Outline

- What is a data stream?
- Applications of data stream management
- Models for data streams
- Data stream management systems
- Data stream mining
- Synopses structures
- Conclusion
What is a data stream?

- Golab & Oszu (2003): “A **data stream** is a **real-time**, **continuous**, ordered (implicitly by arrival time or explicitly by timestamp) **sequence of items**. It is impossible to control the order in which items arrive, nor is it feasible to locally **store** a stream in its entirety.”

- Structured records ≠ audio or video data

- Massive volumes of data, records arrive at a high rate

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Puis. A (kW)</th>
<th>Puis. R (kVAR)</th>
<th>U 1 (V)</th>
<th>I 1 (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>16/12/2006-17:26</td>
<td>5,374</td>
<td>0,498</td>
<td>233,29</td>
<td>23</td>
</tr>
<tr>
<td>16/12/2006-17:27</td>
<td>5,388</td>
<td>0,502</td>
<td>233,74</td>
<td>23</td>
</tr>
<tr>
<td>16/12/2006-17:28</td>
<td>3,666</td>
<td>0,528</td>
<td>235,68</td>
<td>15,8</td>
</tr>
<tr>
<td>16/12/2006-17:29</td>
<td>3,52</td>
<td>0,522</td>
<td>235,02</td>
<td>15</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
What is a data stream?

- Golab & Oszu (2003): “A data stream is a real-time, continuous, ordered (implicitly by arrival time or explicitly by timestamp) sequence of items. It is impossible to control the order in which items arrive, nor is it feasible to locally store a stream in its entirety.”

- Structured records ≠ audio or video data

- Massive volumes of data, records arrive at a high rate

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Source</th>
<th>Destination</th>
<th>Duration</th>
<th>Bytes</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>12342</td>
<td>10.1.0.2</td>
<td>16.2.3.7</td>
<td>12</td>
<td>20K</td>
<td>http</td>
</tr>
<tr>
<td>12343</td>
<td>18.6.7.1</td>
<td>12.4.0.3</td>
<td>16</td>
<td>24K</td>
<td>http</td>
</tr>
<tr>
<td>12344</td>
<td>12.4.3.8</td>
<td>14.8.7.4</td>
<td>26</td>
<td>58K</td>
<td>http</td>
</tr>
<tr>
<td>12345</td>
<td>19.7.1.2</td>
<td>16.5.5.8</td>
<td>18</td>
<td>80K</td>
<td>ftp</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Outline

- What is a data stream?
- Applications of data stream processing
- Models for data streams
- Data stream management systems
- Data stream mining
- Synopses structures
- Conclusion
Applications of data stream processing

Data stream processing

- Process queries (compute statistics, activate alarms)
- Apply data mining algorithms
 - Real-time processing
 - One-pass processing
 - Bounded storage (no complete storage of streams)
 - Possibly consider several streams
Applications of data stream processing

Applications

- Real-time monitoring/supervision of IS (Information Systems) generating large amounts of data
 - Computer network management
 - Telecommunication calls analysis (BI)
 - Internet applications (eBay, Google, recommendation systems, click stream analysis)
 - Monitoring of power plants

- Generic software for applications where basic data is streaming data
 - Finance (fraud detection, stock market information)
 - Sensor networks (environment, road traffic, weather forecast, electric power consumption)
Applications of data stream processing

Standard data processing versus data stream processing

<table>
<thead>
<tr>
<th></th>
<th>Standard data processing technology</th>
<th>Data stream processing technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring, Business Intelligence applications</td>
<td>Data warehouses (unscalable)</td>
<td>Querying and mining ‘on the fly’ (scalable)</td>
</tr>
<tr>
<td>Applications with basic streaming data</td>
<td>Specific development without database technology</td>
<td>Generic tools for processing data</td>
</tr>
</tbody>
</table>
Applications of data stream processing

Let’s go deeper into some examples

- Network management
- Stock monitoring
- Linear road benchmark
Applications of data stream processing

Network management

- Supervision of a computer network
 - Improvement of network configuration (hardware, software, architecture)
 - Measurements made on routers (Cisco Netflow)

![Network supervision center diagram]
Applications of data stream processing

Network management

▷ Information about IP sessions going through a router
▷ Huge amounts of data (300 Go/day, 75000 records/second when sampling 1/100)
▷ Typical queries:
 • 100 most frequent (@S, @D) on router R1 …
 • How many different (@S, @D) seen on R1 but not R2 …
 … during last month, last week, last day, last hour?

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Duration</th>
<th>Bytes</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>10.1.0.2</td>
<td>16.2.3.7</td>
<td>12</td>
<td>20K</td>
<td>http</td>
</tr>
<tr>
<td>18.6.7.1</td>
<td>12.4.0.3</td>
<td>16</td>
<td>24K</td>
<td>http</td>
</tr>
<tr>
<td>12.4.3.8</td>
<td>14.8.7.4</td>
<td>26</td>
<td>58K</td>
<td>http</td>
</tr>
<tr>
<td>19.7.1.2</td>
<td>16.5.5.8</td>
<td>18</td>
<td>80K</td>
<td>ftp</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>
Applications of data stream processing

Stock monitoring

- Stream of price and sales volume of stocks over time
- Technical analysis/charting for stock investors
- Support trading decisions

- Notify me when the price of IBM is above $83, and the first MSFT price afterwards is below $27.
- Notify me when some stock goes up by at least 5% from one transaction to the next.
- Notify me when the price of any stock increases monotonically for ≥30 min.
- Notify me whenever there is double top formation in the price chart of any stock.
- Notify me when the difference between the current price of a stock and its 10 day moving average is greater than some threshold value.

Source: Gehrke 07 and Cayuga application scenarios (Cornell University)
Applications of data stream processing

Linear Road Benchmark
Benchmark to compare Data Stream Management Systems

Linear City

- Imaginary city: 100 miles x 100 miles
- 10 parallel express ways: 2 x (3 lanes + access ramp), cut into segments
- Vehicles send their position every 30’
- Unique clock, no delay on data transmission
- Random generator of vehicle traffic, one accident every 20 minutes

Source: Linear Road: A Stream Data Management Benchmark, VLDB 2004
Applications of data stream processing

Linear Road Benchmark

- Position reports (Time, VID, Spd, Xway, Lane, Dir, Pos)

- Queries issued by vehicles:
 - Account balance
 - Daily expenditures over the last 10 weeks
 - Time and price estimation for a trip, given day of week and time

Source: Linear Road: A Stream Data Management Benchmark, VLDB 2004
Applications of data stream processing

Linear Road Benchmark

Toll depending on traffic

- Notification of a price when entering a new segment, billing when leaving a segment
- Notification within 5’ after reception of position reports corresponding to a segment change
- Latest Average Velocity (LAV): average speed of vehicles in a segment and a direction for the last 5 minutes
- Toll:
 - Free if LAV > 40 MPH or if less than 50 vehicles in the segment
 - Free if detected accident in the next 4 segments
 - 2 * (numvehicules – 50)2
- An accident is detected if at least 2 vehicles are stopped in the segment and lane for 4 position reports
- Accidents are notified to vehicles (they can react and change their route)
Applications of data stream processing

Where is the problem?

Example:

- Computation of daily electric power consumption by customer market segment, from customer meter data
 - Join between several streams
 - Join between stream data and customer database

Generic tools for processing streams
Avoid the ‘Store’, ‘Compute’, ‘Delete’ approach
Solution: incremental computation and definition of temporal windows for joins

Example:

- 100 most frequent @S IP addresses on a router
 - Maintain a table of IP addresses with frequencies?
 - Sampling the stream?

Face high (and varying) rate of arrivals
Exact versus approximate answers
Outline

- What is a data stream?
- Applications of data stream processing
- Models for data streams
- Data stream management systems
- Data stream mining
- Synopses structures
- Conclusion
Models for data streams

Structure of a stream

- Infinite sequence of items (elements)
- One item: structured information, i.e. tuple or object
- Same structure for all items in a stream
- Timestamping
 - « explicit » (date field in data)
 - « implicit » (timestamp given when items arrive)
- Representation of time
 - « physical » (date)
 - « logical » (integer)
Models for data streams

Protocol Streams

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Source</th>
<th>Destination</th>
<th>Duration</th>
<th>Bytes</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>12342</td>
<td>10.1.0.2</td>
<td>16.2.3.7</td>
<td>12</td>
<td>20K</td>
<td>http</td>
</tr>
<tr>
<td>12343</td>
<td>18.6.7.1</td>
<td>12.4.0.3</td>
<td>16</td>
<td>24K</td>
<td>http</td>
</tr>
<tr>
<td>12344</td>
<td>12.4.3.8</td>
<td>14.8.7.4</td>
<td>26</td>
<td>58K</td>
<td>http</td>
</tr>
<tr>
<td>12345</td>
<td>19.7.1.2</td>
<td>16.5.5.8</td>
<td>18</td>
<td>80K</td>
<td>ftp</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Electrical Power Data

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Puis. A (kW)</th>
<th>Puis. R (kVAR)</th>
<th>U 1 (V)</th>
<th>I 1 (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>16/12/2006-17:26</td>
<td>5,374</td>
<td>0,498</td>
<td>233,29</td>
<td>23</td>
</tr>
<tr>
<td>16/12/2006-17:27</td>
<td>5,388</td>
<td>0,502</td>
<td>233,74</td>
<td>23</td>
</tr>
<tr>
<td>16/12/2006-17:28</td>
<td>3,666</td>
<td>0,528</td>
<td>235,68</td>
<td>15,8</td>
</tr>
<tr>
<td>16/12/2006-17:29</td>
<td>3,52</td>
<td>0,522</td>
<td>235,02</td>
<td>15</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Models for data streams

Model of a stream

- Contents of the stream (observed values)
- Underlying signal
- Model:

 relationship between observed values and an underlying signal
Models for data streams

Contents of a stream

- Infinite sequence of items $x_i = (t_i, m_i)$
 - Observation time: $t_i = i$ if logical time
 - Observed descriptive values m_i (numerical, symbolic, ID’s)

- Example:
 - Observation at $t_i = 12342$
 - $m_i = (10.1.0.2, 16.2.3.7, 12, 20K, http)$
 - (@S, @D, Duration, Volume, Protocol)

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Source</th>
<th>Destination</th>
<th>Duration</th>
<th>Bytes</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>12342</td>
<td>10.1.0.2</td>
<td>16.2.3.7</td>
<td>12</td>
<td>20K</td>
<td>http</td>
</tr>
<tr>
<td>12343</td>
<td>18.6.7.1</td>
<td>12.4.0.3</td>
<td>16</td>
<td>24K</td>
<td>http</td>
</tr>
<tr>
<td>12344</td>
<td>12.4.3.8</td>
<td>14.8.7.4</td>
<td>26</td>
<td>58K</td>
<td>http</td>
</tr>
<tr>
<td>12345</td>
<td>19.7.1.2</td>
<td>16.5.5.8</td>
<td>18</td>
<td>80K</td>
<td>ftp</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Models for data streams

Modeling the stream

- Observation m: \(N \rightarrow A \times R \)
 - \(A \) = set of ID's, \(m(i) = (a, v) \)
 - Example:
 - \(A \) = set of IP addresses sending packets
 - \(m(i) = (@S, volume) \)

- Underlying signal M: \(A \times T \rightarrow R \)
 - \(T \): time (implicit or explicit)
 - \(M(●, t_i) \leftarrow \text{function}(M(●, t_{i-1}), m_i) \)
 - Reconstruction of the signal from the stream
 - Difficult if \(|A|\) is large

- Not a unique model for a stream
Models for data streams

Some canonical models of streams

- Time series
- Increments
 - "cash register"
 - Incrementing by positive values
 - "turnstile"
 - Incrementing by positive/negative values
Models for data streams

Examples:

- **Time series model:**
 - Observation of $m_i = (@S, v) \rightarrow M(i) = v$
 - *Time series representing the volume transmitted between t_{i-1} and t_i (for all IP addresses)*

- **Cash register model:**
 - Observation of $m_i = (a, v) \rightarrow M(a, t_i) = v$
 - *Volume transmitted by sending IP address*
Models for data streams

Windowing

Applying queries/mining tasks to the whole stream (from beginning to current time)

Applying queries/mining to a portion of the stream
Models for data streams

Windowing

Definition of windows of interest on streams

- Fixed windows: September 2007
- Sliding windows: last 3 hours
- Landmark windows: from September 1st, 2007

Window specification

- Physical time: last 3 hours
- Logical time: last 1000 items

Refreshing rate

- Rate of producing results (every item, every 10 items, every minute, …)
Models for data streams

Sliding window

Results

Beginning of the stream

t_c

Refreshment time

t'_{c}

t

Results
Outline

- What is a data stream?
- Applications of data stream processing
- Models for data streams
- Data stream management systems
- Data stream mining
- Synopses structures
- Conclusion
DSMS outline

Data Stream Management System (DSMS)

- The user point of view
 - Definition of a DSMS
 - DSMS data model
 - Queries in a DSMS
 - STREAM example with « Linear Road »

- The computer scientist point of view
 - Main architecture of DSMS
 - Approximate answers to queries

- Main existing DSMS
DSMS: definition

DBMS - Data Base Management System
- Data model (relational)
- Data is stored on disk
- SQL language
 - Creating structures
 - Inserting/updating/deleting data
 - Retrieving data (query)
- Good performance even with large volumes of data

DSMS - Data Stream Management System
- Data model (streams and permanent relations)
- Permanent relations are stored on disk but streams are processed on the fly
- SQL like query language
 - Standard SQL on permanent relations
 - Extended SQL on streams with windowing features
 - New paradigm of queries (continuous queries)
- Tools for capturing input streams and producing output streams
- Good performance: optimization of computer resources
 - Several streams
 - Several queries
 - Ability to face variations in arrival rates without any crash
DSMS outline

Data Stream Management System (DSMS)

- The user point of view
 - Definition of a DSMS
 - DSMS data model
 - Queries in a DSMS
 - STREAM example with « Linear Road »

- The computer scientist point of view
 - Main architecture of DSMS
 - Approximate answers to queries

- Main existing DSMS
DSMS: data model

- Permanent relation (table)
 - Tuple (row)
 - Attribute (column)

- Stream
 - Tuple (row), Attribute (column), Stream of tuples
DSMS: data model

- DSMS input
 - Standard permanent tables, for instance:
 - Meter-customer correspondence
 - Hourly normal consumption at 20°C
 - One or several data streams, for instance:
 - Electric power consumption (several customers)
 - Hourly outdoor temperatures by region

- DSMS output
 - Updates on standard permanent tables, for instance:
 - Hourly electric power consumption, aggregated by city, for the last 24 hours
 - One or several output streams, for instance:
 - Alarms to customers with an abnormal consumption during the last 24 hours
 - 10 customers with the highest consumption during the last 24 hours, sent every hour
DSMS outline

Data Stream Management System (DSMS)

- The user point of view
 - Definition of a DSMS
 - DSMS data model
 - Queries in a DSMS
 - STREAM example with « Linear Road »

- The computer scientist point of view
 - Main architecture of DSMS
 - Approximate answers to queries

- Main existing DSMS
DSMS: queries

- Concept of **continuous queries**

 - Standard query in a DBMS (**one-time query**)
 - Defined and executed once on data stored in the database
 - Data are persistent and queries are transient
 - Data are accessed on demand of a query
 - A query is finished when the last tuple has been produced

 - Queries in a DSMS: standard/continuous queries
 - Standard queries on standard tables
 - **Continuous queries** when a stream is involved:
 - Defined before the beginning of the stream and executed continuously
 - Permanent queries, transient data
 - Arriving records are pushed to queries
 - Result: output streams or updates on permanent tables
 - Incremental computation of queries (no storage of the whole streams)
 - $A(Q,t+1) \text{ can be computed from } A(Q,t), \text{ new records arrived between } t \text{ and } t+1$, and some temporary limited storage of context data
Main querying approaches for continuous queries
- Graphical combination of operators on streams
- Extensions of SQL to continuous queries
DSMS: queries

Graphical combination of operators on streams

![Aurora system model diagram]

Fig. 1. Aurora system model

Examples of operators:
- Filter, Map, Union, Join, ...

Source: Aurora: a new model and architecture for data stream management, VLDB Journal 2003
DSMS: queries

Extensions of SQL to continuous queries

- Querying streams in SQL like permanent tables
- Example

```
ORDERS ( DATE, ID_ORDER, ID_CUSTOMER, ID_DEPT, TOTAL_AMOUNT )
BILLS (DATE, ID_BILL, ID_ORDER, AMOUNT )

Several bills for 1 order

SELECT MONTH(ORDERS.DATE),ID_DEPT, SUM(TOTAL_AMOUNT) - SUM(AMOUNT) 
FROM ORDERS, BILLS 
WHERE ORDERS.ID_ORDER = BILL.ID_ORDER 
GROUP BY MONTH(ORDERS.DATE),ID_DEPT;
```

- Result(s?) of the query ?
DSMS: queries

Extensions of SQL to continuous queries

ORDERS (DATE, ID_ORDER, ID_CUSTOMER, ID_DEPT, TOTAL_AMOUNT)
BILLS (DATE, ID_BILL, ID_ORDER, AMOUNT)

SELECT MONTH(ORDERS.DATE), ID_DEPT, SUM(TOTAL_AMOUNT) - SUM(AMOUNT)
FROM ORDERS, BILLS
WHERE ORDERS.ID_ORDER = BILL.ID_ORDER
GROUP BY MONTH(ORDERS.DATE), ID_DEPT;

- Blocking operations:
 - Specification of windows

SELECT MONTH(ORDERS.DATE), ID_DEPT, SUM(TOTAL_AMOUNT) - SUM(AMOUNT)
FROM ORDERS [LAST 10 DAYS], BILLS [LAST DAY]
WHERE ORDERS.ID_ORDER = BILL.ID_ORDER
GROUP BY MONTH(ORDERS.DATE), ID_DEPT;

- Ponctuations
DSMS: queries

Extensions of SQL to continuous queries

```
ORDERS ( DATE, ID_ORDER, ID_CUSTOMER, ID_DEPT, TOTAL_AMOUNT )
BILLS (DATE, ID_BILL, ID_ORDER, AMOUNT )

SELECT MONTH(ORDERS.DATE), ID_DEPT, SUM(TOTAL_AMOUNT) - SUM(AMOUNT)
FROM ORDERS [LAST 10 DAYS], BILLS [LAST DAY]
WHERE ORDERS.ID_ORDER = BILL.ID_ORDER
GROUP BY MONTH(ORDERS.DATE), ID_DEPT;
```

- Incremental computation
DSMS outline

Data Stream Management System (DSMS)

- The user point of view
 - Definition of a DSMS
 - DSMS data model
 - Queries in a DSMS
 - STREAM example with « Linear Road »

- The computer scientist point of view
 - Main architecture of DSMS
 - Approximate answers to queries

- Main existing DSMS
DSMS: STREAM

STREAM project

- Stanford University
- General purpose DSMS
- New prototype built from scratch
- Several new ideas
- Two structures:
 - STREAMS: implicit logical timestamp
 - RELATIONS: tables with contents varying with time
- CQL Language (Continuous Query Language) based on SQL
- Specification of sliding windows
- Definition of several streams and queries
- Optimized execution plan for a set of queries (no new query)

- Demo site: http://www-db.stanford.edu/stream
- Project ended January 2006
DSMS: STREAM

Two structures

- STREAMS: implicit logical timestamp
- RELATIONS: tables with contents varying with time

Specification of sliding windows

- Physical sliding windows (time-based)
 - BILLS [NOW]
 - BILLS [RANGE UNBOUNDED]
 - BILLS [RANGE 5 MINUTES]

- Logical sliding windows (tuple-based)
 - BILLS [ROWS 10]

- Partitioned sliding windows
 - ORDERS [PARTITION BY ID_CUSTOMER ROWS 20]

Source: Talk from Jennifer Widom http://infolab.stanford.edu/stream/index.html#talks
DSMS: STREAM

STREAM – RELATION operators

Streams
- Window specification

Relations
- Special operators: *I*stream, *D*stream, *R*stream
- Any relational query language

ISTREAM: stream of inserted tuples

DSTREAM: stream of deleted tuples

RSTREAM: stream of all tuples at every instant

CarLocStr (car_id, speed, expr_way, lane, dir, x_pos)

CarSegStr (car_id, speed, expr_way, dir, seg)
 -- Computation of segment from position (stream)
SELECT car_id, speed, expr_way, dir, x_pos/5280
FROM CarLocStr;

CarSegEntryStr (car_id, expr_way, dir, seg)
 -- Current segment of a vehicle (insertion stream)
ISTREAM (SELECT * FROM CurCarSeg);

CurCarSeg (car_id, expr_way, dir, seg)
 -- Current segment of a vehicle (relation)
SELECT car_id, expr_way, dir, seg
FROM CarSegStr [Partition By car_id Rows 1];

SegAvgSpeed (expr_way, dir, seg, speed)
 -- average speed of vehicles on each segment
 -- during the last 5 minutes (relation)
SELECT expr_way, dir, seg, AVG(speed)
FROM CarSegEntryStr [Range 5 Minutes]
GROUP BY expr_way, dir, seg;

SegVolume (expr_way, dir, seg, volume)
 -- instant number of car in each segment
 -- (relation)
SELECT expr_way, dir, seg, COUNT(*)
FROM CurCarSeg
GROUP BY expr_way, dir, seg;

SegToll (expr_way, dir, seg, toll)
 -- toll for each segment. No tuple for a segment if toll is free (relation)
SELECT S.expr_way, S.dir, S.seg, 2 * (V.volume – 150) * (V.volume – 150)
FROM SegAvgSpeed as S, SegVolume as V
WHERE S.expr_way = V.expr_way AND S.dir = V.dir AND S.seg = V.seg AND S.speed < 40.00;

Toll notification to each vehicle
RSTREAM (SELECT E.car_id, E.seg, T.toll
FROM CarSegEntryStr [Now] as E, SegToll as T
WHERE E.expr_way = T.expr_way
AND E.dir = T.dir AND E.seg = T.seg);
DSMS outline

Data Stream Management System (DSMS)

- The user point of view
 - Definition of a DSMS
 - DSMS data model
 - Queries in a DSMS
 - STREAM example with « Linear Road »

- The computer scientist point of view
 - Main architecture of DSMS
 - Approximate answers to queries

- Main existing DSMS
Main architecture of DSMS

- Still very unstable
- One generic architecture proposed by Golab et Ozsu (2003):

Source: Golab & Özsu 2003
Main architecture of DSMS

Some general problems and solutions

- Computation of memory needs for a query
 - Exact or approximate result

- Generation of execution plans for queries
 - Combination of operators applied to streams + queuing files + temporary storage + scheduler
 - Optimization of use of memory and CPU:
 - Sharing of execution plans, queuing files, buffers, temporary storage
 - Index of queries
 - Dynamic change of execution plans (variations in streams, new queries)
 - Distribution of processing (sensor networks)

- Quality of service
 - Maintain service in case of scratch, recovery from scratch
 - Maintain service when arrival rates increase
Main architecture of DSMS

Fig. 2. A simple query plan illustrating operators, queues, and synopsis.

Source: STREAM (Arasu et al. 2004)

Fig. 3. A query plan illustrating synopsis sharing.
DSMS outline

Data Stream Management System (DSMS)

- The user point of view
 - Definition of a DSMS
 - DSMS data model
 - Queries in a DSMS
 - STREAM example with « Linear Road »

- The computer scientist point of view
 - Main architecture of DSMS
 - Approximate answers to queries

- Main existing DSMS
Approximate answers to queries

When?

- Queries needing unbounded memory
 - Ex: *10 most present IP addresses on a router*

- Too much queries/too rapid streams/too high response time requirements
 - CPU limit
 - Memory limit

Solution: approximate answers to queries

- Sliding windows
- Refreshment rate (*batch processing*)
- Sampling and load shedding
- Definition of synopses (summaries)
Approximate answers to queries

Load shedding

Goal
- Face (dynamically) high arrival rates in streams by sampling tuples
- Control the error using a quality of service function

Principle
- Set sampling operators in the data flow diagram
- Optimize dynamically the location/rate of sampling operators
Approximate answers to queries

Example of load shedding approach: Babcock, Datar and Motwani (STREAM Project)

- Aggregate queries:
 - SUM, COUNT
 - Intermediate selections
 - External joins with fixed relations by foreign keys

Figure 1. Data Flow Diagram
Approximate answers to queries

Parameters of the problem

- For each operator O_i: selectivity s_i, processing time of a tuple t_i
- For each terminal operator (SUM): result average μ_i and standard-deviation σ_i
- For each stream: r_i arrival rate of tuples
- For each operator O_i: p_i is the number of tuples to send to it by unit of time

Problem definition

- Determine p_i's by **minimizing the maximum error** on terminal operators under the constraint of system max load
DSMS outline

Data Stream Management System (DSMS)

- The user point of view
 - Definition of a DSMS
 - DSMS data model
 - Queries in a DSMS
 - STREAM example with « Linear Road »

- The computer scientist point of view
 - Main architecture of DSMS
 - Approximate answers to queries

- Main existing DSMS
Main existing DSMS

References: Golab & Oszu 2003, Gobel & Plagemann 2004

Principal general-purpose DSMS’s

⇔ STREAM: Université de Stanford
 - CQL language
 - Query optimization with good memory management
 - Approximate answer with synopses management

⇔ TelegraphCQ: Université de Berkeley
 - Extension of PostgreSQL
 - Continuous queries of CQL type
 - New queries can be added dynamically

⇔ Aurora (Medusa, Borealis): Brandeis, Brown University, MIT
 - Combination of operators (data flow diagram)
 - Load shedding with explicit definition of quality of service
 - Medusa and Borealis for distributed architecture
Main existing DSMS

Principal specialized DSMS’s

- Gigascope and Hancock : AT&T
 - Network monitoring
 - Analysis of telecommunication calls

- NiagaraCQ : University of Wisconsin-Madison
 - Large number of continuous queries on web content (XML-QL)

- Tradebot (finance), Statstream (statistics)

Commercial DSMS’s

- Streambase (cf. Aurora)
- Aminsight (cf. TelegraphCQ)
- Aleri
Main existing DSMS

But also:

⇒ Sensor networks
 • **Cougar**: Cornell University
 • **TinyDB**: University of Berkeley

⇒ Event Processing Systems
 • **Cayuga**: Cornell University
 • **Sase**: University of Massachusetts
Outline

- What is a data stream?
- Applications of data stream processing
- Models for data streams
- Data stream management systems
- Data stream mining
- Synopses structures
- Conclusion
Data stream mining: outline

Data stream mining

- Definition
- Decision tree
- PCA
- Clustering
Data stream mining: definition

Goal

Apply data mining algorithms to (one) stream(s)

Constraints

- Limited memory
- Limited CPU
- One-pass

Windowing
Data stream mining: definition

Windowing

- Beginning of the stream
- Current date
- Application to the whole stream
- Application to a sliding window
- Application to any portion of the stream
Data stream mining: definition

Windowing

- Whole stream
 - incremental algorithms

- Sliding window
 - incremental algorithms + ability to forget the past

- Any past portion
 - incremental algorithms + conservation of summaries
Data stream mining: definition

Whole stream
- Neural networks
- Non-additive methods: ex. decision tree

Sliding window
- Additive methods: ex. PCA

Any portion of the stream
- Temporal summaries: ex. clustering
Data stream mining: outline

Data stream mining

- Definition
- Decision tree
- PCA
- Clustering
Data stream mining: decision tree

Non-additive methods: the example of decision trees

VFDT: Very Fast Decision Trees (Domingos & Hulten 2000)

- X_1, X_2, \ldots, X_p: discrete or continuous attributes
- Y: discrete attribute to predict
- Elements of the stream $(x_1, x_2, \ldots, x_p, y)$ are examples
- $G(X)$: measure to maximize to choose splits (ex. Gini, entropy, …)
Data stream mining: decision tree

Hoeffding trees

Idea: *not necessary to wait for all examples to choose a split*

\[G(X_j) \xrightarrow{n \to +\infty} G(X_j) \]

⇒ Minimum number of examples

\[
\text{if } G(X_j) - G(X_{j'}) \geq \varepsilon \quad \text{with} \quad \varepsilon = \sqrt{\frac{R^2 \ln(1/\delta)}{2n}}
\]

\[
P(G(X_j) - G(X_{j'}) \geq 0) = 1 - \delta
\]
Data stream mining: decision tree

Hoeffding trees

Algorithm

- Maintain $G(X_j)$
- Wait for a minimum number of examples
- j, k the 2 variables with highest values of G
- Split on X_j when $G(X_j) - G(X_k) \geq \varepsilon$
- Recursively apply the rule by pushing new examples in leaves of the tree

- Sufficient statistics: n_{ijkl} # of items with value i of variable j in class k for leaf l
- VFDT: refinements on this algorithm
Data stream mining: outline

- Definition
- Decision tree
- PCA
- Clustering
Data stream mining: additive methods

Additive methods: the example of PCA

- Principal Component Analysis
- Items are elements \((x_1, x_2, \ldots, x_n)\) of \(\mathbb{R}^p\)
- Covariance/correlation matrix \(p \times p\)
- Incremental maintenance of \(p(p+1)\) statistics:

\[
\sum_{i=1}^{n} x_{ij} \quad \sum_{i=1}^{n} x_{ij}x_{ij'}
\]

- Recomputation of PCA at refreshment rate
Data stream mining: additive methods

\[
\sum_{i=1}^{n} x_{ij} \quad \sum_{i=1}^{n} x_{ij} \quad \ldots \quad \sum_{i=1}^{n} x_{ij} \quad \sum_{i=1}^{n} x_{ij}
\]

Sliding window of 24h

Refreshment every 1h
Data stream mining: outline

Data stream mining

- Definition
- Decision tree
- PCA
- Clustering
Data stream mining: clustering

Two distinct clustering problems

- Maintain k centers of clusters (k-median, k-medoids algorithms)
- Maintain k clusters with statistics on their contents

Problem of concept drift

- Evolution of distributions of data over time
- Windowing is one solution

→ Presentation of a clustering approach for evolving DS
Data stream mining: clustering

Clustream (Aggarwal et al. 2003)

- **Numerical variables**
- **2 phases:**
 - **On-line phase:** maintenance of a large number of ‘micro-clusters’ described by statistics of their contents
 - **Off-line phase:** use of micro-clusters to produce a final clustering
- **Mecanism to keep track of micro-clusters history**
Data stream mining: clustering

Representation of micro-clusters

- CVF: Cluster Feature Vector (BIRCH)

\[(n, CF1(T), CF2(T), CF1(X_1), CF2(X_1), \ldots, CF1(X_p), CF2(X_p))\]

\[CF1(X_j) = \sum_{i=1}^{n} x_{ij} \]

\[CF2(X_j) = \sum_{i=1}^{n} x_{ij}^2 \]

- Supports union/difference by addition/subtraction
- Incremental computation (elements are discarded)
Data stream mining: clustering

Maintenance of micro-clusters

- Fixed number of micro-clusters
- Initial micro-clusters (off-line)
- Each new item:
 - Find closest micro-cluster
 - ‘affectation’ to a cluster and update of CFV
 - Creation of a new micro-cluster (deletion or merge to make room)
- List of items of each micro-cluster not maintained
- History of micro-clusters fusions kept
Data stream mining: clustering

Mecanism to keep track of micro-clusters history

- Snapshots at regular time intervals
- Logarithmic storage structure (bounded)
- Tilted time windows
Data stream mining: clustering

Reconstitution of micro-clusters from any past portion
- Use addition/subtraction properties of micro-clusters
- Less detail for older data
- Approximation of the past portion
Data stream mining: clustering

Final clustering

- Hierarchical clustering of micro-clusters
- Use of CFV
 - Weight of micro-cluster
 - Centroid of micro-cluster
Data stream mining: conclusion

Conclusion on data stream mining

- Bounded memory
- Limited CPU
- One-pass algorithm
- Windowing
 - Whole stream
 - Sliding window
 - Any portion

- Summarizing the whole stream with bounded storage
 → tilted time windows
Outline

- What is a data stream?
- Applications of data stream processing
- Models for data streams
- Data stream management systems
- Data stream mining
- Synopses structures
- Conclusion
Synopses structures

Motivation
- Keeping track of a maximum of items in bounded space
- Some operations may still be long even with windowing
 - Approximate result based on summarized information

Temporal management approach
- Tilted time windows

Memory management approach
- Random samples
- Histograms
- Micro-clusters
- Sketches
Synopses structures: random samples

Problem: maintaining a random sample from a stream

‘Reservoir’ sampling (Vitter 85)

- Random sample of size M
 - Fill the reservoir with the first M elements of the stream
 - For element n ($n > M$)
 - Select element n with probability M/n
 - If element n is selected pick up randomly an element in the reservoir and replace it by element n

Random sampling from a sliding window:

‘Chain’ sampling (Babcock et al. 2002)
Synopses structures

Motivation
- Keeping track of a maximum of items in bounded space
- Some operations may still be long even with windowing
 - Approximate result based on summarized information

Temporal management approach
- Tilted time windows

Memory management approach
- Random samples
- Histograms
- Micro-clusters
- Sketches
Synopses structures: sketches

Sketch
- Synopsis structure taking advantage of high volumes of data
- Provides an approximate result with probabilistic bounds
- Random projections on smaller spaces (hash functions)

Many sketch structures: usually dedicated to a specialized task

Examples of sketch structures
- **COUNT** (Flajolet 85)
- **COUNT SKETCH** (Charikar et al. 04)
Synopses structures: sketches

COUNT (Flajolet 85)

Goal
- Number N of distinct values in a stream (for large N)
- Ex. number of distinct IP addresses going through a router

Sketch structure
- SK: L bits initialized to 0
- H: hashing function transforming an element of the stream into L bits

Example

| 18.6.7.1 | → |
| 0 0 0 0 0 0 0 0 0 |

H distributes uniformly elements of the stream on the 2^L possibilities
Method

- **Maintenance and update of SK**
 - For each new element \(e \)
 - Compute \(H(e) \)
 - Select the position of the leftmost 1 in \(H(e) \)
 - Force to 1 this position in SK

SK

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

H(18.6.7.1)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

New SK

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Result

- Select the position $R (0...L-1)$ of the leftmost 0 in SK
- $E(R) = \log_2 (\varphi^*N)$ with $\varphi = 0.77351…$
- $\sigma(R) = 1.12$

For n elements already seen, we expect:

- $SK[0]$ is forced to 1 $N/2$ times
- $SK[1]$ is forced to 1 $N/4$ times
- $SK[k]$ is forced to 1 $N/2^{k+1}$ times
Synopses structures: sketches

COUNT SKETCH ALGORITHM (Charikar et al. 2004)

Goal

- k most frequent elements in a stream (for large number N of distinct values)
- Ex. 100 most frequent IP addresses going through a router

Input stream: $2, 0, 1, 3, 1, 2, 4, \ldots$

Output:

- $f(0) = 1$
- $f(1) = 2$
- $f(2) = 2$
- $f(3) = 1$
- $f(4) = 1$

$N = 4$
Synopses structures: sketches

-1
+1
-1
+1

<table>
<thead>
<tr>
<th></th>
<th>+12</th>
<th>+7</th>
<th>+23</th>
<th>+15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-5</td>
<td>-12</td>
<td>-23</td>
<td>+1</td>
</tr>
<tr>
<td>2</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>B</td>
<td>+78</td>
<td>+56</td>
<td>+66</td>
<td>+65</td>
</tr>
</tbody>
</table>

1 2 ... t
Synopses structures: sketches

Sketch structure
- \(h \): hash function from \([0, \ldots, N-1]\) to \([0, 1, \ldots, B]\)
- \(s \): hash function from \([0, \ldots, N-1]\) to \(+1, -1\)
- Array of \(B\) counters: \(C_1, \ldots, C_B\) (with \(B << N\))

Sketch maintenance
- when \(e\) arrives: \(C_{h(e)} += s(e)\)

Use of sketch
- Estimation of frequency of object \(e\): \(n_e \approx C_{h(e)} \cdot s(e)\)
- Actually \(t\) hash function \(h\) and \(t\) hash function \(s\):
 \[n_e \approx \text{median}_{j \in [1\ldots t]} \left(C_{h_j(e)} \cdot s_j(e) \right)\]
- Theoretical results on error depending on \(N, t\) and \(B\).
Synopses structures: sketches

Algorithm

Maintenance of a list \((e_1, e_2, \ldots, e_k)\) of the current \(k\) most frequent elements

For a new arriving element \(e\)

- Add \(e\) to the sketch structure
- Estimate frequency of \(e\) from the sketch structure
- If \(f(e) > f(e_k)\), remove \(e_k\) and insert \(e\) into the list
Outline

- What is a data stream?
- Applications of data stream processing
- Models for data streams
- Data stream management systems
- Data stream mining
- Synopses structures
- Conclusion
Conclusion

Very active area of research

Many practical applications in various domains

DSMS are more mature than data stream mining

DSMS
 - First commercial efficient systems
 - Event processing systems
 - Distributed DSMS

Data stream mining
 - Already several results
 - Still much work to do:
 - Identification and modeling of concept drift
 - Summarizing data stream history (also for DSMS)
 - Distributed data stream mining
References: general

Querying and Mining Data Streams: You Only Get One Look. A tutorial.
M.Garofalakis, J.Gehrke, R.Rastogi, Tutorial SIGMOD'02, Juin 2002.

http://www.cs.brandeis.edu/~linearroad/
References: DSMS

Amalgamated Insight, http://www.aminsight.com

Streambase software, http://www.streambase.com
References: data stream mining

Mining data streams: a review. M.M.Medhat, A.Zaslavsky and S.Krishnaswamy, in SIGMOD Record, Vol.34, N°2, pp.18-26, June 2005.
QUESTIONS ?