$f^n : A \rightarrow A$ is a one-one function for all integers $n \geq 1$ (see Worked-Out Exercise 7, p. 295).

\[\text{Theorem 5.1.3: Let } A \text{ be an infinite set and } f : A \rightarrow A \text{ be a function. If } n \text{ is a positive integer, then } f^n \text{ is one-one and hence a function on } A \text{ as follows.} \]

\[\text{Proof: Let } a \in A. \text{ Now } f^n : A \rightarrow A, \text{ so } f^n(a) \in A \text{ for all } n \geq 1. \text{ This implies that } \}
\{a, f(a), f^2(a), \ldots \} \subseteq A.

Because A is finite, it follows that $\{a, f(a), f^2(a), \ldots \}$ is finite. Therefore, there must exist positive integers r and s such that $r > s$ and

\[f^r(a) = f^s(a). \]

Now

\[f^r(a) = f^s(a) \]
\[\Rightarrow (f^s \circ f^{-1})(a) = f^s(a) \]
\[\Rightarrow f^s(f^{-1}(a)) = f^s(a) \]
\[\Rightarrow f^{-1}(a) = a, \quad \text{because } f \text{ is one-one.} \]

Let

\[a' = f^{-1}(a) \in A. \]

Then

\[f(a') = f(f^{-1}(a)) = f^{-1}(a) = a. \]

We can now conclude that f is onto A. Consequently, f is a one-to-one correspondence.

Worked-Out Exercises

Exercise 1: Determine which of the relations f are functions from the set X to the set Y.

(a) $X = \{-2, -1, 0, 1, 2\}$, $Y = \{-3, 4, 5\}$, and $f = \{(-2, -3), (-1, -3), (0, 4), (1, 5), (2, -3)\}$.

(b) $X = \{-2, -1, 0, 1, 2\}$, $Y = \{-3, 4, 5\}$, and $f = \{(-2, -3), (1, 4), (2, 5)\}$.

(c) $X = Y = \{-3, -1, 0, 2\}$, and $f = \{(-3, -1), (-3, 0), (-1, 2), (0, 2), (2, -1)\}$.

(d) $X = Y = \text{the set of all integers}$, and $f = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid b = a + 1\}$.

(e) $X = Y = \text{the set of all integers}$, and $f = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid b = \sqrt{a}\}$.

In case any of these relations are functions, determine if they are one-one, onto Y, and/or one-to-one correspondences.

Solution:

(a) The domain of f, $D(f) = \{-2, -1, 0, 1, 2\} = X$. Moreover, for any $a \in X$ there are no two distinct elements b and c in Y such that $(a, b) \in f$ and $(a, c) \in f$. Hence, f is a function. Now $\text{Im}(f) = \{-3, 4, 5\} = Y$. Thus, f is onto Y. However, $f(-2) = -3 = f(-1)$ and $-2 \neq -3$. Hence, f is not one-one.

(b) The domain of f, $D(f) = \{-2, 1, 2\} \neq X$. Hence, f is not a function on X.

(c) The domain of f, $D(f) = \{-3, -1, 0, 2\} = X$. Now $(-3, -1) \in f$ and $(-3, 0) \in f$, so $f(-3) = -1$ and simultaneously $f(-3) = 0$, so f is not well defined. Hence, f is not a function.

(d) The domain of f, $D(f) = \mathbb{Z}$. Let $b, c \in \mathbb{Z}$ be such that $(a, b) \in f$ and $(a, c) \in f$. Then $b = a + 1$ and $c = a + 1$. Thus, $b = a + 1 = c$. Hence, f is well defined. Consequently, f is a function.

To show f is one-one, let $a, b \in \mathbb{Z}$ and $a \neq b$. Then $a + 1 \neq b + 1$, so $f(a) \neq f(b)$. Thus, f is one-one. (To show f is one-one, we can also argue as follows: Let $a, b \in \mathbb{Z}$ and $f(a) = f(b)$. This implies that $a + 1 = b + 1$, so $a = b$. Hence, f is one-one.)
To show f is onto Z, let $a \in Z$. Then $a - 1 \in Z$ and $f(a - 1) = (a - 1) + 1 = a$; i.e., $a - 1$ is the preimage of a. Hence, every element of Z is a preimage and so $\text{Im}(f) = Z$. This shows that f is onto Z. Consequently, f is a one-to-one correspondence.

(c) $\exists Z \therefore \sqrt{2} \not\in Z$. Thus $(2, \sqrt{2}) \not\in f$. Hence, the domain of f, $D(f) \not= Z$. This implies that f is not a function.

Exercise 2: Let f be the function from the set $X = \{2, 3, 4, 5, 6, 7\}$ into the set $Y = \{0, 1, 2, 3, 4\}$ defined by $f(x) = 2x \text{mod} 5$. Write f as a set of ordered pairs. Is f one-one or onto Y?

Solution: (Recall that $m \text{mod} n$ is the remainder when m is divided by n. $2 \cdot 2 \text{mod} 5 = 4, 2 \cdot 3 \text{mod} 5 = 1, 2 \cdot 4 \text{mod} 5 = 3, 2 \cdot 5 \text{mod} 5 = 0, 2 \cdot 6 \text{mod} 5 = 2, 2 \cdot 7 \text{mod} 5 = 4$. Hence, $f = (2, 4), (3, 1), (4, 3), (5, 0), (6, 2), (7, 4))$. Now $f(2) \not= f(7)$ and $f(2) = 4 = f(7)$.

Thus, f is not one-one. Again, the range of f, $\text{Im}(f) = \{1, 3, 0, 2\} = Y$, so f is onto Y.

Exercise 3: Determine which of the following functions are one-one, onto, or both one-one and onto.

(a) $f : N \to Z - \{0\}$ defined by $f(n) = n$ for all $n \in N$.

(b) $f : Z \to Z$ defined by $f(x) = x - 4$ for all $x \in Z$.

(c) $f : R \to R$ defined by $f(x) = |x| + x$ for all $x \in R$.

(d) $f : R \to R$ defined by $f(x) = x^2$ for all $x \in R$.

(e) $f : C \to R$ defined by $f(z) = |z|$ for all $z \in C$.

Solution:

(a) Let $n, m \in N$. Suppose that $f(n) = f(m)$. Then $-n = -m$, so $n = m$. Therefore, f is one-one. Notice that for all $n \in N$, $f(n) = n < 0$. This indicates that positive integers are not in the range of f so f is not onto $Z - \{0\}$. To be specific, consider $3 \in Z - \{0\}$. Suppose that 3 has a preimage. Then there exists $n \in N$ such that $f(n) = 3$. This implies that $3 = f(n) = -n < 0$, a contradiction. Hence, f is not onto $Z - \{0\}$.

(b) Let $x, y \in Z$. Suppose that $f(x) = f(y)$. Then $x - 4 = y - 4$, so $x = y$. This shows that f is one-one. Now f is onto Z if and only if for all $y \in Z$ there exists $x \in Z$ such that $f(x) = y$.

(c) Consider $-1, -2 \in R$. Now $f(-1) = |1| + (-1) = 1 + (-1) = 0$ and $f(-2) = |2| + (-2) = 2 + (-2) = 0$. This shows that $-1 \neq -2$, but $f(-1) = f(-2)$. Therefore, f is not one-one.

(d) Let x and y be two elements of R. Suppose that $f(x) = f(y)$. Now

$$
\begin{align*}
f(x) &= f(y) \\
x^2 &= y^2 \\
x^2 - y^2 &= 0 \\
(x - y)(x^2 + xy + y^2) &= 0 \\
(x - y)(x + y)^2 + \frac{3}{2}y^2 &= 0 \\
x - y &= 0 \text{ or } (x + \frac{1}{2}y)^2 + \frac{3}{2}y^2 &= 0.
\end{align*}
$$

If $x \neq y$, then $x \neq y$ and this implies that $(x + \frac{1}{2}y)^2 + \frac{3}{2}y^2 > 0$. Thus, it follows that $x = y$, which in turn implies that $x = y$. Hence, f is one-one.

Now let $a \in R$. Because the equation $x^2 = a$ has a solution b in R, there exists an element b in R such that $f(b) = b^2 = a$. Hence, f is onto R. Consequently, f is a one-to-one correspondence.

Exercise 4: Let f be the function from the set N into the set $X = \{0, 1, 2, 3, 4, 5, 6, 7\}$ defined by $f(x) = x \text{mod} 7$ for all $x \in N$. Find $\text{Im}(f)$. Is f onto X? Is f one-one?

Solution: We know that for any positive integer n, $n \text{mod} 7$ is the remainder when n is divided by 7. Now by the division algorithm, $n = 7t + r$, where $0 \leq r < 7$. Then $n \text{mod} 7 = r$. Hence, $\text{Im}(f) = \{0, 1, 2, 3, 4, 5, 6\}$. Because $[0, 1, 2, 3, 4, 5, 6] \not= [0, 1, 2, 3, 4, 5, 6, 7, 8]$, it follows that f is not onto X.

Again, $10 \text{mod} 7 = 3 = 17 \text{mod} 7$. Hence, $f(10) = f(17)$. However, $10 \neq 17$. Therefore, f is not one-one.

Exercise 5: Let $f : R \to R$ defined by $f(x) = x^2 - 4x$. Find $\text{Im}(f)$. Is f onto R? Is f one-one?

Solution: Let $y \in \text{Im}(f)$. Then $f(x) = y$ for some $x \in R$, i.e., $y = f(x) = x^2 - 4x$. Now

$$
\begin{align*}
y &= x^2 - 4x \\
y + 4 &= x^2 - 4x + 4 \\
y + 4 &= (x - 2)^2 \\
y + 4 &\geq 0 \\
y &\geq -4
\end{align*}
$$

This implies that $\text{Im}(f) = \{y \in R \mid y \geq -4\}$. From this it also follows that $\text{Im}(f) \not= R$, so f is not onto R.

We can also show that f is not onto R by finding an element that has no preimage. For example, consider $-5 \in R$. Suppose that $f(x) = -5$ for some $x \in R$. Then

$$
\begin{align*}
-5 &= x^2 - 4x \\
-5 + 5 &= x^2 - 4x + 4 \\
0 &= (x - 2)^2
\end{align*}
$$

which is impossible because $(x - 2)^2 \geq 0$. Thus, f is not one-one.
Moreover, \(f \) is not one-one as \(0 \neq 4 \) and \(f(0) = f(4) \).

Exercise 6: Suppose that \(f : A \to B \) and \(g : B \to C \). Then prove that

(a) if \(g \circ f \) is one-one, then \(f \) is one-one;
(b) if \(g \circ f \) is onto \(C \), then \(g \) is onto \(C \);
(c) if \(g \circ f \) is a one-one onto \(C \), then \(f \) is one-one and \(g \) is onto \(C \).

Solution:

(a) Suppose that \(g \circ f \) is one-one. To show \(f \) is one-one, let \(a_1, a_2 \in A \) and \(f(a_1) = f(a_2) \). Now \(f(a_1) = f(a_2) \) and \(g \) is a function from \(B \) to \(C \). Therefore,

\[
g(f(a_1)) = g(f(a_2)),
\]

i.e.,

\[
(g \circ f)(a_1) = (g \circ f)(a_2).
\]

This implies that \(a_1 = a_2 \), because \(g \circ f \) is one-one. Hence, \(f \) is one-one.

(b) Suppose that \(g \circ f \) is onto \(C \). To show \(g \) is onto \(C \), let \(c \in C \). Because \(g \circ f \) is onto \(C \) and \(c \in C \), there exists \(a \in A \) such that

\[
(g \circ f)(a) = c.
\]

This implies that

\[
g(f(a)) = c.
\]

Let \(b = f(a) \in B \). Then we have

\[
c = (g \circ f)(a) = g(f(a)) = g(b).
\]

That is, \(b = f(a) \) is the preimage of \(c \). Because \(c \) is an arbitrary element of \(C \), we can conclude that \(g \) is onto \(C \).

(c) This follows from parts (i) and (ii).

Exercise 7: Let \(A \) be any set and \(f : A \to A \) be a one-one function. Then \(f^n : A \to A \) is a one-one function for all integers \(n \geq 1 \).

Solution: If possible, suppose there exists an integer \(n > 1 \) such that \(f^n \) is not one-one. Let \(k \) be the smallest such integer. That is, \(f, f^2, \ldots, f^{k-1} \) are one-one, but \(f^k \) is not one-one, \(k > 1 \). Because \(f^k \) is not one-one, there exist \(a, b \in A \) such that \(a \neq b \) and \(f^k(a) = f^k(b) \). Now,

\[
f^k(a) = f^k(b)
\]

\[
\Rightarrow (f \circ f^{k-1})(a) = (f \circ f^{k-1})(b)
\]

\[
\Rightarrow f(f^{k-1}(a)) = f(f^{k-1}(b))
\]

\[
\Rightarrow f^{k-1}(a) = f^{k-1}(b),
\]

because \(f \) is one-one

\[
\Rightarrow a = b,
\]

because \(f^{k-1} \) is one-one.

This is a contradiction as \(a \neq b \). Consequently, \(f^n \) is one-one for all integers \(n \geq 1 \).

Exercise 8: Let \(S = \{ x \in \mathbb{R} | -1 < x < 1 \} \). Show that the function \(f : \mathbb{R} \to S \) defined by

\[
f(x) = \frac{x}{1 + |x|}
\]

is a one-one and onto function.

Solution: Let \(x \in \mathbb{R} \). Then

\[
-|x| < x < |x|,
\]

\[
-1 - |x| < -|x|,
\]

and

\[
|1 + |x|| > |x|.
\]

Hence, \(-1 < x < 1 \) and so \(-1 < f(x) < 1 \). This shows that \(f(x) \in S \).

Let \(x, y \in \mathbb{R} \) and \(f(x) = f(y) \). Then \(\frac{x}{1 + |x|} = \frac{y}{1 + |y|} \). Thus,

\[
\frac{|x|}{1 + |x|} = \frac{|y|}{1 + |y|}.
\]

This implies that \(|x| + |x||y| = |y| + |x||y| \) and so \(|x| = |y| \). Now \(\frac{|x|}{1 + |x|} = \frac{1}{1 + |x|} \) implies that \(x \geq 0 \) if and only if \(y \geq 0 \). Therefore, because \(|x| = |y|, x = y \). Thus, \(f \) is one-one.

Now let \(z \in \mathbb{R} \) and \(-1 < z < 1 \). We show that there exists \(y \in S \) such that \(f(y) = z \). For this, first suppose that \(\bar{0} < z < 1 \). Let \(y \in \mathbb{R} \) be such that \(z = f(\bar{y}) \). Then,

\[
z = f(y) = \frac{y}{1 + |y|}.
\]

From this, notice that \(\bar{0} < 0 \). Thus, \(z = \frac{\bar{y}}{1 + |\bar{y}|} \). This implies that \(z(1 + y) = x \). Solve this for \(\bar{y} \) to get \(\bar{y} = \frac{z}{1 + z} \). This suggests that to find a preimage \(y \) of \(z \), we can use \(\bar{y} \) to be \(\frac{z}{1 + z} \). Let us verify this. Now

\[
f\left(\frac{z}{1 + z} \right) = \frac{\frac{z}{1 + z}}{1 + \left| \frac{z}{1 + z} \right|} = \frac{z}{1 + \frac{z}{1 + z}} = z.
\]

Now suppose \(-1 < z < 0 \). Here we can show that the preimage of \(z \) is \(\frac{z}{1 + z} \).

\[
f\left(\frac{z}{1 + z} \right) = \frac{\frac{z}{1 + z}}{1 + \left| \frac{z}{1 + z} \right|} = \frac{z}{1 + \frac{z}{1 + z}} = z.
\]

Hence, \(f \) is onto \(\mathbb{R} \). Consequently, \(f \) is a one-one and onto function.
SECTION REVIEW

Key Terms

function target onto
well defined range surjective
single valued numeric functions surjection
image identity function one-to-one correspondence
preimage constant function bijective
mapped one-one bijection
domain injective composition
codomain injection

Some Key Definitions

1. Let A and B be nonempty sets and f be a relation from A into B. Then f is called a function from A into B, if

 (i) the domain of f is A, i.e., $\mathcal{D}(f) = A$, and
 (ii) for all $(a, b), (a', b') \in f$, $a = a'$ implies $b = b'$. In this case, we say that f is well defined or single valued.

2. Let A and B be sets and $f : A \rightarrow B$ be a function. The set A is referred to as the domain of the function and the set B is called the codomain, or target, of f. The set

 \[f(A) = \{ f(x) \mid x \in A \} \]

 is a subset of the codomain B. The set $f(A)$ is called the range of the function f, or the image of the set A under the function f, denoted by $\text{Im}(f)$ or $\mathcal{I}(f)$.

3. A function $f : A \rightarrow A$ is said to be the identity function if $f(x) = x$ for all $x \in A$. This function is usually denoted by i_A.

4. A function $f : A \rightarrow B$ is said to be a constant function if there exists $b \in B$ such that $f(x) = b$ for all $x \in A$. That is, all elements of A are mapped to only one element of B.

5. Let A and B be sets and $f : A \rightarrow B$. Then,

 (i) f is called one-one (or injective or injection) if for all $a_1, a_2 \in A$,
 \[a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2) \]
 (i.e., images of distinct elements of the domain are distinct).
 (ii) f is called onto B (or surjective or surjection) if for every $b \in B$ there exists at least one $a \in A$ such that $f(a) = b$, i.e.,
 \[\text{Im}(f) = B \]
 (iii) f is called one-to-one correspondence (or bijective or bijection) if f is both one-one and onto.
6. Let \(f : A \to B \) and \(g : B \to C \) be functions. The composition of \(f \) and \(g \), written \(g \circ f \), is the function from \(A \) to \(C \) defined as
\[
(g \circ f)(a) = g(f(a)), \quad \text{for all } a \in A.
\]

Some Key Results

1. Let \(f : A \to B \), \(g : B \to C \), and \(h : C \to D \). Then \(h \circ (g \circ f) = (h \circ g) \circ f \); i.e., composition of functions is associative, provided the composition is defined.

2. Suppose that \(f : A \to B \) and \(g : B \to C \). The following assertions hold.

 (i) If both \(f \) and \(g \) are one-one, then \(g \circ f \) is also one-one.

 (ii) If \(f \) is onto \(B \) and \(g \) are onto \(C \), then \(g \circ f \) is also onto \(C \).

 (iii) If both \(f \) and \(g \) are one-to-one correspondences, then \(g \circ f \) is also a one-to-one correspondence.

EXERCISES

1. Determine which of the relations \(f \) are functions from the set \(X \) to the set \(Y \).

 a. \(X = \{ -3, -2, -1, 0, 1, 2 \} \), \(Y = \{ 3, 4, 5, 6, 7 \} \), and \(f = \{ (-2, 3), (-1, 6), (0, 4), (1, 5), (2, 7) \} \).

 b. \(X = \{ -3, -2, -1, 0, 1, 2 \} \), \(Y = \{ 3, 4, 5, 6, 7 \} \), and \(f = \{ (-3, 3), (-2, 5), (0, 4), (-2, 6), (1, 5), (2, 7) \} \).

 c. \(X = \{ -3, -2, -1, 0, 1, 2 \} \), \(Y = \{ 3, 4, 5, 6, 7 \} \), and \(f = \{ (-2, 3), (0, 4), (-3, 6), (-1, 7), (1, 5), (2, 7) \} \).

 d. \(X = \{ -3, -1, 0, 2 \} \), and \(f = \{ (-3, -1), (-1, 2), (0, 2), (2, -1) \} \).

 e. \(X = Y \) is the set of all integers, \(f = \{ (a, b) \in \mathbb{Z} \times \mathbb{Z} \mid b = 2a - 1 \} \).

 f. \(X = Y \) is the set of all integers, \(f = \{ (a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a^2 = b \} \).

 g. \(X = \mathbb{Q} \), \(Y = \mathbb{Q} \), defined by \(f(\frac{a}{b}) = a + m \) for all \(\frac{a}{b} \in \mathbb{Q} \).

2. Let \(A = \{ -3, -2, -1, 0, 1, 2 \} \). Find the range of the function \(f : A \to \mathbb{R} \), defined by \(f(x) = x^2 + 1 \) for all \(x \in A \).

3. Find the range of the function \(f : \mathbb{R} \to \mathbb{R} \), defined by \(f(x) = x^3 + x + 1 \) for all \(x \in \mathbb{R} \).

4. Consider the function \(f = \{(x, x^2) \mid x \in S\} \) from the set \(S = \{ -3, -2, -1, 0, 1, 2, 3 \} \) into \(\mathbb{Z} \). Is \(f \) one-one? Is \(f \) onto \(\mathbb{Z} \)?

5. Let \(f \) be the function from the set \(X = \{ 2, 3, 4, 5, 6, 7, 8 \} \) into the set \(Y = \{ 0, 1, 2, 3, 4, 5, 6, 7 \} \), defined by \(f(x) = 3x \pmod{7} \) for all \(x \in X \). Write \(f \) as a set of ordered pairs. Is \(f \) one-one, or onto \(Y \)?

6. Let \(f \) be the function from the set \(X = \{ 1, 2, 3, 4, 5, 6, 7, 8 \} \) into the set \(Y = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8 \} \), defined by \(f(x) = (2x + 5) \pmod{5} \) for all \(x \in X \). Write \(f \) as a set of ordered pairs. Is \(f \) one-one or onto \(Y \)?

8. Show that the following functions are neither one-one nor onto (\(Z \) in (a); (b); and \(\mathbb{R} \) in (c), (d), and (e)).

 a. \(f : \mathbb{Z} \to \mathbb{Z} \), defined by \(f(x) = 4x^2 + 3 \) for all \(x \in \mathbb{Z} \).

 b. \(f : \mathbb{Z} \to \mathbb{Z} \), defined by \(f(0) = 0 \).

 c. \(f : \mathbb{R} \to \mathbb{R} \), defined by \(f(x) = \frac{x + 1}{x - 1} \) for all \(x \in \mathbb{R} \).

 d. \(f : \mathbb{R} \to \mathbb{R} \), defined by \(f(x) = \frac{x}{x - 1} \) for all \(x \in \mathbb{R} \).

 e. \(f : \mathbb{R} \to \mathbb{R} \), defined by \(f(x) = \cos x \) for all \(x \in \mathbb{R} \).

9. Show that the following functions are onto \(\mathbb{Z} \), but not one-one.

 a. \(f : \mathbb{Z} \to \mathbb{Z} \), defined by \(f(0) = 0 \).

 b. \(f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \), defined by \(f(m, n) = m + n \) for all \(m, n \in \mathbb{Z} \).

10. Show that the following functions are one-one, but not onto \(\mathbb{Z} \).

 a. \(f : \mathbb{Z} \to \mathbb{Z} \), defined by \(f(n) = 9n + 1 \) for all \(n \in \mathbb{Z} \).

 b. \(f : \mathbb{Z} \to \mathbb{Z} \), defined by \(f(n) = 3^n \) for all \(n \in \mathbb{Z} \).

11. Show that the following functions are one-to-one correspondences.

 a. \(f : \mathbb{R} \to \mathbb{R} \), defined by \(f(a) = a^2 \) for all \(a \in \mathbb{R} \).

 b. \(f : \mathbb{R} \to \mathbb{R} \), defined by \(f(x) = \frac{x + 1}{x} \) for all \(x \in \mathbb{R} \).

 c. \(f : \mathbb{R} \to \mathbb{R} \), defined by \(f(x) = x^2 - 1 \) for all \(x \in \mathbb{R} \).

12. Determine which of the following functions are one-one, onto, or both one-one and onto.
a. $f : \mathbb{Z} \to \mathbb{Z}$, defined by $f(n) = 4n - 3$ for all $n \in \mathbb{Z}$.

b. $f : \mathbb{Z} \times \mathbb{N} \to \mathbb{Z}$, defined by $f(n, m) = \frac{m}{n}$ for all $n \in \mathbb{Z}$ and for all $m \in \mathbb{N}$.

c. $f : \mathbb{R} \to \mathbb{R}$, defined by $f(x) = x^2 - x$ for all $x \in \mathbb{R}$.

d. $f : \mathbb{Z} \to \mathbb{Q}$, defined by $f(n) = \frac{n}{2}$ for all $n \in \mathbb{Z}$.

e. $f : \mathbb{R}^+ \to \mathbb{R}^+$, defined by $f(x) = \frac{1}{x}$ for all $x \in \mathbb{R}^+$.

f. $f : \mathbb{R} \to \mathbb{R}^+$, defined by $f(x) = e^x$ for all $x \in \mathbb{R}$.

13. Let $f : \mathbb{R} \to \mathbb{R}$, defined by $f(x) = x^2 - 6x$ for all $x \in \mathbb{R}$. Find $\text{Im}(f)$. Is f onto \mathbb{R}? Is f one-one?

14. Let $f : X \to Y$ and $g : X \to Y$ be functions. Show that $f = g$ if and only if $f(x) = g(x)$ for all $x \in X$.

15. Let $M_2(\mathbb{R})$ denote the set of all 2x2 matrices over real numbers. Define $f : M_2(\mathbb{R}) \to M_2(\mathbb{R})$ by $f(A) = A^T$ (the transpose of a matrix A) for all $A \in M_2(\mathbb{R})$. Find $f(A)$, when $A = \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$. Is f one-one? Is it onto $M_2(\mathbb{R})$?

16. Define $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ by $f((x, y)) = (u, v)$, where $\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$. Find $f((1, 0))$, $f((0, 2))$. Is f one-one? Is it onto $\mathbb{R} \times \mathbb{R}$?

17. Let $M_2(\mathbb{R})$ denote the set of all 2x2 matrices over real numbers. Define $f : M_2(\mathbb{R}) \to \mathbb{R}$ by $f(A) = a - d$ for all $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R})$. Find $f(A)$, when $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Is f one-one? Is it onto \mathbb{R}?

18. Let $A = \{1, 2, 3\}$. List all one-one functions from A onto A.

19. Let $A = \{1, 2, \ldots, n\}$. Show that the number of one-one and onto functions from A into A is $n!$.

20. Let $f : A \to B$ be a function. Define a relation R on A by for all $a, b \in A$, $a R b$ if and only if $f(a) = f(b)$. Show that R is an equivalence relation.

21. Let $A = \{x \in \mathbb{Z} \mid -5 < x \leq 0\}$, $B = \{x \in \mathbb{Z} \mid 0 < x \leq 8\}$, and $C = \{x \in \mathbb{Z} \mid -8 < x \leq 2\}$. Consider the functions $f : A \to B$ defined by $f(x) = x + 3$ for all $x \in A$ and $g : B \to C$ defined by $g(x) = -x + 1$ for all $x \in B$. Draw the arrow diagrams of the functions $f : A \to B$ and $g : B \to C$. Then draw the arrow diagram of $g \circ f$.

22. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be functions defined by $f(x) = x^2 - 2x + 4$ and $g(x) = 7x - 2$ for all $x \in \mathbb{R}$. Find $f \circ g$, $g \circ f$, and $f \circ g(-2)$, $g \circ f(-2)$.

23. Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ and $g : \mathbb{R}^+ \to \mathbb{R}^+$ be functions defined by $f(x) = \sqrt{x}$ and $g(x) = \frac{x}{2} + 1$ for all $x \in \mathbb{R}^+$, where \mathbb{R}^+ is the set of all positive real numbers. Find $f \circ g$ and $g \circ f$. Is $f \circ g = g \circ f$?

24. Let $f : \mathbb{Q}^+ \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 2x - 1$ for all $x \in \mathbb{Q}^+$ and $g(x) = x + 1$ for all $x \in \mathbb{R}$, where \mathbb{Q}^+ is the set of all positive rational numbers. Find $g \circ f$.

25. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 3x - 2$ and $g(x) = x^3 + 2$ for all $x \in \mathbb{R}$. Find $g \circ f$, $f \circ f$, and $g \circ g$.

26. Prove Theorem 5.1.28.

27. For the following statement, write the proof if the statement is true, otherwise give a counter example.

A function $f : A \to B$ is one-one if and only if $g \circ f = h \circ f$ for all functions $g, h : B \to A$.

5.2 SPECIAL FUNCTIONS AND CARDINALITY OF A SET

This section continues the discussion of functions. Here we discuss inverse, restriction, and composition of a function. We also discuss the floor and ceiling functions, which are often encountered in computer science, especially in algorithm analysis. We conclude with a discussion of the cardinality of a set.

Inverse of a Function

Let $f : A \to B$ be a function from a set A into a set B. Then $f \subseteq A \times B$ is a relation from A into B. In Chapter 3, we defined the inverse relation $f^{-1} \subseteq B \times A$. Now the natural question is: Is f^{-1} a function from B into A? Before giving the answer, let us consider the following examples of functions.

Example 5.2.1

(i) Let $A = \{1, 2, 3, 4, 5\}$, $B = \{a, b, c, d\}$, and $f : A \to B$ be defined by $f(1) = a$, $f(2) = a$, $f(3) = b$, $f(4) = c$, $f(5) = d$.

The arrow diagrams of f and f^{-1} are shown in Figure 5.16.

We see that the distinct elements 1 and 2 of A are both mapped to a. Therefore, it follows that function f is not one-one. Because every element of B has a preimage, f is onto B. Hence, f is onto B but not one-one.

The inverse relation $f^{-1} \subseteq B \times A$ is given by $f^{-1} = \{(a, 1), (a, 2), (b, 3), (c, 4), (d, 5)\}$.