

ibm.com/redbooks

Introduction to Tivoli
Enterprise
Data Warehouse

Vasfi Gucer
William Crane

Chris Molloy
Sven Schubert
Roger Walker

Insider’s guide to Tivoli Enterpise Data
Warehouse

Best practices for creating data
marts

Integration with all major
OLAP tools

Front cover

Introduction to Tivoli Enterprise Data Warehouse

May 2002

International Technical Support Organization

SG24-6607-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (May 2002)

This edition applies to Tivoli Enterprise Data Warehouse Version 1.1.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Notices” on page xvii.

Contents

Figures . ix

Tables . xv

Notices . xvii
Trademarks . xviii

Preface . xix
The team that wrote this redbook. xx
Notice . xxi
Comments welcome. xxii

Chapter 1. Introducing building blocks . 1
1.1 Business Intelligence. 2
1.2 Business driving forces . 2
1.3 Main Business Intelligence terms . 3

1.3.1 Operational databases . 4
1.3.2 Online transaction processing (OLTP) . 4
1.3.3 Data warehouse . 5
1.3.4 Data mart . 5
1.3.5 External data source . 5
1.3.6 Online analytical processing (OLAP) . 6
1.3.7 OLAP server . 6
1.3.8 Metadata: A definition . 7
1.3.9 Drill-down . 7
1.3.10 Operational versus informational databases. 8
1.3.11 Data mining . 9

1.4 Different Business Intelligence implementations. 9
1.4.1 Summary table . 10
1.4.2 OLTP data in separate server . 10
1.4.3 Single data mart . 12

1.5 Data warehouse architecture and processes . 14
1.5.1 Data sources . 15
1.5.2 Extraction/propagation . 15
1.5.3 Transformation/cleansing . 16
1.5.4 Data refining . 16
1.5.5 Physical database model . 17
1.5.6 Logical database model . 18
1.5.7 Metadata information . 19
© Copyright IBM Corp. 2002 iii

1.5.8 Operational data source (ODS). 20
1.5.9 Data mart . 22
1.5.10 Presentation and analysis tools . 23

1.6 DB2 DataWarehouse Manager . 25
1.7 Tivoli Enterprise Data Warehouse. 27

1.7.1 The problem . 27
1.7.2 The solution. 29
1.7.3 Benefits of using Tivoli Enterprise Data Warehouse 31

Chapter 2. Tivoli Enterprise Data Warehouse architecture 33
2.1 Tivoli Enterprise Warehouse components. 34

2.1.1 Basic components. 34
2.1.2 How Tivoli Enterprise Data Warehouse is packaged 36

2.2 Tivoli Enterprise Data Warehouse architecture . 37
2.2.1 Single machine installation . 37
2.2.2 Distributed installation . 38
2.2.3 Distributed installation with remote warehouse agents 40
2.2.4 Central data warehouse data model . 42
2.2.5 Data mart’s star schema . 43

2.3 Applications with Tivoli Enterprise Data Warehouse. 45

Chapter 3. Installation and configuration . 47
3.1 Planning for Tivoli Enterprise Data Warehouse . 48

3.1.1 Selecting port numbers . 48
3.1.2 Other network checks . 51

3.2 Hardware and software requirements . 53
3.2.1 Hardware requirements. 53
3.2.2 Software requirements . 54
3.2.3 Database requirements. 55
3.2.4 Web browser requirements . 56
3.2.5 Report Interface requirements . 57
3.2.6 AIX system requirements . 57
3.2.7 Solaris system requirements. 58

3.3 Stand-alone Tivoli Enterprise Data Warehouse . 59
3.3.1 Windows DB2 Universal Database installation 60
3.3.2 Tivoli Enterprise Data Warehouse installation 61

3.4 Distributed Tivoli Enterprise Data Warehouse . 67
3.4.1 DB2 Universal Database installation. 68
3.4.2 Tivoli Enterprise Data Warehouse installation 70

3.5 Tivoli Enterprise Data Warehouse configuration . 76
3.5.1 Specifying the control database for the Data Warehouse Center . . . 77
3.5.2 Test sources and targets in the Data Warehouse Center 79
3.5.3 Installing warehouse packs . 81
iv Introduction to Tivoli Enterprise Data Warehouse

Chapter 4. Implementation of the Report Interface 89
4.1 Tivoli Enterprise Data Warehouse Report Interface 90
4.2 Basic customization. 91

4.2.1 Roles . 91
4.2.2 Users. 94
4.2.3 User groups. 97
4.2.4 Data marts. 100

4.3 Types of reports . 104
4.3.1 How star schemas are used to create reports 104
4.3.2 Summary reports. 108
4.3.3 Extreme case reports . 119
4.3.4 Health reports . 122

Chapter 5. Integration of application data to central data repository . . 127
5.1 Why you might need to integrate your own data 128

5.1.1 Mapping data to the existing schema . 128
5.1.2 Supplementing the existing schema . 130

5.2 Methodology . 131
5.3 Following the Enablement Guide steps to ETL . 132

5.3.1 Step 1: Define the data to be extracted. 132
5.3.2 Step 2: Familiarize yourself with the schema 133
5.3.3 Step 3: Complete data enablement template 133
5.3.4 Step 4: Review naming conventions of the Enablement Guide . . . 133
5.3.5 Step 5: Install at least one application additional application 133
5.3.6 Step 6: Insert the one-time static data into the CDW tables 134
5.3.7 Step 7: Determine the incremental extract columns 136
5.3.8 Step 8: Review timestamps for all source data 136
5.3.9 Step 9: Review and apply common task . 137
5.3.10 Step 10: Code the source ETL . 151

5.4 Lessons learned from the case studies. 172
5.4.1 Case study 1 results . 173
5.4.2 Case study 2 results . 174

5.5 Best practices . 176
5.5.1 Follow the Enablement Guide . 176
5.5.2 Fill out the data template . 176
5.5.3 Install one of the Tivoli-provided sets of ETLs 176
5.5.4 Adapt existing ETL scripts to create your own 177

Chapter 6. How to create data marts . 179
6.1 Reasons to create data marts . 180
6.2 Benefits of data marts . 180

6.2.1 Incremental development . 181
6.2.2 Customer understandability of data . 181
 Contents v

6.2.3 Manageable pieces . 181
6.2.4 Manipulation of data in the mart . 182
6.2.5 Better reporting performance . 182
6.2.6 Use of distributed technology . 182
6.2.7 Tool ready . 182

6.3 Data mart methodology . 183
6.3.1 Data warehouse terminology . 183
6.3.2 Methodology for data marts and star schemas 184
6.3.3 Tivoli Enterprise Data Warehouse naming conventions 185

6.4 Moving on with case study 2 - AIS data . 187
6.4.1 Step 11: Define star schemas . 187
6.4.2 Step 12: Code the data mart ETL . 191
6.4.3 Step 13: Provide internationalization strings 200
6.4.4 Step 14: Create the warehouse enablement pack 200

6.5 Data mart best practices . 200
6.5.1 Break steps into the smallest steps possible 200
6.5.2 Data mart data should be kept at the lowest grain 200
6.5.3 Develop initial and incremental data loads together 201

Chapter 7. OLAP integration . 203
7.1 OLAP. 204
7.2 Brio Intelligence. 204

7.2.1 Brio overview. 204
7.2.2 Brio components . 205
7.2.3 Brio integration with Tivoli Enterprise Data Warehouse 206
7.2.4 Brio sample reports . 217

7.3 Business Objects. 221
7.3.1 Business Objects overview . 221
7.3.2 Business Objects components . 222
7.3.3 Business Objects integration. 223
7.3.4 Business Objects sample reports . 234

7.4 Cognos . 237
7.4.1 Cognos overview. 237
7.4.2 Cognos components . 238
7.4.3 Cognos integration with Tivoli Enterprise Data Warehouse 238
7.4.4 Cognos sample reports . 249

Chapter 8. Real-life scenarios . 253
8.1 Scenario 1 - Low swap space . 254
8.2 Scenario 2 - Slow application . 256

Chapter 9. Multi-customer environments . 265
9.1 Multi-customer environments overview . 266
9.2 Implementing a multi-customer scenario. 267
vi Introduction to Tivoli Enterprise Data Warehouse

Chapter 10. Troubleshooting and maintenance . 283
10.1 Troubleshooting techniques . 284

10.1.1 Troubleshooting installation . 284
10.1.2 Troubleshooting the IBM Console and the Report Interface 285
10.1.3 Troubleshooting the customization . 288

10.2 Maintenance and backup . 291
10.2.1 Removing old data from the Data Warehouse Center logs. 291
10.2.2 Removing old data from the central data warehouse 291
10.2.3 Maintaining the warehouse database . 292
10.2.4 Backup . 295

10.3 Un-install components. 296
10.3.1 Un-install Tivoli Enterprise Data Warehouse core product 296
10.3.2 Un-install the warehouse packs . 297

Appendix A. GEOAREA and TMZON tables . 299
Table TMZON. 300
Table GEOAREA . 300

Appendix B. Scripts . 303
dmn_c10_s010_tiv_loadDMData.db2 . 304
Insert_cust_control.db2 . 310
srm_c05_s010_extractInvData. 310
srm_c15_s010_transformDMData . 318
srm_c20_s010_loadDMData . 321
srm_m05_s010_buildMart . 324
ai1_c05_s010_extractData. 334
ai1_c20_s010_LoadEvData . 340
ai1_m05_s010_buildMart . 344
ai1_c05_s010_extractData. 354

Appendix C. Additional material . 365
Locating the Web material . 365
Using the Web material . 365

System requirements for downloading the Web material 366
How to use the Web material . 366

Abbreviations and acronyms . 367

Related publications . 369
IBM Redbooks . 369

Other resources . 369
Referenced Web sites . 369
How to get IBM Redbooks . 370

IBM Redbooks collections. 370
 Contents vii

Index . 371
viii Introduction to Tivoli Enterprise Data Warehouse

Figures

0-1 From left to right: Sven, Vasfi, William, and Roger xx
1-1 Common Business Intelligence terms . 4
1-2 Drill-down . 7
1-3 Operational versus informational databases . 8
1-4 Business Intelligence implementations . 9
1-5 Summary tables on OLTP . 10
1-6 Poor man’s data warehouse . 11
1-7 Two-tiered data mart . 12
1-8 Three-tiered data mart . 13
1-9 Data warehouse components . 14
1-10 Data refining. 17
1-11 Physical database models . 18
1-12 Logical data model . 19
1-13 Metadata . 20
1-14 Operational data store . 21
1-15 Data mart . 23
1-16 Presentation and analysis tools . 24
1-17 DB2 DataWarehouse Manager . 26
1-18 Reporting without Tivoli Enterprise Data Warehouse 28
1-19 Reporting with Tivoli Enterprise Data Warehouse 30
2-1 Components of the Tivoli Enterprise Data Warehouse 34
2-2 A distributed Tivoli Data Warehouse configuration 38
2-3 Advanced configuration with remote warehouse agents 41
2-4 Central data warehouse data model . 42
2-5 Data mart’s star schema . 44
3-1 Welcome dialog window . 62
3-2 Install type dialog window . 63
3-3 DB2 configuration dialog window. 64
3-4 Default port setting dialog window . 65
3-5 Selected options dialog window. 66
3-6 Our environment . 68
3-7 AIX DB2 install summary . 69
3-8 AIX DB2 install summary . 69
3-9 Welcome dialog window . 71
3-10 Install type dialog window . 71
3-11 Select features dialog window . 72
3-12 Default ports dialog window . 73
3-13 Remote DB2 configuration dialog window . 74
© Copyright IBM Corp. 2002 ix

3-14 Remote DB2 configuration dialog window . 75
3-15 Selected options dialog window. 75
3-16 Configure Data Warehouse Center window. 78
3-17 Configure Warehouse Control Database Management window 79
3-18 Configure target and sources window . 80
3-19 Install type dialog window . 82
3-20 Data Warehouse Center . 84
3-21 Schedule Process window . 85
3-22 Change task mode window . 86
3-23 Work in Progress window . 86
4-1 Create a Role dialog - General . 92
4-2 Manage Roles dialog . 93
4-3 Create a User dialog - General . 94
4-4 Create a Users dialog - Roles . 95
4-5 Manage Users dialog . 97
4-6 Create a new user group . 98
4-7 Add users to user Group dialog . 99
4-8 Manage Data Marts dialog - Create a new data mart 100
4-9 Create a Data Mart dialog - General information 101
4-10 Create a Data Mart dialog - User Groups . 102
4-11 Add Star Schemas to a Data Mart dialog. 103
4-12 Example metric dimension table . 105
4-13 An example of a component dimension table 106
4-14 Example of a fact table . 106
4-15 Create a Report dialog - Summary reports . 108
4-16 Create summary report - General dialog . 109
4-17 Create summary report - Add Metrics dialog . 110
4-18 Create summary reports - Specify Aggregations dialog 111
4-19 Create summary report - Group by and filter dialog. 112
4-20 Create summary report - Time dialog . 114
4-21 Create summary report - Schedule dialog . 115
4-22 Run a report . 116
4-23 Run a report - Report output name and description. 117
4-24 Result of the summary report example . 118
4-25 The Report Output dialog. 119
4-26 Create extreme case reports - Add Metrics dialog. 120
4-27 Create extreme case report - Specify Attributes dialog 121
4-28 Result of the extreme case report example . 122
4-29 Create health report - Specify Attributes dialog 123
4-30 Result of the health report example . 125
5-1 Data Warehouse Center subject areas . 138
5-2 Defining a new subject area. 139
5-3 Sub-menus for defining a new source . 140
x Introduction to Tivoli Enterprise Data Warehouse

5-4 Warehouse source define and properties dialog 140
5-5 Warehouse source definition - Agent Sites tab 141
5-6 Warehouse source definition - Database tab . 142
5-7 Warehouse source definition - Tables and Views tab 143
5-8 Warehouse source definition - Filter to retrieve tables or views 143
5-9 Warehouse source definition - Tables and Views tab 144
5-10 Warehouse source definition - Security tab . 145
5-11 Defining a process . 146
5-12 Sub-menu to define a sqlscript step. 147
5-13 Definition of process step - User Defined Program tab 147
5-14 Definition of process step - Parameters tab . 148
5-15 Definition of process step - Column Mapping tab 149
5-16 Definition of process step - Processing Options tab 150
5-17 Example of directory structure for DM application 151
5-18 Adding the source . 162
5-19 Adding the source with expanded tables . 163
5-20 Adding the source to the selected warehouse sources and targets . . 164
5-21 Adding a target to a step . 165
5-22 Adding a target to a step with expanded tables 165
5-23 Adding target to step with target in selected warehouse targets 166
5-24 Example of schedule dialog . 167
5-25 Changing modes on steps . 168
5-26 Data Warehouse Center main menu option of Work in Progress 169
5-27 Example of Work In Progress window . 170
5-28 Work in Progress sub-menu . 170
5-29 Directory with ETL error log . 171
5-30 ETL error log . 172
6-1 Star schema. 184
6-2 Defining a star schema . 188
6-3 Adding tables to a star schema . 188
6-4 Star schema with tables added . 189
6-5 Example of model vertical toolbar . 190
6-6 AIS daily schema model . 191
6-7 Sub-menu for defining a Tivoli rollup script . 198
6-8 Defining a step with a rollup script . 198
6-9 Defining a step with a rollup script - Parameters tab 199
7-1 Welcome to BrioQuery window . 207
7-2 Connection Wizard window . 208
7-3 DB2 configuration window . 208
7-4 Add selected items window . 209
7-5 Item request window . 210
7-6 Change time window . 211
7-7 Results section window . 212
 Figures xi

7-8 Crosstab report window . 213
7-9 Setting a limit window . 214
7-10 Crosstab report window . 215
7-11 Bar graph window . 216
7-12 Bar graph drill-down window . 217
7-13 CPU over 90 percent window . 218
7-14 Drill-down of a host appserva19 window . 219
7-15 Page one of metric’s for host HPUXS0 window. 220
7-16 Page two of metric’s for host HPUXS0 window 221
7-17 Add a connection window . 224
7-18 IBM DB2 CAE window . 225
7-19 Add tables to query window . 226
7-20 Add the measurements from the fact table window 227
7-21 Setting up table joins window. 228
7-22 Query Panel window . 229
7-23 Results Objects window. 230
7-24 Slice and Dice Panel window. 231
7-25 Crosstab report window . 232
7-26 Filter applied window . 233
7-27 Line graph window . 234
7-28 Crosstab report window . 235
7-29 Line graph report window. 236
7-30 Line graph report window. 237
7-31 New Model window . 240
7-32 Create a query window . 241
7-33 Add items window . 242
7-34 Create query window . 243
7-35 Create a structure window . 245
7-36 Verifying that the model is OK . 246
7-37 Building the cube . 247
7-38 Opening up the PowerPlay . 248
7-39 Create graph report . 249
7-40 Bar graph report . 250
7-41 Pie chart graph. 251
8-1 Monthly extreme report for available swap space 254
8-2 Health report for server found in extreme report 255
8-3 Environment for the second scenario . 256
8-4 Extreme report of the maximum application response time. 258
8-5 Health report of the response time versus a one-day period 259
8-6 Application response time versus a one-day period 260
8-7 Minimum available swap space versus a one-day period 261
8-8 Maximum CPU usage versus a one-day period 262
8-9 Maximum CPU usage versus a one-day period 263
xii Introduction to Tivoli Enterprise Data Warehouse

9-1 Customer lookup table . 268
9-2 Configure customer table. 269
9-3 Output of dmn.cust_lookout table . 270
9-4 Output of twg.cust table . 271
9-5 Define Process window . 272
9-6 Copy Step window . 273
9-7 Remove source database window . 274
9-8 Add Data window . 275
9-9 Process Model window . 276
9-10 Process Properties window . 277
9-11 Add source window . 279
9-12 Define Warehouse Schema window . 280
9-13 Add Data window . 280
9-14 Warehouse Schema Model window. 281
10-1 Error messages in the Report Interface after database restart 287
10-2 Create a reorganization step . 293
 Figures xiii

xiv Introduction to Tivoli Enterprise Data Warehouse

Tables

3-1 Default port numbers used by Tivoli Enterprise Data Warehouse 49
3-2 Hardware requirements . 54
3-3 Software requirements. 55
3-4 Patches for Solaris 8 . 58
3-5 Patches for Solaris 7 . 59
3-6 DB2 Wizard options . 60
4-1 Predefined roles. 91
A-1 Table TMZON . 300
A-2 Table GEOAREA . 301
© Copyright IBM Corp. 2002 xv

xvi Introduction to Tivoli Enterprise Data Warehouse

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2002 xvii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
DB2®
DB2 Universal Database™
IBM®
Informix®

OS/390®
Perform™
Redbooks™
Redbooks(logo)™
S/390®

SP™
Tivoli®
Tivoli Enterprise™
Tivoli Enterprise Console®

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Lotus® Notes® Word Pro®

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xviii Introduction to Tivoli Enterprise Data Warehouse

Preface

Tivoli EnterpriseTM Data Warehouse is a brand new technology from Tivoli,
which allows customers to get cross application reports from various Tivoli and
customer applications. The infrastructure enables a set of extract, transform, and
load (ETL) utilities to extract and move data from Tivoli application data stores to
a central data warehouse database. Tivoli Enterprise Data Warehouse’s open
architecture also allows data from non-Tivoli applications to be integrated into its
central data repository.

This redbook gives a broad understanding of the Tivoli Enterprise Data
Warehouse. Some of the topics that are covered in this redbook are:

� Concepts behind the Tivoli Enterprise Data Warehouse

� Architecture and installation

� Tips for using the Report Interface that comes with the product

� Writing your own ETLs for putting your data into Tivoli Enterprise Data
Warehouse’s central data repository

� Best practices in creating data marts

� Integrating Tivoli Enterprise Data Warehouse with major online analytical
processing (OLAP) tools such as Brio, Business Objects, and Cognos
PowerPlay

� Implementing a multi-customer (Service Provider) environment with Tivoli
Enterprise Data Warehouse

� Operational considerations and troubleshooting

Most of the topics are explained using real customer implementations. We think
that this redbook will be a major reference for Tivoli specialists and customers
who are responsible for implementing Tivoli Enterprise Data Warehouse.
© Copyright IBM Corp. 2002 xix

The team that wrote this redbook

Figure 0-1 From left to right: Sven, Vasfi, William, and Roger

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Vasfi Gucer is a Project Leader at the International Technical Support
Organization, Austin Center. He worked for IBM Turkey for 10 years and has
been with the ITSO since January 1999. He has more than nine years of
experience in the areas of systems management, and networking hardware and
software on mainframe and distributed platforms. He has worked on various
Tivoli customer projects as a Systems Architect in Turkey and the U.S. Vasfi is
also an IBM Certified Senior IT Specialist.

Chris Molloy is a Senior Technical Staff Member working for IBM Global
Services. He has over 20 years of experience in the IT industry, and currently
focuses on strategic direction for IBM Service Delivery Centers. He holds a
bachelors degree in Computer Science and a masters degree in Business
Administration, as well as a professional certification of a DB2 DBA. He holds a
patent for some of his work in performance management, and has published
several papers on performance management and capacity planning.
xx Introduction to Tivoli Enterprise Data Warehouse

William Crane is a Senior Project Team Lead for global retailer in Ahold. He
graduated from the University South Carolina, Columbia, South Carolina, with a
B.S. in Computer Science in 1991. His duties include development and project
management of Data Warehousing, E-Business and Enterprise Systems
Management projects. He is a Certified Java Programmer and has programming
experience in Java, C, C++, CGI, Perl, HTML, XML, AIX Shell, and PL/SQL. He
also has five years of Oracle Data Warehouse development experience.

Dr. Sven Schubert is a Senior System Administrator working for SZM Studios in
Germany. Sven worked as a Certified Tivoli Consultant in many Tivoli projects
before he joined SZM Studios. In his company he is responsible for system
management software and is also involved in project management.

Roger Walker is a Tivoli Implementation Specialist working for IBM New
Zealand. He has worked in various customer projects, implementing Tivoli
products such as Storage Manager, Distributed Monitoring, NetView, TEC,
Remote Control, and Decision Support. He also has experience on DB2 UDB
implementation and customization.

Thanks to the following people for their contributions to this project:

International Technical Support Organization, Austin Center
Budi Darmawan and Julie Czubik

International Technical Support Organization, San Jose Center
Corinne Baragoin

IBM USA
Becky Brenner, Terri Buchanan, Jonathan Cook, Catherine Cook, Vladislavas S
Judys, Kathy Henley, Robin Hernandez, Kevin Kinsbury, Doug Ledden, Paige
Menke, Steve Pauli, David Robinson, Brad Stern, Don Thomas, Lorraine
Vassberg

Notice
This publication is intended to help Tivoli specialists who use Tivoli Enterprise
Data Warehouse to implement a reporting infrastructure in their environment.
The information in this publication is not intended as the specification of any
programming interfaces that are provided by Tivoli Enterprise Data Warehouse
Version 1.1. See the PUBLICATIONS section of the IBM Programming
Announcement for Tivoli Enterprise Data Warehouse Version 1.1 for more
information about what publications are considered to be product documentation.
 Preface xxi

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.
xxii Introduction to Tivoli Enterprise Data Warehouse

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introducing building blocks

This chapter provides an introduction to the concepts, technologies, and
products behind the Tivoli Enterprise Data Warehouse. It is an ideal place to start
for a reader who is coming from a Tivoli background and is not familiar with the
Business Intelligence and data warehouse concepts.

This chapter has the following sections:

� Business Intelligence

� Business driving forces for Business Intelligence

� Main Business Intelligence terms

� Different Business Intelligence implementations

� Data warehouse architecture and processes

� IBM Data Warehouse Manager

� Tivoli Enterprise Data Warehouse

� Benefits of using Tivoli Enterprise Data Warehouse

1

© Copyright IBM Corp. 2002 1

1.1 Business Intelligence
Business intelligence is not business as usual. It is about making better decisions
more quickly and easily.

Businesses collect enormous amounts of data every day: Information about
orders, inventory, accounts payable, point-of-sale transactions, and, of course,
customers. Businesses also acquire data, such as demographics and mailing
lists, from outside sources. Unfortunately, based on a recent survey, over 93
percent of corporate data is not usable in the business decision-making process
today.

Consolidating and organizing data for better business decisions can lead to a
competitive advantage, and learning to uncover and leverage those advantages
is what business intelligence is all about.

The amount of business data is increasing exponentially. In fact, it doubles every
two to three years. More information means more competition. In the age of the
information explosion, executives, managers, professionals, and workers all need
to be able to make better decisions faster. Because now, more than ever, time is
money.

Much more than a combination of data and technology, BI helps you to create
knowledge from a world of information. Get the right data, discover its power, and
share the value, BI transforms information into knowledge. Business Intelligence
is the application of putting the right information into the hands of the right user
at the right time to support the decision-making process.

1.2 Business driving forces
It can be noted that there are some business driving forces behind business
intelligence, one being the need to improve ease-of-use and reduce the
resources required to implement and use new information technologies. There
are additional driving forces behind business intelligence, for example:

� The need to increase revenues, reduce costs, and compete more effectively.

Gone are the days when end users could manage and plan business
operations using monthly batch reports, and IT organizations had months to
implement new applications. Today companies need to deploy informational
applications rapidly, and provide business users with easy and fast access to
business information that reflects the rapidly changing business environment.
2 Introduction to Tivoli Enterprise Data Warehouse

Business intelligence systems are focused towards end user information
access and delivery, and provide packaged business solutions in addition to
supporting the sophisticated information technologies required for the
processing of today’s business information.

� The need to manage and model the complexity of today’s business
environment.

Corporate mergers and deregulation means that companies today are
providing and supporting a wider range of products and services to a broader
and more diverse audience than ever before. Understanding and managing
such a complex business environment and maximizing business investment
is becoming increasingly more difficult. Business intelligence systems provide
more than just basic query and reporting mechanisms, they also offer
sophisticated information analysis and information discovery tools that are
designed to handle and process the complex business information associated
with today’s business environment.

� The need to reduce IT costs and leverage existing corporate business
information.

The investment in IT systems today is usually a significant percentage of
corporate expenses, and there is a need not only to reduce this overhead, but
also to gain the maximum business benefits from the information managed by
IT systems. New information technologies like corporate intranets, thin-client
computing, and subscription-driven information delivery help reduce the cost
of deploying business intelligence systems to a wider user audience,
especially information consumers like executives and business managers.
Business intelligence systems also broaden the scope of the information that
can be processed to include not only operational and warehouse data, but
also information managed by office systems and corporate Web servers.

1.3 Main Business Intelligence terms
Now let us explain some of the terms (Figure 1-1 on page 4) related to Business
Intelligence, which are fundamental for understanding the concepts behind the
Tivoli Enterprise Data Warehouse.
 Chapter 1. Introducing building blocks 3

Figure 1-1 Common Business Intelligence terms

1.3.1 Operational databases
Operational databases are detail-oriented databases defined to meet the needs
of, at times, very complex processes in a company. This detailed view is reflected
in the data arrangement in the database. The data is highly normalized to avoid
data redundancy and "double-maintenance."

1.3.2 Online transaction processing (OLTP)
OLTP describes the way data is processed by an end user or a computer
system. It is detail-oriented, and highly repetitive with massive amounts of
updates and changes of the data by the end user. It is also very often described
as the use of computers to run the on-going operation of a business.

Terms Common to BI

OLAP

Data Mining

Data Mining

Data MartData Mart

Data Warehouse

Data Warehouse

Meta DataMeta Data

Data Visualization
Data Visualization

OLTPOLTP
Drill downDrill down

ODSODS

OLTP OLTP
ServerServer
4 Introduction to Tivoli Enterprise Data Warehouse

1.3.3 Data warehouse
A data warehouse is a database where data is collected for the purpose of being
analyzed. The defining characteristic of a data warehouse is its purpose. Most
data is collected to handle a company's on-going business. This type of data can
be called operational data. The systems used to collect operational data are
referred to as OLTP.

A data warehouse collects, organizes, and makes data available for the purpose
of analysis in order to give management the ability to access and analyze
information about its business. This type of data can be called informational
data. The systems used to work with informational data are referred to as online
analytical processing (OLAP).

Bill Inmon coined the term data warehouse in 1990. His definition is:

"A (data) warehouse is a subject-oriented, integrated, time-variant, and
non-volatile collection of data in support of management's decision-making
process."

� Subject-oriented: Data that gives information about a particular subject
instead of about a company's on-going operations.

� Integrated: Data that is gathered into the data warehouse from a variety of
sources and merged into a coherent whole.

� Time-variant: All data in the data warehouse is identified with a particular time
period.

1.3.4 Data mart
A data mart contains a subset of corporate data that is of value to a specific
business unit, department, or set of users. This subset consists of historical,
summarized, and possibly detailed data captured from transaction processing
systems, or from an enterprise data warehouse. It is important to realize that a
data mart is defined by the functional scope of its users, and not by the size of
the data mart database. Most data marts today involve less than 100 GB of data;
some are larger, however, and it is expected that as data mart usage increases
they will rapidly increase in size.

1.3.5 External data source
External data is data that cannot be found in the OLTP systems but is required to
enhance the information quality in the data warehouse.
 Chapter 1. Introducing building blocks 5

1.3.6 Online analytical processing (OLAP)
OLAP is a category of software technology that enables analysts, managers, and
executives to gain insight into data through fast, consistent, interactive access to
a wide variety of possible views of information that has been transformed from
raw data to reflect the real dimensionality of the enterprise as understood by the
user.

OLAP functionality is characterized by dynamic multi-dimensional analysis of
consolidated enterprise data supporting end user analytical and navigational
activities including:

� Calculations and modeling applied across dimensions, through hierarchies,
and/or across members

� Trend analysis over sequential time periods

� Slicing subsets for on-screen viewing

� Drill-down to deeper levels of consolidation

� Reach-through to underlying detail data

� Rotation to new dimensional comparisons in the viewing area

OLAP is implemented in a multi-user client/server mode and offers consistently
rapid responses to queries, regardless of database size and complexity. OLAP
helps the user synthesize enterprise information through comparative,
personalized viewing, as well as through analysis of historical and projected data
in various "what-if" data model scenarios. This is achieved through use of an
OLAP Server.

1.3.7 OLAP server
An OLAP server is a high-capacity, multi-user data manipulation engine
specifically designed to support and operate on multi-dimensional data
structures. A multi-dimensional structure is arranged so that every data item is
located and accessed based on the intersection of the dimension members that
define that item. The design of the server and the structure of the data are
optimized for rapid ad hoc information retrieval in any orientation, as well as for
fast, flexible calculation and transformation of raw data based on formulaic
relationships. The OLAP Server may either physically stage the processed
multi-dimensional information to deliver consistent and rapid response times to
end users, or it may populate its data structures in real-time from relational or
other databases, or offer a choice of both. Given the current state of technology
and the end user requirement for consistent and rapid response times, staging
the multi-dimensional data in the OLAP Server is often the preferred method.
6 Introduction to Tivoli Enterprise Data Warehouse

1.3.8 Metadata: A definition
Metadata is the kind of information that describes the data stored in a database
and includes such information as:

� A description of tables and fields in the data warehouse, including data types
and the range of acceptable values

� A similar description of tables and fields in the source databases, with a
mapping of fields from the source to the warehouse

� A description of how the data has been transformed, including formulae,
formatting, currency conversion, and time aggregation

� Any other information that is needed to support and manage the operation of
the data warehouse

1.3.9 Drill-down
Drill-down can be defined as the capability to browse through information
following a hierarchical structure. A small sample is shown in Figure 1-2.

Figure 1-2 Drill-down

Sales in US.

Sales in South Sales in East Sales in West

Sales in New
York

Sales in Buffalo

Sales at ABC
Store

Drill-down
 Chapter 1. Introducing building blocks 7

1.3.10 Operational versus informational databases
The major difference between operational and informational databases is the
update frequency.

� On operational databases a high number of transactions take place every
hour. The database is always up-to-date, and it represents a snapshot of the
current business situation or, as more commonly referred to, point-in-time.

� Informational databases are usually stable over a period of time and
represent a situation at a specific point in time in the past, which can be noted
as historical data. For example, a data warehouse load is usually done
overnight. This load process extracts all changes and new records from the
operational database into the informational database. This process can be
seen as one single transaction that starts when the first record gets extracted
from the operational database and ends when the last data mart in the data
warehouse is refreshed.

Figure 1-3 shows some of the main differences between these two database
types.

Figure 1-3 Operational versus informational databases

Operational versus informational
databases

InformationalOperational

Update Drop

Delete
Replace

Change

U
pdate

Insert Load

Load

Load

Access

Access

Access

Access

Data is regularly updated on a
record-by-record basis

Data is loaded into the data
warehouse and is accessed there

but is not updated
8 Introduction to Tivoli Enterprise Data Warehouse

1.3.11 Data mining
Data mining is the process of extracting valid, useful, previously unknown, and
comprehensible information from data and using it to make business decisions.

After getting familiar with the terminology, now let us look at different approaches
that can be taken to implement a Business Intelligence solution and show some
basic concepts of a data warehouse.

1.4 Different Business Intelligence implementations
Different approaches have been made in the past to find a suitable way to meet
the requirements for online analytical processing.

Figure 1-4 gives an overview of four major models for implementing a decision
support system.

Figure 1-4 Business Intelligence implementations

The approaches shown are described in the following sections.

Time to implement

Robustness

Summary tables
on operational

machine

OLTP data
moved to

separate DB
server

3-tiered data
warehouse

Single data
mart

Business Intelligence implementations
 Chapter 1. Introducing building blocks 9

1.4.1 Summary table
A summary table on an OLTP system is the most common implementation that is
already included in many standard software packages. Usually these summary
tables cover only a certain set of requirements from business analysts.
Figure 1-5 shows the advantages and disadvantages of this approach.

Figure 1-5 Summary tables on OLTP

1.4.2 OLTP data in separate server
OLTP data is moved to a separate server—no changes in the database structure
are made. This mirroring is a first step to offload the workload from the OLTP
system to a separate dedicated OLAP machine. As long as no restructuring of
the database takes place, this solution will not be able to track changes over
time. Changes in the past cannot be reflected in the database because the fields
for versioning of slowly changing dimensions are missing. Figure 1-6 on page 11
shows this approach, sometimes called “a poor man’s data warehouse.”

Summary Tables on OLTP Machine

Time to implement

Robustness

Summary tables
on operational

machine

Positive:
Single FootPrint
Minimize network
issues
Quick implementation

Negative:
Cannot isolate workloads
Does not remove need for data transformation
Upgrades to processors more costly
Only appropriate if all source data on OLTP system
ReCalcs of summary tables heavy impact on OLTP machine
10 Introduction to Tivoli Enterprise Data Warehouse

Figure 1-6 Poor man’s data warehouse

The technique of moving the original OLTP data regularly to a dedicated system
for reporting purposes is a step that can be made to avoid the impact of
long-running queries on the operational system. In addition to the advantages in
performance, security issues can be handled very easily in this architecture.

Totally isolated machines eliminate any interdependence between analysis and
operational workload. The major problem that will still persist in this architecture
is the fact that the database architecture has not changed or been optimized for
query performance—the most detailed level of information is copied over to the
dedicated analysis server.

The lack of summary tables or aggregations will result in long-running queries
with a high number of files and joins in every request. To build an architecture like
this, file transfer or FTP can be sufficient for some situations.

The Poor Man s Data Warehouse

Time to
implement

Robustness

OLTP data
moved to

separate DB
server

Positive:
Performance achieved through isolating
workloads
Costs of servers may be less than
upgrades
Quick implementation

Negative:
No metadata
DB design not optimized
Limited flexibility
 Chapter 1. Introducing building blocks 11

1.4.3 Single data mart
A growing number of customers are implementing single data marts now to get
the experiences with data warehousing. These single data marts are usually
implemented as a proof of concept and keep growing over time. "A data
warehouse has to be built—you cannot buy it!" This first brick in the data
warehouse has to be kept under control—too many single data marts would
create an administration nightmare.

The two-tiered model of creating a single data mart on a dedicated machine
includes more preparation, planning and investment. Figure 1-7 shows this
approach.

Figure 1-7 Two-tiered data mart

The major benefits of this solution compared to the other models are in
performance, precalculated and aggregated values, higher flexibility to add
additional data from multiple systems and OLTP applications, and better
capabilities to store historical data.

Metadata can be added to the data mart to increase the ease-of-use and the
navigation through the information in the informational database.

The 2 Tiered Data Mart

Time to Implement

Robustness

3 Tiered Data
Warehouse

Single Data
Mart

Positive:
Performance Achieved through
Isolating Workloads, Optimizing
Database
Meta Data Added
Industry Specific Solutions Available
May be all that is needed
FAST implementations

Negative:
Future Expansion may force new
programs to load/cleanse source data
Summarized Data only in Warehouse

The Two-Tiered Data Mart
12 Introduction to Tivoli Enterprise Data Warehouse

The implementation of a stand-alone data mart can be done very quickly as long
as the scope of the information to be included in the data mart is precisely limited
to an adequate number of data elements.

The three-tiered data warehouse model consists of three stages of data stored
on the system(s) (shown in Figure 1-8):

� OLTP data in operational databases

� Extracted, detailed, denormalized data organized in a Star-Join Schema to
optimize query performance

� Multiple aggregated and precalculated data marts to present the data to the
end user

Figure 1-8 Three-tiered data mart

The characteristics of this model are:

� Departmental data marts to hold data in an organizational form that is
optimized for specific requests. New requirements usually require the
creation of a new data mart, but have no further influence on already existing
components of the data warehouse.

� Historical changes over time can be kept in the data warehouse.

The 3 Tiered Solution

Time to
Implement

Robustness

3 Tiered Data
Warehouse

Positive:
Performance Achieved
through Isolating Workloads,
Optimizing Database
Transaction Data Stored in
Warehouse
Meta Data Added
Warehouse Management
Tools Available
Handles multiple data sources
Cleanse/Transform data ONCE

Negative:
Time to implement might be longer

The Three-Tiered Solution
 Chapter 1. Introducing building blocks 13

� Metadata is the major component to guarantee success of this
architecture—ease-of-use and navigation support for end users.

� Cleansing and transformation of data is implemented at a single point in the
architecture.

� The three different stages in aggregating/transforming data offer the capability
to perform data mining tasks in the extracted, detailed data without creating
workload on the operational system.

� Workload created by analysis requests is totally offloaded from the OLTP
system.

1.5 Data warehouse architecture and processes
Figure 1-9 shows the entire data warehouse architecture in a single view. The
following sections will concentrate on single parts of this architecture and explain
them in detail.

Figure 1-9 Data warehouse components

Note: Tivoli Enterprise Data Warehouse uses the three-tiered approach.

Operational
Databases

External
Sources

Extraction / Propagation

logical data model
"star schema"

dimensions

Data Refining

Sales
Office

Prod
 Id

Sales Month

NY 1 $100,000 Feb

NY 2 $400,000 Feb

LA 1 $200,000 Feb

WestWe st
SFSF

LALA

De nverDenv er

Sa lesSa les

MarginMa rgin

CameraCamera

TVTV

AudioAudio

VC RVCR

Fe bruaryFe bruary Marc hMarch

ActualActual ActualActualBudgetBudget BudgetBudget

CameraCamera

T VTV

Aud ioAudio

VCRVCR

multi-
dimensional

relational Presentation &
Analysis Tools

Transformation / Cleansing

facts

APIs

ODBC, SQL

Meta Data

OLTP-system- interactive
DW-system - batch

ODS

Data
Mart

Data
Mart
14 Introduction to Tivoli Enterprise Data Warehouse

This figure shows the following ideas:

� The processes required to keep the data warehouse up-to-date as marked
are extraction/propagation, transformation/cleansing, data refining,
presentation, and analysis tools.

� The different stages of aggregation in the data are OLTP data, ODS Star-Join
Schema, and data marts.

� Metadata and how it is involved in each process is shown with solid
connectors.

The horizontal dotted line in the figure separates the different tasks into two
groups:

� Tasks to be performed on the dedicated OLTP system are optimized for
interactive performance and to handle the transaction-oriented tasks in the
day-to-day-business.

� Tasks to be performed on the dedicated data warehouse machine require
high batch performance to handle the numerous aggregation, precalculation,
and query tasks.

1.5.1 Data sources
Data sources can be operational databases, historical data (usually archived on
tapes), external data (for example, from market research companies or from the
Internet), or information from the already existing data warehouse environment.
The data sources can be relational databases from the line of business
applications. They also can reside on many different platforms and can contain
structured information, such as tables or spreadsheets, or unstructured
information, such as plain text files or pictures and other multimedia information.

1.5.2 Extraction/propagation
Data extraction/data propagation is the process of collecting data from various
sources and different platforms to move it into the data warehouse. Data
extraction in a data warehouse environment is a selective process to import
decision-relevant information into the data warehouse.

Data extraction/data propagation is much more than mirroring or copying data
from one database system to another. Depending on the technique, this process
is either:

� Pulling (extraction) or

� Pushing (propagation)
 Chapter 1. Introducing building blocks 15

1.5.3 Transformation/cleansing
Transformation of data usually involves code resolution with mapping tables (for
example, changing 0 to female and 1 to male in the gender field) and the
resolution of hidden business rules in data fields, such as account numbers.
Also, the structure and relationships of the data are adjusted to the analysis
domain. Transformations occur throughout the population process, usually in
more than one step. In the early stages of the process, the transformations are
used more to consolidate the data from different sources, whereas, in the later
stages the data is transformed to suit a specific analysis problem and/or tool.

Data warehousing turns data into information; on the other hand, cleansing
ensures that the data warehouse will have valid, useful, and meaningful
information. Data cleansing can also be described as standardization of data.
Through careful review of the data contents, the following criteria are matched:

� Correct business and customer names

� Correct and valid addresses

� Usable phone numbers and contact information

� Valid data codes and abbreviations

� Consistent and standard representation of the data

� Domestic and international addresses

� Data consolidation

1.5.4 Data refining
Data refining is creating subsets of the enterprise data warehouse, which have
either a multidimensional or a relational organization format for optimized OLAP
performance. Figure 1-10 on page 17 shows where this process is located within
the entire BI architecture.

The atomic level of information from the star schema needs to be aggregated,
summarized, and modified for specific requirements. This data-refining process
generates data marts that:

� Create a subset of the data in the star schema.

� Create calculated fields/virtual fields.

� Summarize the information.

� Aggregate the information.
16 Introduction to Tivoli Enterprise Data Warehouse

Figure 1-10 Data refining

This layer in the data warehouse architecture is needed to increase the query
performance and minimize the amount of data that is transmitted over the
network to the end user query or analysis tool.

When talking about data transformation/cleansing, there are basically two
different ways the result is achieved. These are:

� Data aggregation: Change the level of granularity in the information.

Example: The original data is stored on a daily basis—the data mart contains
only weekly values. Therefore, data aggregation results in less records.

� Data summarization: Add up values in a certain group of information.

Example: The data-refining process generates records that contain the
revenue of a specific product group, resulting in more records.

1.5.5 Physical database model
In BI, talking about the physical data model is talking about relational or
multidimensional data models. Figure 1-11 on page 18 shows the difference
between those two physical database models.

Operational
Databases

External
Sources

Extraction / Propagation

logical data model
"star schema"

dimensions

Data Refining
WestWest

SFSF

L AL A

Denv erDe nver

SalesSales

M arg inM arg in

CameraCamera

TVT V

Au dioAu dio

VCRVCR

Feb ruar yF ebr uar y Ma rchM ar ch

ActualActual ActualActualBudgetBudget BudgetBudget

C ameraCamer a

TVT V

Au dioAud io

VCRVCR

multi-
dimensional

relational Presentation &
Analysis Tools

Transformation / Cleansing

APIs

ODBC, SQL

OLTP-system- interactive
DW-system - batch

ODS

Sales
Office

Prod
 Id

Sales Month

NY 1 $100,000 Feb

NY 2 $400,000 Feb

LA 1 $200,000 Feb

Meta Data

facts

Data
Mart

Data
Mart
 Chapter 1. Introducing building blocks 17

Figure 1-11 Physical database models

Both database architectures can be selected to create departmental data marts,
but the way to access the data in the databases is different:

� To access data from a relational database, common access methods like
SQL or middleware products like ODBC can be used.

� Multidimensional databases require specialized APIs to access the usually
proprietary database architecture.

1.5.6 Logical database model
In addition to the previously mentioned physical database model, there also is a
certain logical database model. When talking about BI, the most commonly used
logical database model is the Star-Join Schema. The Star-Join Schema consists
of two components, as shown in Figure 1-12 on page 19:

� Fact tables

� Dimension tables

 Total
Africa

Asia
Australia

USA
Europe

Operating
Profit

Sales

Tax

Pre-Tax
Profit

Net Profit

SaleData

Expenses

Gross Profit

Direct Profit

 T
Afri

Asia
Australi

USA
Europe

ACTUAL BUDGETFORECAST
1 2 3 4 T 2 3 4 T 1 2 3 4 T

AC
ACTUAL BUDGET FORECAST
1 2 3 4 T 1 2 3 4 T2 3 4 T1

MOLAP
 Database Models

Multidimensional Relational

Sales
Office

Prod
 Id

Sales Mont
h

NY 1 $100,000 Feb

NY 2 $400,000 Feb

LA 1 $200,000 Feb

Product Description

1 Widget

2 Big Widget

3 Small Widget

Office Region

SF West

NY East

Chicago Midwest
18 Introduction to Tivoli Enterprise Data Warehouse

Figure 1-12 Logical data model

The following are definitions for those two components of the Star-Join Schema:

� Fact tables: What are we measuring?

Fact tables contain the basic transaction-level information of the business that
is of interest to a particular application. In marketing analysis, for example,
this is the basic sales transaction data. Fact tables are large, often holding
millions of rows, and mainly numerical.

� Dimension tables: By what are we measuring?

Dimension tables contain descriptive information and are small in comparison
to the fact tables. In a marketing analysis application, for example, typical
dimension tables include time period, marketing region, product type, etc.

1.5.7 Metadata information
Metadata structures the information in the data warehouse in categories, topics,
groups, hierarchies, and so on. It is used to provide information about the data
within a data warehouse, as given in the following list and shown in Figure 1-13
on page 20:

� Subject-oriented, based on abstractions of real-world entities like (project,
customer, organization, etc.).

� Defines the way in which the transformed data is to be interpreted (5/9/99 =
5th September 1999 or 9th May 1999—British or US?).

facts

dimensions
 Chapter 1. Introducing building blocks 19

� Gives information about related data in the data warehouse.

� Estimates response time by showing the number of records to be processed
in a query.

� Holds calculated fields and precalculated formulas to avoid misinterpretation,
and contains historical changes of a view.

Figure 1-13 Metadata

The data warehouse administrator perspective of metadata is a full repository
and documentation of all contents and all processes in the data warehouse,
whereas, from an end user perspective, metadata is the roadmap through the
information in the data warehouse.

1.5.8 Operational data source (ODS)
The operational data source (see Figure 1-14 on page 21) can be defined as an
updatable set of integrated data used for enterprise-wide tactical decision
making. It contains live data, not snapshots, and has minimal history that is
retained.

Display,
Analyze,
Discover

Transform

Metadata

Elements
Mappings

Subject
Areas,
Cubes

 Refinment

Store

Extract
20 Introduction to Tivoli Enterprise Data Warehouse

Figure 1-14 Operational data store

Here are some features of an Operational Data Store (ODS):

� An ODS is subject oriented: It is designed and organized around the major
data subjects of a corporation, such as customer or product. They are not
organized around specific applications or functions, such as order entry or
accounts receivable.

� An ODS is integrated: It represents a collectively integrated image of
subject-oriented data, which is pulled in from potentially any operational
system. If the customer subject is included, then all of the customer
information in the enterprise is considered as part of the ODS.

� An ODS is current valued: It reflects the current content of its legacy source
systems. Current may be defined in different ways for different ODSs
depending on the requirements of the implementation. An ODS should not
contain multiple snapshots of whatever current is defined to be. That is, if
current means one accounting period, then the ODS does not include more
that one accounting period's data. The history is either archived or brought
into the data warehouse for analysis.

ODBC, SQL

Meta Data

APIs

Operational
Databases

Extraction / Propagation

logical data model
"star schema"

dimensions

Data Refining
WestWest

SFSF
LALA

DenverDenver

SalesSales

MarginMargin

CameraCamera

TVTV

AudioAudio
VCRVCR

FebruaryFebruary MarchMarch

ActualActual ActualActualBudgetBudget BudgetBudget

Ca me raCame ra

TVT V

Au dioAud io

VC RVCR

multi-
dimensional

relational Presentation &
Analysis Tools

Transformation / Cleansing

External
Sources

Sales
Office

Prod
 Id

Sales Month

NY 1 $100,000 Feb

NY 2 $400,000 Feb

LA 1 $200,000 Feb

ODS

facts

Data
Mart

Data
Mart
 Chapter 1. Introducing building blocks 21

� An ODS is volatile: Since an ODS is current valued, it is subject to change on
a frequency that supports the definition of current. That is, it is updated to
reflect the systems that feed it in the true OLTP sense. Therefore, identical
queries made at different times will likely yield different results because the
data has changed.

� An ODS is detailed: The definition of detailed also depends on the business
problem that is being solved by the ODS. The granularity of data in the ODS
may or may not be the same as that of its source operational systems.

1.5.9 Data mart
Figure 1-15 on page 23 shows where data marts are located logically within the
BI architecture. The main purpose of a data mart can be defined as follows:

� Store pre-aggregated information.

� Control end user access to the information.

� Provide fast access to information for specific analytical needs or user
groups.

� Represent the end user’s view and data interface of the data warehouse.

� Create the multidimensional/relational view of the data.

� Offer multiple "slice-and-dice" capabilities.

� The database format can either be multidimensional or relational.
22 Introduction to Tivoli Enterprise Data Warehouse

Figure 1-15 Data mart

1.5.10 Presentation and analysis tools
From the end user’s perspective, the presentation layer is the most important
component in the BI architecture shown in Figure 1-16 on page 24.

To find the adequate tools for the end users with information requirements, the
assumption can be made that there are at least four user categories and the
possibility of any combination of these categories.

� The power user

Users that are willing and able to handle a more or less complex analysis tool
to create their own reports and analysis. These users have an understanding
of the data warehouse structure and interdependencies of the organization
form of the data in the data warehouse.

ODBC, SQL

Meta Data

APIs

Operational
Databases

Extraction / Propagation

logical data model
"star schema"

dimensions

Data Refining
We stWes t

SFSF

L ALA

Denv erD env er

SalesSales

Ma rginMarg in

C ameraC amera

TVT V

Au dioAu dio

VCRVCR

Feb ru aryF ebr uar y Marc hMarch

ActualActual ActualActualBudgetBudget BudgetBudget

Ca me raCame ra

TVT V

Au dioAud io

VC RVCR

multi-
dimensional

relational Presentation &
Analysis Tools

Transformation / Cleansing

External
Sources

Sales
Office

Prod
 Id

Sales Month

NY 1 $100,000 Feb

NY 2 $400,000 Feb

LA 1 $200,000 Feb

ODS

facts

Data
Mart

Data
Mart
 Chapter 1. Introducing building blocks 23

� The non-frequent user

This user group consists of people that are not interested in the details of the
data warehouse but have a requirement to get access to the information from
time to time. These users are usually involved in the day-to-day business and
do not have the time or the requirement to work extensively with the
information in the data warehouse. Their virtuosity in handling reporting and
analysis tools is limited.

Figure 1-16 Presentation and analysis tools

� Users requiring static information

This user group has a specific interest in retrieving precisely defined numbers
in a given time interval, such as: "I have to get this quality-summary report
every Friday at 10:00 a.m. as preparation for our weekly meeting and for
documentation purposes.”

� Users requiring dynamic or ad hoc query and analysis capabilities

Typically, this is a business analyst. All the information in the data warehouse
might be of importance to those users, at some point in time. Their focus is
related to availability, performance, and drill-down capabilities to
slice-and-dice through the data from different perspectives at any time.

ODBC, SQL

Meta Data

APIs

Operational
Databases

Extraction / Propagation

logical data model
"star schema"

dimensions

Data Refining
We stWes t

SFSF

L ALA

Denv erD env er

SalesSales

Ma rginMarg in

C ameraC amera

TVT V

Au dioAu dio

VCRVCR

Feb ru aryF ebr uar y Marc hMarch

ActualActual ActualActualBudgetBudget BudgetBudget

Ca me raCame ra

TVT V

Au dioAud io

VC RVCR

multi-
dimensional

relational Presentation &
Analysis Tools

Transformation / Cleansing

External
Sources

Sales
Office

Prod
 Id

Sales Month

NY 1 $100,000 Feb

NY 2 $400,000 Feb

LA 1 $200,000 Feb

ODS

facts

Data
Mart

Data
Mart
24 Introduction to Tivoli Enterprise Data Warehouse

Different user-types need different front-end tools, but all can access the same
data warehouse architecture. Also, the different skill levels require different
visualization of the result, such as graphics for a high-level presentation or tables
for further analysis.

This concludes our discussion of general BI concepts. Next, we will discuss DB2
DataWarehouse Manager, IBM’s solution for creating and managing a data
warehouse, which is also used by the Tivoli Enterprise Data Warehouse product.

1.6 DB2 DataWarehouse Manager
DB2 warehouse management is built on the DB2 UDB and DB2 DataWarehouse
Manager feature. It provides an integrated, distributed, heterogeneous
warehouse management infrastructure for designing, building, maintaining,
governing, and accessing highly scalable, robust data warehouses, operational
data stores, and datamarts stored in DB2 UDB databases.

DB2 UDB and DB2 DataWarehouse Manager help warehouse administrators:

� To manage data volumes, to move data directly from source-to-target (also
allowing packaged and simplified access to popular partner products such as
SAP R/3), and to control the servers on which transformations take place with
distributed warehouse agents.

� To speed warehouse and data mart deployment with commonly used,
pre-built data cleansing and statistical transformations.

� To build and manage from a central point of control, integrated in DB2 UDB,
utilizing the Data Warehouse Center graphical user interface.

DB2 warehouse management consists of:

� An administrative client to define and manage data warehousing tasks and
objects, and warehouse or datamart operations: The Data Warehouse Center

� A manager to manage and control the flow of data: The warehouse server

� Agents residing on DB2 UDB server platforms (that could be also SUN, HP,
and so on) to perform requests from the manager or warehouse server: The
local or remote warehouse agent

� A warehouse control database storing the warehouse management metadata
on a DB2 UDB database on a UNIX or Intel server

Note: Tivoli Enterprise Data Warehouse is shipped withthe DB2 UDB and
DB2 Warehouse Manager feature.
 Chapter 1. Introducing building blocks 25

� A metadata administrative and publishing tool with its own administration
graphical user interface (GUI): Information Catalog Manager to manage and
present both technical and business metadata.

The different components of the DB2 DataWarehouse Manager are shown in
Figure 1-17.

Figure 1-17 DB2 DataWarehouse Manager

The following Redbooks are excellent sources of information on DB2
DataWarehouse Manager and Business Intelligence concepts. Please refer to
them for additional information on these topics.

� Business Intelligence Certification Guide, SG24-5747

� DB2 Warehouse Management: High Availability and Problem Determination
Guide, SG24-6544

Clients Warehouse
Server

Warehouse
Agents

Databases

Message

Relational
Source

Non-
Relational
Source

xx

yy

Data

Message

Message

Message

DB2
Target

End Users

Data

Data

Data

Data

Data

Non-DB2
Target

NT, 2000, OS/2, AIX,
iSeries Sun, zSeries

Log
Editions
Configuration

Control
Database

DB2

Metadata

Metadata

Type title

1. Type textFlat Files,
Web or
SAP R/3

Data

Windows 95/98, NT,
2000, AIX, Solaris

Included with DB2 UDB

Data
Warehouse

Center

NT/2000
NT/2000 Agent
26 Introduction to Tivoli Enterprise Data Warehouse

1.7 Tivoli Enterprise Data Warehouse
Now after having set the stage, we can start our discussion about Tivoli
Enterprise Data Warehouse, which is the main subject of this redbook.

We will begin the discussion by reviewing the need for the Tivoli Enterprise Data
Warehouse.

1.7.1 The problem
There has been an inherent problem with most management applications.
Management applications collect a lot of enterprise data and store them in
databases or files. Each application uses its own database, spreadsheet data, or
flat file with their own different formats. For each application an individual report
has to be set up with a reporting tool. This gives information about the data
collected by the individual application, but it only shows part of the story. The
analysis and correlation of data from different applications in one report is
impossible, or at least hard to achieve.

This argument has been also partly true for Tivoli applications, until the
availability of Tivoli Data Warehouse.

This problem is shown in Figure 1-18 on page 28.
 Chapter 1. Introducing building blocks 27

Figure 1-18 Reporting without Tivoli Enterprise Data Warehouse

Tivoli first tried to solve this problem by introducing Tivoli Decision Support a few
years ago. Tivoli Decision Support has been successful to a great extend and
provides great value in the distributed management environment. However, it
does have some limitations in the following areas:

� Flexibility: Flexibility in the types of reports and the look and feel of reports is
a key requirement. The data should be “pluggable” to any reporting
application (including all OLAP tools).

� Customization: The ability to customize is also a critical factor. The current
Tivoli Decision Support (TDS) product brings great value out of the box, but
many customers want to customize the data and the kind of reports that can
be generated. This customization is a difficult process with TDS and there is a
need to provide an environment where customization can be done more
easily. This includes the use of data from multiple management applications,
both Tivoli and non-Tivoli.

� Security-scalability: The current TDS environment also has some limitations
in the area of scalability (number of users able to look at and modify reports at
one time). It is also important to allow customers to provide security related to
who can view what reports and what data related to what portions of the

Net
View

TWSM

TWSA

Framework

TAPM DM (monitors) INVTEC

 SAP Lotus Xchg
DB
MGR etc...

Security

Individual Reports

TWSM
TWSA

Security Storage
28 Introduction to Tivoli Enterprise Data Warehouse

enterprise. For instance, in a Service Provider environment, individual
customers should only be able to see reports related to the services they
receive. This also applies to large enterprises where reports must be secure
on a division or business unit basis.

� Web enablement: The current TDS interface is Windows-based. Though it
does provide some support for publishing reports to HTML and is accessible
via a Web browser, this facility is not all that it could be. Customers would like
to have access to the reports via a standard browser.

� Globalization: There are some limitations on the National Language Support
capability of TDS.

� Management application basis: TDS guides typically are built on a
management application-by-management application basis. To be able to do
high-value reporting applications, such as service level management or
capacity planning, it is critical to be able to correlate data from across many
management applications.

1.7.2 The solution
Tivoli Enterprise Data Warehouse is made available by Tivoli to solve exactly this
problem and also overcome the limitations of TDS. The key point of Tivoli
Enterprise Data Warehouse is that all historical data from different management
applications is collected in one centralized database, the Tivoli Data Warehouse.
The schemas of this database are open and published. Systems management
data from third party applications can also be easily integrated.

This new architecture is shown in Figure 1-19 on page 30.
 Chapter 1. Introducing building blocks 29

Figure 1-19 Reporting with Tivoli Enterprise Data Warehouse

In the Tivoli Enterprise Data Warehouse, all data is aggregated and correlated for
use by reporting and third party OLAP tools and also by planning, trending,
analysis, accounting, and data mining tools.

Tivoli Enterprise Data Warehouse applications also provide static standard
reports using a Web console reporting tool. In Release 1 of Tivoli Enterprise Data
Warehouse, three classes of reports are supported:

� Two-dimensional representation of measurements versus
components/groups of components
– Graphical report
– Tabular report

� Measurements versus time

We will discuss the architecture of Tivoli Enterprise Data Warehouse in more
detail in Section 2.1, “Tivoli Enterprise Warehouse components” on page 34.

Customers / Partners Business Intelligence Front End

Service Level Management

Out-of-the-box Report Templates

TWH 3rd Party
Applications

Net
View

TWSM

TWSA

Framework

TAPM DM (monitors) INVTEC

 SAP Lotus Xchg
DB
MGR etc...

SecurityTWSM
TWSA

Security Storage
30 Introduction to Tivoli Enterprise Data Warehouse

1.7.3 Benefits of using Tivoli Enterprise Data Warehouse
Customers can benefit from using Tivoli Enterprise Data Warehouse in various
ways such as:

� Tivoli Enterprise Data Warehouse collects historical data from many Tivoli
applications into one central place.

Tivoli Enterprise Data Warehouse collects the underlying data about
customers’ network devices/connections, desktops/servers,
applications/software, and the problems and activities that have gone on to
manage the infrastructure. This allows the customers to construct an
end-to-end view of their enterprise and view the components independent of
specific applications used to monitor and control resources.

� Tivoli Enterprise Data Warehouse adds value to raw data.

Tivoli Enterprise Data Warehouse performs data aggregation (such as daily
or weekly) and allows the user to restrict the amount of data stored in the
central data repository. The data is also cleaned and consolidated in order to
allow the data model of the central repository to share common dimensions.
For example, Tivoli Enterprise Data Warehouse ensures that time, hostname,
and IP address are the same dimensions across all the applications.

� Tivoli Enterprise Data Warehouse allows the correlation of information from
many Tivoli applications.

Tivoli Enterprise Data Warehouse can also be used to derive added value by
correlating data from many Tivoli applications. It allows killer reports to be
written, which correlate cross application data. The first killer application that
utilizes Tivoli Enterprise Data Warehouse is the Tivoli Service Level Advisor
(TSLA), which has become available recently. It uses and correlates the data
from the following applications to check conformance with predefined service
levels.

– Tivoli Enterprise Console

– Tivoli Distributed Monitoring

– Tivoli Web Services Manager

– Tivoli Application Performance Management

– Tivoli Business Systems Manager

Important: Tivoli Enterprise Data Warehouse is not an independent product. It
is delivered for free with all Tivoli Enterprise Data Warehouse-enabled
applications. All enabled Tivoli source applications will be shipped with the
necessary Tivoli Enterprise Data Warehouse components to import their data
into the central data warehouse.
 Chapter 1. Introducing building blocks 31

� Tivoli Enterprise Data Warehouse uses open, proven interfaces for extracting,
storing, and sharing the data.

Tivoli Enterprise Data Warehouse can extract data from any application (Tivoli
and non-Tivoli) and store them in a common central database. The Tivoli
Enterprise Data Warehouse application also provides transparent access for
third party BI solutions (CWM standard), such as IBM DB2 OLAP, Crystal
Decisions, Cognos, Business Objects, Brio Technology, and Microsoft OLAP
Server. CWM stands for Common Warehouse Metadata, an industry standard
specification for metadata interchange defined by the Object Management
Group (see http://www.omg.org). Tivoli Enterprise Data Warehouse provides
a Web-based reporting front end, called the Report Interface, but the open
architecture provided by the Tivoli Enterprise Data Warehouse allows other BI
front ends to be used to access the data in the central warehouse. The value
here is flexibility. Customers can use the reporting application of their choice,
and are not limited to any application.

� All Tivoli applications will provide standard out-of-the-box reports.

All Tivoli applications will provide standard out-of-the-box reports and report
templates, utilizing the Tivoli Enterprise Data Warehouse’s common central
warehouse. These reports will provide similar information to those provided
by many of the TDS guides today. As mentioned earlier, Tivoli will also
develop and provide (as separate products) high value, cross-product
reporting applications or killer applications such as Tivoli Service Level
Advisor.

� Tivoli Enterprise Data Warehouse provides robust security mechanism.

Tivoli Enterprise Data Warehouse provides a robust security mechanism by
allowing data marts to be built with data from subsets of managed resources.
By providing database level authorization to access those data marts, Tivoli
Enterprise Data Warehouse can address most of the security requirements
related to limiting access to specific data to those customers/business units
with a need-to-know.

� Tivoli Enterprise Data Warehouse provides a scalable architecture.

Since Tivoli Enterprise Data Warehouse depends on the proven and industry
standard relational database management system (RDBMS) technology, it
provides a scalable architecture for storing and retrieving data.
32 Introduction to Tivoli Enterprise Data Warehouse

http://www.omg.org

Chapter 2. Tivoli Enterprise Data
Warehouse architecture

This chapter discusses the architecture of Tivoli Enterprise Data Warehouse and
how it fits in the general data warehouse model.

This chapter has the following sections:

� Tivoli Enterprise Data Warehouse components

� Tivoli Enterprise Data Warehouse architecture

� How applications use Tivoli Enterprise Data Warehouse

2

© Copyright IBM Corp. 2002 33

2.1 Tivoli Enterprise Warehouse components
In this section we introduce the basic components of the Tivoli Enterprise Data
Warehouse and briefly describe their functionality. We explain how the Tivoli
Enterprise Data Warehouse application is packaged.

2.1.1 Basic components
The Tivoli Enterprise Data Warehouse is an application used to collect and
manage data from various Tivoli and non-Tivoli system management
applications. The data is imported from the source applications, stored centrally,
and further processed to fit the needs of the end users. Here we describe the
basic components of the Tivoli Enterprise Data Warehouse in the logical order of
the data flow.

Figure 2-1 Components of the Tivoli Enterprise Data Warehouse

The first step to introduce Tivoli Enterprise Data Warehouse is to enable the
source applications. This means providing all tools and customizations
necessary to import the source operational data into the central data warehouse.
All components needed for that task are collected in so-called warehouse packs
for each source application.

Central Data
Warehouse

Control Server:
IBM DB2®

DWC

DM

Inventory

TEC

Source App

ETL

Tivoli
Reporting
Interface

Data Marts
Data Marts

Data Marts
Data Marts

ETL

Tivoli Warehouse

Data Marts

Tivoli Reporting Services

IBM

Source Apps

Cognos

Business
Objects

Business Intelligence Tools

Brio

Data Marts

ETL

ETL

ETL

Warehouse
Metadata
34 Introduction to Tivoli Enterprise Data Warehouse

Future releases of all Tivoli applications will be Tivoli Enterprise Data
Warehouse-ready and shipped with their warehouse packs. How to enable your
third party applications for Tivoli Enterprise Data Warehouse is covered in
Chapter 5, “Integration of application data to central data repository” on page 127
and Chapter 6, “How to create data marts” on page 179. In these chapters we
will implement two case studies.

One important part of the warehouse packs are the ETL programs. The
abbreviation ETL is for extract, transform and load data. In principle, ETL
programs process data in three steps. First they extract the data from a data
source. Then the data is validated, transformed, aggregated, and/or cleansed so
that it fits the format and needs of the data target. Finally the data is loaded into
the target database.

In Tivoli Enterprise Data Warehouse there are two types of ETLs. The central
data warehouse ETL pulls the data from the source applications and loads it into
the central data warehouse (see Figure 2-1 on page 34). The central data
warehouse ETL is also known as source ETL or ETL1. The second type of ETL
is the data mart ETL, which is discussed later.

The central data warehouse (CDW) is the database that contains all
enterprise-wide historical data (with hour as the lowest granularity). This data
store is optimized for the efficient storage of large amounts of data and has a
documented format that makes the data accessible to many analysis solutions.
The database is organized in a very flexible way, which lets you store data from
new applications without adding or changing tables. Section 2.2.4, “Central data
warehouse data model” on page 42 covers the CDW model in detail.

The data mart ETL extracts a subset of historical data from the central data
warehouse that contains data tailored to and optimized for a specific reporting or
analysis task. This subset of data is used to create data marts. The data mart
ETL is also known as target ETL or ETL2.

A data mart is a subset of the historical data that satisfies the needs of a specific
department, team, or customer. A data mart is optimized for interactive reporting
and data analysis. The format of a data mart is specific to the reporting or
analysis tool you plan to use. Each application that provides a data mart ETL
creates its data marts in the appropriate format. Section 2.2.5, “Data mart’s star
schema” on page 43 gives more information on typical Tivoli Enterprise Data
Warehouse data mart schemas.

Tivoli Enterprise Data Warehouse provides a Report Interface (RI) that creates
static two-dimensional reports of your data using the data marts. The RI is a
role-based Web interface that can be accessed with a simple Web browser
without any additional software installed on the client. You can also use other
tools to perform OLAP analysis, business intelligence reporting, or data mining.
 Chapter 2. Tivoli Enterprise Data Warehouse architecture 35

The Control server is the system that contains the control database that contains
metadata for Tivoli Enterprise Data Warehouse and from which you manage your
data warehouse. The Control server controls communication between the
Control server, the central data warehouse, the data marts, and the Report
Interface.

The Control server uses the Data Warehouse Center to define the ETL
processes and the star schemas used by the data marts. You use the Data
Warehouse Center to schedule, maintain, and monitor these processes.

2.1.2 How Tivoli Enterprise Data Warehouse is packaged
When installing Tivoli Enterprise Data Warehouse support for Tivoli software, you
receive and install two logical parts:

� The Tivoli Enterprise Data Warehouse core application, which provides the
warehouse infrastructure.

� One or more warehouse packs, which are applications that make use of the
infrastructure.

Tivoli Enterprise Data Warehouse
The Tivoli Enterprise Data Warehouse core application is packaged as a
collection of CDs that are provided with each Tivoli software product that uses its
infrastructure. You receive a different set of CDs depending on whether you order
support for single byte character set (SBCS) languages or double byte character
set (DBCS) languages. The Tivoli Enterprise Data Warehouse CD set consists of
the following CDs:

� Tivoli Enterprise Data Warehouse: The installation media for the Tivoli
Enterprise Data Warehouse application.

� Tivoli Enterprise Data Warehouse Language Support: The files necessary to
use Tivoli Enterprise Data Warehouse in non-English languages. This CD
contains both SBCS and DBCS language support.

� Tivoli Enterprise Data Warehouse Documentation: The Tivoli Enterprise Data
Warehouse documentation library.

� A collection of DB2 CDs: These vary depending on whether you order the
SBCS or DBCS version of Tivoli Enterprise Data Warehouse.
36 Introduction to Tivoli Enterprise Data Warehouse

Warehouse packs
A warehouse pack is the part of a Tivoli software product that provides
warehouse functionality. It can be provided on the installation media for the
product, on a separate CD, or in a collection of warehouse packs. When not
provided on a CD containing only one or more warehouse packs, a warehouse
pack is located in a subdirectory named tedw_apps_etl.

2.2 Tivoli Enterprise Data Warehouse architecture
The basic components of the Tivoli Enterprise Data Warehouse application have
been introduced in the previous sections. We now cover the different
architectures of a Tivoli Enterprise Data Warehouse installation, for example,
how the components can be reasonably placed on many machines and how they
work together.

For architecture considerations there are four components of the Tivoli
Enterprise Data Warehouse:

� Control server
� Central data warehouse
� Data marts
� Report Interface

These components can be installed on one system for a single system
installation, or distributed across as many as four systems in your IT enterprise.
The Tivoli Enterprise Data Warehouse components can be, but do not need to
be, installed on the same systems as other Tivoli software or on the systems
where the operational data stores reside.

2.2.1 Single machine installation
You can install all components of Tivoli Enterprise Data Warehouse on one single
machine. This configuration is easy to set up and to maintain. However, we
recommend this configuration only for test or demonstration environments.

The Control server must be on a Windows 2000 or Windows NT machine. Thus
the single machine configuration cannot be installed on a UNIX server. You can
install all Tivoli Enterprise Data Warehouse components in one step. Before you
install Tivoli Enterprise Data Warehouse you have to install IBM DB2 Universal
Database Enterprise Edition on this machine first.
 Chapter 2. Tivoli Enterprise Data Warehouse architecture 37

2.2.2 Distributed installation
A distributed installation is recommended for most production systems and for
customers who already run their database servers on UNIX systems. Each of the
above mentioned components of Tivoli Enterprise Data Warehouse can be on a
separate machine. Such a configuration is illustrated in Figure 2-2.

Figure 2-2 A distributed Tivoli Data Warehouse configuration

We will provide further information about the four components, including
prerequisites like DB2 installations and supported operational systems. However,
always first review Tivoli Enterprise Data Warehouse Release Notes, GI11-0857,
thoroughly before planning your installation.

The Control server is the system that contains the control database for Tivoli
Enterprise Data Warehouse and from which you manage your data warehouse.
Supported operating systems are Windows NT and Windows 2000.
38 Introduction to Tivoli Enterprise Data Warehouse

Before you install the Tivoli Enterprise Data Warehouse component on the
Control server you have to install IBM DB2 Universal Database Enterprise
Edition on this machine first. The Control server uses the DB2 Server, the Data
Warehouse Center, and the warehouse agent.

The Data Warehouse Center on your Control server automates the data
warehouse processing. You can use it to define the ETL processes that move
and transform data into the central data warehouse and the star schemas used
by the data marts. Then you can use the Data Warehouse Center to schedule,
maintain, and monitor these processes. The warehouse agent is a part of the
DB2 Warehouse Manager. In this configuration, the warehouse agent runs only
on the Control server.

The system on which you install the Control server must connect to the
operational data stores of your enterprise, which potentially reside on other
systems and in relational databases other than DB2. To enable the Control
server to access these data sources, you must install the appropriate database
client for each data source on the Control server system.

The central data warehouse server contains the DB2 databases only. In this
configuration no pieces of the Tivoli Enterprise Data Warehouse software or DB2
Warehouse components are needed on this server. Supported operating
systems are Windows NT, Windows 2000, AIX, and Solaris.

The same applies to the Data mart server. For this reason, in a typical
configuration, the central data warehouse and the data marts will be on one
database server.

The Report Interface server (or Report server) provides tools and a graphical
user interface to create and display reports that help you analyze the data in your
warehouse to answer questions that are important to your business. The Report
Interface uses Tivoli Presentation Services. If it is already installed in your
enterprise, you must install the Report Interface component on the system that
hosts the server for IBM Console.

The Report Interface requires a DB2 run-time client to access data in the DB2
instances on the central data warehouse, data mart, and Control servers. You
must manually install the IBM DB2 product before installing the Report Interface
component. When installing the IBM DB2 product from the CDs provided with
Tivoli Enterprise Data Warehouse, any one of the following components is
sufficient:

� DB2 Enterprise Edition
� DB2 Application Development Client
� DB2 Administration Client (this component has the smallest footprint)
 Chapter 2. Tivoli Enterprise Data Warehouse architecture 39

Supported operating systems for the Report server are Windows NT, Windows
2000, AIX, Solaris, and Linux. It performs best on Windows NT and Windows
2000 systems.

2.2.3 Distributed installation with remote warehouse agents
IBM DB2 Warehouse Manager provides warehouse agents that manage the flow
of data between warehouse sources and targets. When you install the Tivoli
Enterprise Data Warehouse Control server, a warehouse agent is installed for
you. In some environments, it is sufficient to use a warehouse agent only on the
Control server. The Control server can use its local warehouse agent to manage
data flow for the central data warehouse and the data marts, if these databases
are not on the same system is the Control server.

In other environments, you might improve the performance of Tivoli Enterprise
Data Warehouse if you place a warehouse agent on the central data warehouse
server and Data mart server. The Control server can use these remote
warehouse agents to manage data flow. This is an advanced configuration.

Figure 2-3 on page 41 shows an example configuration with remote warehouse
agents. In this example the central data warehouse and the data marts are on
one server.
40 Introduction to Tivoli Enterprise Data Warehouse

Figure 2-3 Advanced configuration with remote warehouse agents

Creating this advanced configuration requires the following tasks in addition to
those you perform for the basic configuration:

� Installing DB2 Warehouse Manager on the systems that become the central
data warehouse and Data mart servers

� Installing the central data warehouse and data mart components of Tivoli
Enterprise Data Warehouse

� Configuring the warehouse agent daemon on the central data warehouse and
Data mart server

An example of the installation of such a configuration is given in Appendix D of
the Installing and Configuring Tivoli Enterprise Data Warehouse, GC32-0744,
manual.
 Chapter 2. Tivoli Enterprise Data Warehouse architecture 41

2.2.4 Central data warehouse data model
Figure 2-4 shows the central data warehouse data model used by Tivoli
Enterprise Data Warehouse.

Figure 2-4 Central data warehouse data model

According to this model, each hosting center provides hosting services for a
geographic area. To provide these services to a set of customers, the hosting
center manages many components. A component may be a shared infrastructure
component such as a switch or firewall, or it may be a private component
associated with a single customer, such as a Web site or Web server. Each
component is classified by a component type. Depending on the component
type, a component may contain sub-components. For example, a server contains
CPUs, memory, and disks. These sub-components are also components, and so
are similarly classified by a component type and may contain further
sub-components. For each component type, there is a set of appropriate
measurement types (for example, CPU utilization, CPU load, or Web server
requests). The mapping between component types and measurement types is
enforced as a component measurement rule. Monitoring tools collect raw
measurements at specified intervals for each component. These raw
measurements are retrieved and summarized as measurements in the cdw
according to the component measurement rules. Each summarized
measurement identifies:

� The component (for example, a Web server)

� The measurement type (for example, CPU utilization)

Component Attribute

Component Type Component

Hosting Center
Component Relationship

Geographic Area

Component Attribute

Component Type Component

Hosting Center
Component Relationship

Geographic Area

Time Zone

MeasurementMeasurement Type

Customer
42 Introduction to Tivoli Enterprise Data Warehouse

� The date and time interval (for example, 12th hour of September 16, 2000)

� The minimum, maximum, average, and total value for that hour (for example,
1, 13, 4.5, 248)

� The sample count, or number of raw measurements that were summarized
(for example, 55)

These measurements are actual readings. This generic approach was chosen to
ensure flexibility and extensibility for the CDW. It is independent of the underlying
monitoring tools being used as external data sources. This allows tools to be
added or replaced without structural changes to the CDW. This is accomplished
by making component types and rules configurable, so that new components,
attributes, relationships and hierarchies may be introduced. Measurement types
and rules are also configurable, so that new types may be loaded, again without
structural changes.

The value of the central repository is that it contains an integrated view of the raw
materials for the CDW and provides a safe data store over time. It can be tuned
to manage the specific problems of loading large volumes of source data, and
can defer the problems of changing end-user requirements and unpredictable
access workloads to data mart design.

2.2.5 Data mart’s star schema
The inherent flexibility of the CDW makes it cumbersome to build queries
spanning different components and types of measurements. The purpose of the
specialized data marts is to transform raw business data into business
information that can be easily reported and analyzed. Each data mart targets a
specific business audience and a particular data analysis problem domain.

Figure 2-5 on page 44 shows an example Tivoli Enterprise Data Warehouse data
mart.
 Chapter 2. Tivoli Enterprise Data Warehouse architecture 43

Figure 2-5 Data mart’s star schema

Some examples are:

� Single customer analysis for performance engineers

� Infrastructure analysis for network analysts

� Summarized, overall customer health for server farm management.

Data marts are designed to be customizable by the customer. Tivoli Enterprise
Data Warehouse supplies templates for both data marts and the ETL to build
them as examples of how a typical data mart could be built. These templates can
be used as a starting place for applications developing for Tivoli Enterprise Data
Warehouse.

Access is protected in the following ways through the Tivoli Warehouse Report
Interface (RI):

� Customer-dedicated data marts

� Multi-customer data marts with controlled access through database views

� User and group access mechanisms proprietary in the Report Interface
44 Introduction to Tivoli Enterprise Data Warehouse

2.3 Applications with Tivoli Enterprise Data Warehouse
The Tivoli Enterprise Data Warehouse core installation provides a framework for
enterprise-wide data warehousing. Many system management applications,
including forthcoming releases of Tivoli products, will provide their own
warehouse packs, which implement the integration of the product into the Tivoli
Enterprise Data Warehouse.

The central data warehouse and other parts of Tivoli Enterprise Data
Warehouse, for example, the ETLs, are open and documented, as well as the
way they are managed in the Data Warehouse Center. This enables you to
change a product’s warehouse integration according to your needs or to
implement the Tivoli Enterprise Data Warehouse integration of your own product.

We discuss examples of the application integration in Chapter 5, “Integration of
application data to central data repository” on page 127 and Chapter 6, “How to
create data marts” on page 179. In the manual Enabling an Application for Tivoli
Enterprise Data Warehouse, GC32-0745, you find an explanation of the
infrastructure of all Tivoli Enterprise Data Warehouse components and how to
integrate your own components to Tivoli Enterprise Data Warehouse.
Furthermore, naming conventions and useful tips are given.

In principle, there are two levels of Tivoli Enterprise Data Warehouse integration.
Level one is to load your operational data from the applications point of storage
to the central data warehouse. You can access your data directly from the central
data warehouse or you can change the data marts and reports of other
applications to use the data of your new application, as well.

A second level of integration is to create separate data marts for the application,
provide mechanisms to populate the data mart from the central data warehouse
(possibly also using data from other applications) and to create reports for the
applications using the Tivoli Enterprise Data Warehouse Report Interface or
other OLAP tools. You can also provide rollup mechanisms in the data marts,
which populate daily and weekly star schemas from your hourly data.

Finally you can pack all these components to warehouse packs. You can ship the
warehouse packs together with your application to your customers or colleagues.
They can install the warehouse pack simply using the Tivoli Enterprise Data
Warehouse installation wizard.
 Chapter 2. Tivoli Enterprise Data Warehouse architecture 45

46 Introduction to Tivoli Enterprise Data Warehouse

Chapter 3. Installation and
configuration

This chapter provides different types of Tivoli Enterprise Data Warehouse
installations (stand-alone and distributed) and give recommendations for each
configuration.

This chapter has the following sections:

� Hardware and software requirements

� Planning for Tivoli Enterprise Data Warehouse

� Different types of installations

� Basic customizing

3

© Copyright IBM Corp. 2002 47

3.1 Planning for Tivoli Enterprise Data Warehouse
When installing Tivoli Enterprise Data Warehouse support for Tivoli software, you
receive and install two logical parts:

� The Tivoli Enterprise Data Warehouse core application, which provides the
warehouse infrastructure

� One or more warehouse packs, which are applications that make use of the
infrastructure

We will give you the two scenario’s installations of the Tivoli Enterprise Data
Warehouse core application in Section 3.3, “Stand-alone Tivoli Enterprise Data
Warehouse” on page 59 and Section 3.4, “Distributed Tivoli Enterprise Data
Warehouse” on page 67. The warehouse packs will be provided with the Tivoli
application and each warehouse pack will have its own installation instructions.

3.1.1 Selecting port numbers
You must allocate port numbers for Tivoli Enterprise Data Warehouse for the
following purposes:

� Communication between the Control server and remote DB2 installations

� Communications for the IBM Console

To determine which port numbers are in use on a particular computer, type either
of the following commands from a command prompt:

� netstat -a

� netstat -an

Check the results of these commands to see if their are any conflicts with the
default Tivoli Enterprise Data Warehouse port (see Table 3-1 on page 49) and
correct the problem.

Note: You must specify unused port numbers when you install Tivoli
Enterprise Data Warehouse. Specifying port numbers that are already in use
by other programs causes the installation to hang. In particular, if there is
already a Web server on the system where you plan to install the Report
server, you must un-install or disable that Web server, or specify a different
port number for the HTTP Server Port for Tivoli Presentation Services.
48 Introduction to Tivoli Enterprise Data Warehouse

If there are multiple DB2 instances in your DB2 installation, make sure that the
user name you specify is the owner of the instance whose DB2 port you specify.
A mismatch between user name and port number results in installation errors
that are difficult to identify.

To determine the port number for your instance, use the following technique: On
the DB2 server edit the services file (/etc/services on UNIX systems and
C:\WINNT\system32\drivers\etc\services on Windows 2000 systems) and locate
the line that defines the connection port for the instance name. For example, if
the instance name is db2, look for a line similar to this in the services file:

db2cDB2 50000/tcp #connection port for the DB2 instance DB2

If the port is different from the default Tivoli Enterprise Data Warehouse port (see
Table 3-1) then the default port needs to be changed.

Table 3-1 Default port numbers used by Tivoli Enterprise Data Warehouse

Tip: You can use the following DB2 command to check the instance
configuration to verify the port number:

db2 get dbm cfg :grep SV

Which should give:

TCP/IP Service name <SVCENAME> = 50000

This should match the port number in the services file.

For the Control server component

Default
port
number

Name of port in
InstallShield
Wizard

Description Can this default be changed?

50000 Database port
(Control server)

In a distributed installation used
by the data mart server, central
data warehouse server, and
report server to communicate
with the Control server. (The
same port number can be used
for the Control server, Data mart
server, and central data
warehouse server.)

Yes, you can change it when you
install or configure DB2. Refer to
the DB2 documentation for
details.
 Chapter 3. Installation and configuration 49

50000 Database port
(central data
warehouse)

In a distributed installation used
by the Control server, Data mart
server, and report server to
communicate with the central
data warehouse server. (The
same port number can be used
by the Control server, Data mart
server, and central data
warehouse server.)

Yes, you can change it when you
install or configure DB2. Refer to
the DB2 documentation for
details.

50000 Database port
(data mart)

In a distributed installation used
by the Control server, central data
warehouse server, and report
server to communicate with the
Data mart server. (The same port
number can be used by the
Control server, Data mart server,
and central data warehouse).

Yes, you can change it when you
install or configure DB2. Refer to
the DB2 documentation for
details.

For the IBM Console and Tivoli Presentation Services

80 IBM HTTP
Server Port

Used by Tivoli Presentation
Services HTTP Server for HTTP
communications.

Yes, you can change it during the
installation of the Report
Interface.

8008 IBM HTTP
Administration
Port

Used by Tivoli Presentation
Services HTTP Administration.

Yes, you can change it during the
installation of the Report
Interface.

8010 Server For IBM
Console IPC Port

Used by Server for IBM Console
(part of Tivoli Presentation
Services).

Yes, you can change it during the
installation of the Report
Interface.

8007 Web Console
Port

Used by Web Services for the
IBM Console (part of Tivoli
Presentation Services).

Yes, you can change it during the
installation of the Report
Interface.

8040 Web Console
IPC Port

Used by Web Services for the
IBM Console (part of Tivoli
Presentation Services).

Yes, you can change it during the
installation of the Report
Interface.

8050 Not applicable Used by Server for IBM Console
the IBM Console.

 No.

For the Control server component

Default
port
number

Name of port in
InstallShield
Wizard

Description Can this default be changed?
50 Introduction to Tivoli Enterprise Data Warehouse

3.1.2 Other network checks
We recommend that you use a static IP address for each server. You might have
problems if you use DHCP addressing for Tivoli Enterprise Data Warehouse
servers.

Your operating system must be configured to provide Tivoli Enterprise Data
Warehouse and Tivoli Presentation Services with a fully qualified computer name
rather than a short name. This is especially important in environments with many
different operating systems. To ensure that a system is configured to provide a
fully qualified computer name, follow the instructions in the following sections.

On AIX systems
The default domain name search order is as follows:

1. Domain name system (DNS) server

2. Network Information Service (NIS)

3. Local /etc/hosts file

If the /etc/resolv.conf file does not exist, the /etc/hosts file is used. If only
the/etc/hosts file is used, the fully qualified computer name must be the first one
that is listed after the IP address. Verify that the /etc/resolv.conf file exists and
contains the appropriate information, such as:

domain mydivision.mycompany.com
nameserver 123.123.123.123

If NIS is installed, the /etc/irs.conf file overrides the system default. It contains the
following information:

hosts =bind,local

The /etc/netsvc.conf file, if it exists, overrides the /etc/irs.conf file and the system
default. It contains the following information:

hosts =bind,local

If the NSORDER environment variable is set, it overrides all of the preceding
files. It contains the following information:

export NSORDER=bind,local

On Linux systems
Verify that the /etc/resolv.conf file exists and contains the appropriate
information, such as:

domain mydivision.mycompany.com
nameserver 123.123.123.123
 Chapter 3. Installation and configuration 51

A short name is used if the /etc/nsswitch.conf file contains a line that begins as
follows and if the /etc/hosts file contains the short name for the computer:

hosts:files

To correct this, follow these steps:

1. Change the line in the /etc/nsswitch.conf file to:

hosts:dns nis files

2. Stop the network service.

3. Restart the network service.

On Solaris systems
Verify that the /etc/resolv.conf file exists and contains the appropriate
information, such as:

domain mydivision.mycompany.com
nameserver 123.123.123.123

A short name is used if the /etc/nsswitch.conf file contains a line that begins as
follows and if the /etc/hosts file contains the short name for the computer:

hosts:files

To correct this, follow these steps:

1. Change the line in the /etc/nsswitch.conf file to:

hosts:dns nis files

2. Enter the following command to stop the inet service:

/etc/init.d/inetsvc stop

3. Enter the following command to restart the inet service:

/etc/init.d/inetsvc start

On Windows 2000 systems
To verify that a primary domain name system suffix is set, follow these steps:

1. On the desktop, right-click My Computer.

2. Click the Network Identification tab.

3. Ensure that the field Full Computer Name contains a fully qualified domain
name. If it does not, follow these steps:

a. Click Properties.

b. Click More.
52 Introduction to Tivoli Enterprise Data Warehouse

c. In the field Primary DNS suffix for this computer, type the primary DNS
suffix, and restart the computer when prompted.

On Microsoft Windows NT systems
To verify that a primary domain name system suffix is set, follow these steps:

1. From the Windows taskbar, click Start -> Settings -> Control Panel.

2. In the Control Panel window, double-click Network.

3. Click the Protocols tab.

4. Select the TCP/IP protocol and then click Properties.

5. Click the DNS tab.

6. Ensure that the field Domain contains a domain suffix. If it does not, type the
suffix, click OK, and restart the computer when prompted.

3.2 Hardware and software requirements
You can deploy Tivoli Enterprise Data Warehouse one of these ways:

� As a single system installation, with all the components installed on a single
Microsoft Windows NT or Microsoft Windows 2000 system. This is convenient
for demonstrations, as an educational or test platform, and for companies that
do not plan to have many users concurrently analyzing data and that do not
need to capture and analyze large amounts of data in the warehouse.

� As a distributed installation, with the components installed on multiple
systems in your enterprise, including UNIX servers. See “Software
requirements” on page 54 to determine the operating systems on which you
can place each component of Tivoli Enterprise.

3.2.1 Hardware requirements
This section provides information about the hardware requirements for installing
Tivoli Enterprise Data Warehouse. As the warehouse enablement pack for each
Tivoli software product is added to the Tivoli Enterprise Data Warehouse
installation, additional hard disk space is required. See the documentation for
each warehouse pack for application planning information and hard disk space
requirements.
 Chapter 3. Installation and configuration 53

Table 3-2 Hardware requirements

3.2.2 Software requirements
This section provides information about the software requirements for the Tivoli
Enterprise Data Warehouse.

Installation
configuration

Tivoli
Enterprise
Data
Warehouse
core
components

Minimum
requirements

Recommended
size

Temp
hard disk
space

Stand-alone All 522 MB RAM
933 MHz
processor
1 GB hard disk
space

1 GB RAM
3 GB hard disk
space

1 GB

Distributed Control server 512 MB RAM
800 MB hard
disk space
933 MHz
processor

1 GB RAM
1 GB hard disk
space

1 GB

Report server 512 MB RAM
800 MB hard
disk space
933 MHz
processor

1 GB RAM
1.5 GB hard disk
space

1 GB

Central data
warehouse

512 MB RAM
800 MB hard
disk space
933 MHz
processor

1 GB RAM
20 GB hard disk
space

1 GB

Data mart 512 MB RAM
800 MB hard
disk space
933 MHz
processor

1 GB RAM
3 GB hard disk
space

1 GB

Note: You might receive confusing error messages if your systems do not
meet the software requirements listed in this section.
54 Introduction to Tivoli Enterprise Data Warehouse

Table 3-3 Software requirements

3.2.3 Database requirements
Tivoli Enterprise Data Warehouse requires DB2 Version 7 Release 2 with FixPak
5. If you are currently running a DB2 version prior to 7.2, you must upgrade to
Version 7.2 with FixPak 5 using the DB2 CDs provided with Tivoli Enterprise
Data Warehouse. On the Control server, you must additionally apply the
emergency fixes (e-fixes) for APARs JR16650 and JR16766. If you are an
application developer creating a warehouse pack, you must also apply these
APARs on the system from which you export the tag files for your application.
The e-fixes are available on the following Tivoli Enterprise Data Warehouse
support web site:

http://www.ibm.com/software/sysmgmt/products/support

The recommended hard disk space in Table 3-2 on page 54 is large enough to
accommodate some data growth as transactions are added to the database.
However, when you plan for your database requirements, you must consider the
following:

� Future data growth

� Addition of warehouse packs

� Customizing reports

� Saving report output

Tivoli Enterprise Data Warehouse core components

Operating system Data
source

Warehouse
agents

Control
server

Central
data
warehouse

Data mart
database

Report
server

Microsoft Windows NT®
Service Pack 6 or higher,
Windows 2000 Server,
Windows 2000 Advanced
Server

Yes Yes Yes Yes Yes Yes

IBM AIX Versions 5.1 or 4.3.3
with FixPak 2 or higher

Yes Yes No Yes Yes Yes

Sun Solaris Versions 2.7 and
2.8

Yes Yes No Yes Yes Yes

RedHat Linux Version 7.1 Yes No No No No Yes

SuSE Linux Version 7.2 Yes No No No No Yes
 Chapter 3. Installation and configuration 55

http://www.ibm.com/software/sysmgmt/products/support

It is recommended that you install your central data warehouse on an
expandable system with a minimum of 20 GB of data space. Refer to the DB2
library for database recommendations.

The Tivoli Enterprise Data Warehouse components IBM DB2 Warehouse
Manager, central data warehouse and data marts are currently only supported on
DB2 Version 7.2 with FixPak 5. For the DB2 installation on the Control server,
you have to apply e-fixes as well.

The data source support is determined by Open Database Connectivity (ODBC)
support in DB2 releases. The following is a list of source databases that are
supported:

� DB2 Version 6, DB2 Version 7

� Oracle Version 8.1.7 on Windows NT, Windows 2000, AIX, and Solaris

� MS SQL Server Version 7.0 on Windows NT

� MS SQL Server Version 2000 on Windows 2000

� Sybase Version 11.5 on Windows NT

� Sybase Version 11.9.2 on AIX and Solaris

� Informix Version 7.2.2 - V9.0 on Windows NT

� Informix Version 7.2.4 - V9.2.0 on AIX and Solaris

3.2.4 Web browser requirements
You can configure Tivoli Presentation Services to use the Secure Sockets Layer
(SSL).

Each user is responsible for installing the correct version of the browser on their
workstation. The Tivoli Enterprise Data Warehouse installation program does not
install the Web browser.

The supported Web browsers are listed below:

� Internet Explorer Version 5.5 and Version 6

� Netscape Navigator Version 4.62 and Version 4.71

Note: The actual RDBMSs supported as data sources for a given warehouse
pack are documented in the readme file for that warehouse pack.

Note: Using SSL requires a Web browser with 128-bit support.
56 Introduction to Tivoli Enterprise Data Warehouse

3.2.5 Report Interface requirements
The Report Interface uses the IBM Console, which is implemented using Tivoli
Presentation Services. The following operating systems are supported:

� Windows systems

– Windows NT 4.0 Server with Service Pack 6

– Windows 2000 Server

– Windows 2000 Advanced Server

The Java version of the IBM Console can also run on Windows 2000
Professional, but the server and Web Services for the IBM Console cannot.

� UNIX-based systems

– AIX 4.3.3.10 and 5.1 with the required operating system patches for Java
Runtime Environment 1.3. See Section 3.2.6, “AIX system requirements”
on page 57 for more information.

– Red Hat Linux 7.1

– Solaris 7 and 8 with the required operating system patches for Java
Runtime Environment 1.3. See Section 3.2.7, “Solaris system
requirements” on page 58 for more information.

– SuSE Linux 7.1

– UNIX-based GUIs for X-Window environment

• For AIX and Solaris systems, the Common Desktop Environment
(CDE)

• For Red Hat Linux and SuSE Linux systems, the K Desktop
Environment (KDE), and the GNU Network Object Model Environment
(GNOME)

3.2.6 AIX system requirements
Tivoli Presentation Services includes the IBM AIX Java Runtime Environment
Version 1.3. This JRE requires AIX 4.3.3.10 or AIX 5.1.

Tips:

� JavaScript and style sheets must be enabled in these browsers.

� When using the Report Interface, we found the performance of Internet
Explorer slightly better than Netscape.
 Chapter 3. Installation and configuration 57

3.2.7 Solaris system requirements
Tivoli Presentation Services includes the Java 2 Platform, Standard Edition
(J2SE) and the Java Runtime Environment (JRE). This JRE runs on Solaris 7 or
8 with the required and recommended patches listed in Table 3-4 and Table 3-5
on page 59.

To determine which patches are already installed on your system, use the
following shell command:

showrev -p

In addition to verifying that your system includes the correct patches, you might
want to install the latest patch cluster for your version of the Solaris system.
Patch clusters include additional recommended and security patches. You can
obtain the patches and patch clusters from your service provider, or you can
download them individually from the SunSolve Web site at:

http://sunsolve.sun.com

Use the search function on the SunSolve site to search for the patch number.
The J2SE download site includes download tar bundles that contain the patches
and includes the latest information about recommended and required patches for
the JRE. For more information, refer to the following Web site:

http://java.sun.com/j2se/1.3/install-solaris-patches.html

In Table 3-4 and Table 3-5 on page 59, the two-digit number following the hyphen
in each patch ID is the revision number for that patch. Although the tables list the
revisions with which this release of J2SE was tested, later patch revisions should
work as well.

Table 3-4 Patches for Solaris 8

Solaris-SPARC patch ID Description Required

108940-12 or later Motif 2.1 patch Yes

108921-07 or later For CDE window manager Recommended for CDE
users
58 Introduction to Tivoli Enterprise Data Warehouse

http://sunsolve.sun.com
http://java.sun.com/j2se/1.3/install-solaris-patches.html

Table 3-5 Patches for Solaris 7

3.3 Stand-alone Tivoli Enterprise Data Warehouse
In this section we set up all the Tivoli Enterprise Data Warehouse core
components on one machine.

Solaris-SPARC patch ID Description Required

107226-12 or later For CDE window manager Recommended for CDE
users

106980-12 or later Libthreads patch Yes

107153-01 or later Required for zh.GBK
Chinese locale

Recommended

107636-06 or later Implementation of
composition
enabling/disabling API for
X input methods

Recommended

107544-03 or later SunOS 2.7 Kernel update Yes

106541-12 or later SunOS 2.7 Kernel update Yes

109104-04 or later SunOS 2.7 Kernel update Yes

108376-16 or later OpenWindows 3.6.1 Xsun
patch. Note: Some later
versions of this patch,
including 108377-10,
cause an X server crash

Yes

106950-13 or later Linker patch Yes

107081-25 or later Motif 1.2, Motif 2.1, and
runtime library patch

Yes

106300-09 or later, and
106327-08 or later

Shared library patch for
C++

Yes

Note: For the latest hardware and software requirements refer to the Tivoli
Enterprise Data Warehouse Release Notes, GI11-0857.
 Chapter 3. Installation and configuration 59

Our environment consists of a single PC server.

� Hardware

– 1 GB RAM

– 933 MHz 4 processors

– 4 GB hard disk space

� Software

– Windows 2000 server with Service Pack 2

– Internet Explorer Version 5.5

3.3.1 Windows DB2 Universal Database installation
Before installing DB2 Universal Database for Tivoli Enterprise Data Warehouse,
you need to do the following things:

� Read the DB2 Quick Beginnings document for the operating system on which
you are installing (for example, DB2 UDB Quick Beginnings for Windows
Version 7, GC09-2971, or DB2 UDB Quick Beginnings for UNIX,
GC09-2970).

� Use the DB2 installation media provided with Tivoli Enterprise Data
Warehouse. This ensures that you get the correct version and FixPaks of the
DB2 Server.

We used the installation wizard as an easy way to install IBM DB2 Universal
Database Enterprise Edition. See the steps below:

1. Load the Tivoli Enterprise Data Warehouse DB2 installation media.

2. We used the options shown in Table 3-6 in the wizard windows.

Table 3-6 DB2 Wizard options

Tip: If you are planning to install all Tivoli Enterprise Data Warehouse core
components on one machine, we recommend that you use at least a 512 MB
RAM machine for decent performance.

Wizard window Option selected

Select the product(s) you would like to
install.

DB2 Enterprise Edition

Select the installation type you prefer. Typical

Destination folder. C:\SQLLIB

DB2 user and password. db2admin
60 Introduction to Tivoli Enterprise Data Warehouse

This will install DB2 and FixPak 5. In addition to this, we need to install the
e-fix. The e-fix consists of two files: iwh2exp2.exe and iwh2imp2.exe. We
need to copy these files over the ones installed by the DB2 installation as
follows:

a. Rename D:\sqllib\bin\iwh2exp2.exe to D:\sqllib\bin\iwh2exp2.exe.old.

b. Rename D:\sqllib\bin\iwh2imp2.exe to D:\sqllib\bin\iwh2imp2.exe.old.

c. xcopy iwh2exp2 D:\sqllib\bin.

d. xcopy iwh2imp2 D:\sqllib\bin.

3. Reboot the machine.

3.3.2 Tivoli Enterprise Data Warehouse installation
When the Tivoli Enterprise Data Warehouse installation wizard runs the
installation it will install the three databases in the default directory. If you want
these databases to be installed in another directory, then create these databases
before you start the Tivoli Enterprise Data Warehouse installation wizard by
doing the following:

Open a DB2 command window and issue these commands:

db2 create db twh_md on d
db2 create db twh_mart on d
db2 create db twh_cwd on d

Where d is the drive you would like the database installed on.

After installing DB2, perform a connection test by completing these steps:

1. Enter the following command in a DB2 command window to list the local
databases:

db2 list database directory

In most cases, the command lists at least one database, even in new
installations.

2. Enter the following command to test a local connection:

db2 connect to database_name user user_name using password

Install OLAP starter kit Do not install OLAP start kit

Wizard window Option selected
 Chapter 3. Installation and configuration 61

Where database_name is a database name returned in the first step,
user_name and password are the user name and password you specified
when installing DB2. If this command is successful, DB2 is installed and
ready for remote connections. If you experience difficulty, refer to the DB2
documentation for troubleshooting information.

To install the Tivoli Enterprise Data Warehouse components complete the
following:

1. Insert the Tivoli Enterprise Data Warehouse installation media into the
machine’s CD-ROM drive and run the following command:

setup.exe

The Tivoli Enterprise Data Warehouse installation wizard will be started
(Figure 3-1).

Figure 3-1 Welcome dialog window

2. Choose Next and the dialog window for installation type will appear
(Figure 3-2 on page 63).
62 Introduction to Tivoli Enterprise Data Warehouse

Figure 3-2 Install type dialog window

3. Select Single machine and insert your install directory name, then choose
Next. The verify hostname dialog window will appear.

4. Confirm that this is the correct host name and choose Next. The DB2
configuration dialog window will appear (Figure 3-3 on page 64).
 Chapter 3. Installation and configuration 63

Figure 3-3 DB2 configuration dialog window

5. Enter the DB2 user ID and password created during the DB2 installation and
choose Next. The Tivoli Presentation Services dialog will appear (Figure 3-4
on page 65).
64 Introduction to Tivoli Enterprise Data Warehouse

Figure 3-4 Default port setting dialog window

6. If any of these ports are being used by another application, change the
default ports now (see Section 3.1.1, “Selecting port numbers” on page 48)
and choose Next. The Install languages dialog window will appear.

7. Leave this box unchecked and choose Next. The install applications dialog
window will appear.

8. Leave this box unchecked and choose Next. The Overview of selected
options dialog window will appear (Figure 3-5 on page 66).
 Chapter 3. Installation and configuration 65

Figure 3-5 Selected options dialog window

9. Choose Install to start the installation.

10.Verify that the installation has been successful by doing the following:

– Make sure the installation wizard’s completion window does not list any
errors. See the “Messages” section in Installing and Configuring Tivoli
Enterprise Data Warehouse, GC32-0744, for more information.

– If the completion window lists warnings, check the TWH.log to ensure that
the warnings can safely be ignored.

11.Wait for the help set to be rebuilt. The help set contains the user assistance
for the IBM Console. This process happens asynchronously and might not
complete by the time the wizard has completed the installation of the
remaining components of Tivoli Enterprise Data Warehouse. Do not restart
the system until the help set is complete. If you do, follow the procedure
documented in the Tivoli Enterprise Data Warehouse Release Notes,
GI11-0857, to rebuild the help set. To determine whether the help set rebuild
is complete, look for the completion message in the Tivoli Presentation
Services installation log. This log is in directory PS_directory/log/fwp_mcr,
where PS_directory is the target directory you specified for Tivoli Presentation
Services. The logs are named stdoutn. Look for the message shown in
Example 3-1 on page 67 in the most recent stdoutn file. In some cases, the
message can be in the second most recent stdoutn file.
66 Introduction to Tivoli Enterprise Data Warehouse

Example 3-1 Successful completion message

FWP1734I The utility that was started by the Management Component Repository to
build the help set has completed successfully.

This process can take up to 30 or 40 minutes.

12.Reboot the machine.

The Tivoli Enterprise Data Warehouse core installation is now complete, but
further steps need to be taken to make it ready for use (see “Tivoli Enterprise
Data Warehouse configuration” on page 76). If errors were detected during
installation or an un-install is required, see “Troubleshooting and maintenance”
on page 283.

3.4 Distributed Tivoli Enterprise Data Warehouse
In this section we install all the Tivoli Enterprise Data Warehouse components on
two machines. Our environment consists of a PC server and RS6000.

� PC server: (itsotiv-a)

– Hardware

• 512 RAM

• 933 MHz 1processor

• 5 GB hard disk space

– Software

• Windows 2000 server with Service Pack 1

• Internet Explorer Version 5.5

� RS6000: (itsotiv-b)

– Hardware

• Model 7043-150

• 256 MB RAM

– Software

• AIX Version 4.3.3 with FixPak 9

The Control server and Report server components will be installed on the PC
server, and the central data warehouse and data mart will be installed on the
RS6000.
 Chapter 3. Installation and configuration 67

Figure 3-6 Our environment

3.4.1 DB2 Universal Database installation
We install the DB2 Server on the systems that are to host the Control server,
central data warehouse server, and the Data mart server. We install a DB2
Server on the system that is to be the Report server only because it is on the
same server as the Control server. Do this before installing the Tivoli Enterprise
Data Warehouse Control server because the Control server must be able to
connect to, create, and save data in DB2 databases on those systems during its
installation.

To install DB2 on the PC server see Section 3.3.1, “Windows DB2 Universal
Database installation” on page 60. To install DB2 on the AIX box we did the
following:

1. Start the DB2 setup utility for AIX run command:

./db2setup

Control Server
Report Server
Hostname itsotiv-a
OS Windows 2000
DB2 v7.2

CDW Server
Data Mart Server
Hostname itsotiv-b
OS AIX 4.3.3
DB2 v7.2

Ethernet
IE Browser
Hostname Any
machine with a
supported browser

IE Browser
Hostname Any
machine with a
supported browser

Note: If the Report server is on its own server, then only the DB2 client will
need to be setup.
68 Introduction to Tivoli Enterprise Data Warehouse

2. Create a new DB2 instance. See Figure 3-7 and Figure 3-8 for the install
options we selected.

Figure 3-7 AIX DB2 install summary

Figure 3-8 AIX DB2 install summary
 Chapter 3. Installation and configuration 69

3.4.2 Tivoli Enterprise Data Warehouse installation
When the Tivoli Enterprise Data Warehouse installation wizard runs the
installation, it will install the three databases in the default directory. If you want
these databases installed in another directory, create these databases before
you start the Tivoli Enterprise Data Warehouse installation wizard by doing the
following:

1. Open a DB2 command window and issue these command on the Control
server:

db2 create db twh_md on d

Where d is the drive you would like the database installed on or, if it is a UNIX
machine, then /db/data is the file system.

2. Issue these commands on the Data mart server:

db2 create db twh_mart on /db/data

3. Issue these commands on the CDW server:

db2 create db twh_cwd on /db/data

After installing DB2, perform a connection test by completing these steps:

1. Enter the following command in a DB2 command window to list the local
databases:

db2 list database directory

In most cases, the command lists at least one database, even in new
installations.

2. Enter the following command to test a local connection:

db2 connect to database_name user user_name using password

Where database_name is the database name returned in the first step,
user_name and password are the user name and password you specified
when installing DB2. If this command is successful, DB2 is installed and
ready for remote connections. If you experience difficulty, refer to the DB2
documentation for troubleshooting information.

To install the Tivoli Enterprise Data Warehouse components complete the
following:

1. Insert the Tivoli Enterprise Data Warehouse installation media into the
CD-ROM drive of the machine that will be the Control server and run
setup.exe.

This will start the Tivoli Enterprise Data Warehouse installation wizard
(Figure 3-9 on page 71).
70 Introduction to Tivoli Enterprise Data Warehouse

Figure 3-9 Welcome dialog window

2. Choose Next and the dialog window for installation type will appear
(Figure 3-10).

Figure 3-10 Install type dialog window
 Chapter 3. Installation and configuration 71

3. Select Custom/Distributed and insert your install directory name, then
choose Next. The select features dialog window will appear (Figure 3-11).

Figure 3-11 Select features dialog window

4. Select Tivoli Enterprise Data Warehouse Control server and Report
Interface (because this machine will be our Report Server as well) and
choose Next. The verify hostname dialog window will appear.

5. Confirm that this is the correct hostname and choose Next. The local DB2
configuration dialog window will appear.

6. Enter the DB2 user ID and password created during the local DB2 installation
on the Control server and choose Next. The Tivoli Presentation Services
dialog will appear (Figure 3-12 on page 73).

Note: The installation wizard displays an additional feature, Installation
tools and scripts. This feature is required for each of the Tivoli Enterprise
Data Warehouse components, but you do not have to select it manually. It
is automatically included when it is required. It is not needed when
installing warehouse packs (listed in the installation wizard as Application
ETL and Report packages).
72 Introduction to Tivoli Enterprise Data Warehouse

Figure 3-12 Default ports dialog window

7. If any of these ports are being used by another application, change the
default ports now and choose Next. The install languages dialog window will
appear.

8. Leave this box unchecked and choose Next. The remote DB2 configuration
for the Central Data Warehouse server dialog window will appear (Figure 3-13
on page 74).
 Chapter 3. Installation and configuration 73

Figure 3-13 Remote DB2 configuration dialog window

9. Enter the DB2 user ID and password created during the DB2 installation on
the central data warehouse server and choose Next. The remote DB2
configuration for the Data mart server dialog will appear (Figure 3-14 on
page 75).
74 Introduction to Tivoli Enterprise Data Warehouse

Figure 3-14 Remote DB2 configuration dialog window

10.Enter the DB2 user ID and password created during the DB2 installation on
the Data mart server and choose Next. The dialog window overview of
chosen options will appear (Figure 3-15).

Figure 3-15 Selected options dialog window
 Chapter 3. Installation and configuration 75

11.Choose Install to start the installation.

12.Verify that the installation was successful by doing the following:

– Make sure the installation wizard’s completion window does not list any
errors. See “Messages” in Installing and Configuring Tivoli Enterprise Data
Warehouse, GC32-0744, for more information.

– If the completion window lists warnings, check the TWH.log to ensure that
the warnings can safely be ignored.

13.Wait for the help set to be rebuilt. The help set contains the user assistance
for the IBM Console. This process happens asynchronously and might not
complete by the time the wizard has completed the installation of the
remaining components of Tivoli Enterprise Data Warehouse. Do not restart
the system until the help set is complete. If you do, follow the procedure
documented in the Tivoli Enterprise Data Warehouse Release Notes to
rebuild the help set. To determine whether the help set rebuild is complete,
look for the completion message in the Tivoli Presentation Services
installation log. This log is in directory PS_directory/log/fwp_mcr, where
PS_directory is the target directory you specified for Tivoli Presentation
Services. The logs are named stdoutn. Look for the message shown in
Example 3-2 in the most recent stdoutn file. In some cases, the message can
be in the second most recent stdoutn file.

Example 3-2 Successful completion message

FWP1734I The utility that was started by the Management Component Repository to
build the help set has completed
successfully.

This process can take up to 30 to 40 minutes.

14.Reboot the machine.

To create the basic installation using a local warehouse agent, you do not need
to install any Tivoli Enterprise Data Warehouse components on the central data
warehouse server or the Data mart server. Installing the Control server creates
the databases that are needed on those systems. If errors were detected during
installation or an un-install is required, see “Troubleshooting and maintenance”
on page 283.

3.5 Tivoli Enterprise Data Warehouse configuration
This section gives instructions on the basic configuration setup it applies to both
stand-alone Tivoli Enterprise Data Warehouse installation and distributed Tivoli
Enterprise Data Warehouse installation.
76 Introduction to Tivoli Enterprise Data Warehouse

To configure the Tivoli Enterprise Data Warehouse installation you need to follow
these steps:

1. Configure the Data Warehouse Center for Tivoli Enterprise Data Warehouse
by following the instructions in Section 3.5.1, “Specifying the control database
for the Data Warehouse Center” on page 77.

2. Test the sources and targets in the Data Warehouse Center. For instructions,
refer to Section 3.5.2, “Test sources and targets in the Data Warehouse
Center” on page 79.

3. Back up the Tivoli Enterprise Data Warehouse installation as described in
Installing and Configuring Tivoli Enterprise Data Warehouse, GC32-0744, in
the section “Backup and Restore recommendations.”

4. Install the warehouse packs that allow your system management software to
work with the Tivoli Enterprise Data Warehouse. For instructions, refer to
Section 3.5.3, “Installing warehouse packs” on page 81.

5. Configure the reporting server users and create reports (see Chapter 4,
“Implementation of the Report Interface” on page 89).

3.5.1 Specifying the control database for the Data Warehouse Center
The first time you open the Data Warehouse Center, and if you are using the
Data Warehouse Center with applications other than Tivoli Data Enterprise
Warehouse, you might need to set the control database in the IBM DB2 Data
Warehouse Center as follows:

1. On the Windows taskbar, click Start Programs -> IBM DB2 -> Control
Center. The Control Center window is displayed.

2. From the DB2 Control Center, start the DB2 Data Warehouse Center by
clicking Tools -> Data Warehouse Center. The Data Warehouse Center
Logon window is displayed.

3. In the Data Warehouse Center Logon window, click Advanced.

4. Type TWH_MD for the control database and click OK (Figure 3-16 on
page 78).
 Chapter 3. Installation and configuration 77

Figure 3-16 Configure Data Warehouse Center window

5. Click Cancel to close the logon panel.

6. Open the Control Database Management window. On the Windows taskbar,
click Start -> Programs -> IBM DB2 -> Warehouse Control Database
Management.

7. Type TWH_MD in the New control database field and type the DB2 user name
and password, then click OK (Figure 3-17 on page 79).
78 Introduction to Tivoli Enterprise Data Warehouse

Figure 3-17 Configure Warehouse Control Database Management window

8. When the Processing has completed message appears, click Cancel.

The set up and connection is now complete.

3.5.2 Test sources and targets in the Data Warehouse Center
The installation program will automatically create the ODBC data sources
required to connect to DB2 databases.

You can test the ODBC connection before attempting to run an ETL process as
follows:

1. On the Windows taskbar, click Start Programs -> IBM DB2 -> Control
Center. The Control Center window is displayed.

Tip: The only time you would need to create the ODBC data sources for the
source application databases manually is when you are using is remote
warehouse agents on UNIX systems. Please refer to Installing and
Configuring Tivoli Enterprise Data Warehouse, GC32-0744, Appendix D
“Using remote warehouse agents.” For all other cases, ODBC data sources
are created automatically by the Tivoli Enterprise Data Warehouse installation
program.
 Chapter 3. Installation and configuration 79

2. From the DB2 Control Center, start the DB2 Data Warehouse Center by
clicking Tools -> Data Warehouse Center. The Data Warehouse Center
Logon window is displayed

3. Enter the user name and password and click OK. The Data Warehouse
Center is displayed.

4. Expand the tree Warehouse Sources. Right click the source and select
Properties, then Database from this window.

5. Fill in the User ID and Password fields and click OK (Figure 3-18).

Figure 3-18 Configure target and sources window

For each of the source and target databases repeat the same steps.
80 Introduction to Tivoli Enterprise Data Warehouse

3.5.3 Installing warehouse packs
Each application will come with its own warehouse pack. Installation and
configuration processes will differ slightly for each warehouse pack. We
recommend that the installation instructions for each warehouse pack are
followed. Also see Installing and Configuring Tivoli Enterprise Data Warehouse,
GC32-0744, section “Configuring and scheduling warehouse pack ETL
processes”. Typically the installation has the following steps:

1. Use the Tivoli Enterprise Data Warehouse installation program to install the
package on each machine where it is needed. In general, this is the Control
server and the Report server. The warehouse pack’s documentation
describes whether it needs to be installed on additional or fewer systems.
After starting the Tivoli Enterprise Data Warehouse installation wizard, specify
the installation of one or more warehouse packs using the following
techniques:

a. Select Application installation only in the setup type window
(Figure 3-19 on page 82). This is the recommended way to install
warehouse packs. You can also install warehouse packs during the
installation of the Tivoli Enterprise Data Warehouse core application, but
this is not recommended.

Note: The documentation is on the installation media for the warehouse pack,
in a PDF file in the subdirectory tedw_apps_etl/product_code/pkg/version/doc.
product_code and version specify, respectively, the product that is being
enabled to use Tivoli Enterprise Data Warehouse and the version of the
warehouse pack.
 Chapter 3. Installation and configuration 81

Figure 3-19 Install type dialog window

b. Click Next and verify that the correct host name is entered. Click Next to
enter the local DB2 database user name and password. Click Next.

c. This step is only for a distributed Tivoli Enterprise Data Warehouse
installation. Enter the remote DB2 central data warehouse server
database user name, password, and database host name, and click Next.

d. This step is only for a distributed Tivoli Enterprise Data Warehouse
installation. Enter the remote DB2 data mart database user name,
password, and database host name, and click Next.

e. Enter the path of the installation media for the warehouse pack, and click
Next.

f. Click Next on the install additional application packages and then Install
to start the installation.

g. Once the installation is finished, check the log files for any errors. See
Chapter 10, “Troubleshooting and maintenance” on page 283 if errors are
detected.

2. Install any product patches specified by the warehouse pack documentation.
82 Introduction to Tivoli Enterprise Data Warehouse

3. Perform any pre-installation configuration steps specified by the warehouse
pack documentation. For example, this might include tasks such as:

– Creating additional tables in an existing database.

– Establishing an ODBC connection.

– Configuring the Source database user name and password. See
Section 3.5.2, “Test sources and targets in the Data Warehouse Center”
on page 79.

4. Each warehouse pack will come with its own set of ETL processes that must
be scheduled to run so the Tivoli Enterprise Data Warehouse can be
populated with data. Check the warehouse pack documentation for the order
that the ETL processes must run in.

To schedule a process follow these tasks:

a. On the Windows task bar, click Start -> Programs -> IBM DB2 -> Control
Center. The Control Center window is displayed.

b. From the DB2 Control Center, start the DB2 Data Warehouse Center by
clicking Tools -> Data Warehouse Center. The Data Warehouse Center
Logon window is displayed

c. Enter the user name and password and click OK. The Data Warehouse
Center is displayed.

d. Expand the tree Subject Areas, there will be a list of applications. Expand
the application you just installed and expand the Processes tree
(Figure 3-20 on page 84).

Note: A process’ start could depend on another’s completion.
 Chapter 3. Installation and configuration 83

Figure 3-20 Data Warehouse Center

e. Right click the process you want to schedule and select Schedule. The
schedule dialog window will open. Select the Interval, Frequency, Start
Time and click Add (Figure 3-21 on page 85).
84 Introduction to Tivoli Enterprise Data Warehouse

Figure 3-21 Schedule Process window

f. Click OK.

g. To enable the schedule the run, the mode of the tasks for the process
need to be moved from development production mode. In the right pane of
the Data Warehouse Center window select all the tasks, right click, select
Mode and then Production (Figure 3-22 on page 86).
 Chapter 3. Installation and configuration 85

Figure 3-22 Change task mode window

h. The process and all its tasks are now scheduled to run. To verify this from
the Data Warehouse Center window, select Warehouse -> Work in
Progress (Figure 3-23).

Figure 3-23 Work in Progress window
86 Introduction to Tivoli Enterprise Data Warehouse

5. After you install one or more warehouse packs on the Report server, manually
stop and then restart the following services for Tivoli Presentation Services:

– Server for IBM Console

– Web Services for the IBM Console

Once each process has completed successfully, you are now ready to view your
performance data. See Chapter 4, “Implementation of the Report Interface” on
page 89.
 Chapter 3. Installation and configuration 87

88 Introduction to Tivoli Enterprise Data Warehouse

Chapter 4. Implementation of the
Report Interface

In this chapter we introduce the Report Interface (RI) of Tivoli Enterprise Data
Warehouse. We show how to best customize and use this interface to get
performance reports from various application data. Some tips for troubleshooting
are also provided.

This chapter has the following sections:

� Tivoli Enterprise Data Warehouse Report Interface

� Basic customization

� Types of reports

4

© Copyright IBM Corp. 2002 89

4.1 Tivoli Enterprise Data Warehouse Report Interface
Using the Tivoli Enterprise Data Warehouse Report Interface, you can create
and run some basic reports against your data marts and publish them on your
intranet or the Internet. The Report Interface is not meant to replace OLAP or
Business Intelligence tools. If you have multidimensional reporting requirements
or need to create a more sophisticated analysis of your data, Tivoli Enterprise
Data Warehouse’s open structure provides you with an easy interface to plug into
OLAP or BI-tools. How to use those tools is explained in Chapter 7, “OLAP
integration” on page 203. Nevertheless, for two-dimensional reporting
requirements, Tivoli Enterprise Data Warehouse Report Interface provides you
with a powerful tool.

The RI is a role-based Web interface that allows you to create reports from your
aggregated enterprise-wide data that is stored in various data marts. The RI
uses the Tivoli Presentation Service.

The GUI can be customized for each user. Different roles can be assigned to the
users according to the tasks they have to fulfill and the reports they may look at.
The users see in their GUI only those menus, which they can use according to
their roles.

The RI can be accessed with a normal Web browser from everywhere in the
network. We recommend using Internet Explorer. Other Web browsers, like
Netscape, will also work, but might be slower.

To connect to your Report Interface start your Web browser with the following:

http://your_ri_server/IBMConsole

Where you have to use the host name (fully qualified) of your Report server. The
server port is 80 by default. If you chose another port during installation of the
Tivoli Presentation Service (see Figure 3-4 on page 65, entry IBM HTTP Server
Port), use the following syntax to start the Report Interface through a different
port:

http://your_ri_server:your_port/IBMConsole

When you log in for the first time use the login superadmin and password
password (you should change this password immediately). After the log in you
see the Welcome page. On the left-hand side you will find the pane My Work,
with all tasks that you may perform.

Tip: JavaScript and style sheets must be enabled in your browser.
90 Introduction to Tivoli Enterprise Data Warehouse

http://your_ri_server/IBMConsole

4.2 Basic customization
In this section we describe the concept of users, user groups, roles, and data
marts, and how they are customized. We will also give a short description of the
three report types supported by the Report Interface. You will find more
sophisticated examples for working with the Report Interface in Chapter 8,
“Real-life scenarios” on page 253.

4.2.1 Roles
Roles are used to grant rights to users according to the tasks they have to
perform and data they may access. A customer may, for instance, see his own
data, but not the data of other customers. A sales representative may create and
manage reports for the customer he is responsible for, but only view the reports
of all other customers.

The granted roles will also change the user’s GUI, so that he only sees those
menus that he is allowed to use. The user roles listed in Table 4-1 are predefined
for you.

Table 4-1 Predefined roles

a Tivoli Enterprise Data Warehouse specific roles

b IBM Console’s users and administrators roles

Predefined roles Description

com.tivoli.twh.rpi.role.impl/1.1.0/RepReaderRolea Report reader. Enables you to run, display, and
save output of public reports.

com.tivoli.twh.rpi.role.impl/1.1.0/RepAuthRole a Report author. Combines the report reader role and
the ability to create and manage personal reports.

MACImpl/2.2.0/MACLoggingUser a Access to all tasks within the Administer Logging
task group. Can perform logging administration
functions.

com.tivoli.pf.admin.impl/2.2.0/Administration b Portfolio Administration portfolio entries.

com.tivoli.pf.pfconsole.impl/2.2.0/ConsoleUsers b IBM Console user.

com.tivoli.twh.rpi.role.impl/1.1.0/AdvRepAuthRole b Advanced report author. Includes the report author
role plus the ability to create and manage public
reports.

com.tivoli.twh.rpi.role.impl/1.1.0/SecAdminRole a Warehouse security administrator. Controls access
by managing data marts and user groups to Tivoli
Enterprise Data Warehouse.

com.tivoli.pf.admin.impl/2.2.0/Administration b Authorizations Administration authorized tasks.
 Chapter 4. Implementation of the Report Interface 91

The roles given in Table 4-1 on page 91 should be sufficient for most purposes.
However, we will also demonstrate how to create new roles and how to
customize existing roles.

1. Log in as superadmin or as a user with sufficient rights to manage roles.

2. Click Administer Users and Roles and then Create Roles. The GUI shown
in Figure 4-1 will appear.

Figure 4-1 Create a Role dialog - General

3. First you have to put in a name for the new role and give it a description. Then
choose the tasks needed to execute from a list of 81 possible tasks in the
Tivoli Enterprise Data Warehouse Report Interface.

Important: You have to be careful and know exactly what you are doing when
creating new roles or modifying existing ones. If performed badly, this action
could make the whole system unstable.
92 Introduction to Tivoli Enterprise Data Warehouse

4. On the panels named Banner and Welcome you can define URLs, which will
be shown on the Welcome page and the Banner area (the upper panel of the
work space), respectively. These settings become active for users that have
the new role as their primary role.

5. When finished click OK to create the new role.

To change existing roles:

1. Click Manage Roles in the panel My Work. You will see a list of all existing
roles.

2. Choose Properties from the role you want to change (Figure 4-2).

Figure 4-2 Manage Roles dialog

Note: Not all of these tasks are Tivoli Enterprise Data Warehouse-specific.
Some of them are related to IBM Console administration.
 Chapter 4. Implementation of the Report Interface 93

3. You will see the Manage Roles dialog, which is very similar to the Create
Roles dialog. Note that you cannot change the default roles of the Tivoli
Enterprise Data Warehouse Report Interface.

4.2.2 Users
As mentioned above, the Tivoli Enterprise Data Warehouse Report Interface
supports many users with their own user ID and passwords. To create new users
do the following:

1. Click Create User in the panel My Work (Figure 4-3). You need to have
sufficient authorization to do this.

Figure 4-3 Create a User dialog - General

2. In the General panel you can provide information about the user’s
identification and you give him a user ID and a password. Note that the
entries with the yellow sign are required entries.
94 Introduction to Tivoli Enterprise Data Warehouse

3. In the Business panel you can store contact information like e-mail address,
phone number, and mailing address.

4. Click Roles to open the Roles panel (Figure 4-4).

Figure 4-4 Create a Users dialog - Roles

5. In this dialog you can grant one or more roles to the user. One of the granted
roles has to be the primary role of the user. This setting has no effect on the
rights of the user, but defines the appearance of the Welcome panel and the
banner area. Remember, these values are defined with a role (see
Section 4.2.1, “Roles” on page 91).
 Chapter 4. Implementation of the Report Interface 95

6. When all settings are done, click OK to create the user. The new user should
appear in the Manage User dialog. If not, click Refresh.

Tip: We recommend the following selection of roles when creating a new
Report Interface user:

� You have to select the IBM Console User. It is a must.

� If you want this user to only work with the reports (not to assign data marts
to user groups) select one role from Report reader, Report author, or
Advanced report author. You should not select more than one role (such as
Report reader and Report author together), otherwise you will see one
Create, and one Properties menu in the reports pop-up menu for each role
you have selected, which might be confusing. This is the case when using
the superadmin role, which combines all the roles. If you run the reports
with the superadmin role, you will see two Create and three Properties
menus in the report pop-up menu. For an example of this see Figure 4-22
on page 116.

� If you want this user to only work with assigning data marts to user groups,
not to work with reports, select the Warehouse security administrator role.

� If you want this user to both work with assigning data marts to user groups
and managing reports, select the Warehouse security administrator role
and one role from the Report reader, Report author, or Advanced Report
author role.

If you only select the IBM Console User, but not any additional role(s), the user
will only be able to see the Welcome page, but do nothing else.
96 Introduction to Tivoli Enterprise Data Warehouse

Figure 4-5 Manage Users dialog

7. To change the settings of an existing user, choose Properties from the users
pop-up menu in the Manage Users dialog. The dialogs that will appear are
analogous to the Create Users dialogs.

4.2.3 User groups
User groups are a means of organizing users. Users from different companies or
departments can be organized in different groups, each assigned the data mart
with the data of their company or department. To create a user group do the
following:

1. Choose Work with reports from the My Work panel.

2. Click Manage User Groups. You will see all existing user groups.

3. To add a new one choose Create from the pop-up menu of root (Figure 4-5).
 Chapter 4. Implementation of the Report Interface 97

Figure 4-6 Create a new user group

4. You will see the Create User Group dialog. You can now provide a name and
description for the new user group. Then you have to add users to the user
group. Click Users and Add in the users panel. You will see all users, except
those who have no eutrophication (or role) to create or view reports
(Figure 4-7 on page 99).
98 Introduction to Tivoli Enterprise Data Warehouse

Figure 4-7 Add users to user Group dialog

5. Select the users you want to have in your user group and click OK.

6. The last step is to select all data marts you want the users of this user group
have access to. Click Data Marts and Add in the panel that appears. You will
see a list of all data marts in your Report Interface (see Section 4.2.4, “Data
marts” on page 100 for how to create a data mart in the RI).

7. Select the appropriate data marts and click OK. You now find all chosen data
marts in the list.

8. Click OK to create the user group.
 Chapter 4. Implementation of the Report Interface 99

4.2.4 Data marts
Before you can run reports you have to set up the connection to one or more data
marts. A data mart is a grouping of one or more star schemas, where all
measurements, all possible types of measurements, and all components are
stored. Using the data marts, the access of user groups to the physical data can
also be controlled.

We now demonstrate how to create a data mart in the Tivoli Enterprise Data
Warehouse Report Interface. In our example the star schemas are defined in a
database named TWH_MART.

1. Choose Manage Data Marts from the menu, and Work with Reports in the
left-hand side pane (Figure 4-9 on page 101).

Figure 4-8 Manage Data Marts dialog - Create a new data mart

2. Select Create from the pop-up menu of Root. The Create a Data Mart dialog
will appear.
100 Introduction to Tivoli Enterprise Data Warehouse

Figure 4-9 Create a Data Mart dialog - General information

3. In the dialog Create a Data Mart you have to define a unique name for the
data mart and a useful description. The name of the data mart should follow
the convention <Name of Data Mart> Data Mart. Furthermore, you have to
type in the database user and password for the database where the star
schemas are stored (Figure 4-10 on page 102).

4. The database connection string is specific to the database driver. For DB2,
the connection string is jdbc:db2:database alias. For example, if your data
mart database alias is TWH_MART, the database connection string should be
jdbc:db2:twh_mart.

5. The entry Database Driver is for future use, when databases other than DB2
are supported. Leave this field unchanged.
 Chapter 4. Implementation of the Report Interface 101

Figure 4-10 Create a Data Mart dialog - User Groups

In the panel User Groups you have to assign one or more user groups to the
data mart. The users belonging to the assigned groups will be able to choose
star schemas from this data mart to create reports.

6. To add more user groups press Add and a choice of all available user groups
appears.

7. Select the user groups you want to have access to the data mart and click
OK. All chosen user groups now appear in the User Groups panel.

The next step is to add star schemas from the database.

8. Click on Star Schemas and then Add in the appearing dialog.

You will see a list of all star schemas in the data mart (Figure 4-11 on
page 103).
102 Introduction to Tivoli Enterprise Data Warehouse

Figure 4-11 Add Star Schemas to a Data Mart dialog

The star schemas used with Tivoli Enterprise Data Warehouse have to follow
the naming convention <product code> <time granularity> <description> star
schema.

In the above example we see star schemas belonging to the Server
Performance Prediction (SPP) warehouse pack and to the Distributed
Monitoring (DM) warehouse pack. The second word describes the
aggregation of data, for example, the hourly schema contains all
measurements (hourly is, by default, the lowest granularity held in Tivoli
Enterprise Data Warehouse). The daily schema contains data that is rolled up
to daily values and so on.

The star schemas in a data mart database have to be defined and can be
seen in the Data Warehouse Center. As the structure of the star schemas is
important for the understanding of the reports, it will be explained in
Section 4.3.1, “How star schemas are used to create reports” on page 104.

9. In our example, we chose the DM star schemas that contain hourly data and
daily rolled up data.

Note: The Server Performance Prediction warehouse pack is a used in our
redbook as an example Tivoli Enterprise Data Warehouse warehouse pack
implementation. It is not an official product.
 Chapter 4. Implementation of the Report Interface 103

10.Click OK after you made your selection of star schemas.

You will now see the selected star schemas in the Create a Data Mart dialog.

11.To finish the creation of the data mart now click OK in this dialog. The new
data mart now appears in the list of data marts. If not, click Refresh in the
upper panel. If the new data mart still does not appear in the list, there may be
problems with the database connection. Refer to Chapter 10,
“Troubleshooting and maintenance” on page 283 if this is the case.

4.3 Types of reports
The Report Interface of Tivoli Enterprise Data Warehouse provides three types of
reports:

� Summary

� Extreme case

� Health check

In this section we briefly introduce the three types of reports of the RI and
demonstrate how to create reports. However, we focus on star schemas first,
since the understanding of the basic structure of a star schema will help you to
understand how to create a meaningful report from your data.

4.3.1 How star schemas are used to create reports
The reports generated in the RI are translated to SQL queries, which run against
the star schemas. Thus we want to shed light on star schemas before we go into
detail about reports.

A star schema consists of:

� One metric dimension table

� One or more component dimension tables

� One fact table

The metric dimension table
The metric dimension table (the name must end with METRIC) contains
information about metrics; for example, the measured items like CPU usage or
available swap space. Figure 4-12 on page 105 shows an example of a metric
dimension table.
104 Introduction to Tivoli Enterprise Data Warehouse

Figure 4-12 Example metric dimension table

Each metric has a unique name (column MET_NAME), which can be chosen
when a report is created. The unique metric_id is referred to in the facts table; for
example, each measurement in the facts table has a metric_id. The rest of the
columns describe the properties of each metric.

The component dimension table
The component dimension table(s) contain information about the components
against which the measurements run, e.g., servers, databases, or trouble tickets.
The name starts with D_ to signify a dimension table. Component dimension
tables that are not the metric dimension table must not end in _METRIC.

Component dimension tables contain component attributes (column
name=component attribute). These attributes are displayed in the Report
Interface so that you can filter on them. If there are more than 27 values for a
particular component attribute, they are not displayed in the Report Interface for
filtering.

Figure 4-13 on page 106 displays an example of a component dimension table.
The components in this example are hosts.
 Chapter 4. Implementation of the Report Interface 105

Figure 4-13 An example of a component dimension table

The fact table
The fact table contains the values of the measurements. The name starts with an
F_ and ends with the aggregation period of the data. The fact table contains
foreign keys to the metric dimension table (METRIC_ID) and the component
dimension tables (in this example the HOST_ID), which built the star structure
and allow the analysis of the measured values according to the different
dimensions.

Figure 4-14 displays an example of a component dimension table.

Figure 4-14 Example of a fact table
106 Introduction to Tivoli Enterprise Data Warehouse

Reports as SQL statements
When you create reports using the Report Interface, an SQL query is created,
which is used to extract the data needed for the report from the star schema. In
principle, such an SQL statement has the following structure (SQL statements
differ from one type of report to another, so Example 4-1 is just an example).

Example 4-1 SQL statement of a report

1 select <aggregation>(<value>),..
2 from D_HOST_STATE, D_METRIC, F_HOUR
3 where
4 D_HOST_STATE.HOST_ID = F_HOUR.HOST_ID AND
5 F_HOUR.METRIC_ID = D_METRIC.METRIC_ID AND
6 D_HOST_STATE.STATE_STRT_DTTM = F_HOUR.HOST_STATE_STRT_DTTM AND
7 D_METRIC.met_name = '<metric name>' AND
8 F_HOUR.meas_hour between '<start time>' and '<end time>'
9 D_HOST_STATE.HOSTNAME = '<hostname filter>’
10 group by <value>
11 order by <value>

The parameters embraced by <> are completed by the choices made in the
Create Report dialogs. The values selected in line 1 are, in general, the values
displayed on the x-axis and y-axis of the reports. The tables are connected due
to the foreign keys, as shown in Example 4-1 (lines 4, 5, and 6). We will refer to
this example when we examine the reports in more detail.

Tip:

� Extreme case reports allow you to have one metric from one star schema.
Once you have added a metric in the Metrics page in the Create Report
notebook, you cannot add any more.

� Summary reports allow you to select up to five metrics from one star
schema. All these metrics must be chosen at once, because you will not be
allowed to add more metrics from the Metrics page if you have at least one
metric already added.

� Health check reports allow you to select five metrics from multiple star
schemas. Metrics can be added either individually or several at once (if
they belong to the same star schema.
 Chapter 4. Implementation of the Report Interface 107

4.3.2 Summary reports
The summary report is typically used to display a many measurements versus
many components relationship. The result is a table where the rows show
components or groups of components and the columns typically show the
measurements. Additionally, summary values for all components and all groups
of components are shown. This kind of report can be used if, for example, you
want to create an overview of the workload of servers or server groups.

We now demonstrate how to create a new summary report.

1. Log in to your IBM Console as a user who has enough roles to create reports.

2. Expand Work with Reports and click Create Report.

You will see the dialog shown in Figure 4-15.

.

Figure 4-15 Create a Report dialog - Summary reports

Tip: For users logged as superadmin, the portfolio and the context menus
for reports contain multiple menus. For example, the context menus
contain two Create a Report entries and three entries for Properties. Use
the first entry in the list of duplicate entries, which represents the highest
level role authorized to perform that function.
108 Introduction to Tivoli Enterprise Data Warehouse

3. Choose Summary as report type and select the data mart that contains the
star schema with the data for your report. You will later choose the metrics for
your reports from the star schemas of this data mart.

4. In our example there is only the DM data mart. Select the data marts you
need in your environment and click OK when ready. You will see the Create a
Report notebook with its four panels (Figure 4-16).

Figure 4-16 Create summary report - General dialog

5. First provide a meaningful name and description for the new report.

6. Check the Public button when you want to create a public report that can be
seen and used by other users. You see the public entry only when you have
sufficient roles to create public reports.

7. Click the Metrics tab. You will see the list of chosen metrics, which is still
empty. In a summary report there are typically many metrics.

8. Click Add to choose metrics from the star schema. You will see the list of all
star schemas of the chosen data mart.

9. Select one of them and you will see all available metrics of this star schema
(Figure 4-17 on page 110).
 Chapter 4. Implementation of the Report Interface 109

Figure 4-17 Create summary report - Add Metrics dialog

In Figure 4-17 you see that there is a minimum, maximum, and average type
of each metric. These values are generated when the aggregation of the
source data to hourly and daily data is done. Each aggregation level has its
own star schema with its own fact table.

In a fact table each measurement can have an minimum, maximum, average,
and total value. Which values are used depends on the application and can
be defined in the D_METRIC table (see Figure 4-12 on page 105). When a
value is used, a corresponding entry will appear in the available metrics list in
the Report Interface.

10.Choose the metrics you need in your report and click Next.

You will see the Specify Aggregations dialog (Figure 4-18 on page 111).
110 Introduction to Tivoli Enterprise Data Warehouse

Figure 4-18 Create summary reports - Specify Aggregations dialog

In this dialog you have to choose an aggregation type for each chosen metric.
A summary report covers a certain time window (defined later in this section).
All measurements are aggregated over that time window. The aggregation
type is defined here. Furthermore, there might be an aggregation over many
components if the report is made for component groups instead of single
components. Let us first consider these settings (Figure 4-19 on page 112).
 Chapter 4. Implementation of the Report Interface 111

Figure 4-19 Create summary report - Group by and filter dialog

Remember, all measurements are records in the fact table with a link to a
metric and a certain set of component attributes. In the Specify Attributes
dialog you will be able to filter component attributes and to group
measurements to component groups.

With Filter By, you select only those records that match the values given in
this field. In the resulting SQL statement, each chosen filter will result in a
where clause (see line 9 in Example 4-1 on page 107).

The Group By function works as follows: If you choose one attribute in the
Group By field, then all records with the same value for this attribute are taken
together and aggregated according to the type chosen in the previous dialog.
The result is one aggregated measurement for each different value of the
chosen attribute.

Each entry in the Group By column will result in a group by clause in the SQL
statement (see line 10 in Example 4-1 on page 107). The aggregation type
will show up in the select part (line 1) where total is translated to sum.
112 Introduction to Tivoli Enterprise Data Warehouse

11.In our example, we choose the host name as the sole Group By field, which
will result in a table with one row for each host (Figure 4-19 on page 112). The
Order By field (with the two possible values ascending or descending) defines
the order in which the host names appear in the resulting report.

12.We choose no filter in our example, thus all hosts in our database will appear
in the report.

We could filter, for example, on the domain name or IP sub-net to constrain
possible values for host name. The possible choices of the filters are
automatically populated from all values in the star schemas. If more than 27
distinct values exist you cannot filter on these attributes.

13.Click Finish to set up your metrics and click the Time pad (Figure 4-20 on
page 114).

Tip: When creating a summary report, ensure that the Group By and Order
By selections match. For example, if the user’s selection for Order By is
CPU_Speed = 1 (either ascending or descending), and there is no Group
By selection for CPU_Speed, an error is displayed. But it is possible to
have the following combination, for example:

Group By Order By

CPU_Speed 1 2 ascending

Memory 2 1 descending
 Chapter 4. Implementation of the Report Interface 113

Figure 4-20 Create summary report - Time dialog

14.In this dialog you have to choose the time interval for the report. In summary
reports all measurements of the chosen time interval will be aggregated for all
groups.
114 Introduction to Tivoli Enterprise Data Warehouse

Figure 4-21 Create summary report - Schedule dialog

15.In the Schedule pad you can select Run the report when the data mart is
built. A record is inserted into the RPI. The SSUpdated table in the TWH_MD
database informs the report execution engine when a star schema has been
updated, and in that case the report execution engine runs all scheduled
reports that have been created from that star schema.

16.When all settings are done click OK to create the report.

You should see a window displaying Report created successfully.

17.To see the report in the report list click Refresh and expand root in the
Reports panel and click Reports.

18.Usually the reports are scheduled and run automatically when the data mart
is built. However, you can run the report manually at any time by choosing
Run from the reports pop-up menu (Figure 4-22 on page 116).
 Chapter 4. Implementation of the Report Interface 115

Figure 4-22 Run a report

You will see the time dialog as shown in Figure 4-20 on page 114 again.

19.You can make changes to the time window of the report. Click Next to
continue.

20.You can now provide a name and a description for the particular report output
produced by this run. Click Run to continue (Figure 4-23 on page 117).

Tip: You might wonder why you see two Create, and three Properties menus
in the reports pop-up menu. The reason for this is that in this exercise we are
using the superadmin role, which combines all roles available. But you will not
see this in a production environment, where you need create and use specific
Report Interface users, instead of the superadmin.
116 Introduction to Tivoli Enterprise Data Warehouse

Figure 4-23 Run a report - Report output name and description

In Figure 4-24 on page 118 you now see the summary report with the three
metrics, which were chosen in the Add Metrics dialog (Figure 4-17 on
page 110), in the columns.

In the rows you find the host names that were chosen in the Group By entry in
the Specify Attributes dialog (Figure 4-19 on page 112). All hosts of our
example data mart are displayed as no filter was chosen.
 Chapter 4. Implementation of the Report Interface 117

Figure 4-24 Result of the summary report example

In the lowest row you find a summary value for all hosts. If more then one
Group By attributes are chosen, then there will be summary values for all
component groups.

21.You can now save this report output. You will find it in the folder Report Output
(see Figure 4-25 on page 119).
118 Introduction to Tivoli Enterprise Data Warehouse

Figure 4-25 The Report Output dialog

4.3.3 Extreme case reports
The extreme case report is a one-measurement versus a many-components
report. With this type of report you can find the components or component
groups with the highest or lowest values of a certain metric. The result will be a
graph with the worst or best components in the x-axis and the corresponding
metric values in the y-axis.

As an example, a customer might decide to spend some money to upgrade the
CPU and memory of his weakest servers. With an extreme case report you can
find the servers with the highest CPU usage or the least available swap space in
the sub-domain belonging to the customer.

Let us show you how to create a new extreme case report:

1. Open your IBM Console, expand Work with Reports and click Create
Report.

2. Choose Extreme Case from the type selection and proceed analogously to
the previous section (see Figure 4-26 on page 120 to Figure 4-28 on
page 122).
 Chapter 4. Implementation of the Report Interface 119

The first difference to the summary report is in the Add Metrics dialog
(Figure 4-26).

Figure 4-26 Create extreme case reports - Add Metrics dialog

In an extreme case report you can choose one metric only, for example, the
metric with the extreme value.

There is one additional field compared to the summary report below the
metric list. Here you can change the order direction. If you choose ascending
order, the graph will start with the lowest value of the metrics. Conversely, you
can use descending order to find the largest values. As you already chose the
order of the graph in this dialog, the Order By choice will be missing in the
Specify Attributes dialog (Figure 4-27 on page 121).
120 Introduction to Tivoli Enterprise Data Warehouse

Figure 4-27 Create extreme case report - Specify Attributes dialog

According to the above example, we want to find the host names of the
servers with the highest average CPU usage in a domain.

3. We chose the host name as the Group by entry and the interesting
sub-domain in the Filter by entry.

4. The procedure to finish and run this report is again the same as the summary
report example (see Figure 4-20 on page 114 to Figure 4-23 on page 117).

The result of the extreme case report displays the servers with the highest
average CPU usage in the chosen time interval (Figure 4-28 on page 122).
With the help of this report you can now decide which servers should be
upgraded first.
 Chapter 4. Implementation of the Report Interface 121

Figure 4-28 Result of the extreme case report example

4.3.4 Health reports
The health report (or health check report) is typically used to display many
measurements against many components versus time relation. The result is a
graph where the x-axis shows the time and the y-axis shows the measurements.
This kind of report is used to show the time-development of a metric. This allows
you to recognize a trend and to predict possible future health problems of a
component.

As an example let us look at the CPU usage of a single server over a time period
over three weeks.

1. To create a new health report open your IBM Console, expand Work with
Reports and click Create Report.
122 Introduction to Tivoli Enterprise Data Warehouse

2. Choose Health Report from the type selection and proceed analogous to
Section 4.3.2, “Summary reports” on page 108 (see Figure 4-15 on page 108
to Figure 4-18 on page 111).

3. For our example we chose the same settings as in the create summary report
example. Note that you can choose only five metrics a maximum for a health
report.

The first difference from the creation of a summary report appears in the
Specify Attributes dialog (Figure 4-29).

Figure 4-29 Create health report - Specify Attributes dialog

Health reports are always graphs of the type measurements versus time. For
this reason no Group By or Order By is to be selected because it is always
grouped by time and ordered by ascending time.
 Chapter 4. Implementation of the Report Interface 123

If no filter is selected the measurement is aggregated (minimum, maximum,
average, or sum, according to the choice in the Specify Aggregations dialog)
over all components. There can be many metrics displayed in one graph, but
they all apply to the same component (host name or IP address) or group of
components; thus it is not possible to compare different instances of the same
component in one graph.

If there are more than 27 different values for an attribute, no choices can be
made for this particular attribute in the Specify Attributes dialog.

For example, Figure 4-30 on page 125 shows the development in time for the
CPU usage of a single server over an interval of three weeks.

Tip: In health reports, it is possible to compare different components in one
graph because the metrics on one graph can be selected from many star
schemas, not only one.
124 Introduction to Tivoli Enterprise Data Warehouse

.

Figure 4-30 Result of the health report example

Tip: For health report choose your time window according to the aggregation
level of your data. If there are too many data points on the x-axis the report
becomes unreadable.
 Chapter 4. Implementation of the Report Interface 125

126 Introduction to Tivoli Enterprise Data Warehouse

Chapter 5. Integration of application
data to central data
repository

In this chapter we show how to integrate your application data to the central data
repository. We will use two different data sources as sample applications, with
each data source demonstrating different integration techniques. This chapter
has the following sections:

� Why you might need to integrate your own data

� Methodology

� Case study 1- IBM Server Resource Management (SRM)

� Case study 2 - ABC Configuration Database

� Best practices

5

© Copyright IBM Corp. 2002 127

5.1 Why you might need to integrate your own data
There are two major reasons why you might need to integrate your own data into
the Tivoli Data Warehouse. The first reason is to map an existing data source
onto the central data repository schema. The second reason is to supplement
the central data repository schema with additional data that does not exist in the
current schema.

5.1.1 Mapping data to the existing schema
In a heterogeneous distributed server environment, it is not uncommon to find
different tools used to support those servers. Each of these tools may have a
data repository, where historical information is kept. These repositories have
different data schemas, since they were designed by different vendors, and they
may have metrics specific to that platform. While platform-specific reports are
usually required, it is often useful to create enterprise level reports, which mix
information from the various platforms. An example of this is to report
performance utilization statistics of servers in a single report, regardless of the
platform architecture.

By having a common schema in the Tivoli Data Warehouse central data
repository, one is able to map the existing data sources into the repository. With
the data in a single repository, common reports can be generated, creating a
common look and feel between the reports, making the understanding of
different platforms easier. This also reduces the resource requirements for
platform-specific reporting.

In addition to having different data repositories caused by different platforms,
there are frequently different tools deployed on the same platforms, but on
different servers. This is usually the case when these servers are supported by
different personnel and then consolidated at some future time (for example,
companies that have grown through acquisition, where the servers have come
from different companies, or where different support organizations have been
allowed to select their own system management tools). By mapping these tools
to the central data repository, common reports can be generated, masking the
different tools used to create the data.

Lastly, one may want to convert existing servers to Tivoli based products. By
using Tivoli Data Warehouse, historical data from existing servers can be loaded
into the central data repository, so there is no data loss. This will allow one to
convert over to a Tivoli product that uses the central data repository and not lose
any data. While servers are in the process of converting, both the new and old
data sources can be used to generate reports in the new common format.

The following section is an example of mapping data to the existing schema.
128 Introduction to Tivoli Enterprise Data Warehouse

Case study 1 - Server Resource Management (SRM)
In this section we suggest a Tivoli Data Warehouse implementation solution for
the IBM Global Services, Service Delivery Center (SDC) environment. The SDCs
provide strategic outsourcing (including content hosting Web sites) to thousands
of IBM and commercial customers all over the world.

Each SDC delivers a broad scope of solutions including server management
(from IBM OS/390 mainframe servers to Microsoft Windows NT servers),
desk-side support and customer care services. There are nine geographic SDCs
world-wide, with four SDCs in North America. The Server Resource
Management service is performed by the South SDC for all SDCs world-wide.
SRM is the service used to report performance management and capacity
planning statistics on distributed servers.

The purpose of the case study is to detail a Tivoli Warehouse solution, which will
be integrated into the IBM SDC South architecture with the intention of providing
a simple flowing migration from the reporting tools currently implemented.

Using the existing SRM data
The SRM data is stored on an AIX system, using DB2 UDB as its database
management system. An ODBC connection was defined from the test central
data repository to the SRM repository. Both repositories resided on the same
TCP/IP network, so there were no firewall or additional security issues to address
during the case study. The user ID and password for the SRM database was
needed by the Tivoli Data Warehouse. In order to extract the data from the SRM
database, select level authority to the tables as granted.

Implementing the methodology - Prototype schema
The purpose of this case study was to understand the implications of mapping a
non-Tivoli data source into the central data repository. Since the Tivoli Data
Warehouse was not available to the general public at the time of the case study,
there were no official production schemas defined for the Warehouse. In order to
resolve this issue, a prototype schema was provided. This prototype schema was
capable of storing the data from the Tivoli Decision Support, Server Performance
Prediction Guide, which uses Tivoli Distributed Monitoring and Tivoli Inventory as
its data source. The prototype schema was enhanced from the metrics that the
Server Performance Prediction Guide kept, providing for 66 metrics instead of
the 17 that were part of the guide.

For purposes of the case study, existing fields in the SRM schema were mapped
to the corresponding fields in the central data repository. Only fields that existed
in both schemas were mapped. We found that all data fields were of the same
data type, requiring no translation of data types (there was a single character
data field that needed to be translated, and it is described in “Case study 1 -
Server Resource Management (SRM)” on page 129.
 Chapter 5. Integration of application data to central data repository 129

5.1.2 Supplementing the existing schema
In addition to mapping existing data sources into the central data repository, one
may want to supplement the current schema with additional information. The
central data repository provides information on several different system
management disciplines (for example, performance management, inventory, and
software distribution). One may have the requirement of reporting additional
metrics that the current schema does not provide with the existing discipline (for
example, process level server performance detail in addition to server level
performance information) or one may want to provide an additional discipline that
is not yet defined.

The generic schema of the central data warehouse, based on the Common
Information Model (CIM) data model, makes it easy to define additional different
metrics in an existing discipline. The simplest case of this is to add a metric to an
existing data object. In the central data warehouse, the data table is keyed by the
metric ID. It is easy to add a new metric to the metric ID table, and then start
using that metric in the data table.

One may want to create additional disciplines into the central data repository. For
example, one may want to add financial data to the inventory data already
residing in the repository. By creating additional tables in the repository with
similar keys, one would be able to report on both the inventory and finance
information, with easy-to-define database queries. This also enables one to take
advantage of data marts, which are described in Chapter 6, “How to create data
marts” on page 179.

The following section is an example of adding tables and fields to the existing
schema.

Case study 2 - AIS
The point of the second case study is to go through all the steps to give the
reader an experience in loading data from a source that is outside what Tivoli will
provide. This data can consist of any data the user feels should be reported on
through the Tivoli Enterprise Data Warehouse.

The data for the ABC Information Services (AIS) case study consist of TEC
events that are summarized by host by hour. Therefore, each row in the data
source will consist of the host name, the hour start, the hour end, the severity,
and an event count.

Note: This case study is actually taken from a real customer implementation.
But honoring the customer’s request, we keep the name confidential.
130 Introduction to Tivoli Enterprise Data Warehouse

This data can be used similarly to how the TEC event TDS Guide was used and
to generate reports similar to the following, plus many more:

� Top ten report showing the ten hosts with the highest event counts. This
report can be generated for each time period.

� Worst weekday report where the data can be summarized by day to show the
heaviest days measured by events.

� Severity breakdown report that breaks down the count of events by severity
over the time frame reported on.

The data is used as a source, and how the data is collected into that source is
beyond the scope of this study. How the data moves from the source through the
CDW and into the data mart is the scope of this study.

5.2 Methodology
The methodology used in both of the case studies was based on the Enabling an
Application for Tivoli Enterprise Data Warehouse, GC32-0745, (referred as the
Enablement Guide hereafter). Chapter 2 of the manual describes the process of
planning for the extract, transform, and load (ETL) process. The process has 14
steps. The first ten steps will be described in this chapter. The last four steps, in
which the creation of the data marts and are discussed, are in Chapter 6, “How
to create data marts” on page 179.

The intended audience for this manual is application programmers who want to
use Tivoli Enterprise Data Warehouse to store and report on their application’s
data. This covers both groups of people who want to map existing data sources
to the current schema, and those who want to add to the schema.

There are two case studies that follow. The first case study takes advantage of an
existing data schema in the central data repository. This example is useful for
those who may have several different respositories of the same general type of
information. By mapping all these repositories to the central data repository,
common reporting of the data can take place. Case study one contains server
performance (utilization) data from a non-Tivoli data source, and maps the data
onto a prototype common repository. The current repository is called Server
Resource Management (SRM).

The second case study extends the current schema by adding additional
database tables of related information to existing data tables. This example is
useful for those who want to move all their system management data into the
central data repository, but where there is currently no schema defining that
 Chapter 5. Integration of application data to central data repository 131

specific data. Case study two contains server event data that comes from the
Tivoli Event Console (TEC). The current repository is called ABC Information
Systems (AIS). AIS is further described in Chapter 6, “How to create data marts”
on page 179.

The following sections discuss the first ten ETL steps, and specific details as they
relates to SRM and AIS. For consistency, this manual will show actual screen
images and examples of only the AIS installation. One can assume that the SRM
installation is similar, with significant exceptions noted.

5.3 Following the Enablement Guide steps to ETL
In the Enablement Guide Chapter 2, “Planning for the extract, transform, and
load process”, there are recommended steps for enabling your application for the
Tivoli Enterprise Data Warehouse. These steps were followed to enable a new or
existing data source, with the only real exception being step 5, installing the Tivoli
Enterprise Data Warehouse and at least one application, which was performed
before any other steps. This provided a better understanding of the product and
what was to be expected from the process. It also provided the needed directory
structure and allows the study team to reference the existing application for
guidance on such things as naming conventions and ETL coding.

5.3.1 Step 1: Define the data to be extracted
The AIS data consists of counts of TEC events that are summarized by the host
by hour. Therefore, each row in the AIS data source will consist of the host name,
the hour start, the hour end, the severity, and an event count. The SRM data
consists of performance data that are summarized by the host by hour. The AIS
and SRM data was created outside the scope of this study. What you gain from
this study is how to use any source to feed data into the Tivoli Enterprise Data
Warehouse. The AIS data can be used for reports such as the hours with the
most events across an organization, top ten hosts with the most events, and also
the data can be rolled up to show these numbers over different time frames. The
SRM data can be used for reports such as the hours where the CPU, memory, or
disk values are over a certain threshold, regardless of platform. This data is
relatively simplistic but it allows the user to not be bothered with understanding
the data. Instead the user can concentrate on the method for integrating the data
into the Tivoli Enterprise Data Warehouse.

Note: The scripts used in these case studies can be found in Appendix B,
“Scripts” on page 303. They can also be downloaded from the Redbooks Web
site. For downloading instructions, please refer to Appendix C, “Additional
material” on page 365.
132 Introduction to Tivoli Enterprise Data Warehouse

5.3.2 Step 2: Familiarize yourself with the schema
The second step is to familiarize yourself with the Tivoli Enterprise Data
Warehouse generic schema and how the static, or dimensional, data is common
to all applications. This is accomplished by referencing the Enablement Guide
appendices for the data model diagrams of the Tivoli Enterprise Data Warehouse
combined with working with tables once the product is installed. This will take
some time and should be addressed thoroughly. The better one understands this
schema the better the decisions one will be able to make for this integration.

5.3.3 Step 3: Complete data enablement template
This step is where the new source data gets mapped into Tivoli Enterprise Data
Warehouse. This planning step is crucial to the success of the entire process.
Once complete the implementation process picture starts to come together. This
template will allow you to know the static data requirements the new source will
have as well as provide a view of the common data to be used.

Given how the data for this case study is at a very basic grain, the data template
was relatively easy. However, this still took time to ensure there was a clean
mapping of the data. It also provided the one-time static data that would need to
be loaded before the hourly data could be applied. The importance of this step
will be seen in greater proportions as the process continues.

5.3.4 Step 4: Review naming conventions of the Enablement Guide
As stated at the beginning of this case study, the Enablement Guide needs to be
completely read and understood. The naming conventions are considered at this
point so that fewer modifications will need to be done later in the process. By
knowing the naming convention now, the names should not need to be adjusted
later. Please review the Enablement Guide Chapter 5, as it discusses the
conventions is greater detail, and Section 6.3.1, “Data warehouse terminology”
on page 183 of this document for a brief overview of the naming convention.

For illustrative purposes of this manual, AIS and SRM were chosen as the
qualifiers for the data.

5.3.5 Step 5: Install at least one application additional application
Performing an installation of the Tivoli Enterprise Data Warehouse and one Tivoli
application (Distributed Monitoring) that is shipped with ETL was done prior to
beginning this process. This provided a better understanding of the product and
what was to be expected from the process. It also provided the needed directory
structure and allows the study team to reference the existing application for
guidance on such things as naming conventions and ETL coding. If the
 Chapter 5. Integration of application data to central data repository 133

installation was not completed earlier in this process, then it should be completed
at this time. Please refer to Chapter 3, “Installation and configuration” on page 47
for installation instructions for Tivoli Enterprise Data Warehouse, and relevant
application documentation for the Tivoli application that you install, besides Tivoli
Enterprise Data Warehouse.

5.3.6 Step 6: Insert the one-time static data into the CDW tables
As mentioned in Section 5.2, “Methodology” on page 131 and in the Enablement
Guide, the Tivoli Enterprise Data Warehouse utilizes dimensional data to provide
descriptive information about the factual information. The dimensional data must
be loaded initially.

Some of this data will need to be loaded before the standard ETL process can
complete successfully. The data template provides the framework for this data.

Tivoli provides an example script to assist with this initial load; however, as a
variation, we loaded the data through direct inserts, as in Example 5-1 and
Example 5-2 on page 135, and text file imports as in Example 5-3 on page 135.
By loading the data without the use of the Tivoli script, we demonstrate the
flexibility of the Tivoli Enterprise Data Warehouse design.

Example 5-1 Sample static loading commands

db2 => insert into twg.attrtyp values ('AIS_EVT_SUM_HRLY','AIS Event Summary by
Hour')
DB20000I The SQL command completed successfully.
db2 => insert into twg.mgrptyp values ('AISEVT','AIS Event Data')
DB20000I The SQL command completed successfully.
db2 => insert into twg.mgrp values('EVTCNT','AISEVT',null,'AIS_Event_Hrly_Data'
)
DB20000I The SQL command completed successfully.
db2 => insert into twg.msrc values ('TEC',null,'AIS-Tivoli Enterprise Console')
DB20000I The SQL command completed successfully.
b2 => insert into twg.msmttyp values (68,'QTY','TEC','AIS_Events','AIS-Number o
f TEC events')
DB20000I The SQL command completed successfully.
db2 => insert into twg.msmtrul values ('IP_HOST',49)
DB20000I The SQL command completed successfully.
134 Introduction to Tivoli Enterprise Data Warehouse

Example 5-2 Sample static loading commands

db2 => insert into twg.mgrpmbr values ('EVTCNT','AISEVT',31)
DB20000I The SQL command completed successfully.
db2 => insert into twg.centr values ('AIS',null,'US',22,'AIS Default Center')
DB20000I The SQL command completed successfully.
db2 => insert into twg.cust values (61,null,'US',22,'AIS','AIS-ABC Information
Services')
DB20000I The SQL command completed successfully.

To gather the data from the source for loading the host name and customer name
into the customer tables, we first selected the distinct host name combined with
the text that we want to be the customer ID, and stored this data into a comma
separated file (CSV), as shown in Example 5-3. The query to build the data was
executed on the source, and the data was moved to where it could be loaded into
the CDW.

Example 5-3 Sample select to gather data to import into static tables

D:\SQLLIB\BIN>db2 "select distinct 'AIS'||','||hostname from
inv.stage_ais_sp_hr
ly_evt_sev" > f:\tmp\new_cust_ais_data.csv

The data was then imported into the DB in an append mode so that the data
would be added to the table and allow the existing data to remain. The procedure
for doing this may depend on the RDBMS platform being used; therefore, the
syntax is not shown here.

The center tables were populated using the same method.

Note: In Example 5-1, the number 68 was inserted into the table; however,
there is a database trigger that converts any number inserted into the table to
the next available sequence number. This ensures the ID will be unique. The
unique number generated for this row was 31. This number will be referenced
later in this process. In contrast, the number 49 inserted into the twg.msmtrul
table did flow into the table. Therefore, work had to be done to ensure that this
was a unique ID.

Note: In example 5.2, the number 31 was inserted into the table, however,
there is a database trigger that converts any number inserted into the table to
the next available sequence number. This ensures the ID will be unique. The
unique number generated for this row was 73. This number will be referenced
later in this process.
 Chapter 5. Integration of application data to central data repository 135

Once the static data has been loaded, the data should be reviewed to make sure
that it is in the tables and format expected. Note that character strings stored in
the table are case sensitive.

5.3.7 Step 7: Determine the incremental extract columns
To reduce the time and effort for loading the data, care should be taken to only
load new data. A method will need to be developed to prevent the overhead of
loading duplicate data. There are two main methods of doing this: One is storing
date information and only loading data beyond the date of the last loaded date.
The second is using an incrementing unique ID, and only loading data where the
ID is greater than the largest loaded ID. The date method leaves the possibility of
getting late data that would not load properly. Therefore, we decided on the
incremental ID method.

This case study source data needed to be altered to contain a column that would
store a sequence ID for each row of data that was input. This was accomplished
by adding a column to the source data with a trigger that would populate the
column with a value selected from a sequence on inserting new data into the
table.

Taking into consideration that the already existing data would need to be pulled
into the CDW, we simply update all the existing rows in the data source with the
ID of 100. This number is arbitrary, as long as the sequence will start greater
than this number, meaning our sequence will start at 101. This satisfies our
needs because we will load the CDW with all data having an ID greater that 0 on
the initial load. Every row that is inserted into the source data will get a number
greater than 100 and this number will increment allowing us to store the greatest
ID we loaded this run and then we will know where to load from the next run.

It is important to understand that the source data was altered, but in a way that
should not affect any existing applications utilizing the data. Also, it is important
to understand that this application ETL will store the largest ID that has been
loaded, and will only load data with an ID greater than the stored ID.

5.3.8 Step 8: Review timestamps for all source data
The CDW requires that all date and time information be stored in universal time
code (UTC). Therefore, if source data spans multiple time zones, some
adjustments may need to be made.

Note: Depending on options set in the SQL session, the text file may need to
be cleaned to have header and/or footer lines removed.
136 Introduction to Tivoli Enterprise Data Warehouse

� These adjustments could be made in the source, perhaps by adding another
date and time column and converting the existing date and time and storing
them in the new column. They could also be made by simply altering the
source data in the existing columns; of course this may force changes to all
the existing applications using the data.

� These adjustments could be made by the source ETL as it moves the data
into the CDW, where the changes are made can be decided by the
development team, based on the environment.

� These adjustments could also take place inside the CDW. Simply by utilizing
the Tivoli Enterprise Data Warehouse’s ability to use center and/or customers
tables in conjunction with the time zone table (see the data enablement
template). This will allow the data to be stored in original form and the
adjustments to be made by either the target ETLs, data mart, or Report
Interface.

The source data in the AIS study is stored as a UTC timestamp, and the time
zone is readily available. The time zone information was input in Example 5-2 on
page 135; therefore, this step was effectively completed by utilizing the data
enablement template. The source data in the SRM study is not stored as a UTC
timestamp. An assumption was made that all the SRM servers were in the same
time zone, and identical time zone information was put into the CDW. One of the
previously mentioned resolutions would have to be implemented into SRM in
order to remove this time zone assumption.

5.3.9 Step 9: Review and apply common task
A task for this step is to make sure the metadata is complete for the new source.
This was accomplished by filling out the data template and inserting the static
data in previous steps; however, this is an excellent time to review the data and
ensure its quality and relationships.

Once the static data is complete the implementation can begin.

Begin implementation
In the study this is where we chose to transition from concept to reality, and begin
implementation of the new application. This is to prepare for coding the source
ETLs in Section 5.5.11. Remember, DB2, Data Warehouse Center, Tivoli
Enterprise Data Warehouse, and at least one application have already been
successfully installed.

To begin, open the DB2 control center, choose Tools from the menu and then
select Data Warehouse Center. This will open the Data Warehouse Center
where the following steps can be carried out.
 Chapter 5. Integration of application data to central data repository 137

Create subject areas
First the DB2 Data Warehouse Center subject areas must be created for the new
application. See Figure 5-1 for an example of the screen displayed for the subject
areas. The AIS_Protorype_v.1.1_Subject _Area is the newly created subject
area for this study.

Figure 5-1 Data Warehouse Center subject areas

To create a new subject area do the following:

1. Open the Data Warehouse Center and expand subject areas as seen in
Figure 5-1.

2. Right click Subject Areas, which will produce a sub-menu.

3. Choose Define from the sub-menu, and a dialog box appears for the new
subject area providing fields for name, administrator, description, and notes.

4. Fill in the subject area name, description, and notes as appropriate,
remembering to follow any naming conventions in place (see Figure 5-2 on
page 139). For this study the administrator of default DWC user was
appropriate; therefore, no changes were made.

Note: When creating new items, expand other areas that makes it easier to
follow naming conventions in place.
138 Introduction to Tivoli Enterprise Data Warehouse

Figure 5-2 Defining a new subject area

Create a warehouse source
Once the subject area is complete, a warehouse source must be added. The
process to create a warehouse source is similar to creating a subject area.

1. Open Data Warehouse Center and expand Warehouse Sources, then
highlight and right click Warehouse Source, which produces a sub-menu.

2. Follow the menu path to Define -> DB2 Family -> DB2 UDP for Windows
NT, as in Figure 5-3 on page 140.
 Chapter 5. Integration of application data to central data repository 139

Figure 5-3 Sub-menus for defining a new source

3. This will result in a dialog with five tabs, as in Figure 5-4.

Figure 5-4 Warehouse source define and properties dialog
140 Introduction to Tivoli Enterprise Data Warehouse

4. On the initial tab (Warehouse Source) fill in the name, description, and notes
as needed. For this study the administrator of Default DWC user was
appropriate; therefore, it was not changed.

5. The Agent Sites tab may need to be configured to match the environment.
Note that for the agent site to be populated with the desired agent site, DB2
must be able to reach the agent. ODBC will need to be set up for this tab to
show the agent site.

For this study the data was on the server; therefore, the default DWC agent
site served as the agent, as in Figure 5-5.

Figure 5-5 Warehouse source definition - Agent Sites tab

6. The Database tab will need to be configured. Please see Figure 5-6 on
page 142.

The first option is to choose the database schema name from a list of
previously entered database schemas or type in the schema name if it does
not exist in the list. We found the drop-down list slightly misleading in that it
only contains previous entries, and it is not obvious that any schema not in the
list can simply be typed in.
 Chapter 5. Integration of application data to central data repository 141

Figure 5-6 Warehouse source definition - Database tab

7. The next option is the system/host name of where the database is located.
This will need to be configured to the host where the source data can be
reached. Again this is through ODBC, therefore the ODBC connection should
already exist.

8. The last two options are for the database user name and password to access
the source data. These will need to be filled in appropriately.

9. The Tables or Views tab is used to assign the table name(s) or view name(s)
to this source. Please see Figure 5-7 on page 143.

Expand the tables or views by clicking the plus (+) sign beside the appropriate
folder in the Available tables and views area.
142 Introduction to Tivoli Enterprise Data Warehouse

Figure 5-7 Warehouse source definition - Tables and Views tab

10.When clicked, a new dialog appears to provide specifics on retrieving tables
and views, as in Figure 5-8.

Figure 5-8 Warehouse source definition - Filter to retrieve tables or views
 Chapter 5. Integration of application data to central data repository 143

11.After the schema and table are provided the user can click OK.

12.Once the tables are displayed, as in Figure 5-9, the user will need to highlight
the table name(s) in the left window and then click the Add button, which is
denoted with the greater than (>) sign. This will move the table or view to the
right side of the screen into the Selected Tables and Views area.

Figure 5-9 Warehouse source definition - Tables and Views tab

13.The last tab, the Security tab, did not need to be adjusted for the study,
therefore, no adjustments were made. Please see Figure 5-10 on page 145.

Important: If the database user name provided has system or
administrator rights, the user can click OK and all the tables views can be
reached.

However, if the database user does not have rights to the database, this
will fail. Attempts were made to only provide schema names and limits to
tables the supplied user name had rights on, but all attempts failed.

What will work is if both the schema name and specific table are named
and can be reached. This causes the user to add one table at a time if the
user does not have administrator rights.
144 Introduction to Tivoli Enterprise Data Warehouse

Figure 5-10 Warehouse source definition - Security tab

Create a warehouse target
Once the warehouse source is created a warehouse target will need to be
created. The steps for creating a warehouse source can be used to create a
target, with the obvious change of right clicking warehouse targets instead of
sources.

Create a process
Now that the subject area, source(s), and target(s) exist for the new subject, the
actual process for this subject will need to be created. This can be done by
expanding one of the already existing subject areas to view the names of the
processes. This can be used to assist in following the naming standards.

1. Right click Process in the left window of the Data Warehouse Center, then
choose Define from the resulting pop-up menu. This will produce a dialog as
in Figure 5-11 on page 146.
 Chapter 5. Integration of application data to central data repository 145

Figure 5-11 Defining a process

2. The Administrator field was left alone for the case study and will need to be
changed to match the user’s environment.

3. The Description and Notes fields can be filled in as needed; then click OK.

Create a step inside the process
Now to add content to the process:

1. Right click the new process in the left window and follow the menu path to
Define -> User defined programs and Transformers -> Tivoli -> SQL
Script, similar to Figure 5-12 on page 147.
146 Introduction to Tivoli Enterprise Data Warehouse

Figure 5-12 Sub-menu to define a sqlscript step

2. This produces a dialog to configure the process, which has four tabs as in
Figure 5-13.

Figure 5-13 Definition of process step - User Defined Program tab
 Chapter 5. Integration of application data to central data repository 147

3. The first tab, as in Figure 5-13 on page 147, contains the name, description,
and notes and should be filled in appropriately. The naming of this process
step should be chosen carefully, again referencing the Enablement Guide to
review how the process steps should be named.

4. The second tab, as in Figure 5-14, is the Parameters tab, which contains the
details about the process step. The first field is the command file. This will be
pre-filled with the sqlscript.sh, which was filled when the user selected SQL
script from the pop-up menu. This script is covered in-depth in the
Enablement Guide and is the application programmers interface (API) for the
ETLs.

Figure 5-14 Definition of process step - Parameters tab

5. The AVACode will be the product code or AVA code for this product, which for
IBM products will be the three-digit IBM AVA code. For non-IBM product
integrations an AVA/product code will need to be generated. It should contain
two alphabetic digits and one numeric digit that will form a unique identifier for
this product.

6. The script name will be the actual script used by the sqlscript.sh. This script
does not have to exist at this time in the process. This script is the ETL that
the user will need to create or copy and edit in Section 5.3.10, “Step 10: Code
the source ETL” on page 151. This script must be created in the appropriate
directory structure as described in the Enablement Guide and will have an
extension of .db2. However, in the dialog the extension is left off as in
Figure 5-14. For example, if the script name was
148 Introduction to Tivoli Enterprise Data Warehouse

ai1_c10_s015_extractData.db2 on the operating system, in the Windows
dialog the script name will be labeled ai1_c10_s015_extractData.

7. The remaining fields are the variables used for the sqlscript.sh to determine
the target and source, which do not need to be adjusted.

8. The next tab is Column Mapping, which is not available for this type of
process, as seen in Figure 5-15.

Figure 5-15 Definition of process step - Column Mapping tab

9. The last tab is Processing Options and can be used for debugging options.
Click OK to complete the process step creation.

Tip: The variables passed to sqlscript.sh from the Parameters tab
determine which database to use as target and source, not individual
tables. Notice that sqlscript.sh does not refer to the Warehouse Sources or
Warehouse Targets to decide which tables to update; instead this is
controlled by ETL script written by the user. Therefore, the warehouse
source and target only need to be in the same database as the tables that
will be affected. This is important when debugging, because results may
not reflect exactly what the warehouse center is displaying. Although for
consistency, the correct tables should be named as sources and targets.
 Chapter 5. Integration of application data to central data repository 149

Figure 5-16 Definition of process step - Processing Options tab

Creating the directory structure
The directory structure will need to be in place for the new application. When the
Tivoli application (Distributed Monitoring) was installed at the beginning of this
process, a directory was created to contain the application’s ETLs. This was
chosen by the user at time of install, and could be similar to C:\TEDW\TWH\apps.
This structure’s top directory will be referred to as %TOPDIR%. This can be
different depending on the configuration of the machine and/or where it is
installed.

In this study the %TOPDIR% is simply c:\twh\apps. Underneath this directory
there will be a directory for each product installed, using the product code. For
the new product a directory will need to be created named as the product code.

Below the product code directory a version directory will need to exist and this
directory must start with the letter v. After the version directory, the structure will
need to be created exactly as the existing application. This can be done by using
Windows Explorer to copy and paste the existing structure from the installed
application to the new version directory. See Figure 5-17 on page 151 for a
sample of the directory structure for the DM application.
150 Introduction to Tivoli Enterprise Data Warehouse

Figure 5-17 Example of directory structure for DM application

Once this is created on the operating system, it is time to code the ETLs.

5.3.10 Step 10: Code the source ETL
The ETLs are by far the most involved steps in this process and should be
viewed as a development process. Therefore, proper development
methodologies should be utilized, such as working in a lab environment before
attaching to production data, using proper testing procedures, and possibly
utilizing a version control system.

Generally the best way to start is to copy an existing ETL that is the closest
match to the new ETL and adapting it to meet the user’s needs.

The sqlscript.sh ETLs use a binary provided by Tivoli Enterprise Data
Warehouse to parse and process the ETL script. This binary is the SQL
execution engine. The Enablement Guide contains a detailed description of the
use of the SQL execution engine, which is included below.
 Chapter 5. Integration of application data to central data repository 151

Using the SQL execution engine
An extract, transform, and load process that reads data from a source application
and places the data into the central data warehouse database is called a central
data warehouse ETL. A central data warehouse ETL is developed within, and
scheduled and run by, the IBM DB2 Data Warehouse Center.

Due to the distributed nature of Tivoli software applications and the Tivoli
Enterprise Data Warehouse, some features required for central data warehouse
ETL processes are not supported by the Data Warehouse Center. Specifically, a
central data warehouse ETL must update the source database (application
database) with information on which records are already loaded into the
warehouse. SQL steps in the Data Warehouse Center are not designed to offer
the facility to update the source database during the ETL process.

Tivoli Enterprise Data Warehouse provides a tool called the SQL execution
engine, which augments the DB2 Data Warehouse Center functionality. It
consists primarily of a C program (platform-dependent) that allows the caller to
pass in a series of SQL statements and have them run on any ODBC data
source. A wrapper script is provided with the C program to make it easily callable
from a Data Warehouse Center ETL process step.

The SQL execution engine provides the following benefits to the ETL developer:

� Allows updates to source databases

� Significantly improves the run-time performance of SQL statements

� Reduces the time required to install an application’s ETL scripts on the Data
Warehouse Center machine

� Makes ETL processes defined in the Data Warehouse Center simpler

You can also use the SQL execution engine when working on data mart ETL
processes (moving data from the central data warehouse to a data mart). This
section discusses central data warehouse ETL exclusively because a majority of
issues encountered during data mart ETL development are similar to the central
data warehouse ETL process. ETL developers should run as much central data
warehouse ETL (and data mart ETL) SQL as possible using the SQL execution
engine instead of using the DB2 Data Warehouse Center SQL steps. The rest of
this section describes how to set up the SQL execution engine in DB2 Data
Warehouse Center and how to use it in a central data warehouse ETL process.
152 Introduction to Tivoli Enterprise Data Warehouse

SQL execution engine overview
The SQL execution engine and its wrapper script are installed by the Tivoli
Enterprise Data Warehouse installation software on the machine that hosts the
Tivoli Enterprise Data Warehouse control server. If the Tivoli Enterprise Data
Warehouse central data warehouse or Tivoli Enterprise Data Warehouse data
marts are installed on other systems, then the SQL execution engine and its
wrapper script are installed on those systems also.

The execsql.exe and sqlscript.sh files are placed in the TWH_TOPDIR\tools\bin
directory along with bash and other executable programs required by Tivoli
Enterprise Data Warehouse, where TWH_TOPDIR is the environment variable
that represents the base installation directory for Tivoli Enterprise Data
Warehouse. The version of the bash shell provided with Tivoli Enterprise Data
Warehouse is assumed to be the only version of bash to be used with ETL
scripts. The installation program extends the PATH environment variable to
include the TWH_TOPDIR\tools\bin directory.

During a Tivoli Enterprise Data Warehouse installation, the DB2 Data
Warehouse Center is automatically modified to include SQLScript as a
user-defined program or transformer. This is accomplished by importing a
user-defined program description into the Data Warehouse Center. To view the
user-defined program:

1. From the Data Warehouse Center, expand the Administration folder.

2. Expand the Programs and Transformers folder.

3. Expand the User-Defined Program and Transformers folder.

4. Expand the Tivoli folder. The SQLScript program is listed along with rollup
and runReport. For information on rollup and runReport, see “Aggregation
and rollup” on page 44 and “Report scheduling” on page 57 of the
Enablement Guide.

The SQL execution engine handles any type of SQL statement. The SQL can be
run in one of three places:

� On the source data source (application database)

� On the target data source (central data warehouse database)

� On both the source and target data sources using the cross-data source
INSERT INTO SQL construct

To run SQL statements, the SQL execution engine makes ODBC calls on ODBC
drivers. ODBC data sources that correspond to source and target databases
must be defined on the machine where the SQL execution engine runs.
 Chapter 5. Integration of application data to central data repository 153

SQL execution engine setup
The execsql.exe and sqlscript.sh files that compose the SQL execution engine
must be placed in a path that can be located by the DB2 Data Warehouse
Center. In a typical Tivoli Enterprise Data Warehouse installation, the
sqlscript.sh, execsql.exe, and bash programs are located in the
TWH_TOPDIR\tools\bin directory. After the installation of Tivoli Enterprise Data
Warehouse, this directory is placed in the PATH environment variable.

The ETL developer must write one or more custom scripts that contain one or
more SQL statements to be run by the SQL execution engine. The developer can
use a text editor of choice to develop the custom script, or scripts. The SQL to be
run must fit one of the three types described in “SQL execution engine overview”
on page 23 of the Enablement Guide.

After the custom scripts are developed, they must be put in a particular directory
path to work with the DB2 Data Warehouse Center and the SQL execution
engine. The following directory path simulates the path to an application’s ETL
installation. The application ETL scripts are installed by the Tivoli Enterprise Data
Warehouse installation program using application-supplied media that contains
the relevant scripts. The scripts are installed in the following location:

TWH_TOPDIR\apps\product_code\vversion\etl\sql\yourCustomScript

Where:

TWH_TOPDIR is the base installation directory for Tivoli Enterprise Data
Warehouse.

product_code is the code that uniquely identifies an application. IBM and Tivoli
software applications must use the three-character code assigned by IBM to a
product. Third-party applications must also use a three-character code that
includes at least one number. This code is used in log messages and other
places where an application must be uniquely identified.

version is an integer value representing the version of the ETL scripts (for
example, 110).

yourCustomScript is the script name. The script name must use the following
naming convention, which is also defined in Chapter 5, “Naming conventions” on
page 65 of the Enablement Guide.

part1_part2_part3_part4.part5

Note: The SQL execution engine does not work with network mounted drives.
SQL scripts run by the SQL execution engine must be on a local drive.
154 Introduction to Tivoli Enterprise Data Warehouse

Where:

part1 is the product code for the application.

part2 is the process ID, where cnn indicates a process where the target is the
central data warehouse and mnn indicates a process where the target is a data
mart. The two-digit number represented by nn is a unique process number
assigned by the application for its ETL processes. The first process should be
numbered starting with 05. Subsequent processes should add 5 to the initial
number (05, 10, 15, and so on). Lower to higher numbers in part 2 of the script
name indicates the order in which the script runs.

part 3 is the step name where snnn represents a particular step in the process.
The first step in a process should start with 010 and subsequent steps should
increment the step count by 10.

part4 is the step description. It is recommended that the table name being
populated be supplied as the description. Component tables are represented by
a name like X _Comp. Measurement tables are X_Msmt. Dimension and fact
tables are Dim_tablename and Fact_tablename, respectively. With the
execsql.exe program you can populate many tables at the same time, so an
extension name based on a target table might not always make sense.

part5 is a suffix that describes the database vendor type to be used. The possible
suffix values are:

� .db2: DB2

� .oracle: Oracle

� .sybase: Sybase

� .informix: Informix

� .mssql: Microsoft SQL Server

� .tsm: Tivoli Storage Manager ODBC driver

When the SQL execution engine runs, part5 of the name (including the period) is
excluded from the custom script name passed as a parameter to the program.
The execsql.exe program automatically generates a suffix based on the ODBC
data source definition and appends this value to the custom script name at run
time.

If no matches to the suffix list are found, a log message is generated by the
execsql.exe program and the execsql.exe program attempts to use the custom
file without any extension.
 Chapter 5. Integration of application data to central data repository 155

The execsql.exe program checks the vendor type of the ODBC data source and
looks for a script named as follows:

� scriptname.db2 for DB2

� scriptname.oracle for Oracle

� scriptname.mssql for Microsoft SQL Server

� scriptname.sybase for Sybase

� scriptname.informix for Informix

By default, the SQL statements are run against the source data source. The
following control statements can precede any SQL statement in the custom script
that you want run:

� --#INSERT_INTO_TARGET

Requires the words INSERT INTO table (followed by a SELECT statement) in
the SQL statement, where table is the name of a table that exists on the target
data source. Otherwise, this command is ignored and the SQL statement is
run entirely on the source data source.

If the table name is not qualified with the schema name (for example,
eco.mytable), the value for user will determine the schema name used in
Oracle, DB2, and Informix. For Sybase and MSSQL, the SQL execution
engine uses the default table accessible by the user.

� --#INSERT_INTO_SOURCE

Evaluates the following INSERT INTO table SQL statement, pulling data from
the TARGET data source and inserting it into the specified table in the
SOURCE data source.

� --#EXECUTE_AT_TARGET

Runs the following SQL statement at the target data source instead of at the
source data source (default).

� --#IGNORE_ERROR

Ignores any database error messages returned by the following SQL
statement. The error is still logged but it does not prevent subsequent SQL
statements in your custom script from running. See Example 5-4 on
page 157.

Note: When setting up warehouse sources in the Data Warehouse Center,
specify Generic ODBC in the Warehouse source type list. This enables you to
have a single step that can read from any ODBC data source; for example,
DB2, Oracle, SQL Server, Sybase, or Informix.
156 Introduction to Tivoli Enterprise Data Warehouse

Example 5-4 IGNORE_ERROR example

--#IGNORE_ERROR
drop table cto.stage_example
;
create table cto.stage_example like cto.template_stage_example
;

Note that system errors such as running out of memory cannot be ignored.

� --#EDIT_USING perl convert.pl

Used in conjunction with the --#INSERT_INTO_* directives. Allows data from
the SQL SELECT to be written into a temporary file in CSV format. The Perl
script provided after the directive is called. A base temporary file name is
provided in the following format:

VWS_LOGGING/execsqlTMP.data_source.nn

Where:

VWS_LOGGING is the DB2 logging directory.

data_source is the source ODBC data source name.

nn is an integer used to separate multiple --#EDIT_USING directives in a
script (starts at 0 and increments per directive).

The script is then required to append (preedit) to the temporary file name to
determine the actual file name to read from. The script is also required to
append (postedit). to the base temporary file name it outputs the altered data
to. The *.postedit file must also be in CSV format. To provide for handling of
double quotes, an escape character (\) is inserted immediately prior to the
embedded double quote on both *.preedit and *.postedit files. Failure to
account for this in the script could result in damaged data. Note that double
quotation marks are used to contain SQL_CHAR and SQL_VARCHAR
column data. Only SQL_CHAR and SQL_VARCHAR column types are
supported by --#EDIT_USING.

� --#OVERRIDE_TERMINATOR

Changes the default SQL statement terminator from a semicolon (;) to
whatever the first non-white space character is following the directive. The
change is only applied to the current statement. The statement following the
altered terminator is again ended with a semicolon. Example 5-5 sets the
terminator to a $ instead of a semicolon on the current statement only.

Example 5-5 OVERRIDE_TERMINATOR example

--#OVERRIDE_TERMINATOR $
CREATE TRIGGER DMN.CompTyp_Cd_Trig NO CASCADE
BEFORE INSERT ON DMN.stage_comp
REFERENCING NEW AS N
 Chapter 5. Integration of application data to central data repository 157

FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC
IF LOCATE(.,N.Comp_Nm)>0 THEN
IF LOCATE(.,N.Comp_Nm,LOCATE(.,N.Comp_Nm)+1)>0 THEN
SET N.CompTyp_Cd = IP_HOST;
ELSE
SET N.CompTyp_Cd = DMN_HOST;
END IF;
ELSE
SET N.CompTyp_Cd = DMN_HOST;
END IF;
END

Manually testing the custom script
Before attempting to run your custom script from the Data Warehouse Center,
run the script manually to validate the script.

Notes:

� Comments are signified by lines that start with two dashes and a character
other than the # symbol.

� You can have two comments for a single SQL statement. For example:

--#IGNORE_ERROR
--#EXECUTE_AT_TARGET
drop table DM.stage_dm_metrics;

� SQL statements in the script must be ended by a semicolon (;). For
example:

INSERT INTO TSM.ADMINS (SELECT ADMIN_NAME FROM ADSM.ADMINS);

� If there is an imbalanced quote condition (failure to close the quote on a
string literal), the SQL execution engine logs an error and stops.

� If there are non-white space characters (excluding comments) following
the final semicolon (for example, an SQL command at the end that is not
ended by a semicolon), a warning message is logged and the SQL
statement is ignored.

� The following directives fail if they are used with parenthetical lists. Do not
use parenthetical lists in the INSERT INTO statement when using these
directives.

--#INSERT_INTO_SOURCE
--#INSERT_INTO_TARGET
--#EDIT_USING
158 Introduction to Tivoli Enterprise Data Warehouse

To run the script manually, start bash from a Microsoft Windows command
prompt. The bash program is installed on your system when the Tivoli Enterprise
Data Warehouse software is installed. Be sure you are using this copy of bash for
your testing.

Enter the following information, where script_name is the name of your custom
script; for example, SPP_c05_s010_extractInvData. (For details on how to name
your scripts, see Chapter 5, “Naming conventions” on page 65 of the Enablement
Guide.)

sqlscript.sh product_code script_name source_db source_uid source_pwd target_db
target_uid target_pw

The SQL in your custom script should run and you should see the results in your
source or target database.

An example ETL script
Example 5-6 shows a partial ETL script taken from the AIS application. This
script was developed for the case study.

Example 5-6 Example of ETL code taken from AIS application

-- Date/Author 3/25/02 CC
-- Description ETL for moving data from the CDW stage tables
-- to the CDW tables.
--
-- Code Sources Copied from spp_c05_s010_extractInvData.db2
-- Adapted to suit needs
-- Parameters (See Data Warehouse Center)
-- Inputs twh_cdw.inv.stage_ais_sp_hrly_evt_sev
-- Outputs twh_cdw.inv.invalid_data (bad data)
-- twh_cdw.twg.comp(good components)
-- Notes This is not complete, but used for case study
-- Project
-- Mod log

-- Move data that does not have a
-- cust or center ids into invalid
-- data table. Filled with text
-- since we do not have all the values.

--#EXECUTE_AT_TARGET
--sample check for invalid data
INSERT INTO inv.invalid_data
SELECT n.hostname,'AIS_NULL', 'AIS_NULL','AIS_NULL','AIS_NULL',
 'AIS_NULL',0,0,'AIS_NULL',0,'AIS_NULL'
 Chapter 5. Integration of application data to central data repository 159

 FROM inv.stage_ais_sp_hrly_evt_sev n
 WHERE NOT EXISTS(
 SELECT 1

 FROM inv.cust_lookup
 WHERE inv.cust_lookup.value = n.hostname

 OR inv.cust_lookup.value = '@')
 OR
 NOT EXISTS(
 SELECT 1

FROM inv.centr_lookup
 WHERE inv.centr_lookup.value = n.hostname

 OR inv.centr_lookup.value = '@')
;
--
-- Need to get the distinct hostname to put into comp for some reason
-- a record in the stage table produces a record in the comp table,
-- which produces 100+ comp of the same hostname.
-- Therefore moving them into another stage of just hostnames
--
--#EXECUTE_AT_TARGET
DROP TABLE inv.stage_ais_sp_host;

--#EXECUTE_AT_TARGET
CREATE TABLE inv.stage_ais_sp_host(hostname VARCHAR(32));

--#EXECUTE_AT_TARGET
INSERT INTO inv.stage_ais_sp_host
SELECT DISTINCT hostname
 FROM inv.stage_ais_sp_hrly_evt_sev;

--
-- Insert data into the twg.comp(component table). This is the real work
-- of the entire script
--
-- This will not duplicate rows because it does a "not exist" in comp table
--
--Note that the insert of IP_HOST may be changed to SPP_HOST by a trigger
-- if the hostname is not fully qualified.

--#EXECUTE_AT_TARGET
INSERT INTO TWG.COMP(COMP_ID, COMPTYP_CD, CENTR_CD, CUST_ID, COMP_NM,
COMP_STRT_DTTM, COMP_END_DTTM, COMP_DS)
SELECT 0 AS Comp_Id,
 'IP_HOST' AS CompTyp_Cd ,
 centr.Centr_Cd AS Centr_Cd,
 c.Cust_ID AS Cust_ID,
 n.hostname AS Comp_Nm,
 current timestamp - current timezone AS Comp_Strt_DtTm ,
 '9999-01-01-00.00.00.000000' AS Comp_End_DtTm,
160 Introduction to Tivoli Enterprise Data Warehouse

 '' AS Comp_Ds
FROM inv.stage_ais_sp_host n,
 inv.cust_lookup cust,
 inv.centr_lookup centr,
 twg.cust c
WHERE n.hostname != ''
 AND 0 = (
 SELECT COUNT(1)
 FROM twg.comp c
 WHERE c.comp_nm=n.hostname
 AND c.comptyp_cd IN ('SPP_HOST', 'IP_HOST')
 AND current timestamp - current timezone >= (c.comp_strt_dttm - 1
day)

 AND current timestamp - current timezone < c.comp_end_dttm)
 AND ((cust.value = n.hostname AND cust.cust_acct_cd = c.cust_acct_cd)
 OR cust.value = '@')
 AND (centr.value = n.hostname OR centr.value = '@')
;

Potential hurdles in coding ETLs
Following are potential hurdles in coding ETLs:

� Any staging table that you drop in the script must be created manually before
the script will complete. The drop will fail and stop the script from executing
unless the IGNORE_ERROR directive is used.

� Prepare for incremental extracts. The Enablement Guide discusses this in
detail in Chapter 3, “Installation and configuration” on page 47. Not doing
incremental extracts can cause several problems, such as no data being
loaded, because it senses no change in source data and/or duplicate data
being loaded into the target.

� When errors occur the Tivoli Enterprise Data Warehouse is configured to
collect data that will not load into the target. It does this using tables named
similar to INVALID_DATA. The user needs to make sure all INVALID_DATA
table columns match the source data that may be inserted. This can cause
the script to stop processing on data that the script has already determined is
invalid.

Testing the ETL
Once the ETL script is ready to be tested through the Data Warehouse Center
then the GUI needs to be set up to test.

To accomplish this, do the following:

1. Open the Data Warehouse Center, and bring up the process in the left
window and the step in the right window.
 Chapter 5. Integration of application data to central data repository 161

2. Right click the step, then choose Change Source from the sub-menu. Then
expand the warehouse sources or targets using the plus sign (+), as in
Figure 5-18.

Figure 5-18 Adding the source

Notice that both targets and sources appear as possible sources. This is
because there may be a need to get data from a target and use the target as
a source.

No matter whether the source is chosen from the list of warehouse targets or
warehouse sources, it is considered a source in this context. Choose the
appropriate source(s) via the product code and expand the tables or views.
These are the sources located in the database where the data will be
retrieved.
162 Introduction to Tivoli Enterprise Data Warehouse

Figure 5-19 Adding the source with expanded tables

3. Highlight the table or view to be used as the source, as in Figure 5-19, and
use the > button located in the middle of the dialog to move the source from
the left pane (available sources) of the dialog to the right pane (selected
sources). See Figure 5-20 on page 164.
 Chapter 5. Integration of application data to central data repository 163

Figure 5-20 Adding the source to the selected warehouse sources and targets

4. Once all the appropriate sources are added click OK. This will produce the
dialog for the step again. It can be dismissed by clicking OK.

5. Once the source has been added the target must be added, which is very
similar to the adding the sources. Right click the step and from the sub-menu
choose Change Target.

6. Then expand the warehouse targets or sources using the plus sign (+) as in
Figure 5-21 on page 165.
164 Introduction to Tivoli Enterprise Data Warehouse

Figure 5-21 Adding a target to a step

7. Choose the appropriate target(s) via the product code and expand the tables
or views, as in Figure 5-22. These are the targets located in the database
where the data will be stored.

Figure 5-22 Adding a target to a step with expanded tables

Highlight the table or view to be used as the target and use the > button
located in the middle of the dialog to move the target from the left pane
(available targets) of the dialog to the right pane (selected targets). Please
see Figure 5-30 on page 172.
 Chapter 5. Integration of application data to central data repository 165

Figure 5-23 Adding target to step with target in selected warehouse targets

8. Once all the appropriate targets are added click OK. This will produce the
dialog for the step again. It can be dismissed by clicking OK.

Now the process step must be scheduled to let the Data Warehouse Center
know when, and how often, the step should run.

9. Right click the step then choose Schedule from the sub-menu. This displays
a dialog, as in Figure 5-24 on page 167, for scheduling the step.

Tip: At this point the Data Warehouse Center screen may not reflect
changes. To refresh the screen right click Process in the left tree view of
the processes and choose Refresh.
166 Introduction to Tivoli Enterprise Data Warehouse

Figure 5-24 Example of schedule dialog

10.Choose the interval for running this step, the frequency, day, start date, and
time, as well as end date. The options are shown through drop-down boxes or
radio buttons and are self explanatory.

11.Once the options are set click the Add> button to add this step to the
schedule. Click OK to complete the setup of the schedule.

The step must now be put into production mode. Once the step is in
production mode changes are not allowed until the step is put back into
development or test mode. This is to prevent an inadvertent change to
production jobs.

12.To put the step into production mode, right click the step and follow the
sub-menu path Mode -> Production, as in Figure 5-25 on page 168.
 Chapter 5. Integration of application data to central data repository 167

Figure 5-25 Changing modes on steps

Once the mode has been changed, the user can go to the work-in-progress
screen to see the results of the executed steps and run the scheduled steps.

13.At the Data Warehouse Center main window, choose the Warehouse option
from the menu. Then choose Work in Progress from the sub-menu, as in
Figure 5-26 on page 169.
168 Introduction to Tivoli Enterprise Data Warehouse

Figure 5-26 Data Warehouse Center main menu option of Work in Progress

Figure 5-27 on page 170 shows an example of the Work in Progress main
screen. In the example only one step has been scheduled. The icon beside
the step name indicates the state of the scheduled step. The clock, as shown,
means that the step is scheduled, while a red X indicates the last time the
step executed it failed. Finally a green check mark would show the step ran
successfully.
 Chapter 5. Integration of application data to central data repository 169

Figure 5-27 Example of Work In Progress window

14.To test the step, run the scheduled step by right clicking the step to produce
the sub-menu and choose Run Now, as in Figure 5-28.

Figure 5-28 Work in Progress sub-menu

Tip: A very common problem is looking in the Work in Progress screen to
find a step and the step not being there. This is generally one of two errors.
The step can be in test or development mode or, if the step has been
scheduled for a time and that time has passed, the Work in Progress
screen may not show it.
170 Introduction to Tivoli Enterprise Data Warehouse

If the step is successful the step will then be displayed with the described green
check mark. However, if the step is unsuccessful then an error dialog will be
displayed. This dialog will provide error codes and some text; however, the text is
very limited. A much more descriptive log can be found on the DB2 install drive
under the logging directory in a file with the step name and extension of .log. For
the case study the logging directory is d:\SQLLIB\logging.

Figure 5-29 displays another example of the directory containing the log file.
Note that this was done on another box and does not match the case study
directory structure. Again, the directory structure is dependant on the DB2 install.

This log is very useful in determining where the step script failed. It will display
the successfully completed steps and a detail of the error message where the
step failed. The DB2 documentation can then be used to determine more
information about the error.

Figure 5-29 Directory with ETL error log

Also in Figure 5-30 on page 172, you can see an example of the log output.
 Chapter 5. Integration of application data to central data repository 171

Figure 5-30 ETL error log

Once the step completes successfully, this only means that the syntax of the
script is correct; the logic of the step must still be tested.

The data should be reviewed to ensure that the expected results are achieved.
This can be done through the DB2 interface by right clicking the table and
choosing sample contents or by running SQL statements from the database SQL
prompt. The template that was completed in step three should be used to verify
the results.

Typically, as with any development project, this is an iterative process and will
need to be completed several times before getting the desired results.

5.4 Lessons learned from the case studies
In this section we will document our experiences with the case studies.
172 Introduction to Tivoli Enterprise Data Warehouse

5.4.1 Case study 1 results
We were able to take existing SRM data and, using the ETL process, were able
to map the SRM data into the existing central data repository schema. The use of
the enabling manual was critical to that success. The following issues were
discovered and resolved as follows:

� Case of the host names of the servers: The servers in SRM were in both
uppercase for the CISC servers, and lowercase for the RISC (Unix) servers.
The prototype schema we used required lowercase server names. In order to
resolve this issue, the names of the servers were translated to lowercase
using the DB2 make lower capability on the initial query of data from the SRM
repository.

� Length of the host names of the servers: The length of the field that kept the
server names in SRM was 64 characters. The length of the field that kept the
server names in the prototype schema was 32 characters. In order to resolve
this issue, the names of the servers were truncated at 32 characters.
Fortunately, none of the existing servers had more than 32 characters, and
the uniqueness of the server names was maintained.

� DB2 levels: The DB2 levels between the SRM database and the central data
repository were different. This caused any query of the SRM database to fail
when issued from the Tivoli Data Warehouse. In order to resolve this issue,
the DB2 utilities were bound to the SRM database from the Tivoli Data
Warehouse database.

� Incremental extract: The prototype schema required either a sequence
number in the data or a timestamp in the data when the data was added to
SRM. This would be used to extract only the data since the previous extract.
The SRM data did not have either method of being able to determine what
data should be incrementally extracted. In order to resolve this issue, we used
the timestamp that the data was specified for. The ETL was set up to
incrementally extract the previous day’s data. In most cases this will be
sufficient. Additional exception coding would be needed in order to add data
to the central data repository that was not present in SRM when the data was
extracted (missing servers that needed to be rerun).

� Log space: The DB2 log space filled up during the initial load of historical data
from SRM into the repository. In order to resolve this issue, we incrementally
loaded the historical data a day at a time. This is the same amount of data
that would be expected during a normal incremental extract.

� Color coding: In order to exactly duplicate some of the SRM reports, a color
coding field was needed. These fields did not exist in the prototype schema.
In order to resolve this issue, the color coding fields were not loaded into the
repository. It would be possible to add the metrics that held the color coding
 Chapter 5. Integration of application data to central data repository 173

information. Since the purpose of this case study was to map to existing
fields, this was left to be added some time in the future.

� 15 minute time period data: The prototype schema had provisions for hour,
day, week, and month data. There was no place to store the 15 minute data.
For purposes of the case study, the storing of the 15 minute data was
considered out of scope, to be added some time in the future.

� National Language Support: The repository has the provisions for multiple
languages. The names of the metrics were defined in English. For purposes
of the case study, the creation of the translation strings were considered out
of scope, to be added some time in the future.

� Week-to-date and month-to-date values: The rollup function of the Tivoli Data
Warehouse provides the capability to automatically calculate the weekly and
monthly data, based on having complete weeks and months of information.
The SRM schema provided data for partial months and weeks. For purposes
of the case study, the reporting of partial weeks and months are to be added
some time in the future.

� UTC timestamp: The data in the prototype schema is stored in UTC
timestamp format. The SRM data was stored in timestamp format, based on
the time in the time zone that the data was collected. In order to resolve this
issue, we assumed that all servers resided in the same time zone. Additional
coding would need to be done to SRM to store the data in UTC timestamp
format, and eliminate the assumption that was made. This required us to
predefine the servers in both the customer and center tables of the prototype
schema, where the timestamp offset resided.

� Field translation: The data in the SRM tables were keyed by server id, with
columns that represented the particular metrics. The prototype schema tables
were keyed by server ID, with each metric residing in a different row. In order
to resolve this issue, a query for each metric was made and placed into the
intermediate tables during the ETL processing.

In summary, all of the items that were identified during the case study were either
resolved at the time of the study, or were left as future development work. All of
the items left for future development are capable of being implemented without
significant resources.

5.4.2 Case study 2 results
The following lessons were learned from the AIS case study:

� Adjusting the extract control data: Remember that when testing and using the
same data over again the user may want to adjust the extract control data to
allow the data to reload, as in Example 5-7 on page 175.
174 Introduction to Tivoli Enterprise Data Warehouse

Example 5-7 Adjusting the extract control data

db2 => update twg.extract_control set extctl_from_intseq=45169 where
extctl_target='SPP.STAGE_F_AISEVT_HOUR'
DB20000I The SQL command completed successfully.
db2 =>

� Timestamps: The Tivoli Enterprise Data Warehouse expects timestamps in
UTC. This is something that may have to be addressed in the source data. It
can also be adjusted through customer and center lookup tables, but plan for
this step carefully.

� Hourly data: Any time frame that data can be collected for can be used in the
Tivoli Enterprise Data Warehouse. However, as it is out of the box, the Tivoli
Enterprise Data Warehouse will only handle one hour data. Any other time
frame can be included, but it will need extra code on the ETL.

� Product design: The design of the Tivoli Enterprise Data Warehouse and the
CDW in general works very well and the case study provided actual user
reports.

� Incremental extracts: Incremental extracts are critical to the long-term
success of the project. This may consume large amounts of time during the
initial development cycle. However, it may determine the success or failure of
the project.

� Source data changes: Although the preferred method for Tivoli Enterprise
Data Warehouse is not to change the source data, in some cases, it might be
very difficult to accomplish the integration with the repository without
changing anything in the source data. At first this might not seem natural, and
seems to be problem; however, as the process goes along, it becomes
obvious that this will be necessary no matter what system collects the data.

� Field conversion: Some fields were relatively small for what the case study
team had in production on other systems, for example, field conversion for
host names had to be changed from 64 characters to 32. This was left as a
concern, but it caused no direct issues.

� Scalability: Scale will need to be considered. The case study was unable to
properly test scalability. This could potentially be a problem, especially on the
initial one-time feed from legacy systems.

� Adding sources and targets: When adding sources and targets there are two
ways to accomplish this. The source or target folders can be right clicked and
then added to, but the best way is to bring up the Properties dialog of the
source/target then go to the Tables tab. This prevents the user from having to
type in all the table names one-by-one.

� Reviewing data during the process: During the case study, we frequently
reviewed the data in the tables to verify that the results of each step of the
 Chapter 5. Integration of application data to central data repository 175

work. This is especially important for troubleshooting the ETL scripts. In case
of a problem, by making sure which steps produced good data, we were able
to know exactly which step the problem was in.

� Table changes: If a table that has been created as a source or target changes,
the changes do not automatically flow into the system. The source/target
must be removed and added again as well as everywhere this source/target
exists.

5.5 Best practices
The following sections review best practices as one integrates application data
into the Tivoli Enterprise Data Warehouse central data warehouse.

5.5.1 Follow the Enablement Guide
The Enablement Guide is well thought out and crafted. By using it the user can
leverage the experience of others, and smooth out some future hurdles before
they are even encountered. The guide gives the user a solid direction as well as
laying out some rules to follow. By following the rules the user can prevent
wasting development effort on a system that may not be extensible or complete.

5.5.2 Fill out the data template
In any data warehouse project up to eighty five percent of the initial effort can be
to load the initial dimensional data into the warehouse. Understanding how this
dimensional data relates to the fact data and other dimensional data is key to
minimizing this effort. The template forces the user to consider all the areas of
the dimensional data before beginning. The step may seem somewhat tedious;
however, once fully completed and given the due consideration, it makes
implementation much easier. This is because by filling out the data template
most of the hard decisions about the data are answered before development
begins and because the development course is somewhat laid out.

5.5.3 Install one of the Tivoli-provided sets of ETLs
Installing the Tivoli Enterprise Data Warehouse is obviously a prerequisite, but
installing an application set of ETLs may not be so obvious. However, with
another packaged application installed, there is a reference area for all other
development. It was found most useful to be able to view the naming conventions,
the dialog box choices, and the ETL code of the existing application. It also
provides some debug information, by running the existing steps from another
application it proved all was working well except the ETL script being developed.
176 Introduction to Tivoli Enterprise Data Warehouse

5.5.4 Adapt existing ETL scripts to create your own
Installing an existing application, which has ETLs ready, provides many benefits.
One is the use of existing ETL code. Especially for the first attempts at
developing ETLs, the user should consider copying the existing application’s ETL
code and altering it to meet the needs of the user. This helps establish good
coding practices, and gives the user an idea of what to do and how to do it.

In our case studies, we made use of the Tivoli Distributed Monitoring ETLs as
sample application ETLs.
 Chapter 5. Integration of application data to central data repository 177

178 Introduction to Tivoli Enterprise Data Warehouse

Chapter 6. How to create data marts

This chapter provides the techniques and best practices in creating data marts
by using a case study.

This chapter has the following sections:

� Reasons to create data marts

� Benefits of data marts

� Methodology for creating data marts in Tivoli Enterprise Data Warehouse

� Tivoli Enterprise Data Warehouse data mart best practices

6

© Copyright IBM Corp. 2002 179

6.1 Reasons to create data marts
The value of data is highly recognized as one of business’ greatest commodities
and this is seen in the wide-spread construction of data warehouses throughout
the IT industry. However, without the ability to view that data in a manner that the
business can use, the data itself becomes useless. This has set the stage for the
data mart and its ability to facilitate reporting.

To create an analogy, if data warehouses were to be viewed as actual retail
warehouses, then data marts can be viewed as the showroom. Just as in a retail
warehouse, the warehouse is packed full of items with the main consideration
being well-organized storage with the ability to get items in and out. In contrast,
the show room’s consideration is presentation, showing the value of the items,
and taking care of overall customer satisfaction. The warehouse has to be suited
to store items of all different uses, while the showroom will focus on items of a
particular use.

The analogy works well for the data warehouse and data mart. The warehouse’s
job is to store large amounts of data with little or no concern on exactly how the
customer will view the data. While the data mart’s concern is precisely the
opposite. It focuses on ease of use for the customer, isolation of sensitive data,
speed of reporting, and overall presentation of the data.

The data mart is where the customer gets their value and sees their return on
investment. Therefore the data mart plays a crucial role in the success of the
data warehouse.

A data mart is simply defined as a logically related subset of data from the
compete data warehouse, normally meaning that the subset of data is related to
a single business process or a group of related business processes. Data marts
can be seen as the data from the data warehouse that meets a certain criteria,
such as all data relating to purchase orders that falls within the date range of the
last three months, or all the data relating to shipping over the last two years.
Therefore, sometimes data marts are considered to be subject areas of the data
warehouse. This allows the data warehouse customer to only have to work with
their business area data, and not be overwhelmed with the entire business’ data.
This implies that there can be many data marts that get data from one central
data warehouse.

6.2 Benefits of data marts
Technically, reporting could take place at the CDW; however, listed in the
following section are some of the many benefits from utilizing the data mart.
180 Introduction to Tivoli Enterprise Data Warehouse

6.2.1 Incremental development
By adhering to the overall architecture of the data warehouse, data marts can be
designed and built separately. The process can fit into an incremental
development strategy where only one data mart at a time will be delivered, which
will provide the customer with benefits from the warehouse before the entire
warehouse is complete. Also, separate teams can build different data marts
asynchronously. As long as each data mart conforms to the data warehouse
architecture, the marts can be used in conjunction with each other.

Both scenarios will provide the data warehouse development team the ability to
get the data warehouse customer a product more rapidly and, hence, start the
return on investment sooner. This has great advantages over attempting to
complete the entire data warehouse as one single project: A project too large for
even the most experienced development team.

6.2.2 Customer understandability of data
By the data mart only suppling data that matters to a specific area of the
business, there is less confusion for the customer. The customer does not need
to sift through data that they are not interested in. The data mart ETL process
does the filtering at the data mart level.

Since the customer only has to work with data that pertains to their area of the
business, they are already familiar with it. This familiarity allows them to focus
more on how to use the data and less on understanding the data. Therefore, the
customer’s requirements are easier to gather and development time is cut. Also,
less training on the report generation is needed.

By eliminating data that does not relate to a particular business area,
meaningless data comparisons can be avoided. For example, if a customer were
to have access to the hardware lease information and hardware performance
data, the customer may be tempted to compare hardware vendors to hardware
performance. When in reality, without comparing the different applications
residing on the hardware, the report is basically meaningless, as the number and
size of the applications will greatly affect the results of the report. This style of
reporting is eliminated by only loading related data into the mart.

6.2.3 Manageable pieces
Data marts break down the complicated data design into small manageable
pieces as already shown, this is helpful to the customer, but this is also helpful to
the development teams. By the mart being simplistic in design it is easy to
communicate across teams and design customer applications, as well as
maintain them.
 Chapter 6. How to create data marts 181

6.2.4 Manipulation of data in the mart
Inside the data mart the data can be aggregated, summarized, averaged, etc., to
meet the specific needs of the business area. Since the mart is separate from the
data warehouse as a whole, there is freedom to work with the numbers as the
business chooses, without having to consider impact of the entire warehouse. As
long as the lowest grain of data still exists in its original form in the data mart and
the overall data warehouse architecture is complied with, the numbers can be
used in any manner the business deems necessary, while the same base data
could be used in other marts for other areas of the business.

6.2.5 Better reporting performance
As mentioned earlier, reporting could be done directly off the central data
warehouse. However, this would require that each run of the report would have
to work through all the data stored for all the different business areas. This will
provide very poor performance.

By having only a subset of the data in the mart, the database system can
manage the data faster and easier. Also, since the filtering has already been
applied at the mart ETL, the reporting queries become much smaller. Smaller
queries performing on a small subset of data is, of course, easier to tune.
Therefore the end customer will experience better reporting performance.

6.2.6 Use of distributed technology
Since the data marts are smaller they can be placed on smaller distributed
machines to allow data warehouse users to break away from massively powered
machines and still handle processing of the reports.

6.2.7 Tool ready
Due to the standard and transparent design, several third party tools have
become available for report writing. These tools can utilize the standard design
and naming to support OLAP, MOLAP, and/or ROLAP technology. The data mart
design and implementation is conducive to these tools and technology. This
allows the user to create extremely robust reports in a very sophisticated
manner.
182 Introduction to Tivoli Enterprise Data Warehouse

6.3 Data mart methodology
The Tivoli Enterprise Data Warehouse is built with a full understanding of the
industry data warehousing methodology. This section discusses the remaining
four steps of the Enablement Guide that describe the creation of the data mart.

6.3.1 Data warehouse terminology
The following terminology is used in this chapter:

� Facts: Measurable data, and usually rapidly changing data, such as the
average CPU percent busy, disk IO rates, number of TEC events, etc. It is
most useful when the fact data is additive and can therefore be accumulated
in some fashion that makes sense.

� Dimensions or metadata: Data about factual data, which is usually slowly
changing data, such as host description, physical location, measurement
description, etc. Dimensional data is also sometimes referred to as static
data.

� Conformed data: Data that is conformed across all data marts, meaning that
the same set of data can be used in the exact same manner in each separate
data mart. The name, description, and meaning of the same piece of data
across all data marts should be consistent.

� Data granularity: Level of detail of the data. This will be relative to the fact
data, with some examples being hour, day, and week. Also in a retail
environment could be store, district, region, and division.

� Star schema: Involves one factual table with several dimensional tables
joined to it. Conceptually the fact table is the center of the star while the
dimension tables create the points of the star.

� Fact tables: Tables that contain facts and keys to join to dimension tables
that, however, contain no description dimensional data. Fact data usually
represents one segment of time or one segment of measurement. The
individual facts are stored over long periods of time to show larger cumulative
segments of time, meaning that many facts will exist for the same dimension.
Since fact data is stored historically, trending can be done to reveal
information not readily visible in smaller segments of time.

� Dimension tables: Tables that contain actual description data about the facts
and of course the keys that the fact tables used to join. Dimensions are
usually stored one at a time. An example would be that a host has one
description made up of physical location, hardware components, size, and
purchase date. This data will remain almost constant. Therefore, this is only
stored once in the data with the key that can be replicated many times over,
requiring much less space.
 Chapter 6. How to create data marts 183

� Aggregation: Any mathematical functions performed on data that form a
summarization of data and therefore produce new rows. This usually pertains
to summarizing, averaging, taking the minimum or maximum, etc.
Aggregations produce new rows of data at a different granularity.

6.3.2 Methodology for data marts and star schemas
The concept of the star schema involves one factual table with several
dimensional tables joined to it. Conceptually the fact table is the center of the star
while the dimension tables create the points of the star. See Figure 6-1.

Figure 6-1 Star schema

The fact exists in the fact table with keys linking to the dimensional data that
should be joined with this fact. The fact will be for exactly one type of metric, such
as event count or page scan rate. The fact will not contain data for more than one
metric type, meaning that page scan rate and event count will not be in the same
row in the fact table.

Dimension
Table 1

Dimension
Table 5

Dimension
Table 2

Dimension
Table 3

Dimension
Table 4
184 Introduction to Tivoli Enterprise Data Warehouse

Each row can then be joined to a dimension table containing the descriptive text
about the metric. An example of the text being Number of TEC events received.
This twenty-nine character string will only need to be stored once in the
dimension table, and it will be stored with a unique key using much less space.
That key is then used to associate the facts with the text description. There can
be millions of facts, and without the join, the twenty nine characters would need
to be stored millions of times.

This component’s attributes will also contain textual strings that will be stored
once in a dimensional table and joined to the fact table. The descriptive strings
could be for physical country location, such as United States, Germany, or New
Zealand.

This process will continue with any data that can be stored in dimension tables.
Therefore, the fact table rows contain a fact combined with, as many as needed,
keys to join the dimensional data for that fact.

The dimensional data then becomes the possible search criteria for reporting. A
report could be generated for all hosts that are physically in the United States.
The physical location is stored in the dimensional tables. The report could be
further constrained by all hosts in the United States and were purchased in the
last two years. Again, purchase date is stored in a dimensional table.

Each Tivoli Enterprise Data Warehouse data mart will be made up of one or more
star schemas. In this manner the quality of the dimensional data translates to the
quality of the data mart because the dimensions are driving the ability to search
the fact data.

The Tivoli Enterprise Data Warehouse expects there to be exactly one metric
dimensional table containing descriptions of the metrics, one or many component
dimensional tables containing descriptions of the components, and one fact table
containing the numeric data as is related to the dimensions. This implies that
exactly one measurement is associated with one fact in each star schema, and
that as much information about the component as needed is available.

This leverages the use of the data mart as described above, in the manner that
the star schema will be used for precisely one set of reporting.

6.3.3 Tivoli Enterprise Data Warehouse naming conventions
Chapter five of the Enablement Guide for the Tivoli Enterprise Data Warehouse
describes the naming convention in even further detail. Significant conventions
are as follows:

� Product code: IBM applications must use the IBM internal product/AVA code.
This consists of three alphabetic characters. Non-IBM applications must use
 Chapter 6. How to create data marts 185

a code that will be unique and is made up of two alphabetic characters and
one numeric character.

� Database: Some databases used in the Tivoli Enterprise Data Warehouse are
TWH_CDW as the central data warehouse, TWH_MD as the database for
metadata, and TWH_MART as the database for star schemas.

� Subject areas:
<Product_code>_<full_application_name>_v<full_version>_Subject_Area.
Example: CTO_Tivoli_Manager_for_Oracle_v2.1.0_Subject_Area.

� Sources: <Product code>_<Source DB alias>_Source. Note that the source
DB alias should be uppercase only. Example: CTO_TWH_CDW_Source.

� Targets: <Product code>_<Target DB alias>_Target. Note that target DB alias
should be uppercase only. Example: CTO_TWH_MART_Target.

� Processes:
<Product_code>_<Process_ID>_<Process_Description>_Process. Note that
Process_ID consists of c<nn> or m<nn>, where c indicates the target is the
CDW and m indicates the target is the data mart. Example:
CTO_c05_Exceptions_Process.

� Steps: <Product_code>_<Process_id>_s<nnn>_<Step_description>, where
s indicates a step and <nnn> is the step number. Example:
CTO_c05_s010_Extract.

� Schemas:
<Product_code><by_time_granularity><Warehouse_schema_description><
Star_schema>. Example: CTO Hourly Oracle Database Star Schema.

� Component dimension tables:
<Product_code>.D_<dimension_table_description>. Only A through Z, 0
through 9, and underscore(_) can be used in table names in the data mart
databases. Also singular (not plural) is used. For example, DATABASE not
DATABASES. Example: CTO.D_ORA_DB_COMP.

� Measurement dimension tables:
<Product_code>.D_<Metric_group_description>_METRIC. Component
dimension table rules apply. Example: CTO.D_ORA_METRIC.

� Fact tables: <Product_code>.F_<fact_desciption>_<time_granularity>, where
time granularity is HOUR, DAY, WEEK, or MONTH. Component dimension
table rules apply. Example: CTO.F_ORA_DB_HOUR.

� Staging tables: <Product_code>.STAGE_<description_of_staging_table>.
Component dimension table rules apply. Example: CTO.STAGE_ORA.
186 Introduction to Tivoli Enterprise Data Warehouse

6.4 Moving on with case study 2 - AIS data
After setting the stage for data marts, we can move on with our case study. In this
section we will cover the implementation of the data marts for the AIS data, which
was explained in “Case study 2 - AIS” on page 130. In Chapter 5, “Integration of
application data to central data repository” on page 127, we have shown you the
implementation of the first 10 steps covered in the Enablement Guide. These
steps were related to integrating your data with the central data warehouse
repository. In this chapter we will cover the last four steps (step 11 through step
14), which deal with creating of the data mart, or ETL2.

6.4.1 Step 11: Define star schemas
The Tivoli Enterprise Data Warehouse concept of a star schema is that there is
exactly one fact table that contains measurable fact data that contains keys to
join to dimension data in two or more tables. The dimension data represents the
slow-changing dimensional data, such as host name or measurement
description: Data that can change, but will not change often.

The fact table is made up of rapidly changing data, such as the performance data
or the number of TEC events for the latest collection of source data. This data is
appended to as the source ETL is run.

The Tivoli Enterprise Data Warehouse expects the table names to follow a
naming convention where the dimension tables are named D_<Demsion
Description> and the fact tables are named F_<measurement>_HOUR. Review
the Enablement Guide for the latest revision of the rules for the data mart star
schemas. The current set of rules are discussed in Chapter 3 of the Enablement
Guide, “Creating a start schema or multiple dimensional cube.”

Creating the AIS case study star schema
To create a star schema do the following:

1. Open the Date Warehouse Center and expand Warehouse Schemas.

2. Right click Warehouse Schema in the left pane of the Date Warehouse
Center and choose Define from the sub-menu. This produces a dialog as in
Figure 6-2 on page 188.

Note: We do not cover the data mart implementation of SRM data (case study
1) in the chapter because the implementation steps are very similar.
 Chapter 6. How to create data marts 187

Figure 6-2 Defining a star schema

3. Tables need to be added to the star schema by right clicking the New
Schema in the left pane of the Date Warehouse Center and choosing Add
Table from the sub-menu. This produces a dialog similar to Figure 6-3.

Figure 6-3 Adding tables to a star schema

4. Using the plus sign (+), expand the warehouse sources or targets as needed,
expand the product code, then expand the tables or views folder to reveal the
table or view desired.
188 Introduction to Tivoli Enterprise Data Warehouse

5. Highlight the table or view and click the Add button denoted by the greater
than sign (>). Once all the tables and/or views are moved to the right pane
click OK.

6. Traditionally these tables or views should be chosen from the data warehouse
targets and should be in the data mart.

Now the Date Warehouse Center screen should look similar to Figure 6-4.

Figure 6-4 Star schema with tables added

7. For reporting purposes these tables now need to be linked. This is done
through a canvas style GUI, built into the Date Warehouse Center. To get to
the canvas double click the new schema. This will produce the canvas with
the tables that were added through the previous steps.

Note: The canvas will appear to have only one table. However, the tables
are stacked on top of each other. Drag and drop each table to a separate
area of the canvas.
 Chapter 6. How to create data marts 189

8. Drag and drop each table to a separate area of the canvas so that there are
no overlapping tables. The tables that relate should be positioned close
together.

As to how neatly the tables are arranged on the canvas, this matters for
documentation and only takes a few minutes to clean up.

9. A left side vertical toolbar will have an icon indicating a link between two
objects. This is pictured as the bottom icon in Figure 6-5. Click this icon to
change modes of the canvas from a drag and drop to a linking mode.

10.Beside each column is an arrow. Click and hold on the arrow next to the
column that will be used to join to another table. A line will begin at that arrow
and will extend with the movement of the mouse. Position the line to end at
the joining column of the second table in the join.

Figure 6-5 Example of model vertical toolbar

11.When complete, save this diagram using the disk icon in the upper left of the
warehouse schema model screen, shown as the top left icon in Figure 6-5.
Figure 6-6 on page 191 shows a completed diagram.
190 Introduction to Tivoli Enterprise Data Warehouse

Figure 6-6 AIS daily schema model

12.After saving this model diagram, the process is complete and the RPI tools
should be able to access this model for reporting.

6.4.2 Step 12: Code the data mart ETL
Coding the data mart ETL is broader than just developing the scripts, because
the user has the responsibility to design the data mart as well. Where the CDW
was designed by Tivoli prior to development of the source ETLs, this step is in
the hands of the user. This is one of the features that allows for such great
flexibility in the design. By allowing the user to design the data mart, the reporting
tool, its style, its features, and its flexibility can be changed as the user needs
change.

Note: If a table that has been created as a source or target changes, the
changes do not automatically flow into the system. The source/target must
be removed and added again, as well as everywhere this source/target
exists.
 Chapter 6. How to create data marts 191

Design considerations
The logic of the source ETLs is to gather data from one or more sources,
conform this data to the CDW schema, and to store this with other data in the
CDW. Whereas the logic of the mart ETLs, also called the target ETLS, is
somewhat different.

The data mart will use the CDW as a source, and will join the dimensional
attributes of all the facts with the facts themselves and pull them into the mart.
The mart is built to allow all the data associated with a business process or group
of processes together in one reporting area. All of the benefits mentioned in
Section 6.2, “Benefits of data marts” on page 180 will need to be considered.

The absolute first step in designing the data mart should be to understand what
the customer’s requirements are. This is a design step that is often not given the
dedication that is needed. By truly understanding what the customer needs to
make the data mart successful, one can design the mart and code the ETLs one
time, verses not properly defining the requirements and designing and coding
only to find out that the specifications were off and the process must be
completed all over again, or at least major modifications will need to be done. If
the requirements are understood, coding the ETL can be fairly straightforward
and closely mirror the work completed on the source ETLs.

Before the mart ETLs are coded the following steps must be completed:

� Customer requirements gathered and communicated

� All customer-required aggregation routines need to be determined

� All the necessary data needs to be loaded into the CDW

� The CDW data needs to be verified to be complete

� The CDW data needs to be checked for quality

� Hardware architecture may need to be reviewed

� The design of the mart needs to be complete and refined

Implementing the design
After these steps are complete, the job of creating any new mart tables, inserting
any static dimensional data needed, and coding the mart ETLs can be
successful.

Once the design has been decided one will need to create tables in the mart that
will be populated. Simply open the DB2 control center, open the appropriate
database, right click Tables, then choose Define from the sub-menu. Fill in the
name, description, and column definitions needed.
192 Introduction to Tivoli Enterprise Data Warehouse

This of course can be accomplished through SQL data definition language as in
Example 6-1. Note the naming of the tables in Example 6-1 as they must follow
the Enablement Guide rules for data marts.

Example 6-1 Creation of data mart tables

--- this table must be in the cdw and the mart for us
CREATE TABLE "SPP"."F_AISEVTS_HOUR" (

 "HOST_ID" INTEGER NOT NULL ,
 "HOST_STATE_STRT_DTTM" TIMESTAMP NOT NULL ,
 "METRIC_ID" INTEGER NOT NULL ,
 "MEAS_HOUR" TIMESTAMP NOT NULL ,
 "MIN_VALUE" DECIMAL(9,2) ,
 "MAX_VALUE" DECIMAL(9,2) ,
 "AVG_VALUE" DECIMAL(9,2) ,
 "TOTAL_VALUE" DECIMAL(9,2))
 IN "USERSPACE1" ;

-- this table must be in the mart
CREATE TABLE "SPP"."F_AISEVTS_DAY" (

 "HOST_ID" INTEGER NOT NULL ,
 "HOST_STATE_STRT_DTTM" TIMESTAMP NOT NULL ,
 "METRIC_ID" INTEGER NOT NULL ,
 "MEAS_HOUR" TIMESTAMP NOT NULL ,
 "MIN_VALUE" DECIMAL(9,2) ,
 "MAX_VALUE" DECIMAL(9,2) ,
 "AVG_VALUE" DECIMAL(9,2) ,
 "TOTAL_VALUE" DECIMAL(9,2))
 IN "USERSPACE1" ;

-- this table must be in the mart
CREATE TABLE "SPP"."F_AISEVTS_WEEK" (

 "HOST_ID" INTEGER NOT NULL ,
 "HOST_STATE_STRT_DTTM" TIMESTAMP NOT NULL ,
 "METRIC_ID" INTEGER NOT NULL ,
 "MEAS_HOUR" TIMESTAMP NOT NULL ,
 "MIN_VALUE" DECIMAL(9,2) ,
 "MAX_VALUE" DECIMAL(9,2) ,
 "AVG_VALUE" DECIMAL(9,2) ,
 "TOTAL_VALUE" DECIMAL(9,2))
 IN "USERSPACE1" ;

-- this table must be in the mart
CREATE TABLE "SPP"."F_AISEVTS_MONTH" (

 "HOST_ID" INTEGER NOT NULL ,
 "HOST_STATE_STRT_DTTM" TIMESTAMP NOT NULL ,
 "METRIC_ID" INTEGER NOT NULL ,
 "MEAS_HOUR" TIMESTAMP NOT NULL ,
 "MIN_VALUE" DECIMAL(9,2) ,
 Chapter 6. How to create data marts 193

 "MAX_VALUE" DECIMAL(9,2) ,
 "AVG_VALUE" DECIMAL(9,2) ,
 "TOTAL_VALUE" DECIMAL(9,2))
 IN "USERSPACE1" ;

Inserting data into the static tables can be done through various means, such as
imports using the DB2 control center GUI, command line imports, or simple SQL
inserts. In Example 6-2 we populated the stage table with new dimensional data,
then the data was entered into the dimensional data in the mart automatically.
This prevented us from loading directly into a table that will be reported on and
allowed us to test dynamic changes to the dimensional data. In Example 6-2 we
also inserted data into the extract control tables to allow the system to know of
the data that had been inserted into the stage table and will need to be loaded.

These are just examples and the data can be loaded a number of different ways.

Example 6-2 Sample inserts of static data

db2 => insert into spp.stage_d_metric values (0, current timestamp, 'EvtCnt',
'Event Summary Count', 'QTY','EVT','N','N','N','Y','TEC')
DB20000I The SQL command completed successfully.
db2 =>
db2 => insert into twg.extract_control values
('SPP.STAGE_D_METRIC','SPP.D_METRICS',null,null,31,31,current timestamp,
current timestamp)
DB20000I The SQL command completed successfully.
db2 =>

Developing ETL code
Coding the mart ETL follows the same steps as coding the source ETLs in
Section 5.3.10, “Step 10: Code the source ETL” on page 151. The source steps
can be followed to create, test, and implement the mart ETLs. Changes will need
to be made to comply with the naming conventions, which will now include an m
in place of the c, as in the name of the ETL script ai1_m05_s010_buildMart
where the m05 indicates that this is a mart script and is process number 05.

Developing aggregation routines
Aggregations are any mathematical functions performed on data that form a
summarization of the data, therefore producing new rows and usually pertaining
to summarizing, averaging, and taking the minimum or maximum. Aggregations
produce new rows of data at a different granularities.
194 Introduction to Tivoli Enterprise Data Warehouse

Some aggregation routines can be included in the ETLs. As data is moved from
the source to the target, it may be simpler to add another query that will do the
calculations and store the data in the target. In other situations the aggregation
routine will be run as a separate step in the process in the Date Warehouse
Center.

Aggregation and rollup via the Tivoli-provided script
When the data mart ETL process runs, it populates the data mart F_<>_HOUR
table with data. To support rollup or aggregation to the F_<>_DAY, F_<>_WEEK,
and F_<>_MONTH tables, the user-defined program named rollup should be
run. The rollup program is installed with Tivoli Enterprise Data Warehouse. It
requires a table named STAGE_F_<>_HOUR to be created and populated with
today’s data in the application-specific schema in the central data warehouse. It
then populates F_<>_DAY, F_<>_WEEK, and F_<>_MONTH tables in the data
mart based on the data in STAGE_F_HOUR. It also populates RPI.SSUpdated to
enable report scheduling. The process flow looks like the following:

twg.msmt .execsql.STAGE_F_HOUR and F_HOUR
|
->.rollup.RPI.SSUpdated [optionally .runReport]

This assumes that the central data warehouse ETL is providing data summarized
on an hourly basis; otherwise, the rollup.sh script does not work. In other words,
if your application happens to report daily data only, then the rollup.sh script will
not work for you. Also, you must place your star schema in the TWH_MART
database or create the DAY_AGGREG table in your own data mart database.

The rollup program updates any of the aggregate tables as appropriate. It
handles the updating of any aggregate tables if out of order data is detected. For
any of the aggregate tables that are updated, it determines which star schemas
have been updated and places an entry in the RPI.SSUpdated table. The report
gets rerun when the runReport user-defined program is run if the following are
true:

� The RPI.SSUpdated table has an entry for the star schema indicating that the
data is new.

� When the user created a report in the Report Interface GUI, they selected the
option to schedule reports.

� The parameters passed to rollup.sh are:

– Schema name or product code
– Name of hourly fact table

Important: Just to make sure the point is clear, the aggregation task should
only populate the mart, and never the CDW.
 Chapter 6. How to create data marts 195

– Name of hourly stage table
– &SDB
– &SUID
– &SPWD
– &TDB
– &TUID
– &TPWD
– &STEPNAME

Most of the parameters need to be modified by users as they configure the ETL
for their environment. (Initially, the parameters are modified by ETL developers,
but users need to modify the parameters to fit their environment.) The others are
set up using Data Warehouse Center variables and are filled in by the Data
Warehouse Center, for example, &SDB, which is the warehouse source
database name. In the Report Interface case, this is the data mart database.

Aggregation and rollup outside the Tivoli-provided script
Remember that the tables in the mart are simply RDBMS tables and can be used
at the user’s discretion. The study actually created a rollup script for the case
study. This was for two major reasons. One was to show how a variation can be
used to achieve desired results. This script could be aggregating data that was
for a time frame of a half hour and therefore would have been out of scope for the
Tivoli rollup script. And the second was that the Tivoli-provided rollup script would
not work for summarizing TOT_VAL columns in the hour table. It would work for
the min, max, and average, but not for the total value. This was addressed and
we expect it to be corrected soon, so this should not be a problem for the reader.

The case study team followed the rules for the mart to conform so that the
rollup.sh script could function if applied. This way we would have the advantages
this schema and naming would provide, and also be flexible should anything
change in the future. Plus, as new applications are provided they will be
developed to work with the mart rules. Therefore, in the future if an application
comes out that could provide the same or better features as what we have
developed, we could migrate from our developed code into the Tivoli-supported
code.

Provided in Example 6-3 on page 197 is a portion of the rollup code. The script
simply did this process over again for each time frame needed.

Note: The first two parameters are used to construct the temporary and log
file names.
196 Introduction to Tivoli Enterprise Data Warehouse

Example 6-3 Code excerpt of rollup ETL developed in the case study

-- #EXECUTE_AT_TARGET
insert into spp.f_aisevts_day
select d.host_id as host_id,

current timestamp as host_state_strt_dttm,
max(d.metric_id) as metric_id,
char(date(d.Meas_hour),iso)||' 00:00:00.000000' as meas_hour,

 SUM(d.tot_val) as tot_val
from spp.f_aisevts_hour d
group by d.host_id,host_state_strt_dttm, metric_id, date(d.meas_hour)
;

This script was passed as a parameter to the sqlscript.sh in a process step and,
therefore, was set up just as all other ETL scripts. This is an excellent example of
the power and flexibility of the sqlscript.sh combined with the CDW and mart
designs.

Once this script completes, data is in the mart in an aggregated format as well,
as at the detail level.

Implementing the Tivoli-provided rollup script
Do the following steps to implement the Tivoli-provided rollup script by creating a
step inside the process.

1. Open the Date Warehouse Center and expand Subject Areas and Process.

2. Now to add a step to the process for the rollup, right click the process in the
left window and follow the menu path to Define -> User defined Programs
and Transformers -> Tivoli -> Rollup as in Figure 6-7 on page 198.

This produces a dialog to configure the process, which has four tabs.
 Chapter 6. How to create data marts 197

Figure 6-7 Sub-menu for defining a Tivoli rollup script

3. The first tab, as in Figure 6-8, contains the name, description, and notes and
should be filled in appropriately. The naming of this process step should be
chosen carefully, again referencing the Enablement Guide to review how the
process steps should be named.

Figure 6-8 Defining a step with a rollup script
198 Introduction to Tivoli Enterprise Data Warehouse

4. The second tab, shown in Figure 6-9, is the Parameters tab, which contains
the details about the process step. The first field is the command file. This will
be prefilled with the rollup.sh, which was filled when the user selected rollup
script from the pop-up menu. This script is covered in-depth in the
Enablement Guide.

Figure 6-9 Defining a step with a rollup script - Parameters tab

The schema name is the schema name where the data mart’s hourly table
exists. The hourly table is the hour fact table tablename, named similar to
F_AISEVTS_HOUR. The stage hourly table is the staging table used on the
CDW.

The remaining fields are the variables used for the sqlscript.sh to determine
the target and source, which do not need to be adjusted.

5. The next tab is Column Mapping, which is not available for this type of
process.

6. The last tab is the Processing Options and can used for debugging options.

7. Click OK to complete the process step creation.

Once the step has been defined, the steps in the source ETL section can be
used to complete the step. The step will need to have sources and targets
added, as well as needing to be scheduled and put into production mode.

The steps for testing source ETLs apply to testing the rollup ETL as well.
 Chapter 6. How to create data marts 199

6.4.3 Step 13: Provide internationalization strings
Due to time constraints for the case studies, internationalization was left out of
the studies. The documentation provided by the Enablement Guide in Chapter 7
explains how to prepare an application for international languages. Tivoli
Enterprise Data Warehouse is written in Java, and international support is
provided through the use of Java resource files. These resource files are a
modular addition to Tivoli Enterprise Data Warehouse, and no changes are
needed to the existing table entries. By default, Tivoli Enterprise Data
Warehouse is in English.

6.4.4 Step 14: Create the warehouse enablement pack
The warehouse pack is used by Tivoli to separately package Tivoli Enterprise
Data Warehouse applications. Since the authors were not making an application
to be sold separately, no additional packaging was needed, and no enablement
pack was created.

6.5 Data mart best practices
The following are best practices as one configures an implementation and
creates new data marts for the Tivoli Enterprise Data Warehouse.

6.5.1 Break steps into the smallest steps possible
By breaking down the entire process into several small steps it is easier to debug
the process when an error occurs. Also it provides a design that will be easy to
understand and follow. Therefore, even in the design phase, the benefit will be
that the development team will easily understand what each step will accomplish.

6.5.2 Data mart data should be kept at the lowest grain
In some development circles it is thought that data marts house only aggregated
data. Some development teams feel they can save space by not duplicating the
data from the warehouse to the mart. They propose that aggregation routines
should be run to populate the data mart. However, this leaves the data mart
without the ability to report on the lowest level of detail. Potentially leaving a
customer with an answer that is not as detailed as needed.

By storing the data in the mart at the lowest grain level, the customer can be
provided with both the aggregation data and the detailed information. This
requires some more space and small amounts of effort on the part of the
development team. However, the customer ends up with a better product.
200 Introduction to Tivoli Enterprise Data Warehouse

6.5.3 Develop initial and incremental data loads together
There are two types of ETLs that must be constructed for each target and source
of the data warehouse. The initial one-time load to prime the data warehouse
and then the scheduled incremental loads to keep the data current. Since both
require an understanding of the source data, target data, and any conversion
processes, it makes sense to develop both sets of code at the same phase of the
project. This may not mean simultaneously coding both scripts, but one can be
coded immediately following the other.
 Chapter 6. How to create data marts 201

202 Introduction to Tivoli Enterprise Data Warehouse

Chapter 7. OLAP integration

This chapter describes how you can integrate Tivoli Enterprise Data Warehouse
data with OLAP tools such as Brio, Business Objects, and Cognos.

This chapter has the following sections:

� OLAP

� Brio implementation

� Business Objects implementation

� Cognos implementation

7

© Copyright IBM Corp. 2002 203

7.1 OLAP
Online Analytical Processing (OLAP) is a technology used in creating decision
support software that allows application users to quickly analyze information that
has been summarized into multidimensional views and hierarchies. By
summarizing predicted queries into multidimensional views prior to run time,
OLAP tools can provide the benefit of increased performance over traditional
database access tools.

OLAP functionality is characterized by dynamic multi-dimensional analysis of
consolidated enterprise data supporting end user analytical and navigational
activities including:

� Calculations and modeling applied across dimensions, through hierarchies,
and/or across members

� Trend analysis over sequential time periods

� Slicing subsets for on-screen viewing

� Drill-down to deeper levels of consolidation

� Reach-through to underlying detail data

� Rotation to new dimensional comparisons in the viewing area

7.2 Brio Intelligence
This section will give you an overview and components of Brio, and a basic
example of integration with Brio with Tivoli Enterprise Data Warehouse and
sample reports.

7.2.1 Brio overview
For query and analysis, Brio Intelligence has an easy-to-use set of tools available
and some more advanced features. Leveraging data from existing enterprise
information systems, such as Tivoli Enterprise Data Warehouse, Brio Intelligence
provides executives, analysts, developers and employees with query and
analysis capabilities supported by an intuitive, Web-enabled interface delivering
business-critical information. For more information go to the Brio Web site at
http://www.brio.com.
204 Introduction to Tivoli Enterprise Data Warehouse

http://www.brio.com

7.2.2 Brio components
Brio has client tools for both the client/server and the Web-based user, which can
meet the needs of each user type across the enterprise. The Brio Intelligence
product suite includes:

� Broadcast Server: Enables IT to create queries, analyses, and reports, and to
schedule them for processing based on date and time or an event (e.g., a
database update). The results can be published in a number of formats that
best suit the end user’s needs, including HTML, CSV, XLS, and Brio (BQY)
files, as well as printed reports. The reports best suited for the Broadcast
Server are those that involve queries that are resource intensive, and are thus
best processed during off hours. With the ability to e-mail Excel files, extranet
end users can also benefit.

� OnDemand Server: Allows Web browser-based end users to create and
execute Brio files on demand. With no intervention from IT, end users can
query the database and retrieve data to their desktops. The Adaptive Report
functionality allows different end users to view the same report with different
capabilities, thus minimizing the number of reports that IT needs to manage.
One end user may only be able to view the data, while another may be able to
re-query the database and analyze the data. The reports best suited for the
OnDemand Server are those that require the end user to specify their
selection parameters and those that are needed on an on-demand basis, and
are therefore hard to schedule.

� Designer: The client/server developer’s version of Brio. Designers can create
Brio documents that incorporate not only reports for end users, but also data
models, security, and auditing. Designers hold the “key” to the repository and
control which documents are made available to end-users.

� Explorer: The client/server version of Brio that is used by those who will build
a majority of the reports from the data models that have already been created
using Brio Designer or by directly accessing the database, thus by-passing
the repository. These are the power users who know the right business
questions to ask and how to ask them using Brio.

� Navigator: The client/server version of Brio that is designed for those with
relatively lightweight analysis needs, such as novice users. These users only
need data access via the Brio repository, which contains pre-built documents
created and populated by the Designer. They are protected from generating
invalid queries by working in this predefined and controlled environment.
 Chapter 7. OLAP integration 205

� Insight users: Web browser-based users that have varying levels of
functionality based on the adaptive report and user security. They can retrieve
documents posted by the Broadcast Server or in conjunction with the
OnDemand Server they have the ability to query data over the Web and
manipulate the results on their desktops. They have nearly identical
functionality to the Brio Navigator user without the expense and maintenance
of database connectivity middleware.

� Quickview users: Web browser-based users that only need to view and print
Brio documents. The Broadcast Server delivers these documents, and the
OnDemand Server can give them the ability to refresh the documents with
new data on demand. For users that only need to view prepared data, and
want to do so as easily and efficiently as possible, Quickview offers the ideal
solution.

7.2.3 Brio integration with Tivoli Enterprise Data Warehouse
This section will only show the Brio Designer component integration with Tivoli
Enterprise Data Warehouse. In this example we are using BrioQuery Designer
Version 6.1. We will cover the setting up of the integration and running reports.

Setting up the integration
We installed Brio Designer onto a Windows 2000 system using the installation
instructions supplied with the product. We also installed the DB2 Client software
and configured an ODBC connection to the TWH_MART database.

We did the following to set up the integration:

1. Set up the OBDC connections to the TWH_MART and TWH_MD databases.

2. Start the Brio Designer program by clicking Start -> Programs -> BrioQuery
Designer and select BrioQuery Designer.

The Welcome to BrioQuery window will appear (Figure 7-1 on page 207).
206 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-1 Welcome to BrioQuery window

3. Check New Database Connection File and click on OK. The Database
Connection Wizard will appear (Figure 7-2 on page 208).
 Chapter 7. OLAP integration 207

Figure 7-2 Connection Wizard window

4. Select OBDC from the drop-down bar and click Next. The Database
Connection Wizard window will appear (Figure).

Figure 7-3 DB2 configuration window
208 Introduction to Tivoli Enterprise Data Warehouse

5. Enter the connection user name and password and for Host and enter the
ODBC connection name.

6. Click Next and the conformation window will appear. Select Finish to save
the connection.

Creating reports with Brio
Now we are ready to set up and run a query. To do this we did the following:

1. Using the connection from the above step, expand the table and database
tree and select the tables to run a query from, right click a table to query, and
select Add Selected Items (Figure 7-4).

Figure 7-4 Add selected items window

2. The tables selected will now move to the right-hand window pane. Now select
the items to be queried and drag and drop them into the Request tool bar
(Figure 7-5 on page 210).
 Chapter 7. OLAP integration 209

Figure 7-5 Item request window

3. When data is inserted into the TWH_MART database, time is converted to the
UTC time format, so if you want to display the time in your local time, it needs
to be converted to the correct time zone. To do this in Brio:

a. Right click the date item (Meas Hour) in the Request tool bar.

b. Select Properties and enter a SQL statement to calculate the correct
time. See Figure 7-6 on page 211.
210 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-6 Change time window

4. To process this query select the Process button. To view the results, select
the Results section in the left hand frame (Figure 7-7 on page 212).

Important: The above example assumes that there are five hours
difference between the local time and the Greenwitch time. This is the case
with the Eastern time. You need to substitute the correct value (or offset)
depending on your location. For example, if you are in the central time
zone, you need to use 360 minutes, since the difference between the
Greenwitch time is six hours.

You do not need this step when using the Report Interface, because when
installing Tivoli Enterprise Data Warehouse, the difference between the
local time and the Greenwitch time is automatically recorded in the
gmt-offset column of the TWD.DAY_AGGREG table. The Report Interface
uses this value to automatically compensate the difference in time zones.
 Chapter 7. OLAP integration 211

Figure 7-7 Results section window

5. To create a report from this data select Insert -> New Pivot then drag and
drop an item from the Results tree to the Side Labels, Top Labels, and Facts
window panes as in Figure 7-8 on page 213.
212 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-8 Crosstab report window

6. You would not want to create a graph of this data (because there is too much
data), so we want to limit the amount of data. To limit the amount of data, go
to the query section in the left-hand frame, select the item to limit the data,
and click Query -> Add Limits the limit window will appear.

7. Select what you want to limit by using an SQL statement, We selected to limit
only CPU metric descriptions for all host names over a seven-day period
(Figure 7-9 on page 214).
 Chapter 7. OLAP integration 213

Figure 7-9 Setting a limit window

8. We then rerun the query process and create a new pivot chart using the
method already described in previous steps (Figure 7-10 on page 215).
214 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-10 Crosstab report window

9. From this we can create a bar graph by clicking Insert -> Chart This Pivot.
This chart shows the maximum daily value for each CPU description for all
hosts over a period of seven days (Figure 7-11 on page 216).
 Chapter 7. OLAP integration 215

Figure 7-11 Bar graph window

10.For more detailed information by day select a host name then right click and
select Drill Anywhere -> Meas Date. The chart will now show the maximum
value for each CPU description for each day.
216 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-12 Bar graph drill-down window

We have shown in this section a very basic setup and use of Brio. For a more
advanced use of Brio, refer to the user’s guide that comes with the product.
These reports can be exported to a Web server for viewing via a Web browser. In
a more advanced installation of Brio, you can even configure the Brio server
components to run the query automatically and generate reports, once a query
setup is registered with the Brio server. These reports can then be viewed via the
Brio Insight or Brio Quickview components.

7.2.4 Brio sample reports
In this section we will show sample reports we have created from Tivoli
Distributed Monitoring data.

� The report in Figure 7-13 on page 218 shows what hosts have been over 90
percent utilization in the last day.
 Chapter 7. OLAP integration 217

Figure 7-13 CPU over 90 percent window

� The report in Figure 7-14 on page 219 is a drill-down of the previous report to
show what hours the host name appserva19 CPU exceeded 90 percent.
218 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-14 Drill-down of a host appserva19 window

� The following reports (Figure 7-15 on page 220 and Figure 7-16 on page 221)
show a single machine and all of the metric measurements data for CPU,
network, disk, and memory for a period of the last four weeks.
 Chapter 7. OLAP integration 219

Figure 7-15 Page one of metric’s for host HPUXS0 window
220 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-16 Page two of metric’s for host HPUXS0 window

7.3 Business Objects
This section will give you a overview of the components of Business Objects, a
basic example of integration with Business Objects with Tivoli Enterprise Data
Warehouse, and sample reports.

7.3.1 Business Objects overview
Business Objects is an integrated query, reporting, and analysis solution that
allows you to access the data in your corporate databases directly from your
desktop and present and analyze this information in a Business Objects
document. For more information go to the Business Objects Web site at
http://www.businessobjects.com.
 Chapter 7. OLAP integration 221

http://www.businessobjects.com

7.3.2 Business Objects components
The Business Objects product line can be broken down into:

� Enterprise server products

There are four main enterprise server products:

– Webintelligence provides users with a light-weight, easy-to-use interface
called the Web Panel to create and modify documents.

– Broadcast Agent allows BUSINESSOBJECTS and WEBINTELLIGENCE
users to automatically process and publish their Business Objects
documents via the repository, an intranet, extranet, or the World Wide
Web.

– Zero Admin Business Objects is a new deployment of
BUSINESSOBJECTS 5.1, installed on client machines from
WEBINTELLIGENCE via a Web browser.

– Webintelligence SDK is an extension of WEBINTELLIGENCE, which
enables you to customize the look, behavior, and workflow of a
WEBINTELLIGENCE deployment to match the needs of a wide user
audience.

� Desktop products

Business Objects desktop products include:

– Business Objects is an integrated query, reporting, and analysis solution
for business professionals that allows you to access the data in your
corporate databases directly from your desktop and present and analyze
this information in a BUSINESSOBJECTS document.

– Business Query for Excel is an add-in tool that provides Microsoft Excel
with fully functional database access. With BUSINESSQUERY, you can
access your corporate databases from Excel using familiar business
terms.

– Business Miner works hand-in-hand with BUSINESSOBJECTS. Once you
have used BUSINESSOBJECTS to access the information you need from
your databases or data marts, you can use BUSINESSMINER to find the
trends and patterns hidden in the data.

– Designer allows administrators to create, manage, and distribute
universes for particular groups of BUSINESSOBJECTS and
WEBINTELLIGENCE users.

– Supervisor allows you, as supervisor, to set up and maintain a secure
environment for the overall Business Objects system.

– Developer Suite provides application developers with tools to customize
BUSINESSOBJECTS and DESIGNER.
222 Introduction to Tivoli Enterprise Data Warehouse

– Set Analyzer allows nontechnical users to query large data stores without
the lag time associated with standard relational online analytical
processing (ROLAP) tools.

– The Business Objects Services Administrator gives you an overview of
your distributed architecture system.

– The Broadcast Agent Console allows administrators to track and modify
the scheduled automatic processing of documents through BROADCAST
AGENT.

7.3.3 Business Objects integration
In this section we will use the Designer Version 5.1 and Business Object Version
5.1 components to show a simple integration scenario with Tivoli Enterprise Data
Warehouse. We will cover setting up the integration and running reports.

Setting up the integration
We installed Designer Version 5.1 and Business Object Version 5.1 onto a
Windows 2000 system using the installation instructions supplied with the
product; also the DB2 Client software was installed and a ODBC connection to
the TWH_MART database was configured. Once this is complete we did the
following:

1. Set up a universe before we can use Business Objects. To do this click Start
-> Programs -> Business Objects 5.1 -> Designer and a Quick Design
Wizard window will appear

2. Click Begin and the Define the Universe parameters window will appear.
Enter a universe name and click the New button and the Add a connection
window appears (Figure 7-17 on page 224).
 Chapter 7. OLAP integration 223

Figure 7-17 Add a connection window

3. Select IBM DB2 CAE and click OK. The IBM DB2 CAE window will appear.

4. Enter a connection name and select DB2 UDB V6 from the database engine
drop-down menu.

5. Enter a DB2 user name and password and select the ODBC name of the
TWH_Mart database connection from the data source name drop-down menu
(Figure 7-18 on page 225).

Note: If the ODBC for the TWH_MART database is not in the drop-down
list, that means that it has not been configured. You need to configure it
first.
224 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-18 IBM DB2 CAE window

6. Click OK. The Quick Design Wizard step 1 window will appear.

7. Click Next and the Quick Design Wizard step 2 will appear. Add the tables to
run a query (Figure 7-19 on page 226).
 Chapter 7. OLAP integration 225

Figure 7-19 Add tables to query window

8. Click Next and the Quick Design Wizard step 3 will appear. Add the
measurement objects from the fact table (Figure 7-20 on page 227).
226 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-20 Add the measurements from the fact table window

9. Click Next and the Quick Design Wizard step 4 will appear. Click Finish.

10.The universe window will appear showing the configuration we have set up.
We need to create the table joins. Do this by clicking Tools -> Detect Joins
or set the joins up manually (Figure 7-21 on page 228).
 Chapter 7. OLAP integration 227

Figure 7-21 Setting up table joins window

The set up is now complete.

Creating reports with Business Objects
We now need to design a report using the above created universe. To do this do
the following:

1. Click Start -> Programs -> BusinessObjects 5.1 -> BusinessObjects. The
New Report Wizard appears.

2. Check the Generate a standard report and Specify how to access data
buttons.

3. Click Begin, check the Universe button and click Next. Then select the
Universe name we just created and click Finish. The Query Panel appears
(Figure 7-22 on page 229).
228 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-22 Query Panel window

4. Now expand the Classes and Objects trees and drag and drop all the
objects that will be part of a query to the Result Objects pane (Figure 7-23
on page 230).
 Chapter 7. OLAP integration 229

Figure 7-23 Results Objects window

5. Click Run. This will return the results of the query. This could return too much
data to create a graph or the report may not be in a suitable format, so click
Analysis -> Slice and Dice. The Slice and Dice Panel window appears.

6. To create a report with a different format, drag and drop a object such as host
name above the dotted line or remove any unwanted objects (Figure 7-24 on
page 231).
230 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-24 Slice and Dice Panel window

7. Click Apply. This will produce a report like the one in Figure 7-25 on
page 232.
 Chapter 7. OLAP integration 231

Figure 7-25 Crosstab report window

8. We now need to filter the data to show only seven days worth of data. Do this
by clicking Analysis -> Slice and Dice. The Slice and Dice Panel window will
appear.

9. Select an object such as Meas Date and click the filter button. The Apply a
Filter window will appear. Select the values to show and click OK (Figure 7-26
on page 233).
232 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-26 Filter applied window

10.Click Apply to finish and close the Slice and Dice Panel.

11.From this report we can create a graph. Do this by right clicking the report and
selecting Turn to Chart. The Chart Auto Format window will appear.

12.Select a report type such as Line and click OK. This will display the graph
(Figure 7-27 on page 234).
 Chapter 7. OLAP integration 233

Figure 7-27 Line graph window

We have shown in this section a very basic set up and use of Business Objects.
For a more advanced use of Business Objects refer to the user’s guide that
comes with the product. These reports can be exported to a Web server for
viewing via a Web browser or, in a more advanced installation of Business
Objects, the server components could be set up to provide automatic generation
of reports, which can then be viewed via a Web browser or a Business Objects
client.

7.3.4 Business Objects sample reports
In this section we will show sample reports we have created from Tivoli
Distributed Monitoring data.

The following report (Figure 7-28 on page 235) shows all hosts and all of the
measurement data (CPU, network, disk, and memory) for a period of the last
seven days. You can navigate to what day you want by clicking the date in the
left-hand frame.
234 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-28 Crosstab report window

The following reports (Figure 7-29 on page 236 and Figure 7-30 on page 237)
show all the average daily disk measurements for the last month for selected
hosts. You can click the metric measurement you want to view in the left-hand
frame.
 Chapter 7. OLAP integration 235

Figure 7-29 Line graph report window
236 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-30 Line graph report window

7.4 Cognos
In this section we will give you an overview of the components of Cognos, and a
basic example of integration with Cognos with Tivoli Enterprise Data Warehouse
and sample reports. The target audience for this section is businesses that have
deployed TDS and want to continue using Cognos as an OLAP software tool.

7.4.1 Cognos overview
Cognos PowerPlay enables you to create applications that read flat or
two-dimensional data and manipulate it into a multidimensional presentation
called a PowerCube. Each cube is in essence a data mart, which provides the
information your users need to analyze their operations.
 Chapter 7. OLAP integration 237

7.4.2 Cognos components
The Cognos PowerPlay architecture consists of the following client and server
components:

� PowerPlay for Windows is used for standard report authoring on summarized
data, for advanced exploration, and for ad hoc trend and exception reporting.

� PowerPlay for Excel is used for authoring reports using the built-in graphing
functions and cell-based calculation capabilities of Microsoft Excel.
Compatible with Microsoft Office 95 and Microsoft Office 97, this Excel add-in
populates worksheets with the live data in a cube.

� PowerPlay Web is used for casual exploration and ad hoc trend and
exception reporting. Online help is available, but no special training is needed
to use this HTML-based client.

� PowerPlay Enterprise Server provides access to standard cubes, cubes
stored in relational databases (either locally or distributed to other file
servers), and third-party cubes stored on Essbase, Oracle Express,
Microsoft, or IBM OLAP servers.

� PowerPlay Personal Server is used for saving and transporting cubes or
sub-cubes on the personal computers of mobile users, and for accessing
information stored in third-party cubes or in relational databases, locally or on
a LAN.

� PowerPlay Transformation Server (Windows Edition) is used to provide full
PowerPlay client functionality and the database storage capabilities formerly
associated with the Administrator Database edition of Transformer 6.0.

7.4.3 Cognos integration with Tivoli Enterprise Data Warehouse
In this section we will use the Cognos PowerPlay Version 6.5 and Cognos
PowerPlay Transformer Version 6.5 to show a simple integration scenario with
Tivoli Enterprise Data Warehouse using Tivoli Distributed Monitoring data

Setting up the integration
We installed Cognos PowerPlay Version 6.5 and Cognos PowerPlay
Transformer Version 6.5 from the Tivoli Decision Support (TDS) 2.1 CD. For
installation instructions you can refer to the TDS manuals.
238 Introduction to Tivoli Enterprise Data Warehouse

Cognos uses an additional product called Impromptu for easy access to
relational databases. Because Impromptu is not shipped with TDS, we opted to
use the exporting function of DB2. If you decide to use Cognos as your OLAP
tool for Tivoli Enterprise Data Warehouse data, it will be easier for you to use
Impromptu, but you might need to get a license for it. Please contact Cognos
Corporation for this.

In order to define our tables in Cognos we did the following:

1. We exported the following DM tables in our TWH_Mart database and created
the corresponding CSV files for each:

– Metrics table

– Host table

– Week tables

2. Next we defined these files in the PowerPlay Transformer as queries. Click
Start -> Programs -> Cognos 6.5 -> Transformer. The PowerPlay
Transformer program will start.

3. Select File -> New and the New Model window will appear.

4. Enter a model name, select Delimited-field text with column titles as the
type, and select one of the exported CSV files as the data file and uncheck
Run AutoDesign (Figure 7-31 on page 240).

Important: The Cognos components that we used in this scenario are the
ones that are shipped with Tivoli Decision Support 2.1. But if you want to use
Cognos as your preferred OLAP tool to integrate with Tivoli Enterprise Data
Warehouse, we recommend that you license the latest versions of Cognos
products, because Cognos PowerPlay Version 6.5 and Cognos PowerPlay
Transformer Version 6.5 that are shipped with Tivoli Decision Support 2.1 are
not the latest versions.

Tip: AutoDesign creates the model structure automatically, but it can only
be used as a preliminary transformer model design. For most of the cases
you need to modify it. The more data you have, the higher the accuracy of
the model will be. You will also have a chance to run AutoDesign once you
have imported all the queries.
 Chapter 7. OLAP integration 239

Figure 7-31 New Model window

5. Click OK. The table will appear in the Queries window pane (Figure 7-32 on
page 241).
240 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-32 Create a query window

6. To add our other tables that we have exported to the query, right click the
table already in the Queries window (Figure 7-33 on page 242).
 Chapter 7. OLAP integration 241

Figure 7-33 Add items window

7. Select Insert Item. The Query window will appear.

8. Enter a query name, enter the exported CSV file as the local data file, select
Delimited-field text with column titles as the source type, and click OK
(Figure 7-34 on page 243).
242 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-34 Create query window

Repeat this step until all tables are defined as PowerPlay Transformer, by
adding them in the Queries window pane. Query names will be the same as
table names by default, but you can change the name by right clicking the
query and selecting Properties. For example, we changed the name of the
query that corresponds to the weeks table from weeks to measurements.
 Chapter 7. OLAP integration 243

Creating reports with Cognos
Once we define our tables to the PowerPlay Transformer, we may start designing
our model to run reports against out database.

1. First we need to create a model structure. At this point you can select Tools
-> AutoDesign (or the light bulb button on the top menu bar) to ask
PowerPlay Transformer to create a automatic design for you (Figure 7-35 on
page 245).

Tip: You can change the sequence or order of the queries in the Queries list by
dragging and dropping the queries with the mouse, in the Queries pane. By
default Cognos PowerPlay places the queries in alphabetic order. But this
might not be the optimum order. The recommended order depends on the
type of the query. Cognos categorizes the query types into two:

� Structure: Queries that contain primarily text data (usually defines
dimensions and levels in the model)

� Transaction: Queries that contain primarily numeric data (usually defines
measures in the model)

The recommended order for the queries in the Queries list is to place the
structure queries before the transaction queries. This becomes important
when generating the multidimensional cube.

In our example, we placed the measurements query last in the Queries list
because it contains mostly numeric measurements about our data.
244 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-35 Create a structure window

2. AutoDesign will give you a preliminary design, but you still need to work on it
to suit your needs. When designing the model structure drag and drop the
columns containing text or date data from the Queries list to the Dimension
Map. If you have a new dimension, drag and drop the column to a blank area
on the Dimension Map. If you are creating additional levels in an existing
dimension drag and drop the column under the existing levels. Also drag
columns containing numeric data from the Queries list to the Measures list.
See Figure 7-36 on page 246

3. You can also use the check model feature of Cognos by clicking Tools ->
Check Model. This will verify the correctness of your model (Figure 7-36 on
page 246).
 Chapter 7. OLAP integration 245

Figure 7-36 Verifying that the model is OK

4. Now we create the cube using this model by clicking Run -> Create
PowerCubes (Figure 7-37 on page 247).
246 Introduction to Tivoli Enterprise Data Warehouse

.

Figure 7-37 Building the cube

5. We want to view some reports from this cube by right clicking in the
PowerCube pane and selecting View PowerCube.
 Chapter 7. OLAP integration 247

Figure 7-38 Opening up the PowerPlay

6. The PowerPlay program, which is the GUI interface for Cognos, starts. From
this you can create various crosstab or graph reports. Consider the following
example, which shows minimum, maximum, and average values for all
metrics and for all hosts in different layers (Figure 7-39 on page 249).
248 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-39 Create graph report

To get this graph we did the following:

a. Select the Pie chart icon from the top tool bar.

b. Drag and drop MET_NAME onto the pie chart.

c. Drag and drop the HOSTNAME into the Legend.

d. Drag and drop MEASURES on to the stacked paper icon in top left-hand
corner.

7.4.4 Cognos sample reports
In this section we will show sample reports we have created from Tivoli
Distributed Monitoring and Tivoli Inventory data.

Figure 7-40 on page 250 shows the average CPU run queue length for all hosts
ranked by the highest CPU run queue length.
 Chapter 7. OLAP integration 249

Figure 7-40 Bar graph report

� Figure 7-41 on page 251 shows the average free swap space available in all
AIX 4.3.3 machines per week.
250 Introduction to Tivoli Enterprise Data Warehouse

Figure 7-41 Pie chart graph
 Chapter 7. OLAP integration 251

252 Introduction to Tivoli Enterprise Data Warehouse

Chapter 8. Real-life scenarios

This chapter will show how you can use Tivoli Enterprise Data Warehouse RPI
interface and OLAP tools together to solve real-life problems.

This scenario covers the following parts:

� Description of the environment

� Description of the scenario

� Implementation

� Wrap-up

8

© Copyright IBM Corp. 2002 253

8.1 Scenario 1 - Low swap space
In this first scenario we assume that our servers are monitored by Tivoli
Distributed Monitoring (Version 3.7) and the data is imported into Tivoli
Enterprise Data Warehouse. We use this data to produce scheduled monthly
standard reports to evaluate the performance and to identify problems. In this
example scenario we demonstrate how to find problems and how to create
further specific reports to analyze the problem in more detail.

A good starting point for observing problems is extreme reports of basic system
resources. In our example we consider the minimum available swap space (see
Figure 8-1). The report displays the minimum value of all measurements of one
month grouped by host names.

Figure 8-1 Monthly extreme report for available swap space
254 Introduction to Tivoli Enterprise Data Warehouse

On the server lopsn1f5 we find a minimum swap space of 0 MB. It might have
been a temporary problem, but the problem might also still exist. We now want to
know when and for how long the problem occurred.

For this reason we create a health report for this particular server to gain further
information. We choose for the metrics the minimum, maximum, and average
value of available swap space. The filter is the host name found in the previous
report. The time period for the report is the month used to create the extreme
report.

The result of this report is depicted in Figure 8-2.

Figure 8-2 Health report for server found in extreme report

Note: To complete this task a filter for host name must be applied. This is
possible in the Tivoli Enterprise Data Warehouse Report Interface only, when
there are less than 27 host names in the data mart. If you have more hosts in
your environment you need to use an OLAP tool to generate this report.
 Chapter 8. Real-life scenarios 255

We see that swap space has a bend on January 26th. Thus we can conclude that
something has happened at this time. In this example a new software product
has been installed, which has a memory leak. The installation of a patch for the
new software product is needed.

In this example we have seen how we can obtain important information from the
central warehouse data, which helps us to isolate and understand a problem in
the IT infrastructure.

8.2 Scenario 2 - Slow application
For the second scenario, which is seen in Figure 8-3, we have to go into more
detail about the environment. We have two applications that we call here, for the
sake of simplicity, application A and application B, respectively. Each application
has 20 load-balanced application servers (appserva01 to appserva20 for
application A and appservb01 to appservb20 for application B), which are
accessed by many clients in the enterprises network. Each application maintains
its own database server (dbserva for application A and dbservb for application
B).

Application A needs to import data from application B on a daily basis. The data
is pulled from dbservb, processed, and pushed to dbserva by a server named
gateway. The database update process is scheduled during the night as the
applications are mainly used during the day.

Figure 8-3 Environment for the second scenario

dbserva

appserva01

gateway

appserva20 appservb20appservb01

dbservb

Application A Application B

... ...

Clients Clients ClientsClients
256 Introduction to Tivoli Enterprise Data Warehouse

All servers in this environment are monitored with Tivoli Distributed Monitoring
3.7. Furthermore the response time of the applications on all application servers
is measured by Tivoli Application Performance Management (TAPM). The data
from both applications is imported to the central data warehouse. A data mart
ETL has been set up that builds data marts that contain measurements from both
applications.

In this environment we now have the problem reported by users that the
applications are very slow, especially in the morning hours. We now have to
isolate the reason for this slowdown using our data.

To quantify the problem we check the response time data of our applications. A
first interesting question is whether all application servers are slow or whether
the problem is experienced on a certain set of servers only. To answer this
question we create a extreme report of the maximum value of the response time
grouped by the host name from the daily star schema. This report is shown in
Figure 8-4 on page 258.
 Chapter 8. Real-life scenarios 257

Figure 8-4 Extreme report of the maximum application response time

We see that all servers have roughly the same long maximum response times.
As there are complaints only in the morning hours, we check the application
response time distribution over one day.

In Figure 8-5 on page 259 we see a health report produced by the Tivoli
Enterprise Data Warehouse Report Interface. It shows minimum, average, and
maximum values of the application response time for one day averaged over all
servers. The data is taken from the hourly star schema.
258 Introduction to Tivoli Enterprise Data Warehouse

Figure 8-5 Health report of the response time versus a one-day period

We find long response times in the morning increasing until 10:00 a.m. In the
afternoon there are normal response times. Using OLAP tools, like Brio, we can
check the daily response time behavior of single machines too. Such a report is
shown in Figure 8-6 on page 260 where the response time of four randomly
chosen application servers are considered.
 Chapter 8. Real-life scenarios 259

Figure 8-6 Application response time versus a one-day period

Again we find long response times until 11:00 a.m. but we still do not know, what
the reason for this long response times is.

One reason could be that the workload of the application servers is too high
during these hours. For this reason we now check the available swap space and
the CPU usage of the application servers.

Here we again use Brio reports for four randomly chosen application servers. We
could instead use average, minimum, or maximum reports over all application
servers using the Tivoli Enterprise Data Warehouse Report Interface.

In Figure 8-7 on page 261 there is a Brio report for the minimum available swap
space versus a one-day period for four application servers. We find that the
minimum available swap space is roughly constant. It is at every time sufficient to
run the application. Thus there is no problem with the swap space on our
application servers that could be responsible for the long response times.
260 Introduction to Tivoli Enterprise Data Warehouse

Figure 8-7 Minimum available swap space versus a one-day period

We now check the average CPU usage of the application servers. In Figure 8-8
on page 262 there is a Brio report for the maximum total CPU usage versus a
one day period for four application servers. We find that the CPU usage
increases during office hours but is also at every time sufficient to run the
application. We conclude that there is no high workload of our application servers
that causes the long response times.
 Chapter 8. Real-life scenarios 261

Figure 8-8 Maximum CPU usage versus a one-day period

Another possible source of the problem could be the workload of the database
servers. Thus we now check the average CPU usage of the database servers
(see Figure 8-9 on page 263). As the workload of the database server is also
influenced by the database update process, we also consider the gateway server
in this report.
262 Introduction to Tivoli Enterprise Data Warehouse

Figure 8-9 Maximum CPU usage versus a one-day period

In the graphs of the CPU usage of the database servers we find that both
database servers are 100 percent busy between 4:00 a.m. and 10:00 a.m. We
now compare these graphs with the one of the gateway server. We find that it is
busy in exactly the same time interval.

Thus we can conclude that the database update, which is scheduled for each
night, slows down our database servers. This in turn causes long response times
of the applications (compare the time interval of increased response times in
Figure 8-5 on page 259).

Apparently the duration of the database update has increased due to an
increased data volume to be processed and now lasts until 11:00 a.m. Thus the
workload of the database update and the workload from the application sum up
in the early business hours, which leads to long response times.

We see that the import process is scheduled for 4:00 a.m. As the applications are
rarely used at night, the solution of the problem is to schedule the database
update earlier in the night so that it will be finished when the working hours begin.
 Chapter 8. Real-life scenarios 263

This example has shown how the data in the Tivoli Enterprise Data Warehouse
can be productively used to solve and isolate problems in the IT infrastructure.
Different views and correlations of data in the reports produced by the Report
Interface or other tools provide information about the state of many components.
They help to quickly localize non-functional components, and also provide
information that helps to exclude possible sources of error.
264 Introduction to Tivoli Enterprise Data Warehouse

Chapter 9. Multi-customer
environments

This chapter describes how you can use Tivoli Enterprise Data Warehouse in a
multi-customer environment (such as a Service Provider). We will show you how
to customize Tivoli Enterprise Data Warehouse in such environments.

This chapter has the following sections:

� Multi-customers environments

� A typical Service Provider scenario

9

© Copyright IBM Corp. 2002 265

9.1 Multi-customer environments overview
The Tivoli Enterprise Data Warehouse’s multi-customer and multi-center design
makes the installation and management of a single customer or single center
environment as simple as possible, while still providing features that enable a
multi-customer or multi-center environment, when required. To facilitate the
multi-customer and multi-center installations, some added complexity is required
in the design and installation process that impacts the single customer or center
environment. As part of the multi-customer support, two different application
scenarios are provided:

� Application data sources that are input sources to the central data warehouse
that contain information valid for one customer only.

� Application data sources that are input sources to the central data warehouse
that contain data for multiple customers.

A single customer installation can smoothly migrate to a multi-customer
environment. However, if any application data from a single customer
environment is imported into the central data warehouse so that it cannot be
identified with a particular customer, the central data warehouse cannot be used
to support a multi-customer environment. In this scenario, a customer’s recourse
is to migrate their old central data warehouse data into the new environment to
support the multi-customer environment.

Separate applications can use different data fields to distinguish between
customers, but within applications the data fields should be consistent. The
application must have at least one data field that determines customer
uniqueness. Some applications might decide that two or more data fields are
needed to distinguish customer data. Either case is permitted as long as the data
fields used are consistent within a single application. Usually a fully qualified host
name will be sufficient. Data from applications are assigned valid customer
account codes by matching certain data fields in the incoming data with
pre-identified values in a matching database table. Because each application can
use different fields and different number of fields to identify customers, each
application has its own matching table that it uses during the central data
warehouse ETL process.

Before a central data warehouse ETL can be run for the multi-customer
environment, the product_code.cust_lookup and TWG.Cust tables must be
populated with data. The customer should populate the TWG.Cust and
product_code.cust_lookup tables as part of the planning and installation of the
central data warehouse. An outside process or script can be used to populate the
266 Introduction to Tivoli Enterprise Data Warehouse

tables, but it should be run as a distinct step, scheduled separately from the
central data warehouse ETL process. The data contents of the TWG.Cust and
product_code.cust_lookup tables should be fully understood by an administrator
to avoid data mingling between customers.

If the users want to implement either multi-customer or multi-center functionality,
they can do this by changing the contents of the lookup tables, cust_lookup or
centr_lookup, and populating the TWG.Cust and TWG.Centr tables in the central
data warehouse. For example, for a multi-customer environment the user must:

� Delete the single row in the product_code.cust_lookup table. This row has
Cust_Acct_Cd='DEF', Value='@', or Cust_ID=1, Value='@'.

� Populate the product_code.cust_lookup table. The data in this table is static
and should not be populated as part of an ETL process. The data might be
based on part of the fully qualified domain name. For example, all hosts in the
ford.myserviceprovider.com domain belong to the customer Ford.

� Populate the TWG.Cust table with valid values. If using the customer account
code method, the Cust_Acct_Cd field in the TWG.Cust table must match the
Cust_Acct_Cd field in the product_code.cust_lookup table. If using the
customer ID, the Cust_ID field in the TWG.Cust table must match the Cust_ID
field in the product_code.cust_lookup table.

Once the performance data is moved through the Tivoli Enterprise Data
Warehouse warehouses to the TWH_MART via the ETL processes, the views
and users for each customer must be set up and configured.

9.2 Implementing a multi-customer scenario
In our multi-customer environment we have installed the Tivoli Distributed
Monitoring Version 3.7 Warehouse Pack. All the scripts used are from this pack.
You would follow a similar path for another application.

To implement a multi-customer environment you need to follow these steps:

1. Update the product_code.cust_lookup table for each application and the
TWG.cust table in the TWH_CDW database.

a. We created a spreadsheet for the cust_lookup table with two columns (see
Figure 9-1 on page 268).

• Column 1: CUST_ACCT_CD will be the customer account code.

• Column 2: VALUE will be the machines fully qualified host name.
 Chapter 9. Multi-customer environments 267

Figure 9-1 Customer lookup table

b. This file is then saved as cust_lookup.csv.

c. We then created a spreadsheet for the cust table. This has six columns
(see Figure 9-2 on page 269).

• Column 1: CUST_ID will be set by a trigger when a new customer is
entered.

• Column 2: CUST_PARENT_CD.

• Column 3: GEOAREA_CD will be the geographic area from the
GEOAREA table. See Appendix A, “GEOAREA and TMZON tables” on
page 299.

• Column 4: TMZON_ID will be the time zone from the TMZON table.
See Appendix A, “GEOAREA and TMZON tables” on page 299.

• Column 5: CUST_ACCT_CD will be the value from the
CUST_LOOKUP table. See Figure 9-1.

• Column 6: CUST_NM will be the customer name.
268 Introduction to Tivoli Enterprise Data Warehouse

Figure 9-2 Configure customer table

d. This file is then saved as cust.csv.

e. We removed the current default value from the CUST_LOOKUP table by
entering the following commands from a DB2 command window:

db2 connect to TWH_CDW user db2inst1
db2 DELETE FROM DMN.CUST_LOOKUP WHERE ((DMN.CUST_LOOKUP.VALUE='@'))

f. Then we inserted the values from the two spread sheets we created into
the correct tables by running the following script from a DB2 command
window:

db2 -f insert_new_cust.db2

The name of the script is insert_new_cust.db2. It contains the commands
shown in Example 9-1.

Example 9-1 insert_new_cust.db2 script

connect to twh_cdw user db2inst1
IMPORT FROM c:\temp\cust_lookup.csv OF DEL MODIFIED BY chardel"" coldel,
decpt. MESSAGES c:\temp\cust_lookup.log INSERT INTO DMN.CUST_LOOKUP
IMPORT FROM c:\temp\cust.csv OF DEL MODIFIED BY chardel"" coldel, decpt.
MESSAGES c:\temp\cust.log INSERT INTO TWG.CUST
 Chapter 9. Multi-customer environments 269

Where DB2inst1 is the user ID for the database, c:\temp\cust_lookup.csv
is the location of the file we created (see Figure 9-1 on page 268), and
c:\temp\cust.csv is the location of the file we created (see Figure 9-2 on
page 269).

g. To check that the tables have the correct data inserted, run the following
commands from a DB2 command window:

db2 select * from dmn.cust_lookup

The output of the command is seen in Figure 9-3.

Figure 9-3 Output of dmn.cust_lookout table

db2 select * from twg.cust

Output of the command is seen in Figure 9-4 on page 271.
270 Introduction to Tivoli Enterprise Data Warehouse

Figure 9-4 Output of twg.cust table

Once this is successful, the updates of the product_code.cust_lookup table
and the twg.cust table in the TWH_CDW database are completed.

2. In a multi-customer environment we will be pulling data from multiple
databases for the same application. Since the current version of Tivoli
Enterprise Data Warehouse does not support an ETL process having two
source databases of the same type of data (such as two source databases
having Tivoli Distributed Monitoring data), we have to create or make a copy
of an ETL process for each customer.

We did the following to create a copy of a process for each customer:

a. On the Windows taskbar, click Start Programs -> IBM DB2 -> Control
Center. The Control Center window is displayed.

b. From the DB2 Control Center, start the DB2 Data Warehouse Center by
clicking Tools -> Data Warehouse Center. The Data Warehouse Center
Logon window is displayed.

c. Enter the user name and password and click OK. The Data Warehouse
Center is displayed.

Note: This restriction will be fixed in a future release of Tivoli Enterprise
Data Warehouse.
 Chapter 9. Multi-customer environments 271

d. Expand the tree Subject Areas. There will be a list of applications. Expand
the Application tree and expand the Processes tree; right click Process
and select Define.

e. The Define Process window will appear (Figure 9-5). Enter a new process
name and click OK.

Figure 9-5 Define Process window

f. Now select the process that we want to copy, right click the task in the
right-hand pane, and select Copy.

g. Enter a new name, select the process from the previous step, uncheck
Copy target table, and click OK (Figure 9-6 on page 273). Repeat this step
for each task.
272 Introduction to Tivoli Enterprise Data Warehouse

Figure 9-6 Copy Step window

h. Now our new process is set up, but has the wrong source database
assigned, so we need to assign the source database for the TIV customer.
Do this by left clicking the process we have just created for the customer,
right click the source database, and select Remove (Figure 9-7 on
page 274).
 Chapter 9. Multi-customer environments 273

Figure 9-7 Remove source database window

i. Assign the new source database to the process task by right clicking
Process and selecting Open.

j. The Process Model window will appear. Click the database button and
drag it into the window.

k. The Add Data window will appear (Figure 9-8 on page 275). Select your
source database table and click OK.
274 Introduction to Tivoli Enterprise Data Warehouse

Figure 9-8 Add Data window

l. Now create a data link from the data source to the task, as in Figure 9-9 on
page 276.
 Chapter 9. Multi-customer environments 275

Figure 9-9 Process Model window

m. In a multiple customer environment we need to be able to do a
incremental extract from the source database. To do this, an extract
control window is set up. This is already implemented for you in a single
customer environment but needs to be changed for each customer in a
multi-customer environment. We achieved this by adding a new row in the
TWG.Extract_Control table in the TWH_CDW database. See the
commands in Example 9-2.

Example 9-2 Adding a new row in the TWG.Extract_Control table

connect to twh_cdw user db2admin
insert into twg.Extract_Control values ('DM_METRICS_INIT_TIV' ,
'DMN.STAGE_DM_METRICS' , x'00000000000000000000',
x'99999999999999999999', 0, 2000000000, '1970-01-01-00.00.00.000000',
'9999-01-01-00.00.00.000000')
276 Introduction to Tivoli Enterprise Data Warehouse

insert into twg.Extract_Control values ('DM_METRICS_TIV' ,
'DMN.STAGE_DM_METRICS' , x'00000000000000000000',
x'99999999999999999999', 0, 2000000000, '1970-01-01-00.00.00.000000',
'9999-01-01-00.00.00.000000')

n. Then we need to edit the SQL script that runs the extract of data from the
source database (see Appendix B, “Scripts” on page 303) and then we
need to update our process model (see Figure 9-9 on page 276).

o. Right click the Process task selected, select Properties -> Parameters
and enter the name of the edited SQL script.

Figure 9-10 Process Properties window

p. Save this process model by clicking Process -> Save.

3. For multi-customer environments, a view needs to be created of each table in
a star schema. The exception might be the D_METRIC table because the
same metrics are likely to apply to all customers. The ETL designers will
provide template insert statements such as in the

Note: Because of the changes made to the process model when a patch
for the Tivoli Enterprise Data Warehouse is applied, these patches may not
be applied to the customized process model, so you may need to recreate
the process model again.
 Chapter 9. Multi-customer environments 277

tedw_apps_etl/product_code/pkg/vnnn/mart/ddl/product_code_mart_schema
.sql script (see Example 9-3).

Example 9-3 Template insert statements

Create view DM.D_V_host_TIV as (select * from DM.D_host where cust_id =’TIV’)
Create view DM.F_V_TIV_hour as (select * from DM.F_hour where host_id in
(select host_id from d_dm_host where cust_id =‘TIV’))

a. Create a view for every fact table that the customer will need access to for
reporting, such as F_day and F_week tables, using the commands shown
in Example 9-3 in a DB2 command window.

Run this set of inserts to create views for each customer. You must replace
TIV with your valid customer ID, and code inserts for each customer.

b. Once this is complete, we set up database users that include specific
grants to only their applicable views. Using the commands shown in
Example 9-4, we set up a user called TIV, and only assigned the views
and tables that are applicable to this one customer. Run the commands
shown in Example 9-4 from a DB2 command window.

Example 9-4 Grant statements

GRANT CONNECT ON DATABASE TO USER TIV
GRANT SELECT ON TABLE DM.D_METRIC TO USER TIV
GRANT SELECT ON DM.D_V_TIV_HOST_STATE TO USER TIV WITH GRANT OPTION
GRANT SELECT ON DM.F_V_TIV_HOUR TO USER TIV WITH GRANT OPTION

Using the commands shown in Example 9-4, grant all the views you set up
in the previous step for that customer, such as additional fact tables, F_day
and F_week.

4. With a multi-customer implementation, you must also create star schemas
made up of views in the Data Warehouse Center. This means that the
IWH.StarSchema table contains both the view star schemas and the table
star schemas (see “How star schemas are used to create reports” on
page 104). To create a star schema, first you need to set up the view and
table sources in the Data Warehouse Center and then you can set up your
star schema. See the following:

a. On the Windows taskbar, click Start Programs -> IBM DB2 -> Control
Center. The Control Center window is displayed.

b. From the DB2 Control Center, start the DB2 Data Warehouse Center by
clicking Tools -> Data Warehouse Center. The Data Warehouse Center
Logon window is displayed.

c. Enter the user name and password and click OK. The Data Warehouse
Center is displayed.
278 Introduction to Tivoli Enterprise Data Warehouse

d. Expand the tree Warehouse Sources. Right click the application mart
source, select Properties, and select Tables and Views from this window
(Figure 9-11).

Figure 9-11 Add source window

e. Now select the views and tables for the star schemas, move them to the
right side of the window, and click OK.

f. To set up the star schema right click Warehouse Schemas in the
Warehouse Center and select Define. Enter a name and description
(Figure 9-12 on page 280).
 Chapter 9. Multi-customer environments 279

Figure 9-12 Define Warehouse Schema window

g. Click OK, expand the Warehouse Schemas tree, right click the schema
name from the above step, and select Add Table.

h. Now add the table and views to your star schema from the source set up
earlier (Figure 9-13).

Figure 9-13 Add Data window

i. Click OK, right click the same schema, and select Open. The Warehouse
Schema model will now open in this window. Set up your joins
(Figure 9-14 on page 281).
280 Introduction to Tivoli Enterprise Data Warehouse

Figure 9-14 Warehouse Schema Model window

j. Save this by clicking Warehouse Schema and selecting Save.

You may have more schemas to create, so use the same procedure. After
creating these schemas, you are ready to create a report using these schemas.
For report creation refer to Chapter 4, “Implementation of the Report Interface”
on page 89.

Tip: The tables might be hidden behind each other. Select the top table
and drag it to another part of the window.
 Chapter 9. Multi-customer environments 281

282 Introduction to Tivoli Enterprise Data Warehouse

Chapter 10. Troubleshooting and
maintenance

This chapter provides information on troubleshooting commands and techniques
of Tivoli Enterprise Data Warehouse. It also covers maintenance of the Tivoli
Enterprise Data Warehouse central repository and data marts.

This chapter has the following sections:

� Tivoli Enterprise Data Warehouse troubleshooting techniques

� Tivoli Enterprise Data Warehouse maintenance and back up

10
© Copyright IBM Corp. 2002 283

10.1 Troubleshooting techniques
In this section we give some useful tips for troubleshooting. In the first subsection
we cover problems with installation. In the second subsection we give some hints
for working with the Report Interface. In the last subsection we cover working
with the Data Warehouse Center and installing your own ETLs and data marts.

10.1.1 Troubleshooting installation
Before you start the installation of Tivoli Enterprise Data Warehouse you should
do the following:

� Check the Tivoli Enterprise Data Warehouse Release Notes, GI11-0857, for
required prerequisites and patches for the operating systems and databases.

� If you are performing a silent installation of Tivoli Enterprise Data Warehouse
on a UNIX system without a local X11 server, you must set and export the
DISPLAY environment variable to a valid X11 server. The X11 server can be
on a different system.

� For a distributed installation, the Domain Name Service (DNS) must be able
to resolve host names from short names.

When all prerequisites are met you can start the installation. For detailed
installation instructions refer to Chapter 3, “Installation and configuration” on
page 47.

The Tivoli Enterprise Data Warehouse installer generates a log file named
<TWH_TOPDIR>\TWH.log. Look into this file if the installation aborts with an
error message or hangs. If the Tivoli Enterprise Data Warehouse installer fails,
then all changes should be rolled back automatically. Thus, the reason for the
install failure is usually not found in the last lines of the log file.

Additionally there is a log file, <TEMP>\twh_ibm_db2_runlog.log, which contains
output and errors from any DB2 commands. In this log file you can search for
MARKCORE, which marks the start of the core installation and MARK<AVA>,
which marks the start of a warehouse pack installation (<AVA> is the three-letter
product code of the product for which you install the warehouse pack). Note that
these markers are created by an attempt to connect to a non-existing database
with the name of the marker. So do not worry about the error messages
containing the markers.

Following we describe some common installation problems:

� A common install error, especially in a single machine installation, is
insufficient disk space. If you install all parts of Tivoli Enterprise Data
Warehouse to the same drive and your TEMP directory is on the same drive,
284 Introduction to Tivoli Enterprise Data Warehouse

you should have 2.0 GB of free space. The reason for so much disk space is
that the CD image is copied to TEMP to allow for CD swapping.

� The installation of the warehouse pack fails when the DB2 e-fix has not been
installed. In this situation you have to install the DB2 e-fix on the Control
server (see Section 3.3.1, “Windows DB2 Universal Database installation” on
page 60). Un-install the warehouse pack that failed (see Section 10.3.2,
“Un-install the warehouse packs” on page 297). Restore the TWH_MD
database from the backup taken during the failed install:

db2stop force;
db2start
cd <TWH_TOPDIR>\apps_backups\<ava>\install
db2 restore db twh_md from .

Reinstall the warehouse pack that failed.

� The installation of Tivoli Enterprise Data Warehouse might fail with the
following message in the TWH.log file:

==>Testing DB2 exec path(F)
CDWIC0024E Could not execute/locate DB2 command!!!

This is because the PATH environment variable has become too long. The
PATH environment variable is limited to 2075 characters in length.

� The installation of Presentation Services (PS) locks if ports are already in use.
You must specify unused port numbers when you install Tivoli Enterprise Data
Warehouse. In particular, if there is already a Web server on the system that
you plan to install the Report server on, you must un-install it, disable it, or
specify a different port number for the HTTP Server Port for Tivoli
Presentation Services.

10.1.2 Troubleshooting the IBM Console and the Report Interface
In this section we discuss problems with the work of the Tivoli Enterprise Data
Warehouse Report Interface and the IBM Console. We give useful tips as to
where to start the troubleshooting. We also mention problems and known
defects.

No connection to the IBM Console
If you have problems openning the IBM Console in your Web browser with the
URL http://hostname:port/IBMConsole, and check the following:

1. See if the name of the Report server is correct. Try the fully qualified host
name. Check the port of your Web server. The default value is port 80 if not
changed during installation (see the entry IBM HTTP Server Port in
Figure 3-4 on page 65).
 Chapter 10. Troubleshooting and maintenance 285

2. If everything is correct and you still have no connection to the IBM Console,
use the IP address of the Report server instead of its host name. If this works,
you probably have a problem with your name resolution. Check NIS and DNS
settings (check whether you can resolve the host name using the command
nslookup hostname). Check the /etc/hosts file on UNIX or the
C:\WINNT\system32\drivers\etc\hosts file on Windows machines.

3. If OK, check your network connection to the Report server (ping hostname).

4. Check if the Web server is running. Use the above URL without /IBMConsole.
You should see a page displaying Welcome to the IBM HTTP Server. If not,
check if the service Tivoli Presentation Services HTTP Server is started on
the Report server. If not, try to start it manually.

5. If it is not possible to start this service, you can try to connect to the
administration server (http://hostname:8008) and check the Web server
configuration. You will probably have to create a user ID for the administration
server first. Follow the instructions that are displayed after the log in to the
administration server has failed several times.

6. If you can connect to the Web server (with the URL without /IBMConsole) but
not to the IBM Console (URL with IBMConsole), check if the following
services are started on the Report server:

– Server for IBMConsole
– Web Services for IBMConsole

See also the log files of these two services which are in the directories
PS_install_dir/log/fwp_wc and PS_install_dir/log/fwp_mcr, respectively.

7. If you can connect to the IBM Console from a Web browser running locally on
the Report server but not from Web browsers running on (some) remote
machines, check the following file on your Report server:

PS_install_dir/ibmhttpd/conf/httpd.conf

This file contains redirects for your IBM Console login window. If these
redirects use the short host name for your Report server, you will have
problems if your client cannot correctly resolve this short host name. This
problem is not solved when you use the fully qualified host name in your Web
browser.

Allow simpler sign-on URL.
RedirectPermanent /IBMConsole/ http://host:80/servlet/com.tivoli.pf.wc...
RedirectPermanent /IBMConsole http://host:80/servlet/com.tivoli.pf.wc...

Tip: In our testing environment we experienced the problem, that the IP
was changed by DHCP but the original IP was still in the web server
configuration - do not use DHCP on your Report server.
286 Introduction to Tivoli Enterprise Data Warehouse

To solve this problem, change the host name to the fully qualified host name
in the httpd.conf file and restart the service IBM Presentation Services HTTP
Server.

Troubleshooting tips when using the Report Interface
The following are troubleshooting tips for the Report Interface.

1. If you work with the Report Interface, Java Script and style sheets must be
enabled in the Web browser.

2. In the upper-right corner of each task panel you find the help button (?), which
provides detailed information for the task.

3. If you have created an object (for example, a report or a user) and you do not
find it in the appropriate list, you can try the following:

– Click Refresh, if available.

– If you see no objects or old objects only, check if the database service
DB2-DB2 on the control server is running.

If you stopped and restarted the Control server database and you see error
messages like Figure 10-1, restart the following services on the Report
server:

– Server for IBMConsole

– Web Services for IBMConsole

Figure 10-1 Error messages in the Report Interface after database restart

See also the leadoffs of these two services which are in the directories
PS_install_dir/log/fwp_wc and PS_install_dir/log/fwp_mcr, respectively.
 Chapter 10. Troubleshooting and maintenance 287

Problems creating data marts from customized star schemas
If you do not find your star schema in the Add Star Schemas to a Data Mart
dialog, check if the star schema has been created in the Data Warehouse
Center. Start the Data Warehouse Center from your DB2 Control Center using
Tools -> Data Warehouse Center. Expand the tree Warehouse Schemas in
the left-hand side panel. You will see all available star schemas there. You can
create new star schemas in the Data Warehouse Center by right clicking
Warehouse Schemas.

Problems creating the first report from new data marts
Following is a list of problems that you may run into when creating the first report
from new data marts.

1. Check whether your star schema contains all the necessary tables (fact table,
metric table, and dimension tables).

2. The Report Interface assumes certain column names in these tables. Check
the naming conventions (see “Naming Conventions” in Enabling an
Application for Tivoli Enterprise Data Warehouse, GC32-0745).

3. The connections between the tables have to be set up correctly in the star
schema. The Report Interface uses these connections. They are written to
the table rpi.strings in the control server database TWH_MD. They are
updated by a trigger when you save the star schema in the Data Warehouse
Center. The connections set up in the star schema will result in the where
clauses in the SQL statements of your reports (see Example 4-1 on
page 107, lines 4-6).

4. Check the SQL output from the reports pop-up menu (Show SQL...) for
further hints locating a problem. This might be helpful when no data is found
while running the report. Note that you must have sufficient roles to see the
SQL output. If you do not have sufficient roles you will not see the Show
SQL... entry in the pop-up menu of the reports.

10.1.3 Troubleshooting the customization
In this section we discuss some troubleshooting techniques for customizing. With
customizing we refer to the process of creating ETLs and integrating them into
Tivoli Enterprise Data Warehouse using the Data Warehouse Center. We give
some tips on how to set up the Data Warehouse Center correctly for your own
source application. The information given here can also be helpful for
troubleshooting errors that occur during and after the installation of data
warehouse packs.

Troubleshooting ETLs
The following are ideas for troubleshooting ETLs.
288 Introduction to Tivoli Enterprise Data Warehouse

1. The Data Warehouse Center generates log files in the path defined by the
DB2 environment variable %VWS_LOGGING%. This variable usually points
to <db2dir>\sqllib\logging. In this directory you find the Warehouse Agent log
file Agnt<nnnn>.log and the Warehouse Agent environment Agnt<nnnn>.set.
Look for the most recent files.

2. When you run processes in the Data Warehouse Center you can see their
status in the Work in Progress dialog (you can open this dialog using the
Warehouse menu in the Data Warehouse Center). When you encounter
errors in the process status you can gain more information by right clicking
the failed step and selecting Show Log. Look for the first entry with the
message Type Run Time Error. Right click this message and select Show
Details.

3. If you have connection problems to remote databases try to connect to the
source database using the CLI tools of the database, for example, DB2 CLP,
sqlplus for Oracle, or dbaccess for Informix. You can also use the ODBC Data
Source panels in Windows to test your database connection.

You can also use the execsql command provided by Tivoli Enterprise Data
Warehouse to test the database connection:

execsql dummy dummy.out <ODBC Datasource name> user pwd

If the name of the RDBMS vendor appears in dummy.out then the connect
was successful.

4. It is recommended that you use the SQL execution engine execsql and its
wrapper script sqlscript.sh provided by Tivoli Enterprise Data Warehouse in
your own ETLs. You can get helpful troubleshooting information from the log
file written by the execsql command. You find these log files under
%VWS_LOGGING%\<stepname>.log (for example, apf_c05_s010_init.log).
These log files show the following information (see also Example 10-1):

– ODBC data sources used
– SQL statements executed
– Rows affected per SQL statement
– Elapsed time per SQL statement

Example 10-1 An execsql log file example

======== Began 2001.12.21 18:58:47.818 ========
========================
= Source Datasource : oracle816b
= Source User Name : scott
= DB Vendor : Oracle 8 08.01.0006 Oracle 8.1.6.0.0
= DB Server Name :
= Target Datasource : oracle816b
= Target User Name : scott
= DB Vendor : Oracle 8 08.01.0006 Oracle 8.1.6.0.0
 Chapter 10. Troubleshooting and maintenance 289

= DB Server Name :
= Input File : e:/TWH/apps/apf/v1/etl/sql/apf_c05_s010_test.oracle
========================
= SOURCE SQL Statement: "insert into tab2 values ('a')"
= Elapsed Time : 00:00:00.1000
= Rows Modified : 1
= Successful Execution: No Errors
========================
= SOURCE SQL Statement: "insert into tab2 values ('b')"
= Elapsed Time : 00:00:00.1000
= Rows Modified : 1
= Successful Execution: No Errors
========================
======== Completed 2001.12.21 18:58:48.138 ========

5. Before attempting to run your custom ETL script from the Data Warehouse
Center, you can run the script from the command line to validate the script.
Start the bash program, which is installed with Tivoli Enterprise Data
Warehouse, and enter the following command:

sqlscript.sh product_code script_name source_db source_uid source_pwd
target_db target_uid target_pw

Where script_name is the name of your custom script.

6. If you get any errors from logging onto the Data Warehouse Center, check
that the control database is set to TWH_MD. To do this click Advanced on
the Data Warehouse Control logon panel. Make also sure that you set up the
control database correctly in the Warehouse Control Database Management
in the Start -> Programs -> DB2 menu. Check the ODBC Data Source of the
control database.

7. If you see errors in the Data Warehouse Center after a database restart,
restart the vwserver and vwlogger services.

8. For Windows NT and Windows 2000, the vwserver and vwlogger services do
not log on as the DB2 user, which causes ETL processes to fail.

Workaround for Windows NT:

a. Open the Services window.
b. Select Warehouse logger.
c. Select the Startup button.
d. Click This Account.
e. Type the DB2 user ID.
f. Type the DB2 password in the Password field.
g. Type the DB2 password in the Confirm Password field.
h. Click OK.
i. Repeat step a through step h for the Warehouse Server.
j. Stop and then restart the vwserver and vwlogger services.
290 Introduction to Tivoli Enterprise Data Warehouse

Workaround for Windows 2000:

a. Open the Services window.
b. Select Warehouse logger -> Action -> Properties.
c. Click the Log On tab.
d. Click This account.
e. Type the DB2 user ID.
f. Type the DB2 password in the Password field.
g. Type the DB2 password in the Confirm Password field.
h. Click OK.
i. Repeat step a through step h for the Warehouse Server.
j. Stop and then restart the vwserver and vwlogger services.

10.2 Maintenance and backup
The following are some issues to consider when maintaining and backing up
Tivoli Enterprise Data Warehouse databases.

10.2.1 Removing old data from the Data Warehouse Center logs
You should regularly delete information in the Data Warehouse Center log files,
IWH*.log, located in the directory specified by the %VWS_LOGGING%
environment variable. These log files grow rapidly. You can only delete
information from these files when the Data Warehouse Center services
Warehouse Server and Warehouse Logger are stopped. You can do this in a
script, as in Example 10-2.

Example 10-2 Purging script

net stop vwkernel
net stop vwlogger
<edit the necessary files >
net start vwlogger
net start vwkernel

10.2.2 Removing old data from the central data warehouse
You can control how often data is removed, or pruned, from the central data
warehouse using a combination of triggers and warehouse processes. This is
done by completing these tasks:

1. Scheduling the pruning process

2. Specifying the data to be pruned
 Chapter 10. Troubleshooting and maintenance 291

For more information on data pruning processes and the database tables used,
see Enabling an Application for Tivoli Enterprise Data Warehouse, GC32-0745.

Pruning processes for warehouse packs are defined by each application. See
the documentation provided with each warehouse pack for information about
pruning the data for that application.

10.2.3 Maintaining the warehouse database
This chapter describes how to use warehouse programs to maintain your
warehouse database.

Reorganizing the data
You can use the DB2 reorganize warehouse program to rearrange a table in
physical storage. This eliminates fragmentation and ensures that the table is
stored efficiently in the database. You can also use reorganization to control the
order in which the rows of a table are stored, usually according to an index.

You can define reorganization steps in a Data Warehouse process (see
Figure 10-2 on page 293).
292 Introduction to Tivoli Enterprise Data Warehouse

Figure 10-2 Create a reorganization step

You can use a warehouse source or target as a source for this step subtype. The
REORG program writes to the source table.
 Chapter 10. Troubleshooting and maintenance 293

To define values for a step that runs a DB2 UDB REORG warehouse program:

1. Open the Steps Property notebook.

2. Specify general information about the program.

3. Optional: On the Parameters page, specify information for the REORG step:

– In the Using temporary table space field, type the name of the temporary
table space that should be used during the REORG step.

– In the Using index field, type the name of the index that should be used
during the REORG step.

4. On the Processing Options page, provide information about how your step
processes.

5. Click OK to save your changes and close the Step Property notebook.

Updating system catalog statistics
You can use the DB2 RUNSTATS warehouse program to gather statistics about
the physical and logical characteristics of a table and its indexes. DB2 Universal
Database uses these statistics to determine the best way to access your data.

You can use the DB2 UDB RUNSTATS warehouse program to create a step that
can be used to update system catalog statistics on the data in a table, the data in
the table indexes, or the data in both the table and its indexes. The optimizer
uses these statistics to choose which path will be used to access the data. In
general, you need to update statistics if there are extensive changes to the data
in the table.

Create a RUNSTATS step in a process (see Figure 10-2 on page 293). The
RUNSTATS program uses a warehouse target as a source and a target. Link a
warehouse target to the step in the Process Model window before you define the
values for the step. To define values for a step that runs a DB2 UDB RUNSTATS
warehouse program:

1. Open the Steps Property notebook.

2. Specify the general information about the warehouse program.

3. Optional: On the Parameters page, specify information for the RUNSTATS
warehouse program:

a. Specify the level of statistics you want to gather for the table by clicking a
radio button under Statistics for the table.

b. Specify the level of statistics you want to gather for the table’s indexes by
selecting a radio button under Statistics for the indexes.

c. Use the Share level radio buttons to specify the type of access you want
other users to have to the table while the statistics are being gathered.
294 Introduction to Tivoli Enterprise Data Warehouse

4. On the Processing Options page, provide information about how your step
processes.

5. Click OK to save your changes and close the Step Properties notebook.

10.2.4 Backup
This section provides information about backing up and restoring the Tivoli
Enterprise Data Warehouse databases. When planning back-up operations or
performing restore operations, you must consider the relationships between the
data in Tivoli Enterprise Data Warehouse databases. Some examples follow:

� If an older version of the control database is restored with a newer version of
the central data warehouse database, log messages and ETL run status
generated by the Data Warehouse Center are lost and will not match the state
of the central data warehouse database.

� If a data mart database is completely lost and no backup exists, you might be
able to recreate the data mart database from data in the central data
warehouse. To recreate the data mart database, you must adjust the extract
control information for the star schemas in the data mart database located in
the central data warehouse, and then run the data mart ETL processes for
each star schema in the lost data mart database. It is not possible to recreate
a data mart database from data that has been pruned from the central data
warehouse. Note that the extract control parameters in the database must be
manually changed to ensure that all data is restored.

� If an old copy of the central data warehouse database is restored along with
newer copies of the control database and newer copies of data mart
databases, manual adjustment of extract control tables might be required to
pull additional data from source applications to bring the central data
warehouse database up-to-date. In some cases, source data might have
been pruned after data was populated into the central data warehouse
database, making it impossible to recover all of the data. Some data mart ETL
processes might encounter problems as they attempt to reinsert records from
the recovered central data warehouse database into more recent copies of
data mart databases. In these cases, manual intervention by a database
administrator might be required to fully recover the system.

� User definitions for the Report Interface are stored in the Tivoli Presentation
Services directory. When the users are assigned to user groups in the Report
Interface, a subset of user information is stored in the Tivoli Enterprise Data
Warehouse control database.
 Chapter 10. Troubleshooting and maintenance 295

10.3 Un-install components
Here we give the basic steps for the un-installation of the Tivoli Enterprise Data
Warehouse core product and the Tivoli Enterprise Data Warehouse application
packs. You can find more detailed information and troubleshooting hints for
un-installation in Installing and Configuring Tivoli Enterprise Data Warehouse,
GC 32-0744.

10.3.1 Un-install Tivoli Enterprise Data Warehouse core product
Tivoli Enterprise Data Warehouse might be installed on one machine or
distributed on up to four machines. However, if you start the un-install process on
one machine, you have to un-install all components on this machine. There is no
option to select components to un-install.

If there is one component per machine, removing a component will allow a
reinstall of the same components on that machine. However, if you remove the
Control server then all other components on all other machines must be
removed.

If you un-install a distributed environment, make sure that you un-install the
Control server last. Otherwise you might not be able to un-install the remaining
Tivoli Enterprise Data Warehouse components.

During the Tivoli Enterprise Data Warehouse un-installation process, all Tivoli
Enterprise Data Warehouse-related databases will be dropped. This will fail if
databases are locked by other processes. To make sure that the databases can
be dropped successfully, you should stop and start the database before starting
the uninstallation:

db2 stop force
db2 start.

To start the Tivoli Enterprise Data Warehouse un-installation process on a
Windows machine type:

%TWH_TOPDIR%\uninstall\uninstall.exe

Or on a UNIX machine:

$TWH_TOPDIR/uninstall/uninstall.bin.

See %TWH_TOPDIR%/TWHUninstall.log for troubleshooting.
296 Introduction to Tivoli Enterprise Data Warehouse

The Tivoli Enterprise Data Warehouse uninstaller does not un-install
Presentation Services (PS), but merely removes the Tivoli Enterprise Data
Warehouse components from PS. This should allow you to reinstall Tivoli
Enterprise Data Warehouse. If it does not work, you have to manually un-install
PS.

If required, use the PS uninstaller %PS_TOPDIR%\uninstall.bat to un-install PS.
If this fails, you can manually un-install PS. Use regedt32 to remove the following
NT services from HKLM\System\CurrentControlSet\Services:

� ps_mcr
� ps_wc
� TivoliPresentationServicesHTTPAdministration
� TivoliPresentationServicesHTTPServer

After this step you have to reboot your machine. Then remove the PS and TWH
installation directories, if they exist. You have to edit the file vpd.properties, which
is located in the %WINDIR% directory on Windows machines, in /usr/lib/objrepos
on AIX machines, and in /root on Linux machines. This file tracks all products
installed using InstallShield. Remove all lines beginning with Tivoli Enterprise
Data Warehouse or with Tivoli_Enterprise_Data_Warehouse and entries from
the Presentation Service.

The next step is to drop the DB2 databases TWH_MD, TWH_CDW and
TWH_MART:

db2stop force
db2 drop db <dbname>.

If you get the error database not found, then catalog the databases and then
drop them.

db2 catalog db <dbname>

10.3.2 Un-install the warehouse packs
Before you start the un-istallation you should do the same back ups as for the
installation of warehouse packs. Warehouse packs can be un-installed with the
command line utility:

<TWH_TOPDIR>\install\bin\twh_app_deinstall.sh.

Before you can un-install a warehouse pack you have to edit the configuration
file twh_app_deinstall.cfg in the same directory. Follow the instructions in this
file. You have to insert the product code and the DB2 password. When ready,
run:

twh_app_deinstall.sh -c twh_app_deinstall.cfg
 Chapter 10. Troubleshooting and maintenance 297

If you are un-installing a warehouse pack to recover from a failed installation you
may be prompted to restore a backup of the control database. If so, you must do
this restore before trying to run the install again.
298 Introduction to Tivoli Enterprise Data Warehouse

Appendix A. GEOAREA and TMZON
tables

This appendix provides views and descriptions of the GEOAREA and TMZON
tables in the TWH_CDW database.

A

© Copyright IBM Corp. 2002 299

Table TMZON
Use Table A-1 to select the correct GEOAREA_CD that the customer data is
being imported from.

Table A-1 Table TMZON

Table GEOAREA
Use Table A-2 on page 301 to select the TMZON that the customer data is being
imported from.

GEOAREA_CD GEOAREA_PARENT_CD GEOTYP_ID TMZON_ID GEOAREA_NM
DEF 2 Default GeoArea
NA 2 North America
US 4 United States
US-N 3 US North
US-S 3 US South
US-W 3 US West
CAN 4 Canada
LA 2 Latin America
EMEA 1 Europe, Middle East & Africa
EUR 2 Europe
ME 2 Middle East
AFR 2 Africa
AP 2 Asia Pacific
AP-N 3 Asia Pacific - North
AP-S 3 Asia Pacific - South
300 Introduction to Tivoli Enterprise Data Warehouse

Table A-2 Table GEOAREA
TMZON_ID TMZON_NM TMZON_GMT_OFFSET TMZON_CDW_DIFF

1 Eniwetok, Kwajalein -120000 60000
2 Midway Island, Samoa -110000 50000
3 Hawaii -100000 40000
4 Alaska -90000 30000
5 Pacific Time (US & Canada); Tijuana -80000 20000
6 Arizona -70000 10000
7 Mountain Time (US & Canada) -70000 10000
8 Central Time (US & Canada) -60000 0
9 Mexico City, Tegucigalpa -60000 0

10 Saskatchewan -60000 0
11 Bogota, Lima, Quito -50000 -10000
12 Eastern Time (US & Canada) -50000 -10000
13 Indiana (East) -50000 -10000
14 Atlantic time (Canada) -40000 -20000
15 Caracas, La Paz -40000 -20000
16 Newfoundland Standard Time -33000 -27000
17 Brasilia -30000 -30000
18 Buenos Aires, Georgetown -30000 -30000
19 Mid-Atlantic -20000 -40000
20 Azores, Cape Verde Is. -10000 -50000
21 Casablanca, Monrovia 0 -60000
22 Grenwich Mean Time: Dublin, Edinburg, Lisbon, London 0 -60000
23 Amsterdam, Copenhagen, Madrid, Paris, Vilnius 10000 -70000
24 Belgrade, Sarajevo, Skopje, Sofija, Zagreb 10000 -70000
25 Brussels, Berlin, Bern, Rome, Stockholm, Vienna 10000 -70000
26 Athens, Istanbul, Minsk 20000 -80000
27 Bucharest 20000 -80000
28 Cairo 20000 -80000
29 Harare, Pretoria 20000 -80000
30 Helsinki, Riga, Tallinn 20000 -80000
31 Baghdad, Kuwait, Riyadh 30000 -90000
32 Moscow, St. Petersburg, Volgograd 30000 -90000
33 Tehran 33000 -93000
34 Abu Dhabi, Muscat 40000 -100000
35 Baku, Tbilisi 40000 -100000
36 Kabul 43000 -103000
37 Islamabad, Karachi, Tashkent 50000 -110000
38 Bombay, Calcutta, Madras, New Delhi 53000 -113000
39 Almaty, Dhaka 60000 -120000
40 Colombo 60000 -120000
41 Bangkok, Hanoi, Jakarta 70000 -130000
42 Beijing, Chongqing, Hong Kong, Urumqi 80000 -140000
43 Perth 80000 -140000
44 Singapore 80000 -140000
45 Taipei 80000 -140000
46 Osaka, Sapporo, Tokyo 90000 -150000
47 Seol 90000 -150000
48 Yakutsk 90000 -150000
49 Adelaide 93000 -153000
50 Darwin 93000 -153000
51 Brisbane 100000 -160000
52 Canberra, Melbourne, Sydney 100000 -160000
53 Guam, Port Moresby 100000 -160000
54 Hobart 100000 -160000
55 Vladivostok 100000 -160000
56 Magadan, Solomon Is., New Caledonia 110000 -170000
57 Auckland, Wellington 120000 -180000
58 Fiji, Kamchatka, Marshall Is. 120000 -180000
 Appendix A. GEOAREA and TMZON tables 301

302 Introduction to Tivoli Enterprise Data Warehouse

Appendix B. Scripts

This appendix contains scripts mentioned in this redbook. All these scripts can
also be downloaded from the Redbooks Web site, as well. For downloading
insctructions, please refer to Appendix C, “Additional material” on page 365.

B

© Copyright IBM Corp. 2002 303

dmn_c10_s010_tiv_loadDMData.db2
Example B-1 is the edited script for the extract of Tivoli Distributing Monitoring
Version 3.7 data for the multiple customer environment. The original script name,
which is used for Tivoli Distributing Monitoring Version 3.7 in a single customer
environment, is dmn_c05_s010_initDMdata. We changed this script for the
multiple customer environment. The changes are highlighted in boldface.

Example: B-1 dmn_c10_s010_tiv_loadDMData.db2 script

*************Begin Copyright - Do not add comments here*********************
*
* Licensed Materials - Property of IBM
* 5724-C40
* (C) Copyright IBM Corp. 2002. All Rights Reserved.
*
* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with
* IBM Corp.
*
*************End Copyright***

Here we perform an incremental extract using date/time to control the
extraction
window because we could be interested in old DM data; i.e. to DM data
retrieved
before the TWH patch that introduce the raw/integer sequence numbers to
keep
track of every record added to the DM_METRICS table.
The source table is DM_METRICS and is located on an DB2 RIM Database
(ODBC Src=db2_rim); the target table is DMN.STAGE_DM_METRICS and is located on
a
target DB2 Database (ODBC Tgt=twh_cdw).

--
//////////////// here we define the oldest dt_stamp to be considered during the
//////////////// fist time ETL as the current timestamp minus the number of
days
//////////////// specified in the PMSMTC_AGE_IN_DAYS field of the
Prune_Msmt_Control
//////////////// table for the DMN application.
//////////////// You have to update the Prune_Msmt_Control table before running
//////////////// this initial ETL; e.g. if you are interested into the latest
//////////////// 2 months and 8 days of DM Data, the SQL statement is:
////////////////
304 Introduction to Tivoli Enterprise Data Warehouse

//////////////// UPDATE TWG.Prune_Msmt_Control
//////////////// SET PMSMTC_AGE_IN_DAYS = 208
//////////////// WHERE TMSUM_CD = 'H'
//////////////// AND MSRC_CD = 'DMN'
//////////////// ;
////////////////
//////////////// because PMSMTC_AGE_IN_DAYS is a DECIMAL(8,0) field that holds
a
//////////////// date duration in the format yyyymmdd (208 -> yyyy=0 years,
mm=2
//////////////// months, dd=8 days).
//////////////// The initial update of the Extract_Control table at the CDW
database
//////////////// is performed only if the extraction window is open, i.e. if we
are
//////////////// running the initial ETL for the first time; this condition is
intended
//////////////// in order to prevent multiple runs of the initialization
script, that
//////////////// may lead to data integrity violation in the TWG.Msmt table.
--

--#EXECUTE_AT_TARGET
UPDATE TWG.Extract_Control
 SET extctl_from_intseq = (
 SELECT (DAYS(current date - C.PMSMTC_AGE_IN_DAYS) - DAYS('1970-01-01'))
* 86400
 FROM TWG.PRUNE_MSMT_CONTROL C
 WHERE TMSUM_CD = 'H' AND
 MSRC_CD = 'DMN')
WHERE
 extctl_source='DM_METRICS_INIT_TIV' AND
 extctl_target='DMN.STAGE_DM_METRICS' AND

extctl_from_intseq <> extctl_to_intseq
;

--
//////////////// drop temporary table to hold the extract window
--
//////////////// at: db2_rim
--
--#IGNORE_ERROR
DROP TABLE DMN.temp_extract_control
;
--
//////////////// create temporary table to hold the extract window
--
//////////////// at: db2_rim
--
 Appendix B. Scripts 305

CREATE TABLE DMN.temp_extract_control (
 extctl_from_intseq INTEGER NOT NULL,
 extctl_to_intseq INTEGER NOT NULL)
;
--
//////////////// get the from_intseq from the Extract_Control in the CDW
--
//////////////// from: twh_cdw to: db2_rim
--
--#INSERT_INTO_SOURCE
INSERT INTO DMN.temp_extract_control
SELECT
 INT(extctl_from_intseq),
 INT(2000000000)
FROM
 TWG.Extract_Control
WHERE
 extctl_source='DM_METRICS_INIT_TIV' AND
 extctl_target='DMN.STAGE_DM_METRICS'
;
//////////////// update extctl_to_intseq with the max of dt_stamp
--
//////////////// at: db2_rim
--
UPDATE DMN.temp_extract_control
 SET extctl_to_intseq = (SELECT MAX(dt_stamp) FROM DM_METRICS)
;
//////////////// drop the staging table in twh_cdw (this is faster then
deleting all records)
--
//////////////// at: twh_cdw
--
--#EXECUTE_AT_TARGET
--#IGNORE_ERROR
DROP TABLE DMN.stage_dm_metrics
;
//////////////// create the stage table in twh_cdw according to the predefined
template
--
//////////////// at: twh_cdw
--
--#EXECUTE_AT_TARGET
CREATE TABLE DMN.stage_dm_metrics LIKE DMN.stage_dm_metrics_template
;
//////////////// Dropping the table DMN.stage_dm_metrics makes inoperative the
//////////////// trigger responsible to insert the metric_id unique sequence
number.
//////////////// Issuing a CREATE TRIGGER statement with the same trigger-name
//////////////// as the inoperative trigger will cause that inoperative trigger
306 Introduction to Tivoli Enterprise Data Warehouse

//////////////// to be replaced with a warning (SQLSTATE 01595), so we need to
//////////////// instruct the execsql to IGNORE_ERROR.
--
--#EXECUTE_AT_TARGET
--#IGNORE_ERROR
CREATE TRIGGER DMN.metric_id_trig NO CASCADE
 BEFORE INSERT ON DMN.stage_dm_metrics
 REFERENCING NEW AS N
 FOR EACH ROW
 MODE DB2SQL
 SET N.metric_id = NEXTVAL FOR DMN.metric_id_seq
;
--
//////////////// perform the extraction from the DM_METRICS table to the
staging
//////////////// table DMN.stage_dm_metrics in the CDW database.
--
//////////////// from: db2_rim to: twh_cdw
--
//////////////// NOTE: the constant metric_id value selected from the
DM_METRICS table
//////////////// is always overridden by the unique sequence number provided by
the
//////////////// before insert trigger DMN.metric_id_trig
--
//////////////// The initial ETL process assumes the local GMT offset;
//////////////// if you want to change it, you can change the last constant
//////////////// field retrieved by the following select to a more suitable
value
//////////////// to be chosen in the range [-720,+720].
--
--#INSERT_INTO_TARGET
INSERT INTO DMN.stage_dm_metrics
SELECT
 0 AS metric_id,
 D.COLLECTION_DATE, D.HOSTNAME, D.ENDPOINT,

D.PROFILE_COLLECTION, D.PROBE_COLLECTION,
D.PROBE, D.PROBE_DESC, D.PROBE_ARG,
D.MIN_VALUE_00, D.MAX_VALUE_00, D.AVG_VALUE_00,
D.MIN_VALUE_01, D.MAX_VALUE_01, D.AVG_VALUE_01,
D.MIN_VALUE_02, D.MAX_VALUE_02, D.AVG_VALUE_02,
D.MIN_VALUE_03, D.MAX_VALUE_03, D.AVG_VALUE_03,
D.MIN_VALUE_04, D.MAX_VALUE_04, D.AVG_VALUE_04,
D.MIN_VALUE_05, D.MAX_VALUE_05, D.AVG_VALUE_05,
D.MIN_VALUE_06, D.MAX_VALUE_06, D.AVG_VALUE_06,
D.MIN_VALUE_07, D.MAX_VALUE_07, D.AVG_VALUE_07,
D.MIN_VALUE_08, D.MAX_VALUE_08, D.AVG_VALUE_08,
D.MIN_VALUE_09, D.MAX_VALUE_09, D.AVG_VALUE_09,
D.MIN_VALUE_10, D.MAX_VALUE_10, D.AVG_VALUE_10,
 Appendix B. Scripts 307

D.MIN_VALUE_11, D.MAX_VALUE_11, D.AVG_VALUE_11,
D.MIN_VALUE_12, D.MAX_VALUE_12, D.AVG_VALUE_12,
D.MIN_VALUE_13, D.MAX_VALUE_13, D.AVG_VALUE_13,
D.MIN_VALUE_14, D.MAX_VALUE_14, D.AVG_VALUE_14,
D.MIN_VALUE_15, D.MAX_VALUE_15, D.AVG_VALUE_15,
D.MIN_VALUE_16, D.MAX_VALUE_16, D.AVG_VALUE_16,
D.MIN_VALUE_17, D.MAX_VALUE_17, D.AVG_VALUE_17,
D.MIN_VALUE_18, D.MAX_VALUE_18, D.AVG_VALUE_18,
D.MIN_VALUE_19, D.MAX_VALUE_19, D.AVG_VALUE_19,
D.MIN_VALUE_20, D.MAX_VALUE_20, D.AVG_VALUE_20,
D.MIN_VALUE_21, D.MAX_VALUE_21, D.AVG_VALUE_21,
D.MIN_VALUE_22, D.MAX_VALUE_22, D.AVG_VALUE_22,
D.MIN_VALUE_23, D.MAX_VALUE_23, D.AVG_VALUE_23,

 D.MIN_DAILY_VALUE, D.MAX_DAILY_VALUE, D.AVG_DAILY_VALUE,
 D.MIN_HOURLY_AVG, D.MAX_HOURLY_AVG,

(current timezone * 60 / 10000)
FROM
 DM_METRICS D,
 DMN.temp_extract_control ec
WHERE
 D.DT_STAMP > ec.extctl_from_intseq AND
 D.DT_STAMP <= ec.extctl_to_intseq
;
--
//////////////// sample check for invalid data if multi customer support is
implemented
--
//////////////// at: twh_cdw
--
--#EXECUTE_AT_TARGET
INSERT INTO DMN.Invalid_Data
SELECT *
 FROM DMN.stage_dm_metrics N
 WHERE NOT EXISTS (SELECT 1
 FROM DMN.CUST_LOOKUP CUST_LOOKUP
 WHERE CUST_LOOKUP.VALUE = N.HOSTNAME OR
 CUST_LOOKUP.VALUE = '@')
 OR
 NOT EXISTS (SELECT 1
 FROM DMN.CENTR_LOOKUP CENTR_LOOKUP
 WHERE CENTR_LOOKUP.VALUE = N.HOSTNAME OR
 CENTR_LOOKUP.VALUE = '@')
;
--
//////////////// drop temp_to_intseq temporary table in CDW
--
//////////////// at: twh_cdw
--
--#EXECUTE_AT_TARGET
308 Introduction to Tivoli Enterprise Data Warehouse

--#IGNORE_ERROR
DROP TABLE DMN.temp_to_intseq
;
//////////////// create temp_to_intseq temporary table in CDW
--
//////////////// at: twh_cdw
--
--#EXECUTE_AT_TARGET
CREATE TABLE DMN.temp_to_intseq (
 extctl_to_intseq INTEGER NOT NULL)
;
//////////////// copy extctl_to_intseq from temp_extract_control table
//////////////// temp_to_intseq temporary table in the CDW
--
//////////////// from: db2_rim to: twh_cdw
--
--#INSERT_INTO_TARGET
INSERT INTO DMN.temp_to_intseq
 SELECT extctl_to_intseq FROM DMN.temp_extract_control
;
//////////////// update extract control with the extctl_to_intseq value
//////////////// retrieved from the temporary table temp_to_intseq
--
//////////////// at: twh_cdw
--
--#EXECUTE_AT_TARGET
UPDATE TWG.Extract_Control
 SET extctl_to_intseq = (SELECT extctl_to_intseq FROM DMN.temp_to_intseq)
WHERE
 extctl_source='DM_METRICS_INIT_TIV' AND
 extctl_target='DMN.STAGE_DM_METRICS'
;
//////////////// write extract info to extract log table; this fires the
trigger
//////////////// TWG.extract_ctl_upd that updates the extract control table to
//////////////// close the window
--
//////////////// at: twh_cdw

--#EXECUTE_AT_TARGET
INSERT INTO TWG.Extract_Log
SELECT
 extctl_source, extctl_target,
 current timestamp - current timezone,
 extctl_from_rawseq, extctl_to_rawseq,
 extctl_from_intseq, extctl_to_intseq,
 extctl_from_dttm, extctl_to_dttm
FROM
 TWG.Extract_Control ec
 Appendix B. Scripts 309

WHERE
 ec.extctl_source='DM_METRICS_INIT_TIV' AND
 ec.extctl_target='DMN.STAGE_DM_METRICS' ;

Insert_cust_control.db2
Example B-2 is an SQL script for inserting an extract control row into the
TWD_CDW database for a customer.

Example: B-2 Insert_cust_control.db2 script

connect to TWH_CDW user db2inst1

insert into twg.Extract_Control values ('DM_METRICS_INIT_TIV' ,
'DMN.STAGE_DM_METRICS' , x'00000000000000000000',
x'99999999999999999999', 0, 2000000000, '1970-01-01-00.00.00.000000',
'9999-01-01-00.00.00.000000')

insert into twg.Extract_Control values ('DM_METRICS_TIV' ,
'DMN.STAGE_DM_METRICS' , x'00000000000000000000',
x'99999999999999999999', 0, 2000000000, '1970-01-01-00.00.00.000000',
'9999-01-01-00.00.00.000000')

srm_c05_s010_extractInvData
The script in Example B-3 was written for case study 1 ETL1 process. It is the
first script in the process to run. Its responsibility is to make sure that all the
components are available in the CDW comp table. It moves data into several
stage tables in the CDW from the legacy source application data. It then moves
data into the comp tables. Then it uses several joins and unions to determine
which data to place into the compattr tables. Also it makes use of the
invalid_data tables to ensure that invalid data is captured.

Example: B-3 srm_c05_s010_extractInvData script

--#EXECUTE_AT_TARGET
drop table inv.stage_ipnetwork_copy;
--#EXECUTE_AT_TARGET
create table inv.stage_ipnetwork_copy like inv.stage_ipnetwork;
--#INSERT_INTO_TARGET
insert into inv.stage_ipnetwork_copy
SELECT
 'sysid_' CONCAT SUBSTR(perform.server.display_name,1,31) AS HWARE_SYS_ID,
 SUBSTR(perform.server.fqhn,1,31) AS NET_NODE_NAME,
310 Introduction to Tivoli Enterprise Data Warehouse

 perform.server.primary_ip_addr AS NET_NODE_ADDR
FROM
 PERFORM.SERVER
WHERE
 PERFORM.SERVER.DISPLAY_NAME LIKE 'srm%'
ORDER BY
 HWARE_SYS_ID,
 NET_NODE_NAME,
 NET_NODE_ADDR
;

--#EXECUTE_AT_TARGET
drop table inv.stage_ostype_copy;
--#EXECUTE_AT_TARGET
create table inv.stage_ostype_copy like inv.stage_ostype;
--#INSERT_INTO_TARGET
insert into inv.stage_ostype_copy
SELECT
 'sysid_' CONCAT SUBSTR(perform.server.display_name,1,31) AS HWARE_SYS_ID,
 perform.server.op_sys AS BOOTED_OS_NAME,
 'AIX' AS BOOTED_OS_VER,
 'v1.x' AS COMPUTER_KRNL_VER,
 'Service Pack X' AS NT_SVC_PACK
FROM
 PERFORM.SERVER
WHERE
 PERFORM.SERVER.DISPLAY_NAME LIKE 'srm%'
;

--#EXECUTE_AT_TARGET
drop table inv.stage_processor_copy;
--#EXECUTE_AT_TARGET
create table inv.stage_processor_copy like inv.stage_processor;
--#INSERT_INTO_TARGET
insert into inv.stage_processor_copy
SELECT
 'sysid_' CONCAT SUBSTR(perform.server.display_name,1,31) AS HWARE_SYS_ID,
 perform.server.processors as NUM_PROCESSORS,
 'Model X' AS PROCESSOR_MODEL,
 '1000' AS PROCESSOR_SPEED
FROM
 PERFORM.SERVER
WHERE
 PERFORM.SERVER.DISPLAY_NAME LIKE 'srm%'
ORDER BY
 HWARE_SYS_ID
;

--#EXECUTE_AT_TARGET
 Appendix B. Scripts 311

drop table inv.stage_memory_copy;
--#EXECUTE_AT_TARGET
create table inv.stage_memory_copy like inv.stage_memory;
--#INSERT_INTO_TARGET
insert into inv.stage_memory_copy
SELECT
 'sysid_' CONCAT SUBSTR(perform.server.display_name,1,31) AS HWARE_SYS_ID,
 perform.server.inst_mem AS PHYSICAL_MEM_KB
FROM
 PERFORM.SERVER
WHERE
 PERFORM.SERVER.DISPLAY_NAME LIKE 'srm%'
;

--#EXECUTE_AT_TARGET
drop table inv.stage_net_node_copy;
--#EXECUTE_AT_TARGET
create table inv.stage_net_node_copy like inv.stage_net_node;
--#EXECUTE_AT_TARGET
insert into inv.stage_net_node_copy
select
 value(lower(T2.NET_NODE_NAME),'') as net_node_name,
 value(T2.NET_NODE_ADDR,'') as net_node_addr,
 T1.HWARE_SYS_ID,
 value(T1.BOOTED_OS_NAME,'') as booted_os_name,
 'v1.1' as booted_os_ver,
 'Service Pack Y' as os_sub_ver,
 value(T4.PHYSICAL_MEM_KB,-1) as physical_mem_kb,
 value(T6.NUM_PROCESSORS,-1) as num_processors,
 value(T6.PROCESSOR_MODEL,'') as processor_model,
 value(T6.PROCESSOR_SPEED,-1) as processor_speed,
 'Unknown' as system_purpose
FROM
 inv.stage_OSTYPE_copy T1 LEFT OUTER JOIN
 inv.stage_IPNETWORK_copy T2
 ON T1.HWARE_SYS_ID = T2.HWARE_SYS_ID,
 inv.stage_OSTYPE_copy T3 LEFT OUTER JOIN
 inv.stage_MEMORY_copy T4
 ON T3.HWARE_SYS_ID = T4.HWARE_SYS_ID,
 inv.stage_OSTYPE_copy T5 LEFT OUTER JOIN
 inv.stage_PROCESSOR_copy T6
 ON T5.HWARE_SYS_ID = T6.HWARE_SYS_ID
WHERE
 T1.HWARE_SYS_ID=T3.HWARE_SYS_ID AND
 T1.HWARE_SYS_ID=T5.HWARE_SYS_ID
;

--#EXECUTE_AT_TARGET
312 Introduction to Tivoli Enterprise Data Warehouse

--sample check for invalid data
insert into inv.invalid_data
select * from inv.stage_net_node_copy n
where
 not exists(
 select 1 from inv.cust_lookup
 where inv.cust_lookup.value = n.net_node_name OR
 inv.cust_lookup.value = '@') OR
 not exists(
 select 1 from inv.centr_lookup
 where inv.centr_lookup.value = n.net_node_name OR
 inv.centr_lookup.value = '@')
;

--Note that the insert of IP_HOST may be changed to SPP_HOST by a trigger
-- if the hostname is not fully qualified.
--#EXECUTE_AT_TARGET
INSERT INTO TWG.COMP(COMP_ID, COMPTYP_CD, CENTR_CD, CUST_ID, COMP_NM,
COMP_STRT_DTTM, COMP_END_DTTM, COMP_DS)
select
 0 as Comp_Id,
 'IP_HOST' as CompTyp_Cd ,
 centr.Centr_Cd as Centr_Cd,
 c.Cust_ID as Cust_ID,
 n.net_node_name as Comp_Nm,
 current timestamp - current timezone as Comp_Strt_DtTm ,
 '9999-01-01-00.00.00.000000' as Comp_End_DtTm,
 '' as Comp_Ds
from
 inv.stage_net_node_copy n,
 inv.cust_lookup cust,
 inv.centr_lookup centr,
 twg.cust c
where
 n.net_node_name != '' and
 not exists (
 select 1
 from
 twg.comp c
 where
 c.comp_nm=n.net_node_name
 and c.comptyp_cd IN ('SPP_HOST', 'IP_HOST')
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm) AND
 ((cust.value = n.net_node_name and cust.cust_acct_cd = c.cust_acct_cd)
 OR cust.value = '@') AND
 (centr.value = n.net_node_name OR centr.value = '@')
;

 Appendix B. Scripts 313

--#EXECUTE_AT_TARGET
insert into twg.compattr
select
 0 as compattr_id,
 c.comp_id,
 'INOSNM' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 n.booted_os_name as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.booted_os_name != ''
 and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=n.booted_os_name
 and ca.AttrTyp_Cd='INOSNM'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
union
select
 0 as compattr_id,
 c.comp_id,
 'INOSVR' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 n.booted_os_ver as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.booted_os_ver != ''
 and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
314 Introduction to Tivoli Enterprise Data Warehouse

 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=n.booted_os_ver
 and ca.AttrTyp_Cd='INOSVR'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
union
select
 0 as compattr_id,
 c.comp_id,
 'INOSSV' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 n.os_sub_ver as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.os_sub_ver != ''
 and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=n.os_sub_ver
 and ca.AttrTyp_Cd='INOSSV'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
;

--#EXECUTE_AT_TARGET
insert into twg.compattr
select
 0 as compattr_id,
 c.comp_id as comp_id,
 'INADDR' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 n.net_node_addr as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 Appendix B. Scripts 315

 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.net_node_addr != ''
 and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=n.net_node_addr
 and ca.AttrTyp_Cd='INADDR'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
;

--#EXECUTE_AT_TARGET
insert into twg.compattr
select
 0 as compattr_id,
 c.comp_id,
 'INPMEM' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 char(n.physical_mem_kb) as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.physical_mem_kb != -1
 and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=char(n.physical_mem_kb)
 and ca.AttrTyp_Cd='INPMEM'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
;

--#EXECUTE_AT_TARGET
insert into twg.compattr
select
316 Introduction to Tivoli Enterprise Data Warehouse

 0 as compattr_id,
 c.comp_id,
 'INCPUM' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 n.processor_model as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.processor_model != ''
 and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=n.processor_model
 and ca.AttrTyp_Cd='INCPUM'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
union
select
 0 as compattr_id,
 c.comp_id,
 'INNCPU' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 char(n.num_processors) as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.num_processors != -1
 and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=char(n.num_processors)
 Appendix B. Scripts 317

 and ca.AttrTyp_Cd='INNCPU'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
union
select
 0 as compattr_id,
 c.comp_id,
 'INCPUS' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 char(n.processor_speed) as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.processor_speed != -1
 and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=char(n.processor_speed)
 and ca.AttrTyp_Cd='INCPUS'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
;

srm_c15_s010_transformDMData
Example B-4 is the second script to run for case study 1. It queries data from the
source application, then changes the format of the data so that it will map to the
CDW tables and CDW granularity. It does this by loading data into the CDW
staging tables; no CDW tables are updated.

Example: B-4 srm_c15_s010_transformDMData script

-- Now that we have gotten the new data from the source DB, transform it to
hourly data.

--#EXECUTE_AT_TARGET
drop table spp.stage_srm_r_hour;
318 Introduction to Tivoli Enterprise Data Warehouse

--#EXECUTE_AT_TARGET
create table spp.stage_srm_r_hour like spp.stage_srm_r_hour_template;

--#INSERT_INTO_TARGET
insert into spp.stage_srm_r_hour
SELECT *
 FROM inv.srm_r_hour;

--#EXECUTE_AT_TARGET
--#IGNORE_ERROR
drop table spp.stage_metrics_hour;
--#EXECUTE_AT_TARGET
create table spp.stage_metrics_hour like spp.stage_metrics_hour_template;

--#EXECUTE_AT_TARGET
--#IGNORE_ERROR
drop trigger spp.stage_hour_id_trig;
--#EXECUTE_AT_TARGET
CREATE TRIGGER spp.stage_hour_id_trig
NO CASCADE
BEFORE INSERT ON spp.stage_metrics_hour
REFERENCING NEW AS N
FOR EACH ROW
MODE DB2SQL
SET N.metric_id = NEXTVAL for spp.stage_metrics_hour_id_seq;

-- CPU Busy
-- Note: we're using the timezone of the center where the data was collected
-- to calculte the GMT time.
--#EXECUTE_AT_TARGET
insert into spp.stage_metrics_hour
select
 0 as metric_id, current timestamp - current timezone as insert_dttm,
 DATE(TSTAMP), time(tstamp) - t.TmZon_GMT_Offset, lower(fqhn),
SUBSTR(fqhn,1,10), 'SPR_UnixProfile',
 'Unix_Sentry', 'avgcpubusy', 'none', '5',
 cpu_busy * 0.7 as Msmt_Min_Val,
 cpu_busy * 1.1 as Msmt_Max_Val,
 cpu_busy as Msmt_Avg_Val,
 0 as Msmt_Tot_Val, 0 as Msmt_Smpl_Cnt
from
 spp.stage_srm_r_hour dm,
 twg.tmzon t,
 spp.centr_lookup c,
 twg.centr ce
where
 dm.fqhn = c.value and
 c.centr_cd = ce.centr_cd and
 ce.tmzon_id = t.tmzon_id
 Appendix B. Scripts 319

;

-- CPU System
-- Note: we're using the timezone of the center where the data was collected
-- to calculte the GMT time.
--#EXECUTE_AT_TARGET
insert into spp.stage_metrics_hour
select
 0 as metric_id, current timestamp - current timezone as insert_dttm,
 DATE(TSTAMP), time(tstamp) - t.TmZon_GMT_Offset, lower(fqhn),
SUBSTR(fqhn,1,10), 'SPR_UnixProfile',
 'Unix_Sentry', 'avgcpusys', 'none', '5',
 cpu_s * 0.7 as Msmt_Min_Val,
 cpu_s * 1.1 as Msmt_Max_Val,
 cpu_s as Msmt_Avg_Val,
 0 as Msmt_Tot_Val, 0 as Msmt_Smpl_Cnt
from
 spp.stage_srm_r_hour dm,
 twg.tmzon t,
 spp.centr_lookup c,
 twg.centr ce
where
 dm.fqhn = c.value and
 c.centr_cd = ce.centr_cd and
 ce.tmzon_id = t.tmzon_id
;

-- CPU User
-- Note: we're using the timezone of the center where the data was collected
-- to calculte the GMT time.
--#EXECUTE_AT_TARGET
insert into spp.stage_metrics_hour
select
 0 as metric_id, current timestamp - current timezone as insert_dttm,
 DATE(TSTAMP), time(tstamp) - t.TmZon_GMT_Offset, lower(fqhn),
SUBSTR(fqhn,1,10), 'SPR_UnixProfile',
 'Unix_Sentry', 'avgcpuusr', 'none', '5',
 cpu_u * 0.7 as Msmt_Min_Val,
 cpu_u * 1.1 as Msmt_Max_Val,
 cpu_u as Msmt_Avg_Val,
 0 as Msmt_Tot_Val, 0 as Msmt_Smpl_Cnt
from
 spp.stage_srm_r_hour dm,
 twg.tmzon t,
 spp.centr_lookup c,
 twg.centr ce
where
 dm.fqhn = c.value and
 c.centr_cd = ce.centr_cd and
320 Introduction to Tivoli Enterprise Data Warehouse

 ce.tmzon_id = t.tmzon_id
;

-- Run Q length
-- Note: we're using the timezone of the center where the data was collected
-- to calculte the GMT time.
--#EXECUTE_AT_TARGET
insert into spp.stage_metrics_hour
select
 0 as metric_id, current timestamp - current timezone as insert_dttm,
 DATE(TSTAMP), time(tstamp) - t.TmZon_GMT_Offset, lower(fqhn),
SUBSTR(fqhn,1,10), 'SPR_UnixProfile',
 'Unix_Sentry', 'runqjobs', 'none', '5',
 runq * 0.7 as Msmt_Min_Val,
 runq * 1.1 as Msmt_Max_Val,
 runq as Msmt_Avg_Val,
 0 as Msmt_Tot_Val, 0 as Msmt_Smpl_Cnt
from
 spp.stage_srm_r_hour dm,
 twg.tmzon t,
 spp.centr_lookup c,
 twg.centr ce
where
 dm.fqhn = c.value and
 c.centr_cd = ce.centr_cd and
 ce.tmzon_id = t.tmzon_id
;

srm_c20_s010_loadDMData
Example B-5 is the third script to run in the process for case study 1. Its
responsibility is to load the measurement dimensional data. It loads stage tables
in the CDW, then moves data into comp, in case the data is not already there,
and then into the msmt table. It uses invalid data options.

Example: B-5 srm_c20_s010_loadDMData script

-- Populate the CDW tables with DM data.

-- EC is not needed for comp table because we use where not exists....the data
will only be inserted once even if rerun.

--#EXECUTE_AT_TARGET
--sample check for invalid data
insert into spp.invalid_data
select * from spp.stage_metrics_hour n
where
 Appendix B. Scripts 321

 not exists(
 select 1 from spp.cust_lookup
 where spp.cust_lookup.value = n.hostname OR
 spp.cust_lookup.value = '@') OR
 not exists(
 select 1 from spp.centr_lookup
 where spp.centr_lookup.value = n.hostname OR
 spp.centr_lookup.value = '@')
;

-- Note that the insert of IP_HOST might be changed to SPP_HOST by a trigger
-- if the name of the host isn't a fully qualified hostname.
--#EXECUTE_AT_TARGET
insert into twg.comp (COMP_ID, COMPTYP_CD, CENTR_CD, CUST_ID, COMP_NM,
COMP_STRT_DTTM, COMP_END_DTTM, COMP_DS)
select
 0,
 'IP_HOST' as CompTyp_Cd,
 centr.Centr_Cd as Centr_Cd,
 c.Cust_ID as Cust_ID,
 d.hostname as Comp_Nm,
 current timestamp - current timezone as Comp_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as Comp_End_DtTm,
 '' as Comp_Ds
from
 spp.stage_metrics_hour d,
 inv.cust_lookup cust,
 spp.centr_lookup centr,
 twg.cust c
where
 not exists (
 select 1
 from
 twg.comp c
 where
 c.comp_nm=d.hostname
 and c.comptyp_cd IN ('SPP_HOST', 'IP_HOST')
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm) AND
 ((cust.value = d.hostname and cust.cust_acct_cd = c.cust_acct_cd)
 OR cust.value = '@') AND
 (centr.value = d.hostname OR centr.value = '@')
group by
 d.hostname, centr.centr_cd, c.cust_id
;

-- For the prototype, we really don't need to use extract control when
-- inserting into msmt since we only have 1 step that populates the msmt
-- table. Use of EC is an example if you had multiple sql statements populating
322 Introduction to Tivoli Enterprise Data Warehouse

-- the Msmt table. Then each statement would need EC to determine whether data
-- has already been loaded if the step gets rerun.

-- set the high value for the data to be extracted
-- #EXECUTE_AT_TARGET
--update TWG.Extract_Control set
-- extctl_to_intseq = (select max(metric_id) from SPP.STAGE_METRICS_HOUR),
-- extctl_to_dttm = (select max(insert_dttm) from SPP.STAGE_METRICS_HOUR)
--where
-- extctl_source='SPP.STAGE_METRICS_HOUR' and
-- extctl_target='TWG.MSMT' and
-- (select count(*) from SPP.STAGE_METRICS_HOUR) > 0
--;

--#EXECUTE_AT_TARGET
insert into twg.msmt
select
 0 as Msmt_ID,
 c.Comp_ID ,
 m.MsmtTyp_ID ,
 s.TmSum_Cd ,
 d.collection_date as Msmt_Strt_Dt,
 d.collection_time as Msmt_Strt_Tm,
 avg(d.Msmt_Min_Val) as Msmt_Min_Val,
 avg(d.Msmt_Max_Val) as Msmt_Max_Val,
 avg(d.Msmt_Avg_Val) as Msmt_Avg_Val ,
 avg(d.Msmt_Tot_Val) as Msmt_Tot_Val ,
 avg(d.Msmt_Smpl_Cnt) as Msmt_Smpl_Cnt,
 0 as Msmt_Err_Cnt
from
 spp.stage_metrics_hour d,
 twg.extract_control ec,
 twg.comp c,
 twg.msmttyp m,
 twg.msmtrul mr,
 twg.tmsum s
where
 c.comp_nm=d.hostname and
 m.MsmtTyp_Nm = d.probe and
 m.msmttyp_id = mr.msmttyp_id and
 mr.comptyp_cd IN ('SPP_HOST', 'IP_HOST') and
 s.TmSum_Nm = 'Hourly'
group by
 c.Comp_ID ,
 m.MsmtTyp_ID ,
 s.TmSum_Cd ,
 d.collection_date,
 d.collection_time
;

 Appendix B. Scripts 323

-- Confirm the insertion of data by inserting a row into TWG.EXTRACT_LOG.
-- A trigger gets fired which updates the extract control table's from data
with
-- the current to data.

-- #EXECUTE_AT_TARGET
--insert into twg.extract_log
--select
-- ec.extctl_source as extlog_source,
-- ec.extctl_target as extlog_target,
-- current timestamp as extlog_done_dttm,
-- ec.extctl_from_rawseq as extlog_from_rawseq,
-- ec.extctl_to_rawseq as extlog_to_rawseq,
-- ec.extctl_from_intseq as extlog_from_intseq,
-- ec.extctl_to_intseq as extlog_to_intseq,
-- ec.extctl_from_dttm as extlog_from_dttm,
-- ec.extctl_to_dttm as extlog_to_dttm
--from
-- TWG.Extract_control ec
--where
-- ec.extctl_source = 'SPP.STAGE_METRICS_HOUR' and
-- ec.extctl_target = 'TWG.MSMT'
--;

srm_m05_s010_buildMart
The script in Example B-6 moves the SRM data from the CDW into the data mart
and is used for case study 1 ETL 2. First it moves the metrics data into the
d_metrics table, then it moves data into the stage table, then it moves data into
the attribute tables ip_address and host name views, and finally the fact data into
the f_hour table. It utilizes the extract control system.

Example: B-6 srm_m05_s010_buildMart script

-- insert into the metric dimension table

--NOTE: This process will only happen once. We initially insert the data into
the staging table in the cdw/dml script.
--
--
-- 3/22/02Chip Crane
-- Changed to meet SRM needs and added documentation
-- Note:This script, nor does any other ETL, load the spp.stage_d_metrics
table.
324 Introduction to Tivoli Enterprise Data Warehouse

-- It is loaded through "some" static load process. This should be
corrected.
--
--
-- set the high value for the data to be extracted
update TWG.Extract_Control set
 extctl_to_intseq = (select max(metric_id) from SPP.STAGE_D_METRIC),
 extctl_to_dttm = (select max(insert_dttm) from SPP.STAGE_D_METRIC)
where
 extctl_source='SPP.STAGE_D_METRIC' and
 extctl_target='SPP.D_METRIC' and
 (select count(*) from SPP.STAGE_D_METRIC) > 0
;

--#INSERT_INTO_TARGET
insert into spp.d_metric
select
 d.metric_id as metric_id,
 d.Met_Name as Met_Name,
 d.Met_Desc as Met_Desc,
 d.Met_units as Met_units,
 d.Met_Category as Met_Category,
 d.min_exists as MIN_Exists,
 d.max_exists as MAX_Exists,
 d.avg_exists as AVG_Exists,
 d.total_exists as Total_Exists,
 d.Msrc_Nm as MSrc_Nm
from
 spp.stage_d_metric d,
 twg.extract_control ec
where
 ec.extctl_source = 'SPP.STAGE_D_METRIC' and
 ec.extctl_target = 'SPP.D_METRIC' and
 d.metric_id > ec.extctl_from_intseq and
 d.metric_id <= ec.extctl_to_intseq
;

-- Confirm the insertion of data by inserting a row into TWG.EXTRACT_LOG.
-- A trigger gets fired which updates the extract control table's from data
with
-- the current to data.

insert into twg.extract_log
select
 ec.extctl_source as extlog_source,
 ec.extctl_target as extlog_target,
 current timestamp - current timezone as extlog_done_dttm,
 ec.extctl_from_rawseq as extlog_from_rawseq,
 ec.extctl_to_rawseq as extlog_to_rawseq,
 Appendix B. Scripts 325

 ec.extctl_from_intseq as extlog_from_intseq,
 ec.extctl_to_intseq as extlog_to_intseq,
 ec.extctl_from_dttm as extlog_from_dttm,
 ec.extctl_to_dttm as extlog_to_dttm
from
 TWG.Extract_control ec
where
 ec.extctl_source = 'SPP.STAGE_D_METRIC' and
 ec.extctl_target = 'SPP.D_METRIC'
;

--#IGNORE_ERROR
drop table spp.stage_host_state;

create table spp.stage_host_state like spp.stage_host_state_template;

insert into spp.stage_host_state
select
 c1.comp_id as host_id,
 v1.compattr_strt_dttm as host_state_start_dttm,
 '9999-01-01-00.00.00.000000' as host_state_end_dttm,
 c1.comp_nm as hostname,
 ca1.CompAttr_Val as ip_address,
 ca2.CompAttr_Val as os_name,
 ca3.CompAttr_Val as os_version,
 ca4.CompAttr_Val as os_sub_ver,
 ca5.CompAttr_Val as physical_mem_kb,
 ca6.CompAttr_Val as num_cpus,
 ca7.CompAttr_Val as cpu_model,
 ca8.CompAttr_Val as cpu_speed,
 'Unknown' as system_purpose
from
 (select
 comp_id,
 min(compattr_strt_dttm) as compattr_strt_dttm
 from spp.host_state_temp group by comp_id) v1,
 twg.cur_comp c1,
 twg.cur_compattr ca1,
 twg.cur_compattr ca2,
 twg.cur_compattr ca3,
 twg.cur_compattr ca4,
 twg.cur_compattr ca5,
 twg.cur_compattr ca6,
 twg.cur_compattr ca7,
 twg.cur_compattr ca8
where
 c1.comp_id = v1.comp_id and
 c1.comptyp_cd IN ('SPP_HOST', 'IP_HOST') and
 c1.comp_id = ca1.comp_id and
326 Introduction to Tivoli Enterprise Data Warehouse

 ca1.attrtyp_cd = 'INADDR' and
 c1.comp_id = ca2.comp_id and
 ca2.attrtyp_cd = 'INOSNM' and
 c1.comp_id = ca3.comp_id and
 ca3.attrtyp_cd = 'INOSVR' and
 c1.comp_id = ca4.comp_id and
 ca4.attrtyp_cd = 'INOSSV' and
 c1.comp_id = ca5.comp_id and
 ca5.attrtyp_cd = 'INPMEM' and
 c1.comp_id = ca6.comp_id and
 ca6.attrtyp_cd = 'INNCPU' and
 c1.comp_id = ca7.comp_id and
 ca7.attrtyp_cd = 'INCPUM' and
 c1.comp_id = ca8.comp_id and
 ca8.attrtyp_cd = 'INCPUS'
;

-- We could base the views on stage_host_state_template, but then we would
-- have to "delete from stage_host_state_template" and "insert into
stage_host_state_template
-- select * from stage_host_state." The problem with this is the space
-- isn't reclaimed until you do a db reorg, so I chose to recreate the views
here.

drop view spp.ip_address_v1;
create view spp.ip_address_v1 as
select
 ip_address,
 LOCATE('.',ip_address) - 1 as addr_w_end,
 LOCATE('.',ip_address,LOCATE('.',ip_address) + 1) -1 as addr_x_end,
 LOCATE('.',ip_address,LOCATE('.',ip_address,LOCATE('.',ip_address) + 1) + 1)
-1 as addr_y_end
from
 spp.stage_host_state
group by
 ip_address
;

drop view spp.hostname_v1;
create view spp.hostname_v1 as
select
 hostname,
 LOCATE('.',hostname) + 1 as name_b_beg,
 LOCATE('.',hostname,LOCATE('.',hostname) + 1) + 1 as name_c_beg,
 LOCATE('.',hostname,LOCATE('.',hostname,LOCATE('.',hostname) + 1) + 1) + 1 as
name_d_beg,

LOCATE('.',hostname,LOCATE('.',hostname,LOCATE('.',hostname,LOCATE('.',hostname
) + 1) + 1) + 1) +1 as name_e_beg
 Appendix B. Scripts 327

from
 spp.stage_host_state
group by
 hostname
;

drop view spp.hostname_v2;
create view spp.hostname_v2 as
select
 hostname,
 name_b_beg,
 name_c_beg,
 name_d_beg,
 name_e_beg,
 case when (name_b_beg > 1 and name_c_beg > 1 and name_d_beg > 1 and
name_e_beg > 1) then 5
 when (name_b_beg > 1 and name_c_beg > 1 and name_d_beg > 1 and name_e_beg
= 1) then 4
 when (name_b_beg > 1 and name_c_beg > 1 and name_d_beg = 1) then 3
 when (name_b_beg > 1 and name_c_beg = 1) then 2
 when (name_b_beg = 1) then 1
 end as name_parts
from
 spp.hostname_v1
;

--#IGNORE_ERROR
drop table spp.stage_ip_address;

create table spp.stage_ip_address like spp.stage_ip_address_template;

insert into spp.stage_ip_address
select
 ip_address,
 CASE
 when ip_address is null THEN null
 when addr_w_end > 0 THEN SUBSTR(ip_address, 1, addr_w_end)
 else null
 END as IP_A_NETWORK,
 CASE
 when ip_address is null THEN null
 when addr_x_end > 0 THEN SUBSTR(ip_address, 1, addr_x_end)
 else null
 END as IP_B_NETWORK,
 CASE
 when ip_address is null THEN null
 when addr_y_end > 0 THEN SUBSTR(ip_address, 1, addr_y_end)
 else null
 END as IP_C_NETWORK
328 Introduction to Tivoli Enterprise Data Warehouse

from spp.ip_address_v1
;

--#IGNORE_ERROR
drop table spp.stage_hostname;

create table spp.stage_hostname like spp.stage_hostname_template;

insert into spp.stage_hostname
select
 hostname,
 CASE
 when name_parts = 5 then substr(hostname,name_d_beg)
 when name_parts = 4 then substr(hostname,name_c_beg)
 when name_parts = 3 then substr(hostname,name_b_beg)
 else 'no value'
 END as NETWORK_DOMAIN,
 CASE
 when name_parts = 5 then substr(hostname,name_c_beg)
 when name_parts = 4 then substr(hostname,name_b_beg)
 else 'no value'
 END as NETWORK_SUBDOMAIN,
 CASE
 when name_parts = 5 then substr(hostname,name_b_beg)
 else 'no value'
 END as NETWORK_SUBDOMAIN_2,
 CASE
 when hostname is null THEN null
 when name_b_beg > 1 THEN SUBSTR(hostname, 1, name_b_beg - 2)
 else hostname
 END as short_hostname
from spp.hostname_v2
;

--
-- 3/22/02 CC added: This will allow us to do the "not in" function
-- in the next query.
-- Moves data from the CDW to the Mart in bulk/raw form into a
-- a stage table. This data will then be allowed to be compared to
-- the already existing data.
-- This is in response to the unique constraint violation we were
-- getting because it attempts to insert ALL records from CDW into
-- a demension table that has already been populated with at least
-- some record.

-- Drop the staging table
--#EXECUTE_AT_SOURCE
DROP TABLE spp.mart_stage_host_state;
 Appendix B. Scripts 329

-- Create the staging table
--#EXECUTE_AT_SOURCE
CREATE TABLE SPP.mart_stage_host_state
 (HOST_ID INTEGER NOT NULL ,

 CUST_ACCT_CD CHAR(10) NOT NULL ,
 CENTR_CD CHAR(6) NOT NULL ,
 STATE_STRT_DTTM TIMESTAMP NOT NULL ,
 STATE_END_DTTM TIMESTAMP NOT NULL ,
 HOSTNAME VARCHAR(64) NOT NULL ,
 IP_ADDRESS VARCHAR(32) NOT NULL ,
 OS_NAME VARCHAR(16) NOT NULL ,
 OS_VERSION VARCHAR(16) NOT NULL ,
 OS_SUB_VER VARCHAR(32) ,
 PHYSICAL_MEM_KB VARCHAR(30) NOT NULL ,
 NUM_CPUS VARCHAR(30) NOT NULL ,
 CPU_MODEL VARCHAR(32) NOT NULL ,
 CPU_SPEED VARCHAR(30) NOT NULL ,
 SYSTEM_PURPOSE VARCHAR(32) NOT NULL ,
 IP_A_NETWORK VARCHAR(32) NOT NULL ,
 IP_B_NETWORK VARCHAR(32) NOT NULL ,
 IP_C_NETWORK VARCHAR(32) NOT NULL ,
 NETWORK_DOMAIN VARCHAR(64) ,
 NETWORK_SUBDOMAIN VARCHAR(64) ,
 NETWORK_SUBDOMAIN_2 VARCHAR(64) ,
 SHORT_HOSTNAME VARCHAR(64) ,
 PHYSICAL_MEMORY VARCHAR(32) ,
 MULTIPROCESSOR VARCHAR(32) ,
 PROCESSOR_INFO VARCHAR(64) ,
 CPU_RATING VARCHAR(64) ,
 OS_NAME_VERSION VARCHAR(64))
 IN USERSPACE1 ;

-- Insert ALL records into staging table
-- Yes this is redundant, since this will only change when new host are added
-- in hopes that development can help later
--#INSERT_INTO_SOURCE
INSERT INTO spp.mart_stage_host_state
SELECT *
 FROM spp.d_host_state;

-- 3/22/02 CC - End of CC add ------------

-- 3/22/02 CC changed from INSERT_INTO_TARGET to EXECUTE_AT_TARGET
--#INSERT_INTO_TARGET
insert into spp.d_host_state
select
 hst.host_id,
 cust.cust_acct_cd,
330 Introduction to Tivoli Enterprise Data Warehouse

 centr.centr_cd,
 hst.state_strt_dttm,
 hst.state_end_dttm,
 hst.hostname,
 hst.ip_address,
 hst.os_name,
 hst.os_version,
 hst.os_sub_ver,
 hst.physical_mem_kb,
 hst.num_cpus,
 hst.cpu_model,
 hst.cpu_speed,
 hst.system_purpose,
 ip.IP_A_NETWORK,
 ip.IP_B_NETWORK,
 ip.IP_C_NETWORK,
 h.NETWORK_DOMAIN,
 h.NETWORK_SUBDOMAIN,
 h.NETWORK_SUBDOMAIN_2,
 h.SHORT_HOSTNAME,
 case
 when integer(physical_mem_kb) > 0 and integer(physical_mem_kb) <= 32768
 then '0-32 Megabytes'
 when integer(physical_mem_kb) > 32768 and integer(physical_mem_kb) <= 65536
 then '32-64 Megabytes'
 when integer(physical_mem_kb) > 65536 and integer(physical_mem_kb) <=
262144
 then '64-256 Megabytes'
 when integer(physical_mem_kb) > 262144 and integer(physical_mem_kb) <=
1048576
 then '256-1024 Megabytes'
 when integer(physical_mem_kb) > 1048576 and integer(physical_mem_kb) <=
4194304
 then '1-4 Gigabytes'
 else 'unknown'
 end as PHYSICAL_MEMORY,
 case
 when integer(hst.num_cpus) = 1 then 'Single Processor'
 else 'Multi Processor'
 end as MULTIPROCESSOR,
 case
 when integer(hst.num_cpus) = 1 then hst.cpu_model concat ' '
 concat rtrim(char(hst.cpu_speed)) concat ' Mhz Single Processor'
 else hst.cpu_model concat ' ' concat rtrim(char(hst.cpu_speed))
 concat ' Mhz Multi Processor'
 end as PROCESSOR_INFO,
 ct.cpu_rating,
 hst.os_name concat ' ' concat hst.os_version as os_name_version
from
 Appendix B. Scripts 331

 spp.stage_host_state hst,
 spp.stage_ip_address ip,
 spp.stage_hostname h,
 inv.cpu_term ct,
 inv.cust_lookup cust,
 spp.centr_lookup centr
where
 hst.ip_address=ip.ip_address and
 hst.hostname=h.hostname and
 hst.cpu_model=ct.cpu_model and
 hst.cpu_speed=ct.cpu_speed and
 hst.num_cpus=ct.num_cpus and
 hst.hostname=cust.value and
 hst.hostname=centr.value
 AND 0 = (SELECT count(1)

 FROM spp.mart_stage_host_state s1
 WHERE s1.ip_address = hst.ip_address
 AND s1.hostname = hst.hostname
 AND s1.os_name = hst.os_name

 AND s1.host_id = hst.host_id
 AND s1.cust_acct_cd = cust.cust_acct_cd
 AND s1.centr_cd= centr.centr_cd

 AND s1.os_version= hst.os_version
 AND s1.os_sub_ver= hst.os_sub_ver
 AND s1.physical_mem_kb= hst.physical_mem_kb
 AND s1.num_cpus= hst.num_cpus
 AND s1.cpu_model= hst.cpu_model
 AND s1.cpu_speed= hst.cpu_speed
 AND s1.system_purpose= hst.system_purpose
 AND s1.ip_a_network= ip.IP_A_NETWORK
 AND s1.ip_b_network= ip.IP_B_NETWORK
 AND s1.ip_c_network= ip.IP_C_NETWORK
 AND s1.network_domain = h.NETWORK_DOMAIN
 AND s1.network_subdomain = h.NETWORK_SUBDOMAIN
 AND s1.network_subdomain_2 = h.NETWORK_SUBDOMAIN_2
 AND s1.short_hostname= h.SHORT_HOSTNAME)
;

-- set the high value for the data to be extracted
update TWG.extract_control set
 extctl_to_intseq = (select max(msmt_id) from twg.msmt)
where
 extctl_source='TWG.MSMT' and
 extctl_target='SPP.STAGE_F_HOUR' and
 (select count(*) from twg.msmt) > 0
;

--#IGNORE_ERROR
--#EXECUTE_AT_TARGET
332 Introduction to Tivoli Enterprise Data Warehouse

drop table spp.stage_f_hour;

--#EXECUTE_AT_TARGET
create table SPP.stage_f_hour like SPP.f_hour
;

--The following should be part of the where clause. However, our simulated
--dm data is static from June and our inventory data gets created everytime
-- the process is run, so the dates are out of sync

-- m.msmt_strt_dt between date(h.state_strt_dttm) and date(h.state_end_dttm)
and
--#INSERT_INTO_TARGET
insert into spp.stage_f_hour
select
 m.comp_id as host_id,
 h.state_strt_dttm as host_state_strt_dttm,
 m.msmttyp_id as metric_id,
 timestamp(m.msmt_strt_dt, m.msmt_strt_tm) as meas_hour,
 m.msmt_min_val as min_value,
 m.msmt_max_val as max_value,
 m.msmt_avg_val as avg_value
from
 twg.msmt m,
 twg.msmttyp mt,
 twg.extract_control ec,
 spp.stage_host_state h
where
 m.msmt_id > ec.extctl_from_intseq and
 m.msmt_id <= ec.extctl_to_intseq and
 ec.extctl_source='TWG.MSMT' and
 ec.extctl_target='SPP.STAGE_F_HOUR' and
 (m.msmttyp_id = mt.msmttyp_id and mt.msrc_cd = 'SPP') and
 m.tmsum_cd = 'H' and
 m.comp_id = h.host_id
;

--#EXECUTE_AT_TARGET
insert into spp.f_hour
select * from spp.stage_f_hour
;

-- Confirm the insertion of data by inserting a row into TWG.EXTRACT_LOG.
-- A trigger gets fired which updates the extract control table's from data
with
-- the current to data.

insert into twg.extract_log
select
 Appendix B. Scripts 333

 ec.extctl_source as extlog_source,
 ec.extctl_target as extlog_target,
 current timestamp - current timezone as extlog_done_dttm,
 ec.extctl_from_rawseq as extlog_from_rawseq,
 ec.extctl_to_rawseq as extlog_to_rawseq,
 ec.extctl_from_intseq as extlog_from_intseq,
 ec.extctl_to_intseq as extlog_to_intseq,
 ec.extctl_from_dttm as extlog_from_dttm,
 ec.extctl_to_dttm as extlog_to_dttm
from
 TWG.Extract_control ec
where
 ec.extctl_source = 'TWG.MSMT' and
 ec.extctl_target = 'SPP.STAGE_F_HOUR'
;

--The f_day, f_week, f_month tables are populated by executing
--the rollup.sh UDP.

ai1_c05_s010_extractData
Example B-7 is an ETL script for moving data from the CDW stage tables to the
CDW tables for case study 2.

Example: B-7 ai1_c05_s010_extractData script

Date/Author 3/25/02 CC
Description ETL for moving data from the CDW stage tables to the CDW tables.
Code SourcesCopied from spp_c05_s010_extractInvData.db2
-- Adapted to suit needs
Parameters(See Datawarehouse Center)
Inputstwh_cdw.inv.stage_ais_sp_hrly_evt_sev
Outputstwh_cdw.inv.invalid_data (bad data)
-- twh_cdw.twg.comp(good components)
Project
Mod log

-Dont think we need to stage again, therfore, doc'd out
-This can be used as an example to go through the staging process
#EXECUTE_AT_TARGET
--drop table inv.stage_ipnetwork_copy;
#EXECUTE_AT_TARGET
--create table inv.stage_ipnetwork_copy like inv.stage_ipnetwork;
334 Introduction to Tivoli Enterprise Data Warehouse

#INSERT_INTO_TARGET
--insert into inv.stage_ipnetwork_copy
--SELECT
 inv.COMPUTER_SYS.HWARE_SYS_ID AS HWARE_SYS_ID,
 inv.NET_NODE.NET_NODE_NAME AS NET_NODE_NAME,
 inv.NET_NODE.NET_NODE_ADDR AS NET_NODE_ADDR
--FROM
 inv.COMPUTER_SYS LEFT OUTER JOIN inv.NET_NODE
 ON (inv.COMPUTER_SYS.HWARE_SYS_ID = inv.NET_NODE.HWARE_SYS_ID)
--WHERE
 (
 (inv.NET_NODE.NET_PROTOCOL = 'TCP')
 OR (inv.NET_NODE.NET_PROTOCOL is null)
AND ((inv.NET_NODE.CFG_CHG_TYPE = 'INSERT' OR inv.NET_NODE.CFG_CHG_TYPE =
'UPDATE')
 OR (inv.NET_NODE.CFG_CHG_TYPE is null))
)
--ORDER BY
 HWARE_SYS_ID,
 NET_NODE_NAME,
 NET_NODE_ADDR
--;

#EXECUTE_AT_TARGET
--drop table inv.stage_ostype_copy;
#EXECUTE_AT_TARGET
--create table inv.stage_ostype_copy like inv.stage_ostype;
#INSERT_INTO_TARGET
--insert into inv.stage_ostype_copy
--SELECT
 inv.COMPUTER_SYS.HWARE_SYS_ID AS HWARE_SYS_ID,
 inv.COMPUTER_SYS.BOOTED_OS_NAME AS BOOTED_OS_NAME,
 inv.COMPUTER_SYS.BOOTED_OS_VER AS BOOTED_OS_VER,
 inv.COMPUTER_SYS.COMPUTER_KRNL_VER AS COMPUTER_KRNL_VER,
 inv.NT_INFO.NT_SVC_PACK AS NT_SVC_PACK
--FROM
 inv.NT_INFO RIGHT OUTER JOIN inv.COMPUTER_SYS
 ON (inv.NT_INFO.HWARE_SYS_ID = inv.COMPUTER_SYS.HWARE_SYS_ID)
--;

#EXECUTE_AT_TARGET
--drop table inv.stage_processor_copy;
#EXECUTE_AT_TARGET
--create table inv.stage_processor_copy like inv.stage_processor;
#INSERT_INTO_TARGET
--insert into inv.stage_processor_copy
--SELECT
 i.HWARE_SYS_ID,
 count(*),
 Appendix B. Scripts 335

 MIN(p.PROCESSOR_MODEL),
 MIN(p.PROCESSOR_SPEED)
--FROM
 inv.PROCESSOR p,
 inv.INST_PROCESSOR i
--WHERE
 i.PROCESSOR_ID = p.PROCESSOR_ID
--GROUP BY
 i.HWARE_SYS_ID
--;

#EXECUTE_AT_TARGET
--drop table inv.stage_memory_copy;
#EXECUTE_AT_TARGET
--create table inv.stage_memory_copy like inv.stage_memory;
#INSERT_INTO_TARGET
--insert into inv.stage_memory_copy
--SELECT
 HWARE_SYS_ID,
 PHYSICAL_MEM_KB
--FROM
 inv.COMPUTER_SYS_MEM
--;

--commit;

#EXECUTE_AT_TARGET
--drop table inv.stage_net_node_copy;
#EXECUTE_AT_TARGET
--create table inv.stage_net_node_copy like inv.stage_net_node;
#EXECUTE_AT_TARGET
--insert into inv.stage_net_node_copy
--select
 value(lower(T2.NET_NODE_NAME),'') as net_node_name,
 value(T2.NET_NODE_ADDR,'') as net_node_addr,
 T1.HWARE_SYS_ID,
 value(T1.BOOTED_OS_NAME,'') as booted_os_name,
 value(T1.BOOTED_OS_VER,'') as booted_os_ver,
 case
 when T1.BOOTED_OS_NAME in ('Windows NT','Windows 2000')
 then value(T1.NT_SVC_PACK,'')
 when T1.BOOTED_OS_NAME in ('AIX', 'SunOS', 'HP-UX', 'Linux')
 then value(T1.COMPUTER_KRNL_VER,'')
 else ''
 end as os_sub_ver,
 value(T4.PHYSICAL_MEM_KB,-1) as physical_mem_kb,
 value(T6.NUM_PROCESSORS,-1) as num_processors,
 value(T6.PROCESSOR_MODEL,'') as processor_model,
 value(T6.PROCESSOR_SPEED,-1) as processor_speed,
336 Introduction to Tivoli Enterprise Data Warehouse

 'Unknown' as system_purpose
--FROM
 inv.stage_OSTYPE_copy T1 LEFT OUTER JOIN
 inv.stage_IPNETWORK_copy T2
 ON T1.HWARE_SYS_ID = T2.HWARE_SYS_ID,
 inv.stage_OSTYPE_copy T3 LEFT OUTER JOIN
 inv.stage_MEMORY_copy T4
 ON T3.HWARE_SYS_ID = T4.HWARE_SYS_ID,
 inv.stage_OSTYPE_copy T5 LEFT OUTER JOIN
 inv.stage_PROCESSOR_copy T6
 ON T5.HWARE_SYS_ID = T6.HWARE_SYS_ID
--WHERE
 T1.HWARE_SYS_ID=T3.HWARE_SYS_ID AND
 T1.HWARE_SYS_ID=T5.HWARE_SYS_ID
--;

Move data that does not have a
cust or center ids into invalid
data table. Filled with text
since we do not have all the values.

--#EXECUTE_AT_TARGET
--sample check for invalid data
insert into inv.invalid_data
select n.hostname,'AIS_NULL', 'AIS_NULL','AIS_NULL','AIS_NULL',

'AIS_NULL',0,0,'AIS_NULL',0,'AIS_NULL'
 from inv.stage_ais_sp_hrly_evt_sev n
 where not exists(
 select 1

 from inv.cust_lookup
 where inv.cust_lookup.value = n.hostname

 OR inv.cust_lookup.value = '@')
OR

 not exists(
 select 1 from inv.centr_lookup
 where inv.centr_lookup.value = n.hostname

 OR inv.centr_lookup.value = '@')
;
--
Need to get the distinct hostname to put into comp for some reason
a record in the stage table produces a record in the comp table,
which produces 100+ comp of the same hostname.
Therefore moving them into another stage of just hostnames
--
--#EXECUTE_AT_TARGET
DROP TABLE inv.stage_ais_sp_host;
--#EXECUTE_AT_TARGET
CREATE TABLE inv.stage_ais_sp_host(hostname VARCHAR(32));
 Appendix B. Scripts 337

--#EXECUTE_AT_TARGET
INSERT INTO inv.stage_ais_sp_host
SELECT DISTINCT hostname
 FROM inv.stage_ais_sp_hrly_evt_sev;
--
Insert data into the twg.comp(component table). This is the real work
of the entire script
--
This will not duplicate rows because it does a "not exist" in comp table
--
--
--Note that the insert of IP_HOST may be changed to SPP_HOST by a trigger
 if the hostname is not fully qualified.

--#EXECUTE_AT_TARGET
INSERT INTO TWG.COMP(COMP_ID, COMPTYP_CD, CENTR_CD, CUST_ID, COMP_NM,
COMP_STRT_DTTM, COMP_END_DTTM, COMP_DS)
select 0 as Comp_Id,
 'IP_HOST' as CompTyp_Cd ,
 centr.Centr_Cd as Centr_Cd,
 c.Cust_ID as Cust_ID,
 n.hostname as Comp_Nm,
 current timestamp - current timezone as Comp_Strt_DtTm ,
 '9999-01-01-00.00.00.000000' as Comp_End_DtTm,
 '' as Comp_Ds
from inv.stage_ais_sp_host n,
 inv.cust_lookup cust,
 inv.centr_lookup centr,
 twg.cust c
where n.hostname != ''
 and 0 = (
 select count(1)
 from twg.comp c
 where c.comp_nm=n.hostname
 and c.comptyp_cd IN ('SPP_HOST', 'IP_HOST')
 and current timestamp - current timezone >= (c.comp_strt_dttm - 1
day)

 and current timestamp - current timezone < c.comp_end_dttm)
 AND ((cust.value = n.hostname and cust.cust_acct_cd = c.cust_acct_cd)
 OR cust.value = '@')
 AND (centr.value = n.hostname OR centr.value = '@')
;

since we only have
hostname, we have
nothing to update
compattr with, so
we doc it out
338 Introduction to Tivoli Enterprise Data Warehouse

#EXECUTE_AT_TARGET
--insert into twg.compattr
--select
0 as compattr_id,
c.comp_id,
'INOSNM' as AttrTyp_Cd,
current timestamp - current timezone as CompAttr_Strt_DtTm,
'9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
n.booted_os_name as CompAttr_Val
--from
inv.stage_ais_sp_hrly_evt_sev n,
twg.comp c
--where
c.comp_nm=n.hostname
and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
and n.booted_os_name != ''
and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 where
 n.hostname=c2.comp_nm
 and ca.AttrTyp_Cd='INOSNM'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
--union
--select
0 as compattr_id,
c.comp_id,
'INOSVR' as AttrTyp_Cd,
current timestamp - current timezone as CompAttr_Strt_DtTm,
'9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
n.booted_os_ver as CompAttr_Val
--from
inv.stage_net_node_copy n,
twg.comp c
--where
c.comp_nm=n.net_node_name
and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
and n.booted_os_ver != ''
and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 Appendix B. Scripts 339

 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=n.booted_os_ver
 and ca.AttrTyp_Cd='INOSVR'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
--union
--select
0 as compattr_id,
c.comp_id,
'INOSSV' as AttrTyp_Cd,
current timestamp - current timezone as CompAttr_Strt_DtTm,
'9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
n.os_sub_ver as CompAttr_Val
--from
inv.stage_net_node_copy n,
twg.comp c
--where
c.comp_nm=n.net_node_name
and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
and n.os_sub_ver != ''
and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=n.os_sub_ver
 and ca.AttrTyp_Cd='INOSSV'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
--;
-Removed large amounts of code that moved data into compattr.

ai1_c20_s010_LoadEvData
The script in Example B-8 is used to populate the CDW tables with DM data for
case study 2.

Example: B-8 ai1_c20_s010_LoadEvData script

-- Populate the CDW tables with DM data.

-- Date/Author 3/26/02 CC
-- Description ETL for moving data from the CDW stage tables
340 Introduction to Tivoli Enterprise Data Warehouse

-- to the CDW tables.
--
-- Code SourcesCopied from spp_c20_s010_extractDMData.db2
-- Adapted to suit needs
-- Parameters(See Datawarehouse Center)
-- Inputstwh_cdw.inv.stage_ais_sp_hrly_evt_sev
-- Outputstwh_cdw.inv.invalid_data (bad data)
-- twh_cdw.twg.msmt(good data)
-- Project
-- Mod log

-- EC isn't needed for comp table because we use where not exists....the data
will only
-- be inserted once even if rerun.

--
-- Move any invalid data (data without
-- customer or center) into invalid data table
--
-- #EXECUTE_AT_TARGET
--insert into spp.invalid_data
--select 0,current timestamp, current date, current time,
n.hostname,n.hostname, 'AIS_NULL','AIS_NULL','AIS_NULL',
-- 'AIS_NULL',0,0,0,0,evt_cnt
-- from inv.stage_ais_sp_hrly_evt_sev n
--where
-- not exists(
-- select 1 from spp.cust_lookup
-- where inv.cust_lookup.value = n.hostname OR
-- inv.cust_lookup.value = '@') OR
-- not exists(
-- select 1 from spp.centr_lookup
-- where inv.centr_lookup.value = n.hostname OR
-- inv.centr_lookup.value = '@')
--;

--
-- Need to get the distinct hostname to put into comp for some reason
-- a record in the stage table produces a record in the comp table,
-- which produces 100+ comp of the same hostname.
-- Therefore moving them into another stage of just hostnames
--
--#EXECUTE_AT_TARGET
DROP TABLE inv.stage_ais_sp_host;

--#EXECUTE_AT_TARGET
CREATE TABLE inv.stage_ais_sp_host(hostname VARCHAR(32));
 Appendix B. Scripts 341

--#EXECUTE_AT_TARGET
INSERT INTO inv.stage_ais_sp_host
SELECT DISTINCT hostname
 FROM inv.stage_ais_sp_hrly_evt_sev;

--
-- Insert any components that did not already
-- exist in the components table
--
-- Note that the insert of IP_HOST might be changed to SPP_HOST by a trigger
-- if the name of the host isn't a fully qualified hostname.
--#EXECUTE_AT_TARGET
insert into twg.comp (COMP_ID, COMPTYP_CD, CENTR_CD, CUST_ID, COMP_NM,
COMP_STRT_DTTM, COMP_END_DTTM, COMP_DS)
select 0,
 'IP_HOST' as CompTyp_Cd,
 centr.Centr_Cd as Centr_Cd,
 c.Cust_ID as Cust_ID,
 d.hostname as Comp_Nm,
 current timestamp - current timezone as Comp_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as Comp_End_DtTm,
 '' as Comp_Ds
from inv.stage_ais_sp_host d,
 inv.cust_lookup cust,
 inv.centr_lookup centr,
 twg.cust c
where not exists (
 select 1
 from twg.comp c
 where c.comp_nm=d.hostname
 and c.comptyp_cd IN ('SPP_HOST', 'IP_HOST')
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm)
 AND ((cust.value = d.hostname and cust.cust_acct_cd = c.cust_acct_cd)
 OR cust.value = '@')
 AND (centr.value = d.hostname OR centr.value = '@')
group by d.hostname, centr.centr_cd, c.cust_id
;

--- CC 3/26/02 We will solve this incremental extrac with the query below

-- For the prototype, we really don't need to use extract control when
-- inserting into msmt since we only have 1 step that populates the msmt
-- table. Use of EC is an example if you had multiple sql statements populating
-- the Msmt table. Then each statement would need EC to determine whether data
-- has already been loaded if the step gets rerun.
342 Introduction to Tivoli Enterprise Data Warehouse

-- set the high value for the data to be extracted
-- #EXECUTE_AT_TARGET
--update TWG.Extract_Control set
-- extctl_to_intseq = (select max(metric_id) from SPP.STAGE_METRICS_HOUR),
-- extctl_to_dttm = (select max(insert_dttm) from SPP.STAGE_METRICS_HOUR)
--where
-- extctl_source='SPP.STAGE_METRICS_HOUR' and
-- extctl_target='TWG.MSMT' and
-- (select count(*) from SPP.STAGE_METRICS_HOUR) > 0
--;

--#EXECUTE_AT_TARGET
insert into twg.msmt
select 0 as Msmt_ID,
 c.Comp_ID ,

m.MsmtTyp_ID ,
 s.TmSum_Cd ,
 date(d.hr_strt) as Msmt_Strt_Dt,

time(d.hr_strt) as Msmt_Strt_Tm,
0 as Msmt_Min_Val,
0 as Msmt_Max_Val,
0 as Msmt_Avg_Val ,
avg(d.evt_cnt) as Msmt_Tot_Val ,
0 as Msmt_Smpl_Cnt,
0 as Msmt_Err_Cnt

from inv.stage_ais_sp_hrly_evt_sev d,
 twg.comp c,
 twg.msmttyp m,
 twg.msmtrul mr,
 twg.tmsum s
where c.comp_nm=d.hostname
-- and d.hr_strt > (select max(timestamp(msmt_strt_dt,msmt_strt_tm))
-- from twg.msmt
-- where msmttyp_id=49)
 and m.MsmtTyp_Nm = 'AIS_Events'
 and m.msmttyp_id = mr.msmttyp_id
 and mr.comptyp_cd IN ('SPP_HOST', 'IP_HOST')
 and s.TmSum_Nm = 'Hourly'
group by c.Comp_ID, m.MsmtTyp_ID, s.TmSum_Cd, date(d.hr_strt), time(d.hr_strt)
;

-- Confirm the insertion of data by inserting a row into TWG.EXTRACT_LOG.
-- A trigger gets fired which updates the extract control table's from data
with
-- the current to data.

-- Changed to pull min and max date
-- from the stage tables

 Appendix B. Scripts 343

--#EXECUTE_AT_TARGET
insert into twg.extract_log
select 'inv.stage_ais_sp_hrly_evt_sev' as extlog_source,
 'twg.msmt' as extlog_target,
 current timestamp as extlog_done_dttm,
 0 as extlog_from_rawseq,
 0 as extlog_to_rawseq,
 0 as extlog_from_intseq,
 0 as extlog_to_intseq,
 MIN(ec.hr_strt) as extlog_from_dttm,
 MAX(ec.hr_strt) as extlog_to_dttm
from inv.stage_ais_sp_hrly_evt_sev ec
;

ai1_m05_s010_buildMart
Example B-9 is the ETL script for moving data from the CDW tables to the data
mart tables for case study 2.

Example: B-9 ai1_m05_s010_buildMart script

-- Date/Author 3/26/02 CC
-- Description ETL for moving data from the CDW tables
-- to the data mart tables.
--
-- Code SourcesCopied from spp_m05_s010_buildMart.db2
-- Adapted to suit needs
-- Parameters(See Datawarehouse Center)
-- Inputstwh_cdw.comp
-- twh_cdw.msmt
-- twh_cdw.compattr
-- Outputstwh_mart.d_metrics
-- twh_mart.d_host_state
-- twh_mart.f_aisevt_hour
-- Project
-- Mod log

-- insert into the metric dimension table

--NOTE: This process will only happen once. We initially insert the data into
the
-- staging table in the cdw/dml script.
344 Introduction to Tivoli Enterprise Data Warehouse

-- CC Left alone since we have already conformed in CDW
-- this should work out of the box

-- set the high value for the data to be extracted
update TWG.Extract_Control set
 extctl_to_intseq = (select max(metric_id) from SPP.STAGE_D_METRIC),
 extctl_to_dttm = (select max(insert_dttm) from SPP.STAGE_D_METRIC)
where
 extctl_source='SPP.STAGE_D_METRIC' and
 extctl_target='SPP.D_METRIC' and
 (select count(*) from SPP.STAGE_D_METRIC) > 0
;

--
-- Made staic insert into spp.stage_d_metrics
-- table, therefore, this should work without
-- adjustment.
--
--#INSERT_INTO_TARGET
insert into spp.d_metric
select d.metric_id as metric_id,
 d.Met_Name as Met_Name,
 d.Met_Desc as Met_Desc,
 d.Met_units as Met_units,
 d.Met_Category as Met_Category,
 d.min_exists as MIN_Exists,
 d.max_exists as MAX_Exists,
 d.avg_exists as AVG_Exists,
 d.total_exists as Total_Exists,
 d.Msrc_Nm as MSrc_Nm
from spp.stage_d_metric d,
 twg.extract_control ec
where ec.extctl_source = 'SPP.STAGE_D_METRIC'
 and ec.extctl_target = 'SPP.D_METRIC'
 and d.metric_id > ec.extctl_from_intseq
 and d.metric_id <= ec.extctl_to_intseq
;

-- No Changes

-- Confirm the insertion of data by inserting a row into TWG.EXTRACT_LOG.
-- A trigger gets fired which updates the extract control table's from data
with
-- the current to data.

insert into twg.extract_log
 Appendix B. Scripts 345

select
 ec.extctl_source as extlog_source,
 ec.extctl_target as extlog_target,
 current timestamp - current timezone as extlog_done_dttm,
 ec.extctl_from_rawseq as extlog_from_rawseq,
 ec.extctl_to_rawseq as extlog_to_rawseq,
 ec.extctl_from_intseq as extlog_from_intseq,
 ec.extctl_to_intseq as extlog_to_intseq,
 ec.extctl_from_dttm as extlog_from_dttm,
 ec.extctl_to_dttm as extlog_to_dttm
from
 TWG.Extract_control ec
where
 ec.extctl_source = 'SPP.STAGE_D_METRIC' and
 ec.extctl_target = 'SPP.D_METRIC'
;

--#IGNORE_ERROR
drop table spp.stage_host_state;

create table spp.stage_host_state like spp.stage_host_state_template;

insert into spp.stage_host_state
select
 c1.comp_id as host_id,
 v1.compattr_strt_dttm as host_state_start_dttm,
 '9999-01-01-00.00.00.000000' as host_state_end_dttm,
 c1.comp_nm as hostname,
 ca1.CompAttr_Val as ip_address,
 ca2.CompAttr_Val as os_name,
 ca3.CompAttr_Val as os_version,
 ca4.CompAttr_Val as os_sub_ver,
 ca5.CompAttr_Val as physical_mem_kb,
 ca6.CompAttr_Val as num_cpus,
 ca7.CompAttr_Val as cpu_model,
 ca8.CompAttr_Val as cpu_speed,
 'Unknown' as system_purpose
from
 (select
 comp_id,
 min(compattr_strt_dttm) as compattr_strt_dttm
 from spp.host_state_temp group by comp_id) v1,
 twg.cur_comp c1,
 twg.cur_compattr ca1,
 twg.cur_compattr ca2,
 twg.cur_compattr ca3,
 twg.cur_compattr ca4,
 twg.cur_compattr ca5,
 twg.cur_compattr ca6,
346 Introduction to Tivoli Enterprise Data Warehouse

 twg.cur_compattr ca7,
 twg.cur_compattr ca8
where
 c1.comp_id = v1.comp_id and
 c1.comptyp_cd IN ('SPP_HOST', 'IP_HOST') and
 c1.comp_id = ca1.comp_id and
 ca1.attrtyp_cd = 'INADDR' and
 c1.comp_id = ca2.comp_id and
 ca2.attrtyp_cd = 'INOSNM' and
 c1.comp_id = ca3.comp_id and
 ca3.attrtyp_cd = 'INOSVR' and
 c1.comp_id = ca4.comp_id and
 ca4.attrtyp_cd = 'INOSSV' and
 c1.comp_id = ca5.comp_id and
 ca5.attrtyp_cd = 'INPMEM' and
 c1.comp_id = ca6.comp_id and
 ca6.attrtyp_cd = 'INNCPU' and
 c1.comp_id = ca7.comp_id and
 ca7.attrtyp_cd = 'INCPUM' and
 c1.comp_id = ca8.comp_id and
 ca8.attrtyp_cd = 'INCPUS'
;

-- We could base the views on stage_host_state_template, but then we would
-- have to "delete from stage_host_state_template" and "insert into
stage_host_state_template
-- select * from stage_host_state." The problem with this is the space
-- isn't reclaimed until you do a db reorg, so I chose to recreate the views
here.

drop view spp.ip_address_v1;
create view spp.ip_address_v1 as
select
 ip_address,
 LOCATE('.',ip_address) - 1 as addr_w_end,
 LOCATE('.',ip_address,LOCATE('.',ip_address) + 1) -1 as addr_x_end,
 LOCATE('.',ip_address,LOCATE('.',ip_address,LOCATE('.',ip_address) + 1) + 1)
-1 as addr_y_end
from
 spp.stage_host_state
group by
 ip_address
;

drop view spp.hostname_v1;
create view spp.hostname_v1 as
select
 hostname,
 LOCATE('.',hostname) + 1 as name_b_beg,
 Appendix B. Scripts 347

 LOCATE('.',hostname,LOCATE('.',hostname) + 1) + 1 as name_c_beg,
 LOCATE('.',hostname,LOCATE('.',hostname,LOCATE('.',hostname) + 1) + 1) + 1 as
name_d_beg,

LOCATE('.',hostname,LOCATE('.',hostname,LOCATE('.',hostname,LOCATE('.',hostname
) + 1) + 1) + 1) +1 as name_e_beg
from
 spp.stage_host_state
group by
 hostname
;

drop view spp.hostname_v2;
create view spp.hostname_v2 as
select
 hostname,
 name_b_beg,
 name_c_beg,
 name_d_beg,
 name_e_beg,
 case when (name_b_beg > 1 and name_c_beg > 1 and name_d_beg > 1 and
name_e_beg > 1) then 5
 when (name_b_beg > 1 and name_c_beg > 1 and name_d_beg > 1 and name_e_beg
= 1) then 4
 when (name_b_beg > 1 and name_c_beg > 1 and name_d_beg = 1) then 3
 when (name_b_beg > 1 and name_c_beg = 1) then 2
 when (name_b_beg = 1) then 1
 end as name_parts
from
 spp.hostname_v1
;

--#IGNORE_ERROR
drop table spp.stage_ip_address;

create table spp.stage_ip_address like spp.stage_ip_address_template;

insert into spp.stage_ip_address
select
 ip_address,
 CASE
 when ip_address is null THEN null
 when addr_w_end > 0 THEN SUBSTR(ip_address, 1, addr_w_end)
 else null
 END as IP_A_NETWORK,
 CASE
 when ip_address is null THEN null
 when addr_x_end > 0 THEN SUBSTR(ip_address, 1, addr_x_end)
 else null
348 Introduction to Tivoli Enterprise Data Warehouse

 END as IP_B_NETWORK,
 CASE
 when ip_address is null THEN null
 when addr_y_end > 0 THEN SUBSTR(ip_address, 1, addr_y_end)
 else null
 END as IP_C_NETWORK
from spp.ip_address_v1
;

--#IGNORE_ERROR
drop table spp.stage_hostname;

create table spp.stage_hostname like spp.stage_hostname_template;

insert into spp.stage_hostname
select
 hostname,
 CASE
 when name_parts = 5 then substr(hostname,name_d_beg)
 when name_parts = 4 then substr(hostname,name_c_beg)
 when name_parts = 3 then substr(hostname,name_b_beg)
 else 'no value'
 END as NETWORK_DOMAIN,
 CASE
 when name_parts = 5 then substr(hostname,name_c_beg)
 when name_parts = 4 then substr(hostname,name_b_beg)
 else 'no value'
 END as NETWORK_SUBDOMAIN,
 CASE
 when name_parts = 5 then substr(hostname,name_b_beg)
 else 'no value'
 END as NETWORK_SUBDOMAIN_2,
 CASE
 when hostname is null THEN null
 when name_b_beg > 1 THEN SUBSTR(hostname, 1, name_b_beg - 2)
 else hostname
 END as short_hostname
from spp.hostname_v2
;

--
-- 3/25/02 CC Copied from previous script
-- 3/22/02 CC added: This will allow us to do the "not in" function
-- in the next query.
-- Moves data from the CDW to the Mart in bulk/raw form into a
-- a stage table. This data will then be allowed to be compared to
-- the already existing data.
-- This is in response to the unique constraint violation we were
 Appendix B. Scripts 349

-- getting because it attempts to insert ALL records from CDW into
-- a demension table that has already been populated with at least
-- some record.

-- Drop the staging table
-- #EXECUTE_AT_SOURCE -- This is default so need need to have a directive
DROP TABLE spp.mart_stage_host_state;

-- Create the staging table
-- #EXECUTE_AT_SOURCE -- This is default so need need to have a directive
CREATE TABLE SPP.mart_stage_host_state
 (HOST_ID INTEGER NOT NULL ,

 CUST_ACCT_CD CHAR(10) NOT NULL ,
 CENTR_CD CHAR(6) NOT NULL ,
 STATE_STRT_DTTM TIMESTAMP NOT NULL ,
 STATE_END_DTTM TIMESTAMP NOT NULL ,
 HOSTNAME VARCHAR(64) NOT NULL ,
 IP_ADDRESS VARCHAR(32) NOT NULL ,
 OS_NAME VARCHAR(16) NOT NULL ,
 OS_VERSION VARCHAR(16) NOT NULL ,
 OS_SUB_VER VARCHAR(32) ,
 PHYSICAL_MEM_KB VARCHAR(30) NOT NULL ,
 NUM_CPUS VARCHAR(30) NOT NULL ,
 CPU_MODEL VARCHAR(32) NOT NULL ,
 CPU_SPEED VARCHAR(30) NOT NULL ,
 SYSTEM_PURPOSE VARCHAR(32) NOT NULL ,
 IP_A_NETWORK VARCHAR(32) NOT NULL ,
 IP_B_NETWORK VARCHAR(32) NOT NULL ,
 IP_C_NETWORK VARCHAR(32) NOT NULL ,
 NETWORK_DOMAIN VARCHAR(64) ,
 NETWORK_SUBDOMAIN VARCHAR(64) ,
 NETWORK_SUBDOMAIN_2 VARCHAR(64) ,
 SHORT_HOSTNAME VARCHAR(64) ,
 PHYSICAL_MEMORY VARCHAR(32) ,
 MULTIPROCESSOR VARCHAR(32) ,
 PROCESSOR_INFO VARCHAR(64) ,
 CPU_RATING VARCHAR(64) ,
 OS_NAME_VERSION VARCHAR(64))
 IN USERSPACE1 ;

-- Insert ALL records into staging table
-- Yes this is redundant, since this will only change when new host are added
-- in hopes that development can help later
--#INSERT_INTO_SOURCE
INSERT INTO spp.mart_stage_host_state
SELECT *
 FROM spp.d_host_state;
350 Introduction to Tivoli Enterprise Data Warehouse

-- 3/22/02 CC - End of CC add ------------
--
-- 3/25/02 CC Added the subselect in the
-- where to prevent duplicate records
-- being inserted
--
--#INSERT_INTO_TARGET
insert into spp.d_host_state
select
 hst.host_id,
 cust.cust_acct_cd,
 centr.centr_cd,
 hst.state_strt_dttm,
 hst.state_end_dttm,
 hst.hostname,
 hst.ip_address,
 hst.os_name,
 hst.os_version,
 hst.os_sub_ver,
 hst.physical_mem_kb,
 hst.num_cpus,
 hst.cpu_model,
 hst.cpu_speed,
 hst.system_purpose,
 ip.IP_A_NETWORK,
 ip.IP_B_NETWORK,
 ip.IP_C_NETWORK,
 h.NETWORK_DOMAIN,
 h.NETWORK_SUBDOMAIN,
 h.NETWORK_SUBDOMAIN_2,
 h.SHORT_HOSTNAME,
 case
 when integer(physical_mem_kb) > 0 and integer(physical_mem_kb) <= 32768
 then '0-32 Megabytes'
 when integer(physical_mem_kb) > 32768 and integer(physical_mem_kb) <= 65536
 then '32-64 Megabytes'
 when integer(physical_mem_kb) > 65536 and integer(physical_mem_kb) <=
262144
 then '64-256 Megabytes'
 when integer(physical_mem_kb) > 262144 and integer(physical_mem_kb) <=
1048576
 then '256-1024 Megabytes'
 when integer(physical_mem_kb) > 1048576 and integer(physical_mem_kb) <=
4194304
 then '1-4 Gigabytes'
 else 'unknown'
 end as PHYSICAL_MEMORY,
 case
 when integer(hst.num_cpus) = 1 then 'Single Processor'
 Appendix B. Scripts 351

 else 'Multi Processor'
 end as MULTIPROCESSOR,
 case
 when integer(hst.num_cpus) = 1 then hst.cpu_model concat ' '
 concat rtrim(char(hst.cpu_speed)) concat ' Mhz Single Processor'
 else hst.cpu_model concat ' ' concat rtrim(char(hst.cpu_speed))
 concat ' Mhz Multi Processor'
 end as PROCESSOR_INFO,
 ct.cpu_rating,
 hst.os_name concat ' ' concat hst.os_version as os_name_version
from
 spp.stage_host_state hst,
 spp.stage_ip_address ip,
 spp.stage_hostname h,
 inv.cpu_term ct,
 spp.cust_lookup cust,
 spp.centr_lookup centr
where
 hst.ip_address=ip.ip_address and
 hst.hostname=h.hostname and
 hst.cpu_model=ct.cpu_model and
 hst.cpu_speed=ct.cpu_speed and
 hst.num_cpus=ct.num_cpus and
 hst.hostname=cust.value and
 hst.hostname=centr.value
 AND 0 = (SELECT count(1)

 FROM spp.mart_stage_host_state s1
 WHERE s1.ip_address = hst.ip_address
 AND s1.hostname = hst.hostname
 AND s1.os_name = hst.os_name

 AND s1.host_id = hst.host_id
 AND s1.cust_acct_cd = cust.cust_acct_cd
 AND s1.centr_cd= centr.centr_cd

 AND s1.os_version= hst.os_version
 AND s1.os_sub_ver= hst.os_sub_ver
 AND s1.physical_mem_kb= hst.physical_mem_kb
 AND s1.num_cpus= hst.num_cpus
 AND s1.cpu_model= hst.cpu_model
 AND s1.cpu_speed= hst.cpu_speed
 AND s1.system_purpose= hst.system_purpose
 AND s1.ip_a_network= ip.IP_A_NETWORK
 AND s1.ip_b_network= ip.IP_B_NETWORK
 AND s1.ip_c_network= ip.IP_C_NETWORK
 AND s1.network_domain = h.NETWORK_DOMAIN
 AND s1.network_subdomain = h.NETWORK_SUBDOMAIN
 AND s1.network_subdomain_2 = h.NETWORK_SUBDOMAIN_2
 AND s1.short_hostname= h.SHORT_HOSTNAME)

;

352 Introduction to Tivoli Enterprise Data Warehouse

-- set the high value for the data to be extracted
update TWG.extract_control set
 extctl_to_intseq = (select max(msmt_id) from twg.msmt)
where
 extctl_source='TWG.MSMT' and
 extctl_target='SPP.STAGE_F_AISEVT_HOUR' and
 (select count(*) from twg.msmt) > 0
;

--#IGNORE_ERROR
--#EXECUTE_AT_TARGET
drop table spp.stage_f_aisevt_hour;

--#EXECUTE_AT_TARGET
create table SPP.stage_f_ais_evt_hour like SPP.f_aisevts_hour
;

--The following should be part of the where clause. However, our simulated
--dm data is static from June and our inventory data gets created everytime
-- the process is run, so the dates are out of sync

-- m.msmt_strt_dt between date(h.state_strt_dttm) and date(h.state_end_dttm)
and
--#INSERT_INTO_TARGET
insert into spp.stage_f_aisevts_hour
select
 m.comp_id as host_id,
 h.state_strt_dttm as host_state_strt_dttm,
 m.msmttyp_id as metric_id,
 timestamp(m.msmt_strt_dt, m.msmt_strt_tm) as meas_hour,
 m.msmt_tot_val as tot_val
from
 twg.msmt m,
 twg.msmttyp mt,
 twg.extract_control ec,
 spp.stage_host_state h
where
 m.msmt_id > ec.extctl_from_intseq and
 m.msmt_id <= ec.extctl_to_intseq and
 ec.extctl_source='TWG.MSMT' and
 ec.extctl_target='SPP.STAGE_F_HOUR' and
 (m.msmttyp_id = mt.msmttyp_id and mt.msrc_cd = 'TEC') and
 m.tmsum_cd = 'H' and
 m.comp_id = h.host_id
;

--#EXECUTE_AT_TARGET
insert into spp.f_aisevts_hour
 Appendix B. Scripts 353

select * from spp.stage_f_aisevts_hour
;

-- Confirm the insertion of data by inserting a row into TWG.EXTRACT_LOG.
-- A trigger gets fired which updates the extract control table's from data
with
-- the current to data.

insert into twg.extract_log
select
 ec.extctl_source as extlog_source,
 ec.extctl_target as extlog_target,
 current timestamp - current timezone as extlog_done_dttm,
 ec.extctl_from_rawseq as extlog_from_rawseq,
 ec.extctl_to_rawseq as extlog_to_rawseq,
 ec.extctl_from_intseq as extlog_from_intseq,
 ec.extctl_to_intseq as extlog_to_intseq,
 ec.extctl_from_dttm as extlog_from_dttm,
 ec.extctl_to_dttm as extlog_to_dttm
from
 TWG.Extract_control ec
where
 ec.extctl_source = 'TWG.MSMT' and
 ec.extctl_target = 'SPP.STAGE_F_HOUR'
;

--The f_day, f_week, f_month tables are populated by executing
--the rollup.sh UDP.

ai1_c05_s010_extractData
Example B-10 on page 355 is the original ETL script for the SPP prototype.
354 Introduction to Tivoli Enterprise Data Warehouse

Example: B-10 ai1_c05_s010_extractData script

-- 3/25/02 CC ETL for moving data from the CDW stage tables
-- to the CDW tables.

--- Dont think we need to stage again, therfore, doc'd out
-- #EXECUTE_AT_TARGET
--drop table inv.stage_ipnetwork_copy;
-- #EXECUTE_AT_TARGET
--create table inv.stage_ipnetwork_copy like inv.stage_ipnetwork;
-- #INSERT_INTO_TARGET
--insert into inv.stage_ipnetwork_copy
--SELECT
-- inv.COMPUTER_SYS.HWARE_SYS_ID AS HWARE_SYS_ID,
-- inv.NET_NODE.NET_NODE_NAME AS NET_NODE_NAME,
-- inv.NET_NODE.NET_NODE_ADDR AS NET_NODE_ADDR
--FROM
-- inv.COMPUTER_SYS LEFT OUTER JOIN inv.NET_NODE
-- ON (inv.COMPUTER_SYS.HWARE_SYS_ID = inv.NET_NODE.HWARE_SYS_ID)
--WHERE
-- (
-- (inv.NET_NODE.NET_PROTOCOL = 'TCP')
-- OR (inv.NET_NODE.NET_PROTOCOL is null)
-- AND ((inv.NET_NODE.CFG_CHG_TYPE = 'INSERT' OR inv.NET_NODE.CFG_CHG_TYPE =
'UPDATE')
-- OR (inv.NET_NODE.CFG_CHG_TYPE is null))
--)
--ORDER BY
-- HWARE_SYS_ID,
-- NET_NODE_NAME,
-- NET_NODE_ADDR
--;

--#EXECUTE_AT_TARGET
drop table inv.stage_ostype_copy;
--#EXECUTE_AT_TARGET
create table inv.stage_ostype_copy like inv.stage_ostype;
--#INSERT_INTO_TARGET
insert into inv.stage_ostype_copy
SELECT
 inv.COMPUTER_SYS.HWARE_SYS_ID AS HWARE_SYS_ID,
 inv.COMPUTER_SYS.BOOTED_OS_NAME AS BOOTED_OS_NAME,
 inv.COMPUTER_SYS.BOOTED_OS_VER AS BOOTED_OS_VER,
 inv.COMPUTER_SYS.COMPUTER_KRNL_VER AS COMPUTER_KRNL_VER,
 inv.NT_INFO.NT_SVC_PACK AS NT_SVC_PACK
FROM
 inv.NT_INFO RIGHT OUTER JOIN inv.COMPUTER_SYS
 ON (inv.NT_INFO.HWARE_SYS_ID = inv.COMPUTER_SYS.HWARE_SYS_ID)
 Appendix B. Scripts 355

;

--#EXECUTE_AT_TARGET
drop table inv.stage_processor_copy;
--#EXECUTE_AT_TARGET
create table inv.stage_processor_copy like inv.stage_processor;
--#INSERT_INTO_TARGET
insert into inv.stage_processor_copy
SELECT
 i.HWARE_SYS_ID,
 count(*),
 MIN(p.PROCESSOR_MODEL),
 MIN(p.PROCESSOR_SPEED)
FROM
 inv.PROCESSOR p,
 inv.INST_PROCESSOR i
WHERE
 i.PROCESSOR_ID = p.PROCESSOR_ID
GROUP BY
 i.HWARE_SYS_ID
;

--#EXECUTE_AT_TARGET
drop table inv.stage_memory_copy;
--#EXECUTE_AT_TARGET
create table inv.stage_memory_copy like inv.stage_memory;
--#INSERT_INTO_TARGET
insert into inv.stage_memory_copy
SELECT
 HWARE_SYS_ID,
 PHYSICAL_MEM_KB
FROM
 inv.COMPUTER_SYS_MEM
;

commit;

--#EXECUTE_AT_TARGET
drop table inv.stage_net_node_copy;
--#EXECUTE_AT_TARGET
create table inv.stage_net_node_copy like inv.stage_net_node;
--#EXECUTE_AT_TARGET
insert into inv.stage_net_node_copy
select
 value(lower(T2.NET_NODE_NAME),'') as net_node_name,
 value(T2.NET_NODE_ADDR,'') as net_node_addr,
 T1.HWARE_SYS_ID,
 value(T1.BOOTED_OS_NAME,'') as booted_os_name,
 value(T1.BOOTED_OS_VER,'') as booted_os_ver,
356 Introduction to Tivoli Enterprise Data Warehouse

 case
 when T1.BOOTED_OS_NAME in ('Windows NT','Windows 2000')
 then value(T1.NT_SVC_PACK,'')
 when T1.BOOTED_OS_NAME in ('AIX', 'SunOS', 'HP-UX', 'Linux')
 then value(T1.COMPUTER_KRNL_VER,'')
 else ''
 end as os_sub_ver,
 value(T4.PHYSICAL_MEM_KB,-1) as physical_mem_kb,
 value(T6.NUM_PROCESSORS,-1) as num_processors,
 value(T6.PROCESSOR_MODEL,'') as processor_model,
 value(T6.PROCESSOR_SPEED,-1) as processor_speed,
 'Unknown' as system_purpose
FROM
 inv.stage_OSTYPE_copy T1 LEFT OUTER JOIN
 inv.stage_IPNETWORK_copy T2
 ON T1.HWARE_SYS_ID = T2.HWARE_SYS_ID,
 inv.stage_OSTYPE_copy T3 LEFT OUTER JOIN
 inv.stage_MEMORY_copy T4
 ON T3.HWARE_SYS_ID = T4.HWARE_SYS_ID,
 inv.stage_OSTYPE_copy T5 LEFT OUTER JOIN
 inv.stage_PROCESSOR_copy T6
 ON T5.HWARE_SYS_ID = T6.HWARE_SYS_ID
WHERE
 T1.HWARE_SYS_ID=T3.HWARE_SYS_ID AND
 T1.HWARE_SYS_ID=T5.HWARE_SYS_ID
;

--#EXECUTE_AT_TARGET
--sample check for invalid data
insert into inv.invalid_data
select * from inv.stage_net_node_copy n
where
 not exists(
 select 1 from inv.cust_lookup
 where inv.cust_lookup.value = n.net_node_name OR
 inv.cust_lookup.value = '@') OR
 not exists(
 select 1 from inv.centr_lookup
 where inv.centr_lookup.value = n.net_node_name OR
 inv.centr_lookup.value = '@')
;

--Note that the insert of IP_HOST may be changed to SPP_HOST by a trigger
-- if the hostname is not fully qualified.
--#EXECUTE_AT_TARGET
INSERT INTO TWG.COMP(COMP_ID, COMPTYP_CD, CENTR_CD, CUST_ID, COMP_NM,
COMP_STRT_DTTM, COMP_END_DTTM, COMP_DS)
select
 Appendix B. Scripts 357

 0 as Comp_Id,
 'IP_HOST' as CompTyp_Cd ,
 centr.Centr_Cd as Centr_Cd,
 c.Cust_ID as Cust_ID,
 n.net_node_name as Comp_Nm,
 current timestamp - current timezone as Comp_Strt_DtTm ,
 '9999-01-01-00.00.00.000000' as Comp_End_DtTm,
 '' as Comp_Ds
from
 inv.stage_net_node_copy n,
 inv.cust_lookup cust,
 inv.centr_lookup centr,
 twg.cust c
where
 n.net_node_name != '' and
 not exists (
 select 1
 from
 twg.comp c
 where
 c.comp_nm=n.net_node_name
 and c.comptyp_cd IN ('SPP_HOST', 'IP_HOST')
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm) AND
 ((cust.value = n.net_node_name and cust.cust_acct_cd = c.cust_acct_cd)
 OR cust.value = '@') AND
 (centr.value = n.net_node_name OR centr.value = '@')
;

--#EXECUTE_AT_TARGET
insert into twg.compattr
select
 0 as compattr_id,
 c.comp_id,
 'INOSNM' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 n.booted_os_name as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.booted_os_name != ''
 and not exists (
 select 1
 from
358 Introduction to Tivoli Enterprise Data Warehouse

 twg.compattr ca,
 twg.comp c2
 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=n.booted_os_name
 and ca.AttrTyp_Cd='INOSNM'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
union
select
 0 as compattr_id,
 c.comp_id,
 'INOSVR' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 n.booted_os_ver as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.booted_os_ver != ''
 and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=n.booted_os_ver
 and ca.AttrTyp_Cd='INOSVR'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
union
select
 0 as compattr_id,
 c.comp_id,
 'INOSSV' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 n.os_sub_ver as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 Appendix B. Scripts 359

 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.os_sub_ver != ''
 and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=n.os_sub_ver
 and ca.AttrTyp_Cd='INOSSV'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
;

--#EXECUTE_AT_TARGET
insert into twg.compattr
select
 0 as compattr_id,
 c.comp_id as comp_id,
 'INADDR' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 n.net_node_addr as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.net_node_addr != ''
 and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=n.net_node_addr
 and ca.AttrTyp_Cd='INADDR'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
;

--#EXECUTE_AT_TARGET
insert into twg.compattr
select
360 Introduction to Tivoli Enterprise Data Warehouse

 0 as compattr_id,
 c.comp_id,
 'INPMEM' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 char(n.physical_mem_kb) as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.physical_mem_kb != -1
 and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=char(n.physical_mem_kb)
 and ca.AttrTyp_Cd='INPMEM'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
;

--#EXECUTE_AT_TARGET
insert into twg.compattr
select
 0 as compattr_id,
 c.comp_id,
 'INCPUM' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 n.processor_model as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.processor_model != ''
 and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 Appendix B. Scripts 361

 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=n.processor_model
 and ca.AttrTyp_Cd='INCPUM'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
union
select
 0 as compattr_id,
 c.comp_id,
 'INNCPU' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 char(n.num_processors) as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.num_processors != -1
 and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=char(n.num_processors)
 and ca.AttrTyp_Cd='INNCPU'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
union
select
 0 as compattr_id,
 c.comp_id,
 'INCPUS' as AttrTyp_Cd,
 current timestamp - current timezone as CompAttr_Strt_DtTm,
 '9999-01-01-00.00.00.000000' as CompAttr_End_DtTm,
 char(n.processor_speed) as CompAttr_Val
from
 inv.stage_net_node_copy n,
 twg.comp c
where
 c.comp_nm=n.net_node_name
 and current timestamp - current timezone between c.comp_strt_dttm and
c.comp_end_dttm
 and n.processor_speed != -1
362 Introduction to Tivoli Enterprise Data Warehouse

 and not exists (
 select 1
 from
 twg.compattr ca,
 twg.comp c2
 where
 n.net_node_name=c2.comp_nm
 and ca.CompAttr_Val=char(n.processor_speed)
 and ca.AttrTyp_Cd='INCPUS'
 and current timestamp - current timezone between ca.compattr_strt_dttm and
ca.compattr_end_dttm)
;

 Appendix B. Scripts 363

364 Introduction to Tivoli Enterprise Data Warehouse

Appendix C. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246607

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the
redbook form number, SG246607.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG246607.zip Zipped Code Samples

C

© Copyright IBM Corp. 2002 365

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
ftp://www.redbooks.ibm.com/redbooks/SG246607

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space 10 MB minimum
Operating system Windows/UNIX

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
366 Introduction to Tivoli Enterprise Data Warehouse

acronyms

ODSBITWSM

AIS ABC Information Services

API Application programmers
interface

BI Business Intelligence

CDE Common Desktop
Environment

CDW Central data warehouse

CIM Common Information Model

CVS Comma separated file

CWM Common Warehouse
Metadata

DDL Data definition language

DM Distributed Monitoring

DNS Domain Name System

ETL Extract, transform, and load

GNOME GNU Network Object Model
Environment

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

KDE K Desktop Environment

NIS Network Information Service

ODBC Open Database Connectivity

ODS Operational data source

OLAP Online analytical processing

OLTP Online transaction processing

RDBMS Relational database
management system

RI Report Interface

ROLAP Relational online analytical
processing

SDC Service Delivery Center

Abbreviations and
© Copyright IBM Corp. 2002
SPP Server Performance
Prediction

SRM Server Resource
Management

SSL Secure Sockets Layer

TAPM Tivoli Application
Performance Management

TBSM Tivoli Business Systems
Manager

TDS Tivoli Decision Support

TEC Tivoli Event Console

TSLA Tivoli Service Level Advisor

TWH Tivoli Warehouse

TWSA Tivoli Web Services Analyser

TWSM Tivoli Web Services Manager

UDB Universal Database
 367

368 Introduction to Tivoli Enterprise Data Warehouse

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 370.

� Business Intelligence Certification Guide, SG24-5747

� DB2 Warehouse Management: High Availability and Problem Determination
Guide, SG24-6544

Other resources
These publications are also relevant as further information sources:

� DB2 UDB Quick Beginnings for UNIX, GC09-2970

� DB2 UDB Quick Beginnings for Windows Version 7, GC09-2971

� Enabling an Application for Tivoli Enterprise Data Warehouse, GC32-0745

� Installing and Configuring Tivoli Enterprise Data Warehouse, GC32-0744

� Tivoli Enterprise Data Warehouse Release Notes, GI11-0857

Referenced Web sites
These Web sites are also relevant as further information sources:

� Brio Software Web site

http://www.brio.com

� Business Objects Web site

http://www.businessobjects.com

� IBM Software Support Web site

http://www.ibm.com/software/sysmgmt/products/support

� J2SE download site

http://java.sun.com/j2se/1.3/install-solaris-patches.html
© Copyright IBM Corp. 2002 369

http://www.brio.com
http://www.businessobjects.com
http://www.ibm.com/software/sysmgmt/products/support
http://java.sun.com/j2se/1.3/install-solaris-patches.html

� Open Management Group Web site

http://www.omg.org

� SunSolve Web site

http://sunsolve.sun.com

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
370 Introduction to Tivoli Enterprise Data Warehouse370 Introduction to Tivoli Enterprise Data Warehouse

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.omg.org
http://sunsolve.sun.com

Index

Symbols
.SSUpdated table 195
/etc/nsswitch.conf 52
/etc/resolv.conf 51

Numerics
128 bit support. 56
15 minute time period data 174

A
access control 44
actual reading 43
adding tables 130
Addition of warehouse packs 55
Advanced report author 91
agent 25
aggregate 16
aggregation level 110
aggregation task 195
AIX 39, 56
alphabetic digits 148
analysis

multi-dimensional 6, 204
application developer 55
application programmers interface 148
asynchronous 66
AutoDesign 239
AVA Code 148

B
backup 291, 295
bash 290
bash program 290
batch report 2
Brio

components 205
integration with TEDW 206
sample reports 217

Brio Intelligence 204
Broadcast Agent 222
business intelligence 2

implementation 9

terms 3
business intelligence reporting 35
Business Miner 222
Business Objects 222

components 222
integration with TEDW 223
overview 221
sample reports 234

Business Query 222

C
C program 152
canvas style GUI 189
case sensitive 136
case studies 131
catalog statistics 294
CD image 285
CD swapping 285
CDE 57
CDW

See central data warehouse
CDW Data Model 42
central data warehouse 37
character strings 136
CIM 130
cleansing 16
client

administrative 25
code the ETLs 151
Cognos

AutoDesign 239
components 238
integration with TEDW 238
overview 237
PowerPlay 238
sample reports 249

color coding 173
comma separated file 135
command line utility 297
Common Desktop Environment

See CDE
Common Information Model

See CIM
 Index 371

common schema 128
Common Warehouse Metadata 32
compete effectively 2
completion window 66
component attributes 105
component dimension table 105
Component Measurement Rule 42
Component Type 42
Conformed data 183
Control Center window 79
control database 290
Control server 36–37
correlation 31
CPU run queue length 249
Crystal Decisions 32
custom script 158, 290
customer uniqueness 266
Customization 28

D
Daily schema 103
data

aggregation 17
analysis tools 23
cleansing 14, 16, 25
external 5
extraction 15
historical 15
presentation tools 23
propagation 15
refining 16
summarization 17
transformation 14, 16

Data granularity 183
Data mart 5, 12, 22, 35

Aggregation 184
Aggregation and rollup 196
Benefits 180
Defining star schemas 187
departmental 13
Dimension tables 183
ETL coding 191
Fact tables 183
Methodology 184
naming conventions 185
Star schema 183
terminology 183

data mining 9, 35

data model
logical 18
physical 17

data source
operational 20

data warehouse 5
accessing 25
architecture 14
building 25
data sources 15
designing 25
governing 25
integrated 5
maintaining 25
poor man’s 10
subject-oriented 5
three tiered 13
time-variant 5

Data Warehouse Center 25, 79, 278
database

informational 8
operational 4, 8

database trigger 135
datamart 25
DB2 Administration Client 39
DB2 Application Development Client 39
DB2 CLP 289
db2 connect 61
DB2 control center 137
db2 create 61
DB2 database 39
DB2 e-fix 285
DB2 Enterprise Edition 39
DB2 install drive 171
DB2 installation 49
db2 list 61
DB2 logfile 284
DB2 port 49
DB2 Warehouse Manager

administrative client 25
agent 25
components 25
metadata 25

db2setup 68
dbaccess for Informix 289
debugging 149
decision support system 9
default roles 91
demographic data 2
372 Introduction to Tivoli Enterprise Data Warehouse

Designer 222
determine port numbers 48
Developer Suite 222
development methodologies 151
development process 151
DHCP 286
different port number 48
dimension table 18
Dimension tables 183
dimensional comparisons 204
dimensional data 134
dimensions 244
direct inserts 134
DISPLAY variable 284
Distributed installation 38
Distributed Monitoring v3.7 warehouse pack 267
DNS 51
DNS server 51
DNS suffix 53
documentation library 36
Domain Name System

See DNS
double byte character set 36
drill-down 6–7, 204
driving forces 2
drop databases 296
dummy.out 289

E
e-fix 56
end-to-end view 31
enforced type 42
environment variable 284
ETL designers 277
ETL programs 35
ETL scripts 152
event count 184
example ETL script 159
execsql 289
external data 5, 15
Extract 35
Extract, Transform and Load

See ETL
extraction 15

F
fact table 18, 183–184
factual information 134

failed installation 284
Field translation 174
filter 124
firewall 129
FixPak 5 56
Flexibility 28
footer 136
framework 45
free space 285
fully qualified hostname 90
Future data growth 55
Future releases 35

G
gateway server 262
Globalization 29
GNOME 57
GNU Network Object Model Environment

See GNOME
grant rights 91
Graphical report 30
graphical user interface 25–26
Greenwitch 211

H
header 136
health report 125
help set 66
historical changes 13
historical data 15, 31
hostname 31
Hourly schema 103
HTML 29
HTTP Server Port 285

I
IBM 286
IBM Console 48, 66
IBM Console User 91
Impromptu 239
increase revenues 2
incremental 136
Incremental development 181
index 294
inetsvc 52
information access 3
Information Catalog Manager 26
 Index 373

information delivery 3
informational database 8
Informix 56, 156
inherent problem 27
initial load 134
Installation

DB2 68
DB2 user ID and password 72
distributed 38
remote warehouse agents 40
single machine 37
specifying the control database 77
TEDW installation wizard 61
Tivoli Presentation Services 72
tools and scripts 72
troubleshooting 284
uninstall TEDW 67
verify successful installation 66
warehouse packs 81

installation media 81
installation wizard 45, 70
InstallShield 297
instance 49
integrated 5
Intel server 25
internet 90
Internet Explorer 56
intranet 3, 90
inventory 130
IP address 31
IWH.StarSchema table 278

J
Java 200
Java resource files 200
JavaScript 57, 90
join 280

K
K Desktop Environment

See KDE
KDE 57
killer reports 31

L
lab environment 151
large amounts of data 53

levels 244
Linux systems 51
Load 35
Local /etc/hosts file 51
local drive 154
local warehouse agent 40
log file 82, 284
logical data model 18
long response times 260
lookup tables 267
lost data mart database 295
low swap space 254

M
Maintenance

backup 291
gather statistics 294
rearrange a table 292
Removing old data 291
updating system catalog statistics 294
warehouse database 292

manager 25
mapping tables 16
markers 284
Measurement Type 42
metadata 7, 19, 26
metadata interchange 32
methodology 131
metric id 130
middleware 206
mirroring 10
MS SQL Server 56
multi-center 266
multi-customer environment 265
multi-dimensional analysis 6, 204
multidimensional cube 244
multi-dimensional data model 17
multiple DB2 instances 49
multiple time zones 136

N
naming conventions 185
National Language Support 29, 174
Netscape Navigator 56
netstat 48
network connection 286
Network Information Service 51
network mounted drives 154
374 Introduction to Tivoli Enterprise Data Warehouse

new db2 instance 69
NIS 286
No connection 285
non-functional components 264
non-IBM product integrations 148
non-Tivoli applications 34
NSORDER environment variable 51
numeric data 244
numeric digit 148

O
Object Management Group 32
ODBC 56
OLAP 6, 204

analysis 35
server 6
starter kit 61

old copy of central data warehouse 295
older version of control database 295
OLTP 4
Online Analytical Processing

See OLAP
open interface 32
open structure 90
operational data source 20
Operational Data Stores 25
operational database 4, 8
Oracle 56
original IP 286
OS/390 129

P
page scan rate 184
parse 151
performance engineer 44
performance management 130
Perl 157
physical data model 17
ping 286
platform dependent 152
point of control 25
populate the data mart 45
Portfolio Administration 91
Presentation Services 285
process model 277
Process Model window 274
propagation 15
prototype schema 129

Pruning processes 292
pull 15
push 15

Q
Queries list 244
query 3
Query order 244
Quick Design Wizard 226

R
raw data 31
reach-through 6, 204
rearrange a table 292
reboot 297
rebuild the help set 66
recommended order for Queries 244
recreate the process model 277
Red Hat Linux 57
Redbooks Web site 370

Contact us xxii
reduce costs 2
refining 16
regedt32 297
relational data model 17
Remote DB2 configuration 74
remote warehouse agent 40
reorganize warehouse program 292
Reorganizing the data 292
Report author 91
Report Interface 57, 90
Report reader 91
Report Server 72
report types 91
reporting 3
repository 20
restore 295
RI

See Report Interface
roadmap 20
ROLAP 223
role based 90
rollup 196
rollup mechanisms 45
rollup program 195
rollup.sh 199
Rotation 204
rpi.strings table 288
 Index 375

RUNSTATS 294

S
SAP R/3 25
Saving report output 55
scalability 25, 28
scalable architecture 32
schema 281
Secure Sockets Layer

See SSL
separate data marts 45
sequence number 135
Server Farm 44
Server Performance Prediction 103
Server Resource Management 131
Service Delivery Center 129
Service Pack 6 57
Service Provider 265
Service Provider environment 29
Set Analyzer 223
short name 51
Show SQL 288
showrev 58
silent installation 284
single byte character set 36
Single machine installation 37
slicing 6, 204
slow application 256
software distribution 130
Solaris 39, 52, 56
SPP

See Server Performance Prediction
SQL execution engine 151–152, 289

benefits 152
overview 153

sql output 288
SQL query 107
SQL session 136
sqlplus for Oracle 289
sqlscript.sh 289–290
SSL 56
stage table 196
Staging tables 186
standard RDBMS technology 32
star schema 277, 288
star-join schema 18
static data 134
stdoutn file 66

Structure query 244
style sheets 57, 90
subject areas 138
subject-oriented 5
suffix values 155
summarize 16
summary report 108
summary table 10
superadmin 90
Supervisor 222
supplementing the schema 130
SuSE Linux 57
Sybase 56, 156

T
Tabular report 30
TEDW

See Tivoli Enterprise Data Warehouse
TEDW installer 284
template 44
test database connection 289
testing local connection 61
text file 136
The Broadcast Agent Console 223
The Business Objects Services Administrator 223
thin-client 3
timestamp 136
time-variant 5
Tivoli Application Performance Management 31
Tivoli Business Systems Manager 31
Tivoli Decision Support 28, 239
Tivoli Distributed Monitoring 31
Tivoli Enterprise 53
Tivoli Enterprise Console 31
Tivoli Enterprise Data Warehouse 27, 29, 53

advanced configuration 40
architecture 37
benefits 29
browser performance 57
component dimension table 105
components 34
control database 77
core application 36
create a data mart 100
creating new role 93
data mart 35, 100
data model 42
database requirements 55
376 Introduction to Tivoli Enterprise Data Warehouse

DB2 installation 68
default port numbers 49
deploying 53
documentation library 36
ETL process from two source databases 271
ETL processes 36
ETL programs 35
fact table 106
hanged installation 48
hardware requirements 53
help set 66
installation 47
installation media 36
installation wizard 45
JavaScript 57
levels of integration 45
lowest granularity 103
maintenance 283
metric dimension table 104
Multi-customer environment 266
network checks 51
non-English languages 36
ODBC 56
Our environment 68
packaging 36
patches 284
Planning 48
port numbers 48
Report Interface 37, 90
roles 90
scheduling a process 83
software requirements 54
source applications 34
source databases 56
star schema 104
style sheets 57
supported web browsers 56
types of reports 104

Extreme case 104
Health check 104
Summary 104

User and User Groups 94
warehouse agent 40
warehouse packs 34

Tivoli Inventory 129
Tivoli Presentation Service 90
Tivoli Presentation Services 56–57
Tivoli Service Level Advisor 31
Tivoli Storage Manager 155

Tivoli Web Services Manager 31
too many data points 125
top table 281
Transaction query 244
Transform 35
transformations

statistical 25
Trend 204
trend analysis 6, 204
trigger 288
Troubleshooting

common installation problems 284
creating the first report 288
customization of TEDW 288
DB2 errors 284
existing Web server 285
free space. 285
IBM Console 285
installation 284
installation logs 284
insufficient disk space 284
ping hostname 286
Reinstall the warehouse pack 285
Report Interface 285
tips and techniques 284

TWH.log 284
Types of ETLs

Central Data Warehouse 35
data mart 35

U
Uninstall TEDW 296
unused port numbers 48
UTC 137

V
validate the script 158
version control system 151
vwlogger 290
vwserver 290

W
warehouse

management infrastructure 25
warehouse agent 40

distributed 25
local 25
 Index 377

remote 25
warehouse infrastructure 48
warehouse pack 34, 48, 284
warehouse pack documentation 83
Warehouse Schemas tree 280
warehouse server 25
warehouse source 139
warehouse target 145, 294
web interface 90
Web Panel 222
web server configuration 286
Webintelligence 222
Webintelligence SDK 222
Windows 2000 39, 52, 56
Windows 2000 Advanced Serve 57
Windows NT 39, 53, 56
Workaround for Windows 2000 291
Workaround for Windows NT 290
wrapper script 152–153

X
X11 server 284
xcopy 61
X-Window environment 57

Z
Zero Admin Business Objects 222
378 Introduction to Tivoli Enterprise Data Warehouse

Introduction to Tivoli Enterprise Data W
arehouse

®

SG24-6607-00 ISBN 0738425516

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Introduction to Tivoli
Enterprise
Data Warehouse

Insider’s guide to
Tivoli Enterpise Data
Warehouse

Best practices for
creating data marts

Integration with all
major OLAP tools

Tivoli Enterprise Data Warehouse is a brand new product from
Tivoli, which allows customers to get cross application reports
from various Tivoli and customer applications. The
infrastructure enables a set of extract, transform, and load
(ETL) utilities to extract and move data from Tivoli application
data stores to a central data warehouse database. This
redbook gives a broad understanding of the Tivoli Enterprise
Data Warehouse. Some of the topics that are covered in this
redbook are:

-Concepts behind the Tivoli Enterprise Data Warehouse
-Architecture and installation
-Tips for using the Report Interface
-Writing your own ETLs
-Best practices in creating data marts
-Integrating Tivoli Enterprise Data Warehouse with OLAP tools

such as Brio, Business Objects, and Cognos PowerPlay
-Implementing a multi-customer environment
-Operational considerations and troubleshooting

Most of the topics are explained using real customer
implementations. We think that this redbook will be a major
reference for Tivoli specialists and customers who are
responsible for implementing Tivoli Enterprise Data
Warehouse in a real environment.

Back cover

	Front cover
	Contents
	Figures
	Tables
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Notice
	Comments welcome

	Chapter 1. Introducing building blocks
	1.1 Business Intelligence
	1.2 Business driving forces
	1.3 Main Business Intelligence terms
	1.3.1 Operational databases
	1.3.2 Online transaction processing (OLTP)
	1.3.3 Data warehouse
	1.3.4 Data mart
	1.3.5 External data source
	1.3.6 Online analytical processing (OLAP)
	1.3.7 OLAP server
	1.3.8 Metadata: A definition
	1.3.9 Drill-down
	1.3.10 Operational versus informational databases
	1.3.11 Data mining

	1.4 Different Business Intelligence implementations
	1.4.1 Summary table
	1.4.2 OLTP data in separate server
	1.4.3 Single data mart

	1.5 Data warehouse architecture and processes
	1.5.1 Data sources
	1.5.2 Extraction/propagation
	1.5.3 Transformation/cleansing
	1.5.4 Data refining
	1.5.5 Physical database model
	1.5.6 Logical database model
	1.5.7 Metadata information
	1.5.8 Operational data source (ODS)
	1.5.9 Data mart
	1.5.10 Presentation and analysis tools

	1.6 DB2 DataWarehouse Manager
	1.7 Tivoli Enterprise Data Warehouse
	1.7.1 The problem
	1.7.2 The solution
	1.7.3 Benefits of using Tivoli Enterprise Data Warehouse

	Chapter 2. Tivoli Enterprise Data Warehouse architecture
	2.1 Tivoli Enterprise Warehouse components
	2.1.1 Basic components
	2.1.2 How Tivoli Enterprise Data Warehouse is packaged

	2.2 Tivoli Enterprise Data Warehouse architecture
	2.2.1 Single machine installation
	2.2.2 Distributed installation
	2.2.3 Distributed installation with remote warehouse agents
	2.2.4 Central data warehouse data model
	2.2.5 Data mart’s star schema

	2.3 Applications with Tivoli Enterprise Data Warehouse

	Chapter 3. Installation and configuration
	3.1 Planning for Tivoli Enterprise Data Warehouse
	3.1.1 Selecting port numbers
	3.1.2 Other network checks

	3.2 Hardware and software requirements
	3.2.1 Hardware requirements
	3.2.2 Software requirements
	3.2.3 Database requirements
	3.2.4 Web browser requirements
	3.2.5 Report Interface requirements
	3.2.6 AIX system requirements
	3.2.7 Solaris system requirements

	3.3 Stand-alone Tivoli Enterprise Data Warehouse
	3.3.1 Windows DB2 Universal Database installation
	3.3.2 Tivoli Enterprise Data Warehouse installation

	3.4 Distributed Tivoli Enterprise Data Warehouse
	3.4.1 DB2 Universal Database installation
	3.4.2 Tivoli Enterprise Data Warehouse installation

	3.5 Tivoli Enterprise Data Warehouse configuration
	3.5.1 Specifying the control database for the Data Warehouse Center
	3.5.2 Test sources and targets in the Data Warehouse Center
	3.5.3 Installing warehouse packs

	Chapter 4. Implementation of the Report Interface
	4.1 Tivoli Enterprise Data Warehouse Report Interface
	4.2 Basic customization
	4.2.1 Roles
	4.2.2 Users
	4.2.3 User groups
	4.2.4 Data marts

	4.3 Types of reports
	4.3.1 How star schemas are used to create reports
	4.3.2 Summary reports
	4.3.3 Extreme case reports
	4.3.4 Health reports

	Chapter 5. Integration of application data to central data repository
	5.1 Why you might need to integrate your own data
	5.1.1 Mapping data to the existing schema
	5.1.2 Supplementing the existing schema

	5.2 Methodology
	5.3 Following the Enablement Guide steps to ETL
	5.3.1 Step 1: Define the data to be extracted
	5.3.2 Step 2: Familiarize yourself with the schema
	5.3.3 Step 3: Complete data enablement template
	5.3.4 Step 4: Review naming conventions of the Enablement Guide
	5.3.5 Step 5: Install at least one application additional application
	5.3.6 Step 6: Insert the one-time static data into the CDW tables
	5.3.7 Step 7: Determine the incremental extract columns
	5.3.8 Step 8: Review timestamps for all source data
	5.3.9 Step 9: Review and apply common task
	5.3.10 Step 10: Code the source ETL

	5.4 Lessons learned from the case studies
	5.4.1 Case study 1 results
	5.4.2 Case study 2 results

	5.5 Best practices
	5.5.1 Follow the Enablement Guide
	5.5.2 Fill out the data template
	5.5.3 Install one of the Tivoli-provided sets of ETLs
	5.5.4 Adapt existing ETL scripts to create your own

	Chapter 6. How to create data marts
	6.1 Reasons to create data marts
	6.2 Benefits of data marts
	6.2.1 Incremental development
	6.2.2 Customer understandability of data
	6.2.3 Manageable pieces
	6.2.4 Manipulation of data in the mart
	6.2.5 Better reporting performance
	6.2.6 Use of distributed technology
	6.2.7 Tool ready

	6.3 Data mart methodology
	6.3.1 Data warehouse terminology
	6.3.2 Methodology for data marts and star schemas
	6.3.3 Tivoli Enterprise Data Warehouse naming conventions

	6.4 Moving on with case study 2 - AIS data
	6.4.1 Step 11: Define star schemas
	6.4.2 Step 12: Code the data mart ETL
	6.4.3 Step 13: Provide internationalization strings
	6.4.4 Step 14: Create the warehouse enablement pack

	6.5 Data mart best practices
	6.5.1 Break steps into the smallest steps possible
	6.5.2 Data mart data should be kept at the lowest grain
	6.5.3 Develop initial and incremental data loads together

	Chapter 7. OLAP integration
	7.1 OLAP
	7.2 Brio Intelligence
	7.2.1 Brio overview
	7.2.2 Brio components
	7.2.3 Brio integration with Tivoli Enterprise Data Warehouse
	7.2.4 Brio sample reports

	7.3 Business Objects
	7.3.1 Business Objects overview
	7.3.2 Business Objects components
	7.3.3 Business Objects integration
	7.3.4 Business Objects sample reports

	7.4 Cognos
	7.4.1 Cognos overview
	7.4.2 Cognos components
	7.4.3 Cognos integration with Tivoli Enterprise Data Warehouse
	7.4.4 Cognos sample reports

	Chapter 8. Real-life scenarios
	8.1 Scenario 1 - Low swap space
	8.2 Scenario 2 - Slow application

	Chapter 9. Multi-customer environments
	9.1 Multi-customer environments overview
	9.2 Implementing a multi-customer scenario

	Chapter 10. Troubleshooting and maintenance
	10.1 Troubleshooting techniques
	10.1.1 Troubleshooting installation
	10.1.2 Troubleshooting the IBM Console and the Report Interface
	10.1.3 Troubleshooting the customization

	10.2 Maintenance and backup
	10.2.1 Removing old data from the Data Warehouse Center logs
	10.2.2 Removing old data from the central data warehouse
	10.2.3 Maintaining the warehouse database
	10.2.4 Backup

	10.3 Un-install components
	10.3.1 Un-install Tivoli Enterprise Data Warehouse core product
	10.3.2 Un-install the warehouse packs

	Appendix A. GEOAREA and TMZON tables
	Table TMZON
	Table GEOAREA

	Appendix B. Scripts
	dmn_c10_s010_tiv_loadDMData.db2
	Insert_cust_control.db2
	srm_c05_s010_extractInvData
	srm_c15_s010_transformDMData
	srm_c20_s010_loadDMData
	srm_m05_s010_buildMart
	ai1_c05_s010_extractData
	ai1_c20_s010_LoadEvData
	ai1_m05_s010_buildMart
	ai1_c05_s010_extractData

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

