzy logic computations. Such a n

-valued logic is often denoted as Ln in literature. Infinite-valued logics are a

special case of n -valued logics, where the truth values are taken from all ratio-

nal numbers of the unit interval [0, 1].

4.3 Fuzzy Operations
To perform operations on fuzzy sets, we need to reconfigure our operations for

crisp sets. Generally, the same operations can be applied for fuzzy sets which

are complement, union and intersection. According to the concepts of fuzzy log-

ic, the operations will be defined in the rest of this section.

● Complement
The difference between the complement for a crisp sets and the fuzzy

fuzzy complement is, that there can be elements that have nonzero val-

ues for both, the fuzzy set and its complement. It is clear that the comple-

ment for the values 0 and 1 behave in the same way as they do for crisp

sets, that is the complement of 0 is 1 and the complement of 1 is 0. For-

mally: c 0=1,c 1=0 .

We also assume that the function c (the fuzzy complement) is monotonic

nonincreasing, meaning for all a ,b∈[0,1] , if ab , then c a ≥c b .

The fuzzy complement is defined as follows: Ax=1−A x . The com-

plement value of a membership grade of 0.4 would thereby be 0.6 (see

Figure 9).

a=1−a ,
a∧b=mina ,b  ,
a∨b=max a ,b ,

a⇒b=min1,1b−a  ,
a⇔b=1−∣a−b∣.

Fuzzy Set Theory 39

● Union
The union of two fuzzy sets can be generally specified by a function of

the form: u : [0,1]×[0,1][0,1] .

According to u 0,0=0 ; u0,1=u 1,0=u 1,1=1 , the fuzzy union will give

equal results to the crisp union for 0 and 1, but it allows to deal with other

values as well. Further characteristics are commutativity (u a , b=u b ,a 

), monotonicity (if a≤a '∧b≤b' , then u a , b≤u a ' , b ' ), and associa-

tivity (u u a , b , c =ua , u b , c ).

To compute a fuzzy Union, we use the following form:

A∪B x=max [A x ,B x] (see Figure 10). According to the form, the

maximum of both memberships is taken for the union. If we see two

membership grades of 0.3 and 0.6, the applied fuzzy union would be 0.6.

Figure 9: Fuzzy Complement

Figure 10: Fuzzy Union

Fuzzy Set Theory 40

● Intersection
The discussion of the fuzzy intersection is strongly related to the fuzzy

union. The same function, namely i :[0,1]×[0,1][0,1] specifies the

fuzzy intersection.

Again, the fuzzy intersection works the same way as the classical inter-

section for binary data, defined by i 1,1=1 ; i 0,1=i 1,0=i 1,1=0 .

Also, it is commutative, monotonic and associative as shown for the fuzzy

union.

To compute membership values with fuzzy intersection, the minimum is

used: A∩B x=min [Ax  ,B x] (see Figure 11). Thus, a fuzzy intersec-

tion of 0.3 and 0.6 would give 0.3 as a result.

4.3.1 Triangular Norms
Triangular norms, in short t-norms, are an important factor in fuzzy association

rule mining. “A triangular norm (a t-norm for short) is a commutative, associative,

non-decreasing function in T :[0,1]2[0,1] such that T x ,1= x for all x∈[0,1] .

[...] The basic continuous t-norms are the minimum, T M  x , y=minx , y  , the

product, T P x , y=xy and the Łukasiewicz t-norm, T L x , y=max 0, x y−1 .”

[MeNa99]

Figure 11: Fuzzy Intersection

Fuzzy Set Theory 41

In literature on fuzzy association rules, a t-norm is often used as a generaliza-

tion for the intersection of fuzzy sets which has already been described in Chap-

ter 4.3. It satisfies the boundary conditions T x ,0=0 and T x ,1= x for all

0≤x≤1 . T-norms are often denoted by x y , but we will use the notion

T x , y  . It is important to know which t-norms are admissible for conducting a

fuzzy intersection. Generally speaking, admissible t-norms can be derived from

the n -valued logics, for example the minimum or the product. Therefore, the in-

tersection of two fuzzy sets equals their t-norm: x∩ y=T x , y . Not all t-norms

are admissible, though.

A generalized logical disjunction is represented by a t-conorm, which can be

used for defining the union of fuzzy sets. The notion of a t-conorm is S x , y  ,

although x y is similarly applied in literature. A t-conorm satisfies all condi-

tions of t-norms, i.e. commutativity, associativity and it is non decreasing. The

boundary conditions here are S x ,0=x and S x ,1=1 for all 0≤x≤1 . Usual

choices for t-conorms are the maximum or the algebraic sum. As stated above,

t-conorms are used to define the union of fuzzy sets: x∪ y=S x , y . Usual

choices for t-norms and t-conorms can be found in Table 9.

t-norm t-conorm
T M  x , y=minx , y  SM  x , y=max x , y 

T P x , y=xy S P x , y=x y−xy

T W x , y=maxx y−1,0 SW  x , y=minx y ,1

Table 9: Well-known t-norms and t-conorms [CoCK03]

An important issue here is to define which t-norms are admissible for use with

fuzzy sets. According to [DuHP06], a t-norm is admissible if it is a copula. A cop-

ula is a “function that joins or couples multivariate distribution functions to their

one-dimensional marginal distribution functions.” (cp. [Nels06]) For further infor-

mation on triangular norm based fuzzy logics, see [BuKZ95].

Fuzzy Association Rules 42

5 Fuzzy Association Rules
Based on classical association rule mining, a new approach has been devel-

oped expanding it by using fuzzy sets. The new fuzzy association rule mining

approach emerged out of the necessity to mine quantitative data frequently

present in databases efficiently. Algorithms for mining quantitative association

rules have already been proposed (see chapter 3.3). When dividing an attribute

in the data into sets covering certain ranges of values, we are confronted with

the sharp boundary problem.

Elements near the boundaries of a crisp set will either be ignored or overem-

phasized [KuFW98]. For example, one can consider a set representing persons

of middle age, ranging from 30 to 50 years old (see Figure 12). In this example,

a person aged 29 years would be a 0% representative and a 31 year old would

be 100%. In reality, the difference between those ages is not that great. Imple-

menting fuzziness can overcome this problem.

The same problem can occur if one is dealing with categorical data. Some-

times, it is not ultimately possible to assign an item to a category. As an exam-

ple, one can say that a tomato is a vegetable but also, in a way, a fruit. Crisp

sets would only allow assigning the item to one single category, fuzzy sets allow

different grades of membership to more than one set. Three different approach-

es to fuzzy association rules can be found in literature which will be discussed in

Figure 12: Crisp Set

Fuzzy Association Rules 43

the following chapters: The quantitative approach, fuzzy taxonomic structures

and the approximate itemset approach.

5.1 Approaches

5.1.1 Quantitative approach
Kuok et al. descibe fuzzy association rules as follows [KuFW98]: “Mining

fuzzy association rule is the discovery of association rules using fuzzy set con-

cepts such that the quantitative attribute can be handled” As in classical associ-

ation rules, I={i1 , i2 , ... , im } represents all the attributes appearing in the trans-

action database T={t 1 , t 2 , ... , t n} . I contains all the possible items of a

database, different combinations of those items are called itemsets. Each at-

tribute ik will associate with several fuzzy sets. In order to represent the fuzzy

sets associated with ik , we use the notion F ik
={ f ik

1 , f i k

2 , ... , f i k

l } where f ik

j is the

j th fuzzy set in F ik
. As an example, the attribute salary could look as follows:

F Salary={high , medium , low } . Fuzzy sets and their corresponding membership

functions have to be defined by domain experts. Each of the fuzzy sets can be

viewed as a [0,1] valued attribute, called fuzzy attribute.

A fuzzy association rule has the following form:
If X is A thenY is B

In this case, X={x1 , x2 , ... , x p} and Y={y1 , y2 ,... , yq} are itemsets which are

subsets of I . It is important to notice that those two sets must be disjoint and

thus do not have any attributes in common. A={ f x1
, f x2

,... , f x p
} and

B={ f y1
, f y2

, ... , f yq
} contain the fuzzy sets that are associated with X and Y .

Known from classical association rules, X is A is the antecedent, Y is B is the

consequent. If a sufficient amount of records approves this rule, we will call it

satisfied.

For example, we might want to partition the variable Age into three fuzzy sets.

The fuzzy sets and their membership functions will have to be defined by a do-

main expert. For easy demonstration, we will just define the borders of the sets

and split the overlapping part equally between the so generated fuzzy sets. For

an example, we will use the following borders for the fuzzy sets of the variable

Fuzzy Association Rules 44

age: Age.Low={0−33}, Age.Medium={27−55}, Age.High={48−∞} . The generat-

ed fuzzy sets is shown in Figure 13. For all areas having no overlap of the sets,

the support will simply be 1 for the actual itemset. If there is an overlap, the

membership can be computed by using the borders of the overlapping fuzzy

sets. The added support will here always sum up to 1.

The formula for computing the membership varies depending on whether it is

at the upper border of a set or at the lower border:

x =
hb f ik

n −x
hb  f ik

n −lb  f ik

n1
 for the computation of membership at the high bor-

der,

x=
x−lb  f ik

n 

hb  f ik

n −lb  f ik

n1
 for the lower border,

Where lb f ik

n  is the low border of a set, hb  f ik

n  is the high border and x is

the original value of any attribute in the database.

Figure 13: Fuzzy Partition of a Quantitative Attribute

5.1.1.1 Fuzzy normalization
When we are dealing with quantitative attributes mapped to fuzzy sets we might,

depending on the membership function, find that the membership values to the

sets of one single entity does not add up to one [Gyen00]. This depends on how

we defined our fuzzy sets and the corresponding membership functions in ad-

vance. If we are dealing with a mix of quantitative and categorical attributes, we

Fuzzy Association Rules 45

might find it unreasonable that the quantitative attribute has the potential to con-

tribute more to a rule than a categorical one. The entry in a database in Table

10 serves as an example.

Level:junior Level:senior Age:low Age:medium Age:high
0 1 0.2 0.9 0.1

Table 10: Without Fuzzy Normalization

The categorical attribute Level can have any number of attributes, and still

only one of them will contribute with the value 1, all of the others will show 0.

The quantitative attribute Age represented by fuzzy sets, however, contributes

with 1.2 in this case. It is unreasonable for one transaction to contribute more

than others. Here, the fuzzy normalization process takes place. It will further

transform the transaction to values of age that sum up to 1. The new values can

be calculated easily by dividing the value of a single element by the sum of all

the fuzzy values corresponding to that attribute (see attribute Age in .Table 11).

Level:junior Level:senior Age:low Age:medium Age:high
0 1 0.167 0.75 0.083

Table 11: With Fuzzy Normalization

5.1.2 Fuzzy Taxonomic Structures
Similarly, the approach illustrated in chapter 5.1.1 can also be used when deal-

ing with taxonomic structures that are not crisp but fuzzy. A taxonomy is a user-

defined categorization of the available items [GrKW01]. It is a hierarchy repre-

sented by a tree where a child node belongs to one single parent node. In some

cases, we might need to allow a graded membership to more than one parent

nodes. As an example, a tomato could be regarded as both, a fruit and a veg-

etable. In order to demonstrate such dependencies, the concept of fuzzy taxo-

nomic structures is introduced in [WeCh99] (for an example, see Figure 14).

Fuzzy Association Rules 46

In crisp taxonomic structures, a child belongs to its ancestor with degree one.

That means, any child can only have one single ancestor. Fuzzy taxonomies

eliminate this assumption by allowing graded memberships to different parent

nodes at the same time. Each child node belongs to its parent nodes by a cer-

tain degree  , where 0≤≤1 . Any node x is called an ancestor of node y if

a direct path exists from x to y . Node y is then called the descendant of node

x .

The values within the tree are no fuzzy sets and there is no membership func-

tion for them. Instead, the structures have to be defined a priori by domain ex-

perts. After definition, normal procedures of mining fuzzy association rules can

be used to mine data that is organized in the form of a fuzzy taxonomic struc-

ture. With this procedure, even categorical data can be enriched with more infor-

mation and used for fuzzy association rule mining.

5.1.3 Approximate Itemset Approach
The task of mining frequent itemsets deals with discovering frequent episodes in

a sequence of events [MaTV97]. The data can be viewed as a sequence of

events associated with a certain time of occurrence. Speaking of a frequent

episode, we mean a collection of events that frequently occurs jointly. A basic

problem of the analysis of such episodes is to discover them in the first place.

Episodes are partially ordered sets of events. Looking at these episodes en-

ables to discover regularities, for example an event X is followed by an event

Y in most of the cases. The crucial problem here is the definition of how close

Figure 14: A Fuzzy Taxonomic Structure [WeCh99]

Fuzzy Association Rules 47

together two items have to be in a timely manner in order to qualify as an

episode. A time window has to be defined for this purpose.

If we are dealing with data where the items are frequently delayed or lost,

problems will occur in discovering episodes. In [WaBK05], an approach of min-

ing fuzzy frequent itemsets is proposed for the purpose of dealing with such situ-

ations. In this context, the term “fuzzy” refers to a set of items that may not be

discovered exactly in the supporting transaction, but only approximately. The

traditional approach would potentially discard a possibly interesting episode just

because it does not satisfy the user-specified minimum support measure. This

happens because the transaction simply occurs too rarely. The task now is to al-

low a certain number of mismatches to account for items that were possibly lost

or delayed.

5.2 Quality Measures
In order to enable the evaluation of a fuzzy association rule, we use the stan-

dard approach for calculating support and confidence, replacing the set-theoret-

ic operations by the corresponding fuzzy set-theoretic operations [DuHP03]:

supp AB=∑
x∈D

T A x , B x

The usual choice for the t-norm is the minimum as demonstrated in chapter

4.3.1, yet the product has also been applied [DuHP06]. The rule AB can

equally be displayed by summing up the individual supports that are provided by

the tuples x , y ∈D :

supp[x , y]AB=T Ax  , B y 

Additionally, if A supports B , B will automatically also support A . This is

due to the fact that the support is computed by simply summing up the member-

ships of the different items in the database. Therefore:
supp[x , y]AB=supp[x , y]B A

conf A B=
∑
x∈D

T Ax  , B y 

∑
x , y∈D

Ax 

Fuzzy Association Rules 48

The support measure is especially important to determine frequent itemsets

with respect to the user-defined minimum support, just as in binary association

rules. The confidence is particularly used for investigating the interestingness of

the discovered rules. A rule will only be interesting if its confidence is above the

specified minimum, and it becomes more interesting the bigger the support is.

Some research on fuzzy association rules stresses the importance of two-sid-

edness of knowledge when evaluating the rules [CoCK03]. A whole new spec-

trum of knowledge can be expressed by complementing the degree of member-

ship with a degree of non-membership. Therefore, we have to distinguish be-

tween “not positive examples” and “negative examples” of the rules. The support

of a rule consists of the elements belonging to both the antecedent (A) and the

consequent (B). Equally, these same elements defining the support can also

be viewed as the positive examples of the particular rule. Being positive exam-

ples of the rule AB , the same elements are also positive examples of the rule

BA .

Now, we have to define what a negative example of a rule might look like.

Looking at the rule AB again, a negative example would be a tuple where A

is satisfied but B is not. This time, AB does not have the same negative ex-

amples as BA . Also, we have to distinguish between a negative example and

a non-positive example. In a non-positive example, even the antecedent A is

not satisfied.

The opposition of a fuzzy rule can best be described as the opposite of its

support. While the support sums up all the values that an itemset shows for the

different variables, the opposition accounts for the fuzzy complements of these

values. See Table 12 for support and opposition values. In this context, coA

stands for the complement of a fuzzy set A .

AB
minimum support (minsupp) ∣A∩B∣
maximum opposition (maxopp) ∣coA∪coB∣
minimum opposition (minopp) ∣A∩coB∣
maximum support (maxsupp) ∣coA∪B∣

Table 12: Measures

Fuzzy Association Rules 49

After validating the support of a rule, its confidence can be explored. In

[CoCK03], so called pessimistic and optimistic confidence measures are intro-

duced. Formally, those measures look as follows:

conf pAB=minsupp AB
maxopp AB

conf oAB=maxsuppAB
minopp AB

“When determining the pessimistic confidence of a rule breadbutter we

have the following assumption in mind: if those people who did not buy bread,

would have bought bread, they would not have bought butter as well. For the op-

timistic confidence measure on the other hand we assume that if those people

who did not buy bread, would have bought bread, they would have bought butter

as well.” [CoCK03]

5.2.1 Problems
Some problems arise when computing the confidence of a rule [DuPS03], if the

sum is taken over the set of tuples in the database. As a result, a large number

of tuples with small membership grades is permitted to have the same effect as

one single element with membership grade one. This may lead to unintuitive re-

sults after the assessment of the association rules. As an alternative, one could

think of giving greater significance to those tuples with higher membership de-

grees. The proposed solution is the use of a scalar cardinality of fuzzy sets

based on the weighted summation of the cardinalities of its α-cuts. The new

confidence measure then looks as follows:

conf A B=∑
i=1

t−1

i−i1
∣ A∩B∣i

∣ A∣i

This methods puts greater emphasis on elements with higher membership

degrees due to the fact that an element with membership k occurs in each

summand of k , k1,... , t .

As described before, the minimum is the most common choice for a t-norm

representing the fuzzy intersection. This occurs together with a loss of informa-

tion. If the membership grades of two items differ only in the same set where

both elements have a higher grade, the difference will be lost [DuPS05]. A com-

Fuzzy Association Rules 50

pensatory t-norm might do a better job for this kind of data. The database of ta-

ble Table 13 serves as an example. Even though the tuples differ in their mem-

bership values, the minimum will still produce the same result.

ID A(a) B(b) min(A(a), B(b))
1 1 0.1 0.1
2 0.1 1 0.1
2 0.1 0.1 0.1

Table 13: Example Membership Table

5.3 Discovering Fuzzy Sets
The traditional way to discover the fuzzy sets needed for a certain data set is

to consult a domain expert who will define the sets and their membership func-

tions. This requires access to domain knowledge which can be difficult or expen-

sive to acquire. In order to make an automatic discovery of fuzzy sets possible,

an approach has been developed which generates fuzzy sets automatically by

clustering [FWSY98]. This method can be used to divide quantitative attributes

into fuzzy sets, which deals with the problem that it is not always easy do define

the sets a priori.

The proposed method uses a known clustering algorithm to find the medoids

of k clusters. The whole process of automatically discovering fuzzy sets can be

subdivided into four steps:

● Transform the database to make clustering possible (the value of all the

attributes has to be positive integer).

● Find the k medoids of the transformed database using a clustering

method.

● For each quantitative attribute, fuzzy sets are constructed using the

medoids.

● Generate the associated membership functions.

In [FWSY98], the CLARANS algorithm is proposed to conduct the clustering.

After discovering k medoids, we can compute k fuzzy sets out of them. We

define {m1 , m2 , ... , mk} as the k medoids from a database. The i -th medoid can

be defined as mi={a i1 , a i2 , ... , a i n} . If we want to discover the fuzzy sets for the

Fuzzy Association Rules 51

j -th attribute, ranging from min j to max j , our mid-points will be

{a i1 , ai2 ,... , a i n} . The fuzzy sets will then show the following ranges:

{min j−a2 j}, {a1 j−a3 j}, {a i−1 j−a i1 j}, ... ,{a k−1 j−max j} .

Finally, the membership functions for the fuzzy sets have to be computed.

We can get our membership function looking at the definition of the sets above.

For the fuzzy set with mid-point akj , the membership function looks as follows: If

x≤ak−1 j , the membership of x is 0. Also for x≥ak1 j , x=0 because in both

cases, the value lies outside the range of the fuzzy set. If x takes exactly the

value of the mid-point akj , the membership is 1. For all other cases, we have to

use a formula in order to compute the specific membership:

x={
x−a k−1 j

akj−a k−1 j
if a k−1 j xakj

x−a k1 j

akj−a k1 j
if akjxak1  j

A distinction between two types of fuzzy sets has been introduced in

[XieD05]. These two types are called equal space fuzzy sets (Figure 15) and

equal data points fuzzy sets (Figure 16). Equal space fuzzy sets are symmetrical

and all occupy the same range in the universal set. In contrary, equal data

points fuzzy sets cover a certain number of instances and thus are not symmet-

rical.

Figure 15: Equal Space Fuzzy Set

Fuzzy Association Rules 52

Figure 16: Equal Data Points Fuzzy Set

5.4 Algorithms
Some attempts for developing algorithms to discover fuzzy association rules

have already been made. In [ChAu98], an algorithm for mining fuzzy association

rules in quantitative databases is proposed. The algorithm, called F-APACS,

employs linguistic terms to describe the hidden regularities and exceptions

rather than splitting up quantitative attributes into fuzzy sets. The linguistic terms

are defined by fuzzy set theory, therefore the association rules discovered here

are called fuzzy association rules. An objective interestingness measure is used

to define whether attributes are related or not. The use of linguistic terms is an

attempt to make rules more understandable for the human user.

In traditional association rule mining techniques, minimum support and confi-

dence thresholds have to be defined by the user. The F-APACS algorithm ad-

dresses this problem by using adjusted difference analysis to identify interesting

associations between attributes. In addition, the algorithm can discover both,

positive and negative association rules. A negative rule tells us that if a record

has a certain characteristic, the associated record will not have another charac-

teristic. The algorithm can be found in Table 14.

Fuzzy Association Rules 53

Table 14: F-APACS Algorithm

The algorithm starts with a data set. The linguistic terms are repre-

sented by fuzzy sets L pq , L jk and the degree to which d is represented by

 is summarized in deg L pq L jk . The interestingness of an association rule

is calculated using the adjusted difference measure. For further details on the

algorithm, see [ChAu98].
Another algorithm has been suggested in [ChWe02] which is suitable for min-

ing association rules in fuzzy taxonomic structures. The Apriori algorithm is ex-

tended to allow mining fuzzy association rules as well. Fuzzy support and confi-

dence measures are applied in order to evaluate the interestingness of a rule.

The non-fuzzy algorithm of [SrAg95] decides whether a transaction T supports

an itemset X by checking for each item x∈X if the item itself or some descen-

dant of it is present in the transaction. For this reason, all possible ancestors of

each item in T are added, forming T ' . Now T supports X if and only if T ' is

a superset of X . A standard algorithm can then be run on the extended trans-

actions to mine the association rules. In the fuzzy case, T ' is generated differ-

ently. Not only the ancestors of T have to be added, but also the degree to

which the ancestors are supported by the transactions.

A different attempt has been made in [HoKC99] which similarly uses the Apri-

ori algorithm as a basis but incorporates fuzzy sets for mining quantitative val-

ues in a database. The algorithm first transforms each quantitative attribute into

fuzzy sets and maps items to them via membership functions. An Apriori-like al-

Fuzzy Association Rules 54

gorithm generates the association rules using the previously collected fuzzy

counts.

Another Apriori-like approach is presented in [Gyen00]. It addresses the two

main steps of association rule mining, namely the discovery of frequent itemsets

and the generation of association rules from quantitative databases. The nota-

tion in Table 15 will be used for the algorithm.

D the database
DT the transformed database

F K set of frequent k -itemsets (having k items)

C K set of candidate k -itemsets (having k items)

I complete itemset
minsup support threshold
minconf confidence threshold
mincorr correlation threshold

Table 15: Notation

The algorithm first searches the database and returns the complete set con-

taining all attributes of the database. In a second step, a transformed fuzzy

database is created from the original one. The user has to define the sets to

which the items in the original database will be mapped. After generating the

candidate itemsets, the transformed database is scanned in order to evaluate

the support and after comparing the support to the predefined minimum support,

the items with a too low support are deleted. The frequent itemsets F K will be

created from the candidate itemesets C K . New candidates are being generated

from the old ones in a subsequent step. C k is generated from C k−1 as de-

scribed for the Apriori algorithm in chapter 3.4.1. The following pruning step

deletes all itemsets of C k if any of its subsets does not appear in C k−1 . Finally,

the association rules are generated from the discovered frequent itemsets. The

pseudocode of the algorithm can be found in Table 16.

Fuzzy Association Rules 55

Main Algorithmminsup , minconf , mincorr , D
1) I=Search D  ;
2) C1 , DT =TransformD , I  ;
3) k=1 ;
4) C k , F k =Checking C k , DT , minsup ;
5) while ∣C k∣≠∅ do
6) begin
7) inck  ;
8) if k== 2 then
9) C k=Join1C k−1 ;
10) else C k= Join2 C k−1 ;
11) C k=Prune C k  ;
12) C k , F k =Checking C k , DT , minsup ;
13) F=F∪F k ;
14) end
15) Rules F , minconf ,mincorr 

Table 16: An Algorithm for mining Fuzzy Association Rules

The Project 56

6 The Project
In order to demonstrate the process of fuzzy association rule mining, a prototype

has been implemented in the proceeding of this paper. Especially, the quantita-

tive approach to fuzzy association rules is a major part in the present implemen-

tation. The user is given the possibility to mine fuzzy association rules out of any

quantitative database. Fuzzy sets are generated first, followed by discovering

fuzzy frequent itemsets form the newly constructed database. Finally, fuzzy as-

sociation rules are generated and evaluated.

The purpose of the program is to demonstrate how fuzzy association rules

mining can work in practice. The algorithms work on any compatible quantitative

data set, although they may not be fast enough to conduct mining on very large

databases.

The program has the form of an R-package which can be installed and run on

any computer or platform where R itself is running. It provides several functions

which can directly be applied by the user. The functions provided can be called

by using the standard R-console.

A very important task of the package is to guide the user through all steps of

the mining process, from discovering fuzzy sets to the final generation of the as-

sociation rules. Still, the preprocessing steps like choosing the right variables for

a data set have to be performed by the user himself. Also, no interpretation of

the rules is provided, which would be a difficult task to complete anyway. So,

some work by the user has still to be done for the program to work.

The following chapter will give a more detailed description about the program,

the implemented approach, the functions it provides and the architecture it has

been developed with, specifically R. Besides that, an example is offered in order

to demonstrate the use of the program. It is a small example guaranteeing a

clear demonstration, and still large enough to demonstrate all provided function-

alities. In the end of the chapter, a forecast is given describing activities still

needed to improve the implementation. Weaknesses of the program will be dis-

cussed along with the possibilities of making the program faster and more effi-

cient.

The Project 57

6.1 Key Facts
Project Name Development of an R-package for fuzzy

association rules mining
Author Lukas Helm
Matriculation number of the author 0251677
Organizer Priv.Doz. Dr. Michael Hahsler,

Institute for Information Business,
Vienna University of Economics and Business
Administration

Start of project February 6th, 2007
End of project July 29th, 2007
Semester Summer 2007
Topic Development of an R-package for the

demonstration of fuzzy association rules
providing the following functionality:

• Discover fuzzy sets from quantitative
data

• Implement the necessary fuzzy set-
theoretic operations

• Generate frequent itemsets from fuzzy
data

• Generate the association rules out of the
frequent itemsets

• Evaluate discovered or presumed rules
with fuzzy support and fuzzy confidence
values

Tabelle 17: Project Overview

6.2 Architecture
The package was developed in the R environment, which is an environment for

statistical computing and graphics. It is available for free from the Internet [Rpro]

under the General Public License (GPL). This allows you to use and distribute it

freely. It is even allowed to sell it as long as the source code is made available

and the receiver has the same rights. Many important platforms are supported

by R, like Windows, Linux and Mac OS.

R is actually a programming language which is now developed by the R De-

velopment Core Team. It can be regarded as an implementation of the S pro-

gramming language with its semantics derived from Scheme, a multi-paradigm

The Project 58

programming language. Over the recent years, it has become a de-facto stan-

dard for data analysis and the development of statistical software. The design of

R enables further computations on results of a statistical analysis [Dalg04]. It is

based on a command line interface still allowing graphical representations of re-

sults. Furthermore, graphical user interfaces have been developed.

The basic R package already supports a high number of statistical and nu-

merical techniques and is additionally highly expandable with packages con-

tributed by users. Packages provide special functionalities which are not includ-

ed in R. Besides the core set of packages included in standard R, over 1000

more packages are available from the Comprehensive R Archive Network

(CRAN). The program developed in the proceedings of this thesis is designed in

a similar way as these packages.

 The language is based on a formal computer language, giving it the advan-

tage of high flexibility. Alternative programs that provide simpler user interfaces

may look easier at first sight, but in the long run R offers the flexibility needed to

conduct complex statistical calculations.

[Rpro] describes the R-environment as follows:

“R is an integrated suite of software facilities for data manipulation, calculation

and graphical display. It includes

● an effective data handling and storage facility,

● a suite of operators for calculations on arrays, in particular matrices,

● a large, coherent, integrated collection of intermediate tools for data anal-

ysis,

● graphical facilities for data analysis and display either on-screen or on

hard copy, and

● a well-developed, simple and effective programming language which in-

cludes conditionals, loops, user-defined recursive functions and input and

output facilities.”

The R Foundation is a not for profit organization created by the R Develop-

ment Core Team. It serves the following three goals:

● Ensure the continued development of R as well as providing support for

the R Project and other innovations in statistical computing.

The Project 59

● Provide a reference point for possible supporters or interactors with the R

development community.

● Administer the copyrights of the R software and documentation.

In addition, R is an official part of the Free Software Foundation's GNU

project.

6.3 Approach
After having described all the theoretical approaches of data mining and fuzzy

association rules, this chapter demonstrates which theories and algorithms have

been implemented in the program. It does not exactly describe the implemented

functions (see chapter 6.4) but lists the concepts and ideas underlying the final

implementation. An important point is the application of known association rule

mining algorithms to the fuzzy case.

6.3.1 Constructing Fuzzy Sets
In most of the literature on fuzzy association rules, the standpoint is that an ex-

pert has to define the fuzzy sets which have to be applied for the quantitative at-

tributes of a database. Some attempts have also been made to automatically

discover fuzzy sets by implementing techniques like clustering (see chapter 5.3).

In the package, the user has two possibilities: he can choose whether he wants

to define the fuzzy sets himself or if he wants the program to find the fuzzy sets.

First, we will have a look at what the fuzzy sets look like in the program. Fol-

lowing the idea that the main purpose of fuzzy sets is to overcome the sharp

boundary problem (see chapter 5), it is not necessary to be able to enter a sin-

gle membership function for every fuzzy set in a database. It is sufficient enough

to know where the borders of the fuzzy sets lie. The membership values can

then be computed easily, the only critical part is the overlapping range of the

sets (see chapter 5.1.1).

If the user decides to define his own fuzzy sets, he thereby just has to put in

the desired borders for all sets. Not only the borders, but also the number of

fuzzy sets for each attribute can be chosen. Fuzzy sets can automatically be dis-

covered from these specifications. It is important that the fuzzy sets cover all val-

ues in the attribute, if a value lies outside all of the sets, it can not be mapped to

The Project 60

any of them. For example, a user defines the following borders for four fuzzy

sets: A={0,20} , B={15,36} , C={34,45} , D={40,50} .

Figure 17: Fuzzy Sets

The resulting fuzzy sets can be seen in Figure 17. We notice that the outer

sets A and D both have one crisp border. This is simply due to the fact that

they do not have any fuzzy neighbors. The computation of the membership

function has already been discussed in chapter 5.1.1.

Should the user not want to specify any fuzzy sets himself, we can easily

compute them for him, but without any guarantee for the correctness of the sets

for the present data. The approach is to retrieve the fuzzy sets by applying sim-

ple statistical measures. In our method, it is only possible to automatically re-

trieve three fuzzy sets out of any data column. The calculation of the three sets

(see Figure 18) works as follows:

● Low set: The lower border of the low set is the minimal value of the quan-

titative data in the field. The high border of the low set is given by

hb=mean− sd
2
mean×overlap .

● Medium set: The lower border of the medium set is calculated by

lb=mean− sd
2
−mean×overlap ,

 the high border by hb=mean sd
2
mean×overlap .

● For the high fuzzy set, the higher border equals the maximum in the data,

the low border is lb=mean sd
2
−mean×overlap .

The Project 61

Figure 18: Automatic Set Generation

The variable overlap can take any value between 0 and 1. It defines the size

of the overlap between the fuzzy sets. A value of 0.1 would make the overlap as

big as 0.2 times the mean. Putting in 0 would create crisp sets.

The decision on the right fuzzy sets is crucial for the success of a data mining

project, therefore this easy method is not accurate enough and sets should be

researched more carefully. However, it will give users a quick start for experi-

menting with the idea of fuzzy association rules. For use in a real project, fuzzy

sets will have to be defined a priori or a more sophisticated algorithm has to be

used for finding them.

6.3.2 Constructing a Dataset for Mining
After having defined the fuzzy sets, a new data set enabling the mining of

fuzzy association rules has to be constructed out of the original data. This pro-

cess is rather simple and intuitive, since the values only need to be fitted into the

sets. For every fuzzy set that we have previously defined, there is one row in the

new database containing the grade of membership of the single items to the

specific set. Figure 19 visualizes the process of getting the membership values

of a data point to different fuzzy sets.

The Project 62

Figure 19: Membership of an Item

As an example, we will look at a sample transaction database representing one

row of the original database: t={5,27 ,12 ,17,22 ,16 ,9,14 } Three fuzzy sets have

been defined as follows: A={0,15} , B={11,23} and C={20,30} . The row will

be subdivided into three rows, one for each fuzzy set. The new table will only

contain the membership values to these fuzzy sets (see Table 18).

A B C
1 0 0
0 0 1

0.75 0.25 0
0 1 0
0 0.33 0.67
0 1 0
1 0 0

0.25 0.75 0

Table 18: New Database

6.3.3 Calculation of Fuzzy Operations
A decision has to be made on which t-norms should be used for the calculation

of the fuzzy support and confidence measures. The calculation is conducted ac-

cording to chapter 5.2, using the Łukasiewicz logic and the Łukasiewicz t-norm

respectively.

supp AB= ∑
x , y∈D

min Ax ,B x

The Project 63

This specific method has been chosen because it appears to give reasonable

results and in addition it is the most popular method for calculating fuzzy opera-

tions. Also the other fuzzy operations like complement or implication have been

designed in this way (see chapter 4.2). Calculating the support is important for

the frequent itemset generation, fuzzy confidence for generating the rules.

6.3.4 Frequent Itemset Generation: the FP-Growth Algorithm
For generating the frequent itemsets from the database, the FP-Growth algo-

rithm has been chosen (see chapter 3.4.2). The issue is to transform the original

algorithm in a way that it can deal with fuzzy databases. This is quite simple in

the case of FP-Growth, because fuzzy data can be incorporated easily into an

FP-Tree. Mining the tree then does not differ significantly from the original algo-

rithm.

6.3.4.1 FP-Tree Construction
Constructing an FP-Tree from a fuzzy database is rather straightforward. The

only difference to the original algorithm is that it is not enough to count the oc-

currences of an item , but the value of membership has to be considered as

well. This membership value is then simply added to the overall count of the

node. The database of fuzzy values in Table 19 is used for FP-Tree construc-

tion.

A B C D E
1 0 0.3 0 1
0 0.6 1 0 0

0.2 1 1 1 0
0 0.4 0 0.9 1
0 0 1 0 0.4
0 0 1 1 0.1
1 1 0 0 0.2

Table 19: Sample Fuzzy Database

conf A B=
∑

x , y∈D
min Ax , B  y

∑
x , y∈D

A x

The Project 64

Generating the FP-Tree from this database will lead to a tree containing the

sums of the fuzzy values in the nodes. The tree created from this database can

be seen in Figure 20.

Figure 20: Fuzzy FP-Tree

It is now easy to calculate the support of a path in the tree because it is sim-

ply the minimum of the path that is controlled. That tree can be used for con-

ducting the FP-Growth algorithm, described in the following chapter.

6.3.4.2 FP-Growth
The FP-Growth works very similar to the standard algorithm for binary data. The

difference is that it uses the fuzzy values for measuring support, constructing the

conditional pattern base and building the new conditional FP-Tree. The mini-

mum support can be checked by comparing the minimum of one path with the

user-defined threshold. The conditional pattern base for the items in the tree of

Figure 20 looks as demonstrated in Table 20.

item conditional pattern base
A {〈C ,E :1〉 , 〈C ,B , D :0.2〉 , 〈B , E :0.2 〉}
E {〈C :1.4〉 , 〈C , D:0.1〉 , 〈B: 0.2〉 ,〈B , D:0.9 〉}
D {〈C :1〉 ,〈C , B :1〉 , 〈B :0.9〉 }
B {〈C :1.6〉}
C ∅

Table 20: Fuzzy Conditional Pattern Base

The Project 65

It is important to notice that, unlike in the classical approach, lower values

than in the leaf nodes can appear in the path of a tree. This is why we can not

use the values of the leaf nodes for building the conditional patterns. Instead,

we have to use the minimum value of the path. Therefore, some data might get

lost, but we will accept this distortion in order to enable fuzzy associations min-

ing.

If we take the minimum of a certain path in the tree as its support, it might ac-

tually lead to a false value. This is due to the fact that elements in higher levels

of the tree can contribute with even lower values to the specific path. This re-

sults in a possible discovery of itemsets that in reality are infrequent. Therefore,

the discovered frequent itemsets should once more be tested for their support

before recording them into the final set of frequent transactions.

6.3.5 Generation of Association Rules
The generation of the association rules works as defined in [AgIS93]. The an-

tecedent can consist of any number of items, but in the consequent, there is

only one item allowed. Every item in an itemset will be given the role of the con-

sequent, and the confidence will be compared to the specified minimum confi-

dence value. The methods for calculating the fuzzy confidence will be utilized.

Interesting rules (i.e. these rules where the confidence exceeds the minimum

confidence threshold) will be stored.

6.4 The Program
This chapter introduces the functions of the program and gives a detailed de-

scription of how the implementation works. The functions are illustrated with

help of a sample data set. The database has three quantitative attributes taken

from the database AdultUCI provided by the R-package “arules”. Datasets the

user wants to use with this package need some preprocessing. It is important

that the database we utilize for discovering fuzzy sets only consists of quantita-

tive attributes. It also contains only the attributes that we intend to use for mining

and additionally the table needs a name for each column.

The Project 66

> age <- AdultUCI[1:50,1]
> fnlwgt <- AdultUCI[1:50,3]
> hpw <- AdultUCI[1:50,13]
> testdata <- cbind(age, fnlwgt, hpw)
> testdata
 age fnlwgt hpw
 [1,] 39 77516 40
 [2,] 50 83311 13
 [3,] 38 215646 40
 [4,] 53 234721 40
 [5,] 28 338409 40
 [6,] 37 284582 40
 [7,] 49 160187 16
 [8,] 52 209642 45
 [9,] 31 45781 50
[10,] 42 159449 40
...
The first functions deal with the construction of the fuzzy sets from each col-

umn of the original data set:

The function getCenters computes centers for the fuzzy sets. Actually, these

centers are not real centers, but give an indication for placing the borders of the

set. The function calculates three centers for three fuzzy sets. The positioning of

the centers has already been demonstrated in chapter 6.3.1, namely mean−sd

for the low set, mean for the medium set, and meansd for the high set. The

three functions getLow, getMedium and getHigh lead to the borders for the

newly discovered fuzzy sets. All of these methods use getCenters for the com-

putation of the borders.

Using the function getFuzzySets, the three fuzzy sets of a vector will be re-

turned in form of a list containing vectors. The functions getLow, getMedium and

getHigh are used within this function.
> sets <- getFuzzySets(testdata[,1])
> sets
Fuzzy Set:
low 19 36.3
med 28.7 47.9
high 40.2 59
These are the borders of the fuzzy sets discovered for one attribute of the

database, but we need the sets of all attributes for proceeding with the mining

process. Hence, the function getAllSets provides us with all the fuzzy sets for

the database. It simply applies the function getFuzzySets to all the columns and

returns a list of the sets. Additionally, the sets are presented in a user-readable

form.

The Project 67

> allsets <- getAllSets(testdata)
> allsets
[[1]]
Fuzzy Set:
low 19 36.3
med 28.7 47.9
high 40.2 59
[[2]]
Fuzzy Set:
low 28887 169798
med 128915 279920
high 239036 544091
[[3]]
Fuzzy Set:
low 13 39.3
med 31 51.5
high 43.2 80
The sets are saved in a list, which contains another list for each attribute of

the database.

ComputeIndividualMem is a function for calculating the membership for one

data point of the original database to the fuzzy sets discovered in the previous

step. The method has already been demonstrated in chapter 6.3.1. The function

needs the value of the data point and the fuzzy sets as an input.
> mem <- computeIndividualMem(30, sets)
> mem
[1] 0.8286 0.1714 0.0000
In the above case, the data point shows a membership of 0.83 to the first set

and a membership of 0.17 to the second set. If the data point has only a mem-

bership in one of the fuzzy sets, all other values in the returned vector will be

0.The function thereby creates one row for the matrix of the attribute.

Now, that we have discovered the membership values for one column, we

have to put them in a form that enables association rules mining. The function

createMembership puts together the single rows generated by using the func-

tion computeIndividualMem. It uses the membership values for a specific at-

tribute and puts them in a matrix with as many columns as fuzzy sets (see Table

21).

The Project 68

Set 1 Set 2 Set 3
1 0 0
0 0.78 0.22
0 0.18 0.82
0 1 0
0 0 1
0 1 0

Table 21: Mapping Table

As an input, it requires the column of the original data set to be examined and

the fuzzy sets dedicated to it. The fuzzy sets are required for calling the function

computeIndividualMem, whose generated vectors are connected making the

membership matrix for the specific attribute.
> m <- createMembership(testdata[,1], sets)
> m
 [,1] [,2] [,3]
...
 [7,] 0.0000 0.00000 1.0000
 [8,] 0.0000 0.00000 1.0000
 [9,] 0.6980 0.30200 0.0000
[10,] 0.0000 0.76699 0.2330
[11,] 0.0000 1.00000 0.0000
[12,] 0.8286 0.17138 0.0000
...
The function generateMineableMatrix combines all the previous functions. It

uses createMembership in order to form the final matrix that makes mining pos-

sible. For the user, this is the most important function because theoretically he

will never have to use the former other two in order to generate the matrix for

mining.
> mm <- generateMineableMatrix(testdata, allsets)
> mm
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
 [1,] 0.000 1.0000 0.000 1.0000 0.000 0.0000 0.000 1.000 0.0000
 [2,] 0.000 0.0000 1.000 1.0000 0.000 0.0000 1.000 0.000 0.0000
 [3,] 0.000 1.0000 0.000 0.0000 1.000 0.0000 0.000 1.000 0.0000
 [4,] 0.000 0.0000 1.000 0.0000 1.000 0.0000 0.000 1.000 0.0000
 [5,] 1.000 0.0000 0.000 0.0000 0.000 1.0000 0.000 1.000 0.0000
 [6,] 0.000 1.0000 0.000 0.0000 0.000 1.0000 0.000 1.000 0.0000
 [7,] 0.000 0.0000 1.000 0.2351 0.765 0.0000 1.000 0.000 0.0000
 [8,] 0.000 0.0000 1.000 0.0000 1.000 0.0000 0.000 0.784 0.2165
 [9,] 0.698 0.3020 0.000 1.0000 0.000 0.0000 0.000 0.177 0.8227
[10,] 0.000 0.7670 0.233 0.2531 0.747 0.0000 0.000 1.000 0.0000
[11,] 0.000 1.0000 0.000 0.0000 0.000 1.0000 0.000 0.000 1.0000
[12,] 0.829 0.1714 0.000 0.6971 0.303 0.0000 0.000 1.000 0.0000

The Project 69

The next important point is to save the corresponding columns of the new

data set and the original set (i.e. which fuzzy set belongs to which original col-

umn of the data set). This task is performed by a function called getMatrixIn-
dex. As an input, it needs the original data set as well as the fuzzy sets. It is im-

portant that the columns of the original set have names (any name will be

enough, it can be as simple as “field1”, “field2” etc.) otherwise the function gives

back an empty list. The list contains the names of the fields and the starting col-

umn in the new data set. As we do not know how many fuzzy sets each attribute

has, it is necessary to know which fields in the new data set belong to which col-

umn in the old database. Otherwise, the discovered rules do not make sense

because they can not be mapped to the original attributes. The index list looks

as follows:
> index <- getMatrixIndex(testdata, allsets)
> index
[[1]]
[1] "age" "1"
[[2]]
[1] "fnlwgt" "4"
[[3]]
[1] "hpw" "7"
After generating the results of the mining process, this list enables the user to

identify which sets belong to which original attributes. The first value names the

original attribute name, the secaond value defines the starting column in the

transformed database.

Having performed this task, we can try to put in some rules and generate their

support and confidence values. For generating the support, we do not primary

need a rule, a set of items is enough. A vector containing the column numbers

of the itemset is needed to call the function generateSupport. The function

sums up the minimum values of the specified itemsets in each row of the fuzzy

database. As defined before, the support of an itemset is determined by sum-

ming up the minimum value of each tuple.
> sup14 <- generateSupport(c(1,4), mm)
> sup14
[1] 4.134083
The function gives back the support in an absolute value. But the user might

as well be interested in the relative support. For computing this, we just need to

The Project 70

divide the support by the number of transactions in the database. By default, the

function returns the absolute value. By passing relative=TRUE to the func-

tion, the relative support value can be retrieved:
> relsup14 <- generateSupport(c(1,4), mm, relative=TRUE)
> relsup14
[1] 0.0827
In this case, the relative support of the itemset {1,4} would be 8.27%. To gen-

erate the confidence, an itemset is not enough. We now need a rule containing

an antecedent and a consequent. For creating a rule, the function makeRule
can be used, where it is necessary to put in the antecedent and the consequent

in form of a vector. The function makeRule returns a list with the antecedent and

the consequent of the rule. Alternatively, it is also possible to define the list with-

out using this function.
> rule <- makeRule(1, 4)
> rule
Association Rule:
1 ---> 4
support:
confidence:
Obviously, the rule does not have a support or a confidence yet. Those val-

ues can be accessed with rule$sup and rule$conf. A rule generated by this

method can then be used as an input for the function generateConfidence re-

turning the confidence of the rule. Of course, the function as well needs the data

as input. It calculates the confidence of a rule according to the method in chap-

ter 6.3.3, returning a relative value.
> generateConfidence(rule, mm)
[1] 0.2385930

6.4.1 Mining Frequent Itemsets
As mentioned in chapter 6.3.4, the FP-Growth algorithm has been chosen for

the mining of fuzzy frequent itemsets. Before building the initial FP-Tree, some

preprocessing is necessary in order to optimize the performance of the algo-

rithm. The core of the preprocessing task is the function preProcessFP, which

is also the function applied by the user. It will return a sorted dataframe that con-

tains all columns meeting the minimum support in decreasing order. The input

for this function is the fuzzy data set and a minimum support value specified by

the user.

The Project 71

The function getSingleItemSupport returns a data frame that contains the

original position of the column and its relative support value. The original posi-

tion has to be stored in order to be able to trace back the columns after having

recombined them.
> sisup <- getSingleItemSupport(mm)
> sisup
 place support
1 1 0.3465386
2 2 0.3098267
3 3 0.3436347
4 4 0.3368870
5 5 0.3763121
6 6 0.2868009
7 7 0.1468253
8 8 0.6724630
9 9 0.1807117
In the subsequent step, the next function getPreProcessedIndex is pro-

cessed which removes the items from the frame that do not meet the minimum

support and sorts the remaining items by support in a decreasing order. This in-

dex is the basis for constructing the preprocessed data set that optimizes mining

frequent itemsets with an FP-Tree. The input is the previously retrieved data

frame and the minimum support.
> preind <- getPreProcessedIndex(sisup, 0.3)
> preind
 place support
8 8 0.6724630
5 5 0.3763121
1 1 0.3465386
3 3 0.3436347
4 4 0.3368870
2 2 0.3098267
In this specific case, all of the items below a support value of 0.3 are deleted

and the rest sorted. The previous two functions are then used in the function

preProcessFP. It needs the fuzzy data and the minimum support threshold as

an input and returns the new sorted data set in form of a matrix. The previously

constructed index is the guideline for doing this because it tells the function in

which position the column has to be put in.

The Project 72

> premm <- preProcessFP(mm, 0.3)
> premm
 [,1] [,2] [,3] [,4] [,5] [,6]
 [1,] 1.000 0.000 0.000 0.000 1.0000 1.0000
 [2,] 0.000 0.000 0.000 1.000 1.0000 0.0000
 [3,] 1.000 1.000 0.000 0.000 0.0000 1.0000
 [4,] 1.000 1.000 0.000 1.000 0.0000 0.0000
 [5,] 1.000 0.000 1.000 0.000 0.0000 0.0000
 [6,] 1.000 0.000 0.000 0.000 0.0000 1.0000
 [7,] 0.000 0.765 0.000 1.000 0.2351 0.0000
 [8,] 0.784 1.000 0.000 1.000 0.0000 0.0000
 [9,] 0.177 0.000 0.698 0.000 1.0000 0.3020
[10,] 1.000 0.747 0.000 0.233 0.2531 0.7670
[11,] 0.000 0.000 0.000 0.000 0.0000 1.0000
[12,] 1.000 0.303 0.829 0.000 0.6971 0.1714
...
After having preprocessed the data, the initial FP-Tree can be constructed.

This is done in the function makeFPTree. This function only requires the ac-

cordingly preprocessed data set as an input and constructs the tree as demon-

strated in chapter 6.3.4.1. The function first generates root elements for each

column of the data set, giving them the value 0. These values can be added lat-

er on. Having performed this, the function loops through all the tuples of the

database. For the actual tuple, it is first being checked if the itemset contains

only a single item. If this is the case, the function goes on to the next tuple.

The function puts all other tuples which are not a single item itemset in the

tree. This is performed as follows: The first item in the tuple that is not 0 is

searched. For this item, a root element entry is made (i.e. the value of the item

is added to the previously constructed root node). For every subsequent item,

the algorithm checks if this same path already exists or not, and if it does exist,

the value of the item is simply added to the existing node. If it does not exist, a

new node is created in the tree.

The result of the function makeFPTree is a tree in form of a matrix with three

columns. The first column contains the number of the column in the data set it

corresponds to, the second one shows a reference number to the ancestor of

the current node, and the third column saves the accumulated value of each

node.

The Project 73

> tree <- makeFPTree(premm)
> tree
 depth parent support
 [1,] 1 0 35.623
 [2,] 2 0 3.765
 [3,] 3 0 1.000
 [4,] 4 0 1.000
 [5,] 5 0 0.000
 [6,] 6 0 0.000
 [7,] 5 1 5.000
 [8,] 6 7 3.000
 [9,] 5 4 1.000
[10,] 2 1 15.051
[11,] 6 10 1.000
[12,] 4 10 7.233
[13,] 3 1 5.098
...
The first six nodes are the root nodes, one for each column of the dataset. It

is easy to spot the root nodes because they have 0 in the second column which

represents their ancestor. Obviously, no itemsets did start with the items 5 and

6. This tree comprises the basis for conducting the FP-Growth algorithm.

The next step is to mine the tree, using the function mineFPTree. This func-

tion generates all frequent itemsets contained in the data from two inputs,

namely the previously constructed tree and the minimum support. It simply cy-

cles through all the depth levels from the tree, starting at the bottom, and exe-

cutes the function FPGrowth for each level. This function is the most complex

one of the whole package and will be discussed in the following section.

As inputs, the FPGrowth function needs an FP-Tree, the minimum support,

the current level of depth at which the FP-Growth should be performed and a

counter that indicates if it is the first execution of the function for the current lev-

el. The function is performed recursively, returning a list of discovered frequent

itemsets. In the following paragraphs the mode of operation of the FPGrowth

function is described.

The first thing it does is counting the number of paths a tree contains. It does

this by simply counting the nodes which do not have any children, we call these

nodes endnodes. If the tree contains only one endnode, it is a single-path tree, if

it contains more than one it has multiple paths and has to be treated differently.

If it is a single path tree, the only task is to build every possible combination of

the items in the tree and to compare each of these combinations with the mini-

mum support. For building all the possible combinations, a function called pow-

The Project 74

erSet is used. The combinations showing a greater support than the minimum

are added to the list of frequent itemsets. The mining process ends here with re-

turning this list of frequent itemsets..
> itemset
[1] 1 3 4
> powerSet(itemset)
[[1]]
[1] 1
[[2]]
[1] 3
[[3]]
[1] 1 3
[[4]]
[1] 4
[[5]]
[1] 1 4
[[6]]
[1] 3 4
[[7]]
[1] 1 3 4
It gets a little bit more complicated if we are dealing with a tree made up of

more than one path. Then, further growing of the tree becomes necessary.

Here, the counter has got an important role. For each level of depth, all possible

combinations of items have to be discovered and added together. This is done

by going up every level of the tree and executing the function recursively on

each of the levels. The counter signals the function if this is the first iteration for

a specific level of depth or not. Different actions are performed in either case.

In case of the first iteration, the conditional pattern base for the current level

is constructed which is a list containing the items in each path of the tree and

their corresponding support. The itemsets in this list meeting the minimum sup-

port are then added to the list of frequent itemsets, but sets not meeting the min-

imum support are not deleted from the conditional pattern base.

If it is not the first iteration, the function behaves differently. Again, the condi-

tional pattern base is constructed in the beginning. But this time, the level is de-

creased by one so that the function moves up in the tree in order to grow the fre-

quent patterns. For this next level, the conditional FP-Tree is constructed out of

the conditional pattern base. Using this new tree, the decreased level and a

The Project 75

count of 0, the function is executed again for treating the next level. The fre-

quent itemsets returned from the function are added to the already discovered

ones.

Having performed either of the two previous procedures, the function gener-

ates the conditional FP-Tree out of the conditional pattern base which varies de-

pending on which procedure has been used. It increases the counter and calls

FPGrowth again, using the new conditional FP-Tree, the level and the increased

counter as an input. Table 22 shows how the implementation works.
FPGrowth(tree, minsup, level, count) {

if(tree is single path) {
generate all possible combinations of items
add itemsets with support > minsup to frequent sets list

}
if(tree has more than one path) {

if(it is the first iteration for current level) {
generate cpb
add itemsets in cpb to frequent itemsets if support > minsup

}
if(it is not the first iteration for current level) {

newlevel = level-1
generate cpb (of newlevel)
generate conditional fp-tree (condfptree)
call FPGrowth(condfptree, minsup, newlevel, 0)
add returned itemsets to frequent itemsets

}
generate conditional fp-tree
count = count + 1
call FPGrowth(condfptree, minsup, level, count)

}
return frequent itemsets

}
Table 22: FP-Growth Implementation

Executing the function will return all frequent itemsets (according to the mini-

mum support) involving the defined level of depth. The function mineFPTree will

perform this on all the levels of the tree returning the complete set.

> freqsets<-FPGrowth(tree, 1, 5, 0)
> freqsets
[[1]]
Itemset:
attributes: 4 5
support 1
[[2]]
Itemset:
attributes: 1 3 5
support 4

The Project 76

[[3]]
Itemset:
attributes: 3 5
support 1
...
All frequent itemset can be retrieved using the function mineFPTree:
> freqsets <- mineFPTree(tree, 1)
> freqsets
[[1]]
Itemset:
attributes: 1 5 6
support 3
[[2]]
Itemset:
attributes: 1 2 6
support 1
[[3]]
Itemset:
attributes: 1 3 5 6
support 1.6
...
As mentioned before, the discovered frequent itemsets should be evaluated

again and compared to the minimum support in order to avoid discovery of infre-

quent itemsets. This is done by the function verifySupport. Only sets meeting

the minimum support requirement are returned in a list:
> verfreq <- verifySupport(freqsets, premm, 1)
> verfreq
[[1]]
Itemset:
attributes: 1 5 6
support 6.12
[[2]]
Itemset:
attributes: 1 2 6
support 3.26
[[3]]
Itemset:
attributes: 1 2 3 6
support 1.13
[[4]]
Itemset:
attributes: 2 6
support 4.52
...
The same function can also be used for itemsets that have not been evaluat-

ed at all.

The Project 77

6.4.2 Generating Association Rules
After having generated the frequent itemsets, generating association rules out of

them is a rather easy task. In the function evaluateRules, all rules are investi-

gated that only have one single item in the consequent. The input to this func-

tion are all possible rules derived from the frequent itemsets and discovered with

the FP-Growth method with a minimum confidence threshold.

For discovering all candidate rules from the itemset, another function is need-

ed called generateRules. With this function all possible rules with a single item

consequent are built from the frequent itemsets and returned in a list. This list is

the input for the function evaluateRules that will return only the rules having a

confidence bigger than the minimum confidence defined by the user. The list

contains the elements of the set and the support, which has to be verified as

mentioned above.
> rules <- generateRules(verfreq)
> rules
[[1]]
Association Rule:
5 6 ---> 1
support: 6.12
confidence:
[[2]]
Association Rule:
1 6 ---> 5
support: 6.12
confidence:
[[3]]
Association Rule:
1 5 ---> 6
support: 6.12
confidence:
[[4]]
Association Rule:
2 6 ---> 1
support: 3.26
confidence:
...
Every rule does now have a support value, but the confidence is still missing.

The above described function evaluateRules is now needed to calculate the

confidence for each rule. It returns a list containing all relevant attributes of a

rule: the antecedent, the consequent, the support and the confidence. Addition-

ally, a minimum confidence can be put in that the evaluated rules are compared

The Project 78

with. If the computed confidence shows a value above the minimum confidence

threshold, it is incorporated in the list.
> evalrules <- evaluateRules(rules, premm, 0.1)
> evalrules
[[1]]
Association Rule:
5 6 ---> 1
support: 6.12
confidence: 0.866
[[2]]
Association Rule:
1 6 ---> 5
support: 6.12
confidence: 0.542
[[3]]
Association Rule:
1 5 ---> 6
support: 6.12
confidence: 0.477
[[4]]
Association Rule:
2 6 ---> 1
support: 3.26
confidence: 0.722
...
Finally, it is relevant to know which columns in the original database the dis-

covered rules belong to. This functionality is provided by the function trace-
Back. After putting in the rules, the original data set and the fuzzy data set, the

function returns the rules with their original columns of the database.

> finalrules <- traceBack(evalrules, index, preind)
> finalrules
[[1]]
Association Rule:
fnlwgt 1 age 2 ---> hpw 2
support: 6.12
confidence: 0.866
[[2]]
Association Rule:
hpw 2 age 2 ---> fnlwgt 1
support: 6.12
confidence: 0.542
[[3]]
Association Rule:
hpw 2 fnlwgt 1 ---> age 2
support: 6.12
confidence: 0.477

The Project 79

[[4]]
Association Rule:
fnlwgt 2 age 2 ---> hpw 2
support: 3.26
confidence: 0.722
...
The function exchanges the items with the name of the column and the num-

ber of the fuzzy set in the original database. This final step creates rules which

can be used and understood by the user. The process of discovering fuzzy as-

sociation rules ends here.

6.5 Discussion
There is some more work to do, especially on the FP-Growth algorithm. In the

first place, its quality has to be investigated by comparing its results to the re-

sults of other fuzzy frequent itemset discovery methods. For example, it would

be possible to compare it to an Apriori-like approach. Unfortunately, the author

did not find any available implementations to do so. Comparing these algorithms

would make it possible to evaluate the quality of the implemented FP-Growth al-

gorithm by finding out whether it discovers all relevant itemsets or not. Also, the

speed of different methods is still to be compared because it is not known

whether the FP-Growth algorithm is as efficient as other algorithms in a fuzzy

context.

Another task is to find out if the FP-Growth algorithm is ideal for mining fuzzy

frequent itemsets because it might also rate itemsets as frequent while they are

infrequent in reality (see chapter 6.3.4.2). The so arising necessity to evaluate

the itemsets again slows down the algorithm. It is a big disadvantage of the

fuzzy algorithm compared to the original one that the support values can not be

directly taken from the FP-Tree. Generally speaking, an important future task

will be to evaluate whether the FP-Tree structure is adequate for mining fuzzy

frequent itemset in general or not. At least, an improvement of the algorithm will

be necessary in order to prevent it from finding many sets that in consequence

have to be discarded.

Another improvement to the program could be the incorporation of an algo-

rithm to mine multi-consequent association rules. This part should not be too dif-

ficult because it simply requires a different generation of candidates from the

The Project 80

frequent itemsets. The confidence for these multi-consequent association rules

can easily be evaluated with the existing package.

Conclusion/Review 81

7 Conclusion/Review
A lot of differing work has been done on fuzzy association rules, using different

methods and different approaches. This thesis tried to put the different ap-

proaches together in order to develop an understanding what the term “fuzzy as-

sociation rules” can mean. Depending on how it is interpreted, it can be used in

different domains. The most common usage, though, is to overcome the sharp

boundary problem when mining association rules from quantitative data. It is

easy to compute membership values here, the critical task is to find the right

amount and range of the fuzzy sets in order to lose as little information as possi-

ble and still be able to discover some interesting rules. This goal is facing a

trade-off with the computation time, because the more sets we choose the

longer the generation of fuzzy association rules will take.

The developed tool allows experimenting with the concepts of fuzzy associa-

tion rules. It implements the most important functionalities needed to conduct

the mining of the rules. Fuzzy sets can be discovered and the data can be put in

a mineable format. For the generation of frequent patterns, the FP-Growth algo-

rithm has been chosen. Although it is not clear whether this algorithm is ideal for

fuzzy associations mining, it can discover some fuzzy frequent itemsets that will

further be used for mining. It is difficult to evaluate whether the algorithm is good

because there is no implementation easily available for comparison. Still, the

user is able to discover some itemsets. That can help the user developing an

understanding for the whole topic and enables him to mine his own rules from

any quantitative dataset.

Concluding, the idea of mining fuzzy association rules is very interesting, but

not yet mature. Algorithms to enable mining have to be developed and com-

pared in order to find out whether rules can be discovered that are valuable for a

business. Due to the fact that most databases contain quantitative data, fuzzy

association rule mining methods might achieve wide acceptance in the future.

Index of Figures 82

Index of Figures
Figure 1: The KDD Process...5
Figure 2: Hierarchical Clustering.. 9
Figure 3: The CRISP-DM Model [CCKK99]... 12
Figure 4: Representation of the Itemsets [HiGN00]..23
Figure 5: Systematization of Algorithms [HiGN00]... 23
Figure 6: FP-Tree...27
Figure 7: Fuzzy Set..34
Figure 8: Blurred Fuzzy Set...34
Figure 9: Fuzzy Complement.. 39
Figure 10: Fuzzy Union... 39
Figure 11: Fuzzy Intersection.. 40
Figure 12: Crisp Set...42
Figure 13: Fuzzy Partition of a Quantitative Attribute..44
Figure 14: A Fuzzy Taxonomic Structure [WeCh99]... 46
Figure 15: Equal Space Fuzzy Set... 51
Figure 16: Equal Data Points Fuzzy Set.. 52
Figure 17: Fuzzy Sets.. 60
Figure 18: Automatic Set Generation.. 61
Figure 19: Membership of an Item.. 62
Figure 20: Fuzzy FP-Tree.. 64

Index of Tables 83

Index of Tables
Table 1: Sample Database... 21
Table 2: Mapping Table.. 21
Table 3: Notation [AgSr94]...24
Table 4: Apriori Algorithm [AgSr94]... 25
Table 5: FP-Growth Preprocessing..27
Table 6: FP-Growth Algorithm [HaPY99]..29
Table 7: Conditional Pattern Bases... 29
Table 8: Three-Valued Logics... 37
Table 9: Well-known t-norms and t-conorms [CoCK03]..41
Table 10: Without Fuzzy Normalization... 45
Table 11: With Fuzzy Normalization.. 45
Table 12: Measures..48
Table 13: Example Membership Table... 50
Table 14: F-APACS Algorithm...53
Table 15: Notation... 54
Table 16: An Algorithm for mining Fuzzy Association Rules..55
Tabelle 17: Project Overview.. 57
Table 18: New Database..62
Table 19: Sample Fuzzy Database...63
Table 20: Fuzzy Conditional Pattern Base.. 64
Table 21: Mapping Table.. 68
Table 22: FP-Growth Implementation...75

Bibliography 84

Bibliography

[Adam00] Adamo, Jean-Marc: Data Mining for Association Rules and

Sequential Patterns: Sequential and Parallel Algorithms. Springer, 2000.

[AgIS93] Agrawal, Rakesh; Imielinski,Tomasz; Swami, Arun: Mining

Association Rules between Sets of Items in Large Databases. Proceedings

of the 1993 ACM SIGMOD International Conference on Management of

Data, 1993.

[AgSr94] Agrawal, Rakesh; Srikant, Ramakrishnan: Fast Algorithms for

Mining Association Rules. Proc. 20th Int. Conf. Very Large Data Bases,

VLDB, 1994.

[Borg05] Borgelt, Christian: An Implementation of the FP-growth Algorithm.

ACM Press, New York, NY, USA, 2005.

[BuKZ95] Butnariu, Dan; Klement,Erich Peter; Zafrany, Samy: On Triangular

Norm-Based Propositional Fuzzy Logics. Fuzzy Sets and Systems Volume

69, 1995.

[Cant95] Cantor, Georg: Beiträge zur Begründung der transfiniten

Mengenlehre. Springer Berlin / Heidelberg, Mathematische Annalen,

Volume 46, Number 4 / November 1895, 1895.

[CCKK99] Chapman, Pete; Clinton, Julian; Kerber, Randy; Khabaza,

Thomas; Reinartz, Thomas; Shearer, Colin; Wirth, Rüdiger: CRISP-DM

1.0: Step-by-step data mining guide. CRISP-DM consortium, 1999.

[CeRo06] Ceglar, Aaron; Roddick, John F.: Association mining. ACM

Computing Surveys (CSUR), Volume 38 Issue 2, 2006.

[ChAu98] Chan, Keith C.C.; Au, Wai-Ho: An Effective Algorithm for

Discovering Fuzzy Rules in Relational Databases. Fuzzy Systems

Proceedings. IEEE World Congress on Computational Intelligence, 1998.

[ChWe02] Chen, Guoging; Wei, Qiang: Fuzzy association rules and the

extended mining algorithms. Information Sciences-Informatics and

Bibliography 85

Computer Science: An International Journal, 2002.

[CoCK03] De Cock, Martin; Cornelis, Chris; Kerre, Etienne E.: Fuzzy

Association Rules: a Two-Sided Approach. Proceedings Int. Conf. on

Fuzzy Information Processing - Theories and Applications, 2003.

[Dalg04] Dalgaard, Peter: Introductory Statistics with R. Statistics and

Computing, Springer, 2004.

[Delg03] Delgado, Miguel: Fuzzy Association Rules: an Overview. BISC

Conference, 2003.

[DMSV03] Delgado, Miguel; Marin, Nicolas; Sanchez, Daniel; Vila, María-

Amparo: Fuzzy association rules - general model and applications. IEEE

Transactions on Fuzzy Systems, Vol. 11, No. 2, 2003.

[DuHP03] Dubois, Didier; Hüllermeier, Eyke; Prade, Henri: A Note on Quality

Measures for Fuzzy Association Rules. Proceeding of the 10th International

Fuzzy Systems Association World Congress on Fuzzy Sets and Systems,

Springer, 2003.

[DuHP06] Dubois, Didier; Hüllermeier, Eyke; Prade, Henr: A Systematic

Approach to the Assessment of Fuzzy Association Rules. Data Mining and

Knowledge Discovery, Volume 13 , Issue 2, 2006.

[DuPS03] Dubois, Didier; Prade, Henri; Sudkamp, Thomas: A Discussion of

Indices for the Evaluation of Fuzzy Associations in Relational Databases.

Springer Berlin / Heidelberg, 2003.

[DuPS05] Dubois, Didier; Prade, Henri; Sudkamp, Thomas: On the

Representation, Measurement, and Discovery of Fuzzy Associations. IEEE

Transactions on Fuzzy Systems, Volume 13, Issue 2, 2005.

[FaPS96a] Fayyad, Usama; Piatetsky-Shapiro, Gregory; Smyth, Padhraic:

Knowledge Discovery and Data Mining: Towards a Unifying Framework. In

Proceeding of The Second Int. Conference on Knowledge Discovery and

Data Mining, pages 82--88, 1996.

Bibliography 86

[FaPS96b] Fayyad, Usama; Piatetsky-Shapiro, Gregory; Smyth, Padhraic:

The KDD Process for Extracting Useful Knowledge from Volumes of Data.

Communications of the ACM, Volume 39, Issue 11 Pages: 27 - 34, 1996.

[FaPS96c] Fayyad, Piatetsky-Shapiro, Smyth: From Data Mining to

Knowledge Discovery in Databases. AI MAgazine, 1996.

[FrPM92] Frawley, William J.; Piatetsky-Shapiro, Gregory; Matheus,

Christopher J.: Knowledge Discovery in Databases: an Overview. AAAI/MIT

Press, 1992.

[FWSY98] Fu, Ada Wai-chee; Wong, Man Hon; Sze, Sui Chun; Wong, Wai

Chiu; Wong, Wai Lun; Yu, Wing Kwan: Finding Fuzzy Sets for the Mining

of Fuzzy Association Rules for Numerical Attributes. In Proceedings of the

First International Symposium on Intelligent Data Engineering and Learning

(IDEAL'98), 1998.

[Gott06] Gottwald, Siegfried: Universes of Fuzzy Sets and Axiomatizations of

Fuzzy Set Theory. Studia Logica Volume 82, Number 2 / März 2006,

Springer, 2006.

[GrKW01] DeGraaf, Jeannette M.; Kosters, Walter A.; Witteman, Jeroen

J.W.: Interesting fuzzy association rules in quantitative databases. Lecture

Notes in Computer Science, Volume 2168, 2001.

[Gyen00] Gyenesei, Attila: A Fuzzy Approach for Mining Quantitative

Association Rules. Turku Centre for Computer Science Technical Reports,

2000.

[HaNe01] Hansen, Hans Robert; Neumann, Gustaf: Wirtschaftsinformatik I.

Lucius & Lucius, 2001.

[HaPY99] Han, Jiawei; Pei, Jian; Yin, Yiwen: Mining Frequent Patterns

without Candidate Generation. 2000 ACM SIGMOD Intl. Conference on

Management of Data, ACM Press, 1999.

[HiGN00] Hipp, Jochen; Guentzer,Ulrich; Nakhaeizadeh, Gholamreza:

Algorithms for Association Rule Mining - A General Survey and

Bibliography 87

Comparison. ACM SIGKDD Explorations Newsletter, Volume 2 , Issue 1,

2000.

[HoKC99] Hen, Tzung-Pei, Kuo, Chan-Sheng; Chi, Sheng-Chai: A Fuzzy

Data Mining Algorithm for Quantitative Values. Knowledge-Based

Intelligent Information Engineering Systems, Third International

Conference, 1999.

[KlFo88] Klir, George J.; Folger, Tina A.: Fuzzy Sets, Uncertainty, And

Information. Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[KuFW98] Kuok, Chan Man; Fu, Ada; Wong, Man Hon: Mining Fuzzy

Association Rules in Databases. SIGMOD Record Volume 27, 1998.

[Liu07] Liu, Bing: Web Data Mining: Exploring Hyperlinks, Contents, and

Usage Data. Springer, 2007.

[MaTV97] Mannila, Heiki; Toivonen, Hannu; Verkamo, A. Inkeri: Discovery of

Frequent Episodes in Event Sequences. Data Mining and Knowledge

Discovery, Volume 1, Issue 3, 1997.

[MeNa99] Mesiar, Radko; Navara, Mirko: Diagonals of continuous triangular

norms. Fuzzy Sets and Systems 104, 1999.

[Nels06] Nelson, Roger B.: An Introduction to Copulas. Springer

Science+Business Media, 2006.

[RoGe03] Roiger, Richard J.; Geatz, Michael W.: Data Mining: A Tutorial-

Based Primer. Addison Wesley, 2003.

[Rpro] Unknown Author: The R Project for Statistical Computing. http://www.r-

project.org/, last call July 17th, 2007.

[SrAg95] Srikant, Ramakrishnan; Agrawal, Rakesh: Mining Generalized

Association Rules. In Proc. of the 21st Iternational Conference on Very

Large Databases, Zurich, Switzerland, 1995.

[SrAg96] Srikant, Ramakrishnan; Agrawal, Rakesh: Mining Quantitative

Association Rules in Large Relational Tables. Proceedings of the 1996

Bibliography 88

ACM SIGMOD International Conference on Management of Data, 1996.

[SuSi06] Sumathi, S.; Sivanandam, S. N.: Introduction to Data Mining and its

Applications. Springer, 2006.

[WaBK05] Wang, Xiaomeng; Borgelt, Christian; Kruse, Rudolf: Mining Fuzzy

Frequent Item Sets. 11th Int. Fuzzy Systems Association World. Congress

(IFSA 2005, Beijing, China), 2005.

[WeCh99] Wei, Qiang; Chen, Guoqing: Mining Generalized Association

Rules with Fuzzy Taxonomic Structures. Fuzzy Information Processing

Society, 1999. NAFIPS, 1999.

[XieD05] Xie, Dong (Walter): Fuzzy Association Rules discovered on Effective

Reduced Database Algorithm. The 14th IEEE International Conference on

Fuzzy Systems, 2005.

[YaFB00] Yang, Cheng; Fayyad, Usama; Bradley, Paul S.: Efficient

Discovery of Error-Tolerant Frequent Itemsets in High Dimensions.

Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining, 2000.

[Zade65] Zadeh, Lofti A.: Fuzzy Sets. Information and Control 8 (3) 338--353,

1965.

[Zade88] Zadeh, Lofti A.: Fuzzy Logic. University of California, Berkeley,

1988.

[Zade96] Zadeh, Lofti A.: Fuzzy Logic = Computing with Words. IEEE

Transactions on Fuzzy Systems, Vol. 4, No. 2, 1996.

[ZeZy96] Zembowicz, Robert; Zytkow, Jan M.: From Contingency Tables to

Various Forms of Knowledge in Databases. American Association for

Artificial Intelligence, 1996.

	1 Introduction
	1.1 Structure

	2 Data Mining
	2.1 Knowledge Discovery in Databases (KDD)
	2.1.1 The KDD Process

	2.2 Concepts
	2.2.1 Data Warehousing
	2.2.2 Predictive vs. Descriptive Data Mining

	2.3 Data Mining Strategies
	2.3.1 Supervised Learning
	2.3.2 Unsupervised Learning
	2.3.3 Market Basket Analysis

	2.4 Tasks
	2.5 CRISP-DM Model

	3 Association Rules
	3.1 Basics
	3.1.1 The Process
	3.1.2 Research

	3.2 Binary Association Rules
	3.3 Quantitative Association Rules
	3.4 Algorithms
	3.4.1 Apriori
	3.4.1.1 Discovering Frequent Itemsets
	3.4.1.2 Discovering Association Rules

	3.4.2 Frequent Pattern Growth (FP-Growth)
	3.4.2.1 Preprocessing the Data
	3.4.2.2 Constructing the FP-Tree
	3.4.2.3 Mining the FP-Tree using FP-Growth

	4 Fuzzy Set Theory
	4.1 Crisp and Fuzzy Sets
	4.1.1 Crisp Sets
	4.1.2 Fuzzy Sets
	4.1.2.1 Concepts

	4.2 Fuzzy Logic
	4.3 Fuzzy Operations
	4.3.1 Triangular Norms

	5 Fuzzy Association Rules
	5.1 Approaches
	5.1.1 Quantitative approach
	5.1.1.1 Fuzzy normalization

	5.1.2 Fuzzy Taxonomic Structures
	5.1.3 Approximate Itemset Approach

	5.2 Quality Measures
	5.2.1 Problems

	5.3 Discovering Fuzzy Sets
	5.4 Algorithms

	6 The Project
	6.1 Key Facts
	6.2 Architecture
	6.3 Approach
	6.3.1 Constructing Fuzzy Sets
	6.3.2 Constructing a Dataset for Mining
	6.3.3 Calculation of Fuzzy Operations
	6.3.4 Frequent Itemset Generation: the FP-Growth Algorithm
	6.3.4.1 FP-Tree Construction
	6.3.4.2 FP-Growth

	6.3.5 Generation of Association Rules

	6.4 The Program
	6.4.1 Mining Frequent Itemsets
	6.4.2 Generating Association Rules

	6.5 Discussion

	7 Conclusion/Review

