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ABSTRACT
Mining frequent patterns is an important component of many pre-
diction systems. One common usage in web applications is the
mining of users’ access behavior for the purpose of predicting and
hence pre-fetching the web pages that the user is likely to visit.

In this paper we introduce an efficient strategy for discovering
frequent patterns in sequence databases that requires only two scans
of the database. The first scan obtains support counts for subse-
quences of length two. The second scan extracts potentially fre-
quent sequences of any length and represents them as a compressed
frequent sequences tree structure (FS-tree). Frequent sequence pat-
terns are then mined from the FS-tree. Incremental and interactive
mining functionalities are also facilitated by the FS-tree. As part of
this work, we developed the FS-Miner, a system that discovers fre-
quent sequences from web log files. The FS-Miner has the ability
to adapt to changes in users’ behavior over time, in the form of new
input sequences, and to respond incrementally without the need to
perform full re-computation. Our system also allows the user to
change the input parameters (e.g., minimum support and desired
pattern size) interactively without requiring full re-computation in
most cases.

We have tested our system comparing it against two other al-
gorithms from the literature. Our experimental results show that
our system scales up linearly with the size of the input database.
Furthermore, it exhibits excellent adaptability to support threshold
decreases. We also show that the incremental update capability of
the system provides significant performance advantages over full
re-computation even for relatively large update sizes.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

General Terms
Algorithms, Experimentation

Keywords
Web Usage Mining, Frequent Patterns, Traversal Patterns, Sequence
Mining, Incremental Mining, Prediction, Prefetching, Web Logs
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1. INTRODUCTION
Web Usage Mining. A sequence database stores a collection

of sequences, where each sequence is a collection of ordered data
items or events. Examples of sequences are DNA sequences, web
usage data files or customers’ transactions logs. For web applica-
tions, where users’ requests are satisfied by downloading pages to
their local machines, the use of mining techniques to predict access
behaviors and hence help with prefetching of the most appropriate
pages to the local machine cache can dramatically increase the run-
time performance of those applications. These mining techniques
analyze web log files composed of listings of page accesses (ref-
erences) organized typically into sessions. These techniques are
part of what is calledWeb Usage Mining, a term first introduced by
Cooley et al. [2]. Typically web usage mining techniques rely on
a Markov assumption with depthn. This means that it is assumed
that the next request page depends only on the lastn pages visited.
A study conducted in [9] showed that Markov based structures for
web usage mining is best suited for prefetching, targeted ads, and
personalization. Web usage mining approaches can be classified
based on the type of patterns they produce into three categories [6]:
association rules, frequent sequences, and frequent generalized se-
quence. With association rules, the problem of finding web pages
visited together is similar to finding association among item sets
in transaction databases. Frequent sequences can be thought of as
an ordered (by time) list of non-empty item sets, and hence fre-
quent sequence mining can be thought of as association rule min-
ing over temporal data sets. A frequent generalized sequence is
a frequent sequence that allows wildcards in order to reflect the
user’s navigation in a flexible way [5]. [6] evaluated the three ap-
proaches and found that the frequent sequence approach gives bet-
ter results than the association rules and the frequent generalized
sequence approaches when we need to find the correct predictions
within the first predictions. Frequent sequences are also known as
Traversal Patterns. According to [3], traversal patterns can be clas-
sified based on four main features, (1) whether or not the order of
page references in a pattern matters, (2) whether or not duplicate
page references (backward traversal and page refresh/reload) are
allowed, (3) whether patterns must consist of contiguous page ref-
erences or they can have gaps, and (4) whether or not only maximal
patterns are considered1.

Mining Cost. In general, discovering frequent patterns in large
databases is a costly process in terms of I/O and CPU costs. One
major cost associated with the mining process is the generation
of potentially frequent items (or sequences), called candidate item
sets. Many mining techniques use an Apriori style level-wise can-
didate generation approach [1, 11, 13] that requires multiple expen-
sive scans of the database, one for each level, to determine which

1A pattern is maximal when it is not part of another pattern.
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of the candidates are in fact frequent. To address this issue, Han
et al. [7] proposed a frequent pattern growth (FP-growth) based
mining method that avoids costly repeated database scans and can-
didate generation. Their work focuses on the discovery of frequent
item sets in transactional databases. In that work the order of the
items in each record (i.e. in each transaction) is not of considera-
tion. Hence it does not support mining for sequences where order
among items is important. We now propose an extension of their
technique to tackle the sequence mining case. The mining cost is
even more prohibitive for dynamic databases which are subject to
updates such as the continuous insertion of new sessions to the web
log. In this case the reconstruction of frequent sequences may re-
quire re-executing the mining process from the beginning.

Problem Description. In this work we are particularly inter-
ested in web usage mining for the purpose of extracting frequent
sequence patterns that can be used for pre-fetching and caching.
For pre-fetching and caching, knowledge of such ordered contigu-
ous page references is useful for predicting future references [3].
Furthermore, knowledge of frequent backward traversal is useful
for improving the design of web pages [3]. In other words we are
interested in mining fortraversal patterns, wheretraversal patterns
are defined to be sequences with duplicates as well as consecutive
ordering between page references [16]. Our goal is to introduce a
technique for discovering such sequence patterns, that is efficient,
yet incremental and can adapt to user parameter changes. The pat-
terns extracted by our system follow the Markov assumption dis-
cussed above and have four properties: (1) the order of page refer-
ences in patterns is important, (2) duplicate page references are al-
lowed (backward traversals and page refreshes), (3) patterns consist
of contiguous page references, and (4) maximal and non-maximal
patterns are allowed.

Contributions. We propose a frequent sequence tree structure
(FS-tree) for storing compressed essential information about fre-
quent sequences. We also introduce an algorithm which we call
Frequent Sequence mining (FS-mine) that analyzes the FS-tree to
discover frequent sequences. Our approach is incremental in that
it allows updates to the database to be incrementally reflected in
the FS-tree and in the discovered frequent sequences, without the
need to reload the whole database or to re-execute the whole mining
process from scratch. Finally the user can interactively change key
system parameters (in particular the minimum support threshold
and the maximum pattern size) and the system will remove the pat-
terns that are no longer frequent and will introduce the patterns that
are now frequent according to the new parameter values, without
the need for scanning and loading the entire database. The results
of the experiments that we have conducted using our approach, and
compared against two other approach from the literature, show that
our system, as well as the other two systems, scales up linearly
with the size of the input database. Furthermore, our system shows
a much better response time to the decrease in the support level
than the other two systems. The incremental update capability of
our approach provides significant performance advantages over full
re-computation even for relatively large update sizes.

Paper Outline. The rest of this document is organized as fol-
lows. Section 2 discusses related work. Section 3 introduces the
FS-tree data structure design and the FS-tree construction algo-
rithm. Section 4 describes the FS-mine algorithm for discovering
frequent sequences from the FS-tree structure. Section 5 describes
the incremental and interactive mining algorithms. Section 6 dis-
cusses our experiment results. Lastly, Section 7 provides some con-
clusions and future work ideas.

2. RELATED WORK
Nanpoulos et al. [10] proposed a method for discovering access

patterns from web logs based on a new type of association pat-
terns. They handle the order between page accesses, and allow
gaps in sequences. They use a candidate generation algorithm that
requires multiple scans of the database. Their pruning strategy as-
sumes that the site structure is known. Srikant and Agrawal [14]
presented an algorithm for finding generalized sequential patterns
that allows user-specified window-size and user-defined taxonomy
over items in the database. This algorithm required multiple scans
of the database to generate candidates.

Yang et al. [17] presented an application of web log mining that
combines caching and prefetching to improve the performance of
internet systems. In this work, association rules are mined from
web logs using an algorithm calledPath Model Construction[15]
and then used to improve the GDSF caching replacement algo-
rithm. These association rules assumes order and adjacency infor-
mation among page references. Han et al. [7] proposed a technique
that avoids the costly process of candidate generation by adapting a
pattern growth method that uses a highly condensed data structure
to compress the database. The proposed technique discovers un-
ordered frequent item sets. However, is does not support the type
of sequences we are interested in. Our work is similar to [7] in that
it uses a condensed data structure and avoid expensive candidate
generation. Yet our approach takes order among input items (page
references) into consideration

Parthasarathy et al. [12] introduced a mining technique given in-
cremental updates and user interaction. This technique avoids re-
executing the whole mining algorithm on the entire data set. A
special data structure called incremental sequence lattice and a ver-
tical layout format for the database are used to store items in the
database associated with customer transaction identifiers. Their
performance study has shown that the incremental mining is more
efficient than re-computing frequent sequence mining process from
scratch. However, the limitation of their approach, as they point
out, is the resulting high memory utilization as well as the need to
keep an intermediate vertical database layout which has the same
size as the original database [12]. Similar in spirit to [12], we store
in the FS-Tree additional data to reduces the work required at later
stages, yet we use very different data structures and algorithms.

Xiao and Dunham [16] proposed an incremental and adaptive
algorithm for mining for traversal patterns. This work relies on a
generalized suffix tree structure that grows quickly in size, since in-
serting a sequence into the suffer tree involves inserting all its suffer
into the tree. Whenever the size of the tree reaches the size of the
available memory during tree construction, pruning and compres-
sion techniques are applied to reduce its size in order to be able to
continue the insertion process of the remaining sequences from the
database. This process of reducing the size of the tree to fit into the
available memory is referenced to as adaptive property. Conversely,
we do not need to interrupt the FS-Tree construction process to
prune or compress the tree as we prune the input sequences before
inserting them into the tree and we insert only potentially frequent
subsequences. Unlike [16], the adaptive mining here means that
the system adapts to changes in user-specific parameters.

3. FS-TREE CONSTRUCTION
Frequent Sequences. Let I = {i1, i2, ..., im} be a set of unique

items, such as page references. A sequenceSeq = <p1p2...pn> is
an ordered collection of items withpi ∈ I for 1≤ i ≤ n. A database
DB (for web usage mining typically a web log file) stores a set of
records (sessions). Each record has two fields: the record ID field,

129



SID, and the input sequence field,InSeq. The order of the items
does matter within such an input sequence. When an itempi+1

comes immediately after another itempi we say that there is a link
li from pi to pi+1. We denote that asli = pi − pi+1. We may also
represent a sequence asSeq = p − P , wherep is the first element
in the sequence andP is the remaining subsequence.

For a link h, thesupport count, Supplink(h), is the number of
times this link appears in the database. For example if the linka−b
appears in the database five times we say thatSupplink(a − b)
= 5. For a sequenceSeq = <p1p2...pn> we define its size as
n which is the number of items in that sequence. Given two se-
quenceS = <p1p2...pn> andR = <q1q2...qm> we say thatS is
a subsequence ofR if there is somei, 1 ≤ i ≤ m − n + 1, such
that p1 = qi, p2 = qi+1, ..., pn = qi+(n−1). For a given in-
put sequenceSeq = <p1p2...pn> we consider only subsequences
of size≥ 2. For example, if a record in the database has an in-
put sequence<abcd> we extract subsequences<abcd>, <abc>,
<bcd>, <ab>, <bc>, and<cd> from that input sequence. The
support countSuppseq(Seq) for a sequenceSeq is the number of
times the sequence appears in the database either as a the full se-
quence or as a subsequence of sessions. We allow item duplicates
in frequent sequences, which means that the same item can appear
more than once in the same sequence. Duplicates can be either
backward traversal, e.g. the pageb in <abcb>, or refresh/reload of
the same page, e.g. the pagea in <aabc>.

Sequence Support. The behavior of our system is governed by
two main parameters. The first parameter isminimumlink sup-
port count, MSuppClink, which is the minimum count that a link
should satisfy to be considered potentially frequent.MSuppClink

is obtained by multiplying the total number of links in the database
by a desired minimum link support threshold ratioMSuppRlink.
MSuppRlink is the frequency of the link in the database to the to-
tal number of links in the database (Supplink/total # of links in the
database) which a link has to satisfy in order to be considered po-
tentially frequent.MSuppRlink is a system parameter (not set by
the user) and is used by the FS-tree construction algorithm to decide
what links to include in the FS-tree as will be discussed later. The
second parameterMSuppCseq , is the minimumsequence sup-
port count, that denotes the minimum number of times that a se-
quence needs to occur in the database to be considered frequent.
MSuppCseq is obtained by multiplying the total number of links
in the database by a desired minimum sequence support threshold
ratio MSuppRseq. This desired ratio is the frequency of the se-
quence in the database to the total number of links in the database
(Suppseq/total # of links in the database) which a sequence has to
satisfy in order to be considered frequent.MSuppRseq is set by
the user and is used by the FS-Mining algorithm during the mining
process.MSuppCseq is the main parameter needed for sequence
mining in our system. At all times, we assume thatMSuppClink

≤ MSuppCseq . The reason for havingMSuppClink is to allow
the system to maintain more data about the input database than re-
quired for the mining task at hand. This will help in minimizing
the amount of processing needed when handling incremental up-
dates to the database, or when the user changes system parameters.
This issues will be discussed in more detail in the incremental and
interactive mining sections. In short, we consider any sequence
Seq that hasSuppseq(Seq) ≥ MSuppCseq a frequent sequence
or a pattern. We consider any linkh that hasSupplink(h) ≥
MSuppCseq a frequent link (also considered a frequent sequence
of size 2) . And ifSupplink(h) ≥ MSuppClink andSupplink(h)
< MSuppCseq we call h a potentially frequent link. And if
Supplink(h) does not satisfyMSuppClink andMSuppCseq we
call h a non-frequent link.

Frequent Sequence Tree. We now describe our proposed data
structure that we use to store potentially frequent sequences to fa-
cilitate the mining process.

Definition 1 A frequent sequence tree is a structure that consists
of the following three components:

• A tree structure with a special root nodeR and a set of se-
quence prefix subtrees as childrenR. Each noden in the
FS-tree has anode-name field that represents an item from
the input database2. Each edge in the tree represents alink
relationship between two nodes. Each edge has three fields:
edge-name, edge-count, and edge-link. Edge-name repre-
sents thefrom and to nodes that are linked using this edge,
edge-count represents the number of sequences that share
this edge in the particular tree path, where a tree path is the
prefix path that starts from the tree root to the current node.

• A header tableHT that stores information about frequent
and potentially frequent links in the database. Each entry
in the header tableHT has three fields:Link which stores
the name of the link,count stores the count of that link in
the database, andlistH pointer, which is a linked list head
pointer that points to the first edge in the tree that has the
sameedge-name as the link name. Note that theedge-link
field in each edge in the tree is pointing to the next edge in the
FS-tree with the same edge-name (or null if there is none).

• A non-frequent links tableNFLT , that stores information
about non-frequent links. This table is only required for sup-
porting the incremental feature of the system. TheNFLT
has three fields:Link which stores the name of the link,
count which stores the count of that link in the database, and
SIDs which stores the IDs of records in the database that
have sequences that include that link.

Link Count ListH

d-g 4

g-i 2

c-d 7

d-e 6

e-h 3

h-i 2

b-c 5

c-b 2

a-b 4

b-d 2

f-a 2

(b) Header Table (HT)(a) Web Log File

SID InSeq

1 d g i

2 d g

3 c d e h i

4 c d e

5 c b c d g

6 c b

7 a b c d g i

8 a b c d

9 b d e h i

10 b d e h

11 c d e b f a b c

12 c d e f a b c

13 a i c

14 d i e

15 i g d b a

Link Count SID

e-b 1 11

b-f 1 11

e-f 1 12

a-i 1 13

i-c 1 13

d-i 1 14

i-e 1 14

i-g 1 15

g-d 1 15

d-b 1 15

b-a 1 15

(c) Non-Frequent Links Table (NFLT)

Frequent

Links

Potential

Frequent

Links

Non-frequent

Links

Figure 1: (a) Web log file example, (b) Header table HT and
(c) Non-frequent links table NFLT .

Frequent Sequence Tree Construction. Consider the web log
file in Figure 1(a). It stores a set of users’ sessions where each ses-
sion has two fields:SID that stores the session id andInSeq that
stores sequence of page references accessed by the user in a certain
order. Given such input web log file, and assumingMSuppClink

2For supporting the incremental property of the system, we extent
the node by adding a structure that stores a single session ID that
ends at this node for certain sequences. We will discuss this struc-
ture in more details in the incremental mining Section.
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= 2 andMSuppCseq = 3, 3 we construct the FS-tree as follows:
1) We first perform one scan of the input database (log file) to

obtain counts for links in the database.
2) We identify those links that haveSupplink ≥ MSuppClink,

and we insert them in the header table (HT ), along side with their
counts, as shown in Figure 1(b). For links that do not satisfy the
predefinedMSuppClink we insert them in the non-frequent links
table (NFLT ), along side with their counts and the SID of sessions
they are obtained from4, this is shown in Figure 1(c).

3) We create the root of the FS-tree.
4) We then perform a second scan of the database calling the

insertT ree function (shown in Figure 2) for each input sequence.

Function insertTree (tree root node S, sequence p-P) : Updated FS-tree in which all the
potentially frequent subsequences are inserted .

(1) If (link p-P � HT) {

(2) If (S has a child N and N.node-name = p) {

(3) increment S-N.edge-count by 1

(4) }Else {

(5) Create node N with N.node-name = p

(6) Create edge S-N with S-N.edge-count = 1

(7) Append edge S-N to HTS-N.ListH }

(8) If (P is non-empty) {call insertTree(N, P)}

(9) }Else if (link p-P � NFLT) {

(10) If (P is non-empty) {call insertTree(R, P) } }

(11) If P is last page in InSeqi and InSeqi was not cut, store Seq.ID in seqEnd.ID

FS-tree construction Algorithm

Input: Sequence Database DB and minimum link support MSuppl

Output: Frequent sequence tree FS-tree of DB

Method:

(1) Scan the DB once to collect counts for all links

(2) Classify links and insert them in HT and NFLT tables

(3) Create a root R for the FS-tree

(4) For (each record in DB get sequence InSeqi)

call insertTee (R, InSeqi)

(5) Return FS-tree

Figure 2: FS-tree construction.

Figure 3 shows the FS-tree constructed for the example in Fig-
ure 15. The total number of links in the database is 52, based on first
database scan. And assuming that the system definesMSuppRlink

to be 4% and the user definesMSuppRseq to be 6%, we obtain
MSuppClink = 2 andMSuppCseq = 3 accordingly (note that
MSuppClink is used in FS-tree construction, whileMSuppCseq

is used later in FS-tree mining). We create the FS-tree root node
R. We then insert sequences into the tree starting from the tree root
using the procedure described above. For the sequence<dgi> we
start from the root and since the tree is empty so far, we create two
new nodes with namesd andg. We also create an edged−g that is
assignededge-count = 1. In addition, we link theListH pointer for
link d − g in HT to the new edge. Lastly, we insert the nodei into
theFS-tree creating a new node and the edgeg−i with edge-count
=1, and linkListH pointer for linkg − i in HT to that edge. When
inserting the second input sequence<dg>, we share the nodesd
andg and the edged− g and increment the count of that edge to 2.

3Frequent links are those satisfying both support thresholds, Poten-
tially Frequent links are those satisfying onlyMSuppClink and
Non-frequent links are those not satisfying any of the two support
thresholds.
4only required for supporting incremental mining
5Note that we only show some of the lines that link the header table
to edges in the FS-tree for simplicity

Header table

Link Count ListH

d-g 4

g-i 2

c-d 7

d-e 6

e-h 3

h-i 2

b-c 5

c-b 2

a-b 4

b-d 2

f-a 2

R

d

g:2

i:1

2

1

c

d

e:4

h

4

4

1

i:3

1

a

b

c

d:8

2

2

2

i:7

g

1

1

b

d

e

h:10

2

2

2

i:9

1

b:6

c

d

g:5

2

1

1

1

f

a

b

2

2

c

2

f

a

b

2

2

c

2

Figure 3: The FS-tree constructed for the example in Figure 1

Next we insert the sequence<cdehi> by creating new nodes
and edges (with counts = 1) for all the items and links in the se-
quence since there was no possible path sharing. Sequences in
sessions with ids 3 to 10 are inserted following the same logic de-
scribed above. Session 11 (<cdebfabc>) is a different from prior
sessions, since the sequence in this session has non-frequent links,
namelye − b and b − f . First, the sub-sequence<cde> is in-
serted in the tree. Insertion here involves sharing existing nodes
and edge and incrementing edges counts. Then we ignore the two
non-frequent linkse − b andb − f . The sub-sequence<fabc> is
inserted from the tree root by creating new nodes and edges as de-
scribed above. For session 12 we insert the sub-sequence<cde>
into the tree, then we encounter the non-frequent link e-f, so we
skip it and insert the remaining sub-sequence<fabc> starting
from the root node of the tree. Sessions 13, 14 and 15 are not
inserted, totally or partially, into the FS-tree since all their links are
non-frequent. See Figure 3 for the fully constructed FS-tree.

FS-Tree Size. The FS-tree is a compressed form for represent-
ing sequences scanned from the input web log file. It is compressed
in two manners, first, not all sequences are stored in the tree, only
those sequences/subsequence that are potentially frequent are in-
serted and stored in the FS-Tree. This ensures that any non-potential
frequent sequences/subsequences are pruned from the beginning
and are not inserted into the tree. Second, insertion into the tree
involves sharing of all possible existing nodes and edges. This is
even more powerful with the existence of the initial pruning step
discussed earlier because it increases the possibilities of sharing
tree paths. To give an idea about how small our proposed FS-Tree
is we consider the work done in [16], that we have discussed ear-
lier in Section 2. In [16] a suffix tree is constructed and mined for
frequent sequences. To construct the suffix tree all possible suffixes
of each input sequence is inserted into the tree. This cause the tree
to grow in size very quickly. For example if we construct a suffix
tree for the sequences shown in Figure 1 we end up with a tree with
95 nodes6 while our FS-tree requires only 28 nodes, as shown in
Figure 3. It is possible to collapse nodes with single child in suffix
trees to reduce the number of nodes and edges. The same technique
can also be used with the FS-Tree. Collapsing the suffix tree that
we have constructed above results in a tree with 50 nodes while
collapsing our FS-tree results in a tree with 8 nodes only.

4. MINING THE FS-TREE
Based onMSuppClink andMSuppCseq we classify the links

in the database into three types (See Figure 1):

• Frequent links: links with support countSupplink ≥MSuppCseq

6The figure showing this suffix tree is removed from here due to
space limitations
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≥ MSuppClink. These links are stored inHT and are rep-
resented in the FS-tree and can be part of frequent sequences.

• Potentially Frequent links: links with support countSupplink

≥MSuppClink andSupplink < MSuppCseq . These links
are stored in theHT and are represented in the FS-tree but
they can’t be part of frequent sequences (needed for efficient
incremental and interactive performance).

• Non-frequent links: links with support countSupplink <
MSuppClink. These links are stored inNFLT and are not
represented in the FS-tree (needed for efficient incremental
and interactive performance).

Only frequent links may appear in frequent sequences, hence,
when mining the FS-tree we consider only links of this type. Before
we introduce the FS-mine algorithm, we highlight the properties of
the FS-tree.

Properties of the FS-trees. The FS-tree has the following prop-
erties that are important to the FS-mine algorithm:

• Any input sequence that has non-frequent link(s) is pruned
before being inserted into the FS-tree.

• If MSuppClink < MSuppCseq, the FS-tree is storing more
information than required for the current mining task.

• We can obtain all possible subsequences that end with a given
frequent linkh by following theListH pointer ofh from the
header table to correct FS-tree branches.

• In order to extract a sequence that ends with a certain linkh
from an FS-tree branch, we only need to examine the branch
prefix path that ends with that link (h) backward up to (max-
imum) the tree root.

Now we describe in detail the mining steps that we use to extract
frequent sequences from the FS-tree. We assume the FS-tree shown
in Figure 3, andMSuppClink = 2 andMSuppCseq = 3 as our
running example.

FS-tree Mining Steps. Figure 4 lists the FS-Mine Algorithm.
The algorithm has four main steps that are performed for only fre-
quent links (potentially frequent links are excluded) in the header
table (HT ):

1) Extracting derived paths. For linkh in HT with Supplink(h)
≥ MSuppCseq we extract its derived paths by following theListH
pointer ofh from HT to edges in the FS-tree. For each path in
the FS-tree that containsh we extract its path prefix that ends at
this edge and go maximum up to the tree root7. We call these paths
derived pathsof link h. For example, from Figure 3, if we follow
theListH pointer for the linke − h from the header table we can
extract two derived paths:(c − d : 4, d − e : 4, e − h : 1) and
(b − d : 3, d − e : 2, e − h : 2).

2) Constructing conditional sequence base. Given the set of
derived paths of linkh extracted in previous step we construct the
conditional sequence basefor h by setting the frequency count of
each link in the path to the count of theh link (this gives the fre-
quency of the full derived path). We also removeh from the end of
each of the derived paths For example, given the two derived paths
extracted above for linke − h, the conditional base for that link
consists of:(c − d : 1, d − e : 1) and(b − d : 2, d − e : 2).

3) Constructing conditional FS-tree. Given the conditional
base forh, we create a tree and insert each of the paths from the

7Note the backward prefix extraction might terminate before the
tree root and return a smaller prefix path in two cases: (1) reach-
ing the limit determined by the user as the maximum pattern length
he is interested in discovering or (2) encountering a potentially fre-
quent link (since we do not mine for them).

conditional base ofh into it in a backward manner. We create nec-
essary nodes and edges or share them when possible (incrementing
edges counts). We call this tree theconditional FS-treefor link h.
For example, given the conditional base for linke − h the con-
structed conditional FS-tree is shown in Figure 5.

4) Extracting frequent sequences. Given aconditional FS-tree
of a link h, we perform a depth first traversal for that tree and return
only sequences satisfyingMSuppCseq . By traversing the condi-
tional FS-tree of linke − h only the sequence<de> satisfies the
MSuppCseq , so we extract it. We then append the linke−h to the
end of it to get the full size frequent sequence:<deh : 3> where
3 represents the support (count) of that sequence.

FS-Mine Algorithm

Input: FS-tree root R, and minimum sequence support MSuppS

Output: Frequent sequences

Method:

(1) Frequent sequences set FSS � �
(2) For (all links li � HT and li..count � MinSupps) {

(3) Conditional sequence set CSS � �
(4) For (all paths Pj in FS-tree reachable from HT.ListH(li)){

(5) CSS � CSS � extract Pj, remove last link, and adjust Pj.count = last link count }

(6) Conditional FS-tree CFST � �
(7) Construct CFST

(8) For (all sequences Seql in CFST){

(9) FSS � FSS � concatenate (Seql , li) } }

Figure 4: FS-Mine Algorithm.
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Figure 5: Mining steps for link e − h from the example in Fig-
ure 1.

We perform the same steps for the other frequent links inHT ,
namelyd − g a − b, b − c, d − e, andc − d. The detailed mining
steps for these links are shown in Table 1. The last column in that
table gives the final result for the mining process. The generated
frequent sequences are:<deh : 3>, <abc : 4>, <cde : 4>, and
<bcd : 3> in addition to the frequent links themselves: (<eh : 3>,
<dg : 4>, <ab : 4>, <bc : 5>, <de : 6>, and<cd : 7>) as they
are considered frequent sequences of size 2.

5. INCREMENTAL MINING
In the presence of incremental updates	DB to the sequence

database, our goal is to propagate these updates into the generated
frequent sequences with minimum cost. In particular, we aim to de-
velop an incremental maintenance strategy that avoids the need for
expensive scans of the complete sequence database and the com-
plete recomputation of frequent sequences. In this section, we
discuss requirements for supporting Incremental feature of the FS-
miner. We then address how to maintain the FS-tree incrementally
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Link Derived Paths Conditional Sequence bases Conditional FS trees Frequent Sequences
e-h (c-d:4, d-e:4, e-h:1) , (b-d:3, d-e:2, e-h:2) (c-d:1, d-e:1) , (b-d:2, d-e:2) (d-e:3) <deh : 3>
d-g (d-g:2), (c-b:2, b-3:1,c-d:1,d-g:1), (a-b:2,b-c:2 ,c-d:2,d-g:1)(c-b:1,b-c:1,c-d:1), (a-b:1, b-c:1 ,c-d:1) φ φ
a-b (a-b:2), (f-a:2, a-b:2) (f-a:2) φ φ
b-c (c-b:2, b-c:1), (a-b:2,b-c:2), (f-a:2, a-b:2,b-c:2) (c-b:1), (a-b:2), (f-a:2, a-b:2) (a-b:4) <abc : 4>
d-e (c-d:4, d-e:4), (b-d:3, d-e:2) (c-d:4),(b-d:2) (c-d:4) <cde : 4>
c-d (c-d:4), (c-b:2, b-c:1,c-d:1), (a-b:2,b-c:2 ,c-d:2) (c-b:1, b-c:1), (a-b:2,b-c:2) (b-c :3) <bcd : 3>

Table 1: Mining for all sequences satisfying MSuppCseq=3.

without reconstructing it from scratch and how to mine incremen-
tally for frequent sequences.

We first highlight the additional information we need to maintain
to support incremental mining:

1) The Non-Frequent Links TableNFLT, described earlier in
Definition 1.

2) We extend the FS-tree node by adding to it a new structure
calledseqEnd. This structure has two fields:sid andcount. sid
stores a record id of a sequence (from the database), or null. The
value ofsid in seqEnd is assigned at tree construction time. When
we insert an input sequence into the FS-tree we might setsid of the
node inserted into the tree to be equivalent to the input sequence
id. To assign a new value forsid two conditions must be satisfied:
(1) the input sequence is inserted as one piece into the tree without
being pruned8 and (2) thesid is not already set to another sequence
id (since we store only one id in this field). The second field,count,
stores a count that indicates how many complete (unpruned) input
sequences share the same tree branch that ends at this node. Fig-
ure 3 shows nodes in the tree withsid set to session ids from the
database9.

5.1 Maintaining the FS-tree Incrementally
The FS-miner supports both database inserts and deletes. Our

incremental FS-tree construction algorithm takes as input the FS-
tree representing the database state before the update and	DB.
Then it inserts (or deletes) sequences from the tree. In some cases,
the FS-tree construction algorithm performs partial restructuring of
the tree, that is, some branches might be pruned or moved from one
place to another in the FS-tree. We now give an overview of how
the algorithm works10.

The algorithm first obtains the count of links in	DB by per-
forming one scan of	DB. Then link counts inHT andNFLT
are incremented or decremented.MSuppCseq andMSuppClink

values are updated if applicable. Link entries inNFLT that now
become frequent (or potentially frequent) are moved toHT . Links
that were originally inHT and moved toNFLT , because they
are no longer satisfyingMSuppCseq andMSuppClink should no
longer be presented in the FS-tree, so we prune edges that represent
them from the FS-tree. For links that were originally inNFLT and
moved toHT , we obtain input sequences in the order which they
appear from the original database11. We insert them into the FS-tree
using the functioninsertT reeInc. The main difference between
this function and the normalinsertT ree function described ear-
lier is thatinsertT reeInc aims to compose sequences that were
previously decomposed by theinsertT ree at the initial tree con-
struction phase. After this point, we insert the remaining subse-
quence starting from the current node. At the same time we call

8All links in the sequence are frequent.
9Counts are not shown there for simplicity since they are all equal
to 1 for current example.

10We have removed the figure showing algorithm itself due to space
limitations, the reader is refereed to [4] for that algorithm

11Recall that for each we maintained a list of sequence IDs in which
the link appeared in the database.

the deleteT ree function that deletes the same remaining subse-
quence from the top of the FS-tree (as it had previously been in-
serted there).
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Figure 6: The effect of inserting the records {16, < efa >} ,
{17, < ef >}, {18, < efab >} to the database in Figure 1.

Example: As an example for incremental inserts, assume that
the following tuples where inserted into the log file in our run-
ning example in Figure 1:{16, < efa >} , {17, < ef >},
{18, < efab >}. Figure 6 shows the effect of inserting the new
input sequences. First, we scan the new records to obtain counts of
links in the inserted session and we update counts of linksa−b and
f−a in HT and linke−f in NFLT . Assuming theMSuppClink

andMSuppCseq maintain the same values (2 and 3 respectively),
link a − b maintains the same status (frequent), linksf − a and
e − f becomes frequent thus are moved to tableHT . The next
step is to prune the tree by removing edges for any link transitioned
from frequent to non-frequent. In this example we do not have any.
Next we restructure the tree for links that were not frequent and
became frequent (linke − f in our example). We obtain from the
SIDs field of link e − f entry inNFLT sequence id = 12 as the
only sequence where the link appears in original database. We re-
trieve this sequence (<cdefabc>) from the original database and
insert it into the FS-tree using theinsertT reeInc function. This
function will first traverse the tree branch that corresponds to the
subsequence represented in the tree from before (<cde>) and cre-
ate a new edge for it when it encounters the linke−f . Insertion will
then continue for the remaining subsequence (<fabc>) following
this point. At the same time it calls thedeleteT ree function for the
subsequence<fabc> to delete it from the root of the FS-tree. The
last step in the incremental FS-tree constructions is to insert all the
input sequences from	DB in the FS-tree using theinsertT ree
function, resulting in the tree shown in Figure 6. For an example
illustrating incremental deletes we refer the reader to [4].

5.2 Mining the FS-tree Incrementally
After refreshing the FS-tree, the incremental mining is invoked

for certain links inHT , namely those affected by the update. We
first need to understand the effect of database updates on different

133



types of links12. We can classify the possible change in the type
of a link due to database updates into 9 different transaction types
as shown in Figure 713. We categorize how the incremental min-
ing algorithm deals with these different transaction cases into four
transaction categories:

(1) Type 1: we mine for those links if they are affected14.
(2) Type 2 and 4: we mine for these links.
(3) Type 3 and 5: we delete previously discovered patterns that

include these links.
(4) Type 6, 7, 8 and 9: we do nothing.

Header Table (HT) Non-Frequent Links Table (NFLT)

Frequent

Links

Potentially

Frequent

Links

Non-

Frequent

Links

1

3

7

6

5

4
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8

9

Figure 7: The effect of incremental updates on links in the
database

The incremental FS-mine algorithm is shown in Figure 8. The
mining algorithm starts by dropping any sequence in the previously
discovered frequent sequences that is either of transaction type 3 or
5 (no longer satisfying the newMSuppCseq). Then for all links
in the HT if the link satisfies the newMSuppCseq and if it is of
transaction type 2 or 4, or of type 1 and is affected by the update,
the algorithm applies theFS-minealgorithm for these links.

Incremental FS-Mine Algorithm

Input: FS-tree root R, set of frequent sequences fSeq and set of affected links affLinks

Output: new frequent sequences based on affLinks

Precondition: all counts for links are updated in HT and NFLT

Method:

(1) For (all frequent sequences fSeqi )

(2) If (fSeqi count < Min-Supps or fSeqi has link with count < Min-Supps){

(3) delete fSeqi}

(4) For (all links li � HT where li.count >= Min-Supps)

(5) if (li moved from NFLT or li count was < Min-Supps or li � affLinks ) {

(6) call FS-Mine (R) for li}

Figure 8: Incremental FS-Mine Algorithm.

Example: Consider that	DB denotes an insertion of{16, <
efa >} , {17, < ef >}, {18, < efab >} described in example
3. link a − b is affected by the update and maintained the same
frequent status after the update. Linkf − a status is changed from
potentially frequentto frequentdue to the update. Linke−f status
is changed from non-frequent to frequent due to the update. These
three links are the only ones affected by the update, hence we need
to mine for these three links. Table 2 shows the steps in mining for
these links and the resulting generated frequent sequences.

12The three different types of links we discussed earlier (frequent,
potentially frequent and non-frequent).

13The starting point of the arrow refers to where the link used to be
before the database updates and the ending point of the arrow refers
to where the link ends up as a result of the database update.

14By affected we mean if the link was in	DB, or if the link was in
one of the subsequences that were deleted from the FS-tree in the
tree restructuring process described earlier.

5.3 Interactive Mining
We want to allow the user to make changes to the minimum sup-

port value and get a response in a small amount of time. To achieve
this goal we need to minimize the need to access the database and
to re-execute the mining algorithm. We can support this goal in our
system by setting theMSuppClink to a small enough value that
is less than any value ofMSuppCseq that the user is likely to use.
The rational here is that sinceMSuppClink is responsible for de-
termining the potentially frequent links and hence allowing them to
be represented in the FS-tree. This ensures that if the user lowered
theMSuppCseq to a value that is≥ MSuppClink we will have
enough information in the FS-tree to calculate the new frequent se-
quences without the need to reference the original database. This
is done by applying the FS-mine algorithm for the subset of links
in HT that is satisfying the newMSuppCseq . On the other hand,
if the user increases theMSuppCseq , we directly provide him/her
with the subset of frequent sequences previously discovered that
satisfies the newMSuppCseq without the need for any further
computation. Our system also allows the user to vary the size of
the frequent patterns he/she is interested in discovering. Also in
this case the system does not use the input database, it only uses
the FS-tree to extract the frequent sequences of the required sizes.
We refer the user to [4] for an example of interactive mining.

6. EXPERIMENTAL EVALUATION
We use two data sets to test our system, the Microsoft Anony-

mous Web Data Set and the MSNBC Anonymous Web Data Set,
both obtained from [8]. Each data set consists of a collection of
sessions where each session has a sequence of page references.
The Microsoft anonymous data set has 32711 sessions, a session
contains from 1 up to 35 page references. The MSNBC data set
has 989818 sessions. A session contains from 1 up to several thou-
sands of page references15. One other important difference be-
tween the two data sets is the number of distinct pages. The Mi-
crosoft data set has 294 distinct pages, while the MSNBC data
set has only 17 distinct pages (as each one of these pages is in
fact encodes a category of pages). We compare the performance
of our algorithm against two other algorithms from the literature:
thePathModelConstruction algorithm [15], and a variation of
Apriori algorithm [1] for sequence data16. We have implemented
the three systems in Java and have run the experiments on a PC
with a 733 MHz Pentium processor and 512 MB of RAM.

Figure 9 shows that our system, and the other two systems, scale
linearly to the database size. Our system tends to outperform the
other two systems with data sets that have a large number of dis-
tinct items (such as the MS data set) while Apriori tends to perform
slightly better in the case of data sets with a very small distinct
items (such as the MSNBC set). This is because the candidate gen-
eration cost in this case is small. Note that part of the cost of our
system is due to maintaining the extra data needed for incremental
and interactive tasks. So while the other two systems are only per-
forming the mining task at hand, our system is also maintaining as
a byproduct the FS-tree that can later be used for incremental and
interactive operations. We also tested the scalability of the system
with respect to decreases of the support threshold level. Figure 10
shows that our system scales better with decreases of support level.
In fact our system shows a very smooth response time to decreases

15We have preprocessed the MSNBC data sets to keep a maximum
of 500 page references for each session to smooth the effect of very
large sessions on experiments time.

16Optimized using hashing techniques and modified to provide the
same sequential patterns we use.
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Link Derived Paths Conditional Sequence basesConditional FS trees Frequent Sequences
a-b (c-d:4, d-e:4, e-f:1, f-a:1, a-b:1), (c-d:1, d-e:1, e-f:1, f-a:1) (f-a:3) <fab : 3>

(a-b:2), (f-a:1, a-b:1),(e-f:3, f-a:2, a-b:1) (f-a:1),(e-f:1, f-a:1)
f-a (c-d:4, d-e:4, e-f:1, f-a:1),(f-a:1), (e-f:3, f-a :2) (c-d:1, d-e:1, e-f:1), (e-f:2) (e-f:3) <efa : 3>
e-f (c-d:4, d-e:4, e-f:1), (e-f:3) (c-d:1, d-e:1) φ φ

Table 2: Incrementally mine for links a-b, f-a, and e-h where MSuppCseq=3.

of the support level unlike the other two systems that experience a
dramatic increase in cost when they hit lower support levels. This
implies that even if we choose to utilize a lowMSuppClink, to
better support the incremental and interactive tasks of the system at
later stages, our system does not experience a significant overhead.
The third experiment compares the performance of the incremen-
tal mining versus recomputation. Figure 11 shows that even with
an incremental update size of up to one quarter of the size of the
original database size, the FS-Miner’s incremental feature provides
significant time savings over full recomputation.
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Figure 9: Scalability with number of input sessions
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Figure 10: Scalability with support threshold
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Figure 11: Incremental mining

7. CONCLUSIONS
In this paper we have proposed the FS-Miner, an incremental

sequence mining system. The FS-Miner constructs a compressed
data structure (FS-tree) that stores potentially frequent sequences
and uses that structure to discover frequent sequences. This tech-
nique requires only two scans for the input database. Our approach
allows for incremental discovery of frequent sequences when the

input database is updated, eliminating the need for full recompu-
tation. Our approach also allows interactive response to changes
to the system minimum support. Our experiments show that the
performance of our system scales linearly to increases in the input
database size. It shows an excellent time performance when han-
dling data sets with large number of distinct items. The FS-miner
also shows great scalability with the decrease of the minimum sup-
port threshold when typically other mining algorithms tend to ex-
hibit dramatic increases in response time. Finally the incremental
functionality of our system shows a significant performance gain
over recomputation even with large update sizes.
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