
Approximate Matching Algorithms for Music Information
Retrieval Using Vocal Input

Richard L. Kline
Computer Science Department

Pace University
New York, NY USA

rkline@pace.edu

Ephraim P. Glinert
Computer Science Department
Rensselaer Polytechnic Institute

Troy, NY USA

glinert@cs.rpi.edu

ABSTRACT
Effective use of multimedia collections requires efficient and in-
tuitive methods of searching and browsing. This work considers
databases which store music and explores how these may best be
searched by providing input queries in some musical form. For the
average person, humming several notes of the desired melody is the
most straightforward method for providing this input, but such in-
put is very likely to contain several errors. Previously proposed im-
plementations of so-called query-by-humming systems are effective
only when the number of input errors is small. We conducted exper-
iments which revealed that the expected error rate for user queries is
much higher than existing algorithms can tolerate. We then devel-
oped algorithms based on approximate matching techniques which
deliver much improved results when comparing error-filled vocal
user queries against a music collection.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems—Audio input/output; H.5.5 [Information In-
terfaces and Presentation]: Sound and Music Computing—Meth-
odologies and techniques

General Terms
Human Factors, Algorithms

Keywords
query by humming, music information retrieval

1. INTRODUCTION
Computers have afforded ever-improving methods for the stor-

age, indexing, and searching of many traditional media such as the
books and journals found in libraries. The earliest computerized
catalog systems were designed to mimic physical card catalogs,
creating the immediate benefits of eliminating the manual labor and
redundancy involved in maintaining three sets of cards ordered by
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subject, by author, and by title. As catalog systems grew in so-
phistication, they allowed more complex query formulations and
expanded the number of searchable fields. Today, almost all pub-
lishing is done on computers. With continued advances in tech-
nology and nearly limitless data storage capacity, detailed indices
of journals grouped by field of interest are now available online.
Abstracts of journal articles, and often even their full text with fig-
ures, can be viewed directly from the computer screen. The power
of these modern systems is of unquestionable benefit to the re-
searcher seeking information, often reducing the task of searching
for relevant published information from days of manually browsing
printed materials to minutes of computerized searching.

The same advances in processing power and data storage capac-
ity have opened up computing to many new areas of multimedia.
Scores of novel applications have exploded into both consumer and
commercial markets, giving casual users and professionals alike
access to enormous collections of audio and video data through
CDs and DVDs, commercial service providers, and public web
sites. However, the usefulness of this wealth of information will be
largely determined by how effectively these collections can be ma-
nipulated and searched. In stark contrast to the powerful text-based
systems described above, most current multimedia databases lack
both automatic indexing techniques and suitable representations in
which queries can be formulated naturally.

As with the text databases of today, the interface to a media
search engine requires careful design. The user must have suffi-
cient control over the search process to produce results that match
his or her intentions, yet avoid returning an overwhelming number
of ‘close’ but undesired matches. Perhaps most significantly, the
user must be able to formulate queries in a language appropriate to
the media being searched. Since the most appropriate methods of
input may be prone to errors both by the user and by the interface
which processes the input, these errors must be anticipated and cor-
rected where possible. In this paper we tackle issues such as these
with respect to music, both to give focus to our efforts and because
of music’s importance as a pervasive element of human culture.

As a result of our continual exposure to music from a young age,
we commonly possess the ability to remember and recognize thou-
sands of melodies and tunes. Although most people are not suffi-
ciently proficient with a musical instrument to be able to reproduce
a given piece of music, they can sing, hum, or whistle. Even so,
those who have not had formal music training often have difficulty
accurately reproducing a melody by these vocal means. They tend
not to be in key, and they often produce rhythms and pitch inter-
vals incorrectly. Nevertheless, many people can hum a tune well
enough so that other human listeners who are familiar with it can
recognize it, as imperfect as the rendering may be.
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PC: + - - - + - - + - - - +
4-gram: +--- --+- +--+ -+-- ---+

---+ -+-- --+- +---
index: 54 2 6 18 56 6 18 54 2

Legend:
PC pitch contour values
4-gram n-grams of length four (displayed in two rows so they can be

shown beneath the PC symbols which begin them)
index numeric representation of the n-gram, calculated by converting

the contour to a base-3 number using (+ = 2, ˜ = 1, - = 0)

Figure 1: Encoding of a musical phrase into an n-gram representation.

The focus of our work is to ensure that a music information re-
trieval (MIR) system provides enough tolerance of errors that it
can successfully identify a song by processing a query which is
hummed both by people who have strong vocal skills and by those
who are more melodically challenged. While the music collection
can be expected to be accurate, the unpolished rendition of a tune
as hummed or sung by the nonprofessional may appear quite dif-
ferent from the intended song. The performance key chosen may
be arbitrary and may change one or more times during the course
of the input. The time signature and tempo will not be reported.
The durations, relative pitch values, and amplitudes of the individ-
ual hummed notes will be rendered approximately and may not be
consistent throughout the phrase. How, then, shall we reconcile
these two very different representations of music?

2. EXPERIMENTS IN HUMAN HUMMING
In order to ensure that a system relying on hummed user input

would perform well for the average person, we conducted a study
of human humming skills to augment and extend the results of pre-
vious studies in music perception, recognition, and reproduction,
e.g., [4, 8, 13, 14]. We quantified the nature and frequency of
errors typically introduced into vocal renditions of familiar and un-
familiar tunes, as well as the differences in performance between
those with musical training and those without. The results of this
study formed the basis of a series of algorithms designed to match
an input query to its intended song stored in a database of music.

Fifteen unpaid volunteers, nine male and six female participated
in a single 30-minute session. They hummed a total of 19 pop-
ular folk tunes and a sequence of 32 five-note melodic fragments
adapted from a similar but smaller study by Lindsay [16]. The sub-
jects were divided into three groups based on their level of formal
and informal musical training. The musician (MUSI) group com-
prised five people whose mean experience was 14.8 years, though
only one had significant vocal experience and none had any voice
training. The non-musician (NONM) group had four subjects with
less than two years’ experience, and the remaining six subjects
formed an in-between group (BTWN) with a mean of 3.2 years
of musical experience.

Several significant findings from this study influenced our algo-
rithm development. For example, it was seen that while subjects
were not good at holding notes for the intended duration, the time
between the start of one note and the start of the following note

was much more was much closer to a regular rhythm. We used
this inter-note onset time (INOT) in most of our subsequent efforts.
We also observed that subjects usually enlarged the smallest pitch
intervals (of one or two semitones) between consecutive notes but
compressed larger intervals (those greater than five semitones), and
that these effects were more pronounced for rising intervals than
falling ones. Perhaps the most important result was the number of
errors found in the input: between subjects’ mistakes and errors
introduced by the Autoscore [24] music transcription software
used, an average of 20% of the notes in any given input were found
to be extraneous or missing. A full discussion of the study and its
results is beyond the scope of this paper.

In addition to the valuable information obtained from analysis
of the data collected in this study, it also provided us with a set
of 172 sample query strings which were utilized in the testing and
development of our search algorithms described here.

3. RELATED WORK
Several groups have performed relevant work in searching music

databases, especially with hummed input. We describe here two
categories of approaches to the problem.

3.1 Fast Matching Using Contours
One method of representing a melody is to remove all infor-

mation regarding note durations to focus solely on pitch values.
Groups such as Ghias et al. [6], McNab et al. [18], and Uit-
denbogerd and Zobel [23] examined the usefulness of pitch con-
tours when performing query searches. A pitch contour considers
pairs of consecutive pitch values throughout a musical phrase and
records only whether the second note of the pair is higher, lower,
or remains at the same pitch value as the first note. This repre-
sentation was thought to be helpful for a query-by-humming sys-
tem in dealing with the pitch and duration inaccuracies bound to
be present in hummed input queries. A grouping method known
as n-gram representations was employed by Uitdenbogerd and Zo-
bel and by Downie and Nelson [5] as a means of providing more
efficient searches using these representations. Each group of sym-
bols is converted to a single index number which can be looked
up quickly. The transformation of a sample musical phrase into
pitch contour data and then to n-grams of length four is shown in
Figure 1.
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We independently developed the n-gram grouping technique in
our own early work and tested it on our own query set using the
pitch contour representation. As we expected, the matching results
obtained by this algorithm were extremely poor for all but the best
few input queries. We went on to develop 24 other algorithms and
variants which utilized the ideas of contours and the fast match-
ing of n-grams. None of these gave acceptable results for anything
larger than a toy-sized database of only a few dozen songs. A thor-
ough discussion of the methods developed and tested is beyond the
scope of this paper.

3.2 Approximate Pattern Matching
An approximate string or pattern matching algorithm compares

two sequences of data and calculates their similarity by way of an
edit distance. A set of rules specific to the data being compared
defines the costs of operations which are used to transform one
sequence to the other, and the total of these costs is given as the
edit distance. Fundamental operations include inserting or delet-
ing an element from one of the sequences, and transforming one
individual element into another. As a simple example, in com-
paring two character sequences abbc and abcd, the former can
be transformed to the latter by many sequences of steps; two such
transformations are shown in Figure 2. The algorithm identifies the
transformation sequence yielding the smallest edit distance, report-
ing that value as the matching score for the pair.

abbc → abc → abcd abbc → abcc → abcd
deletion insertion transform transform

Figure 2: Two possible sequences to transform one character
sequence to another.

3.2.1 Method
To calculate the similarity between two sequences A and B with

lengths a and b respectively, a matrix M of size (a + 1) × (b + 1)
is created. The individual elements are calculated according to the
following recurrence relation:

M [i, j] = max

8>><
>>:

M [i − 1, j] − d1

M [i, j − 1] − d2

M [i − 1, j − 1] + t
0

(1)

In this equation, d1 and d2 represent the cost of inserting a gap
into each of the two sequences, respectively, and t represents the
cost of transforming element Ai to Bj . Frequently d1 and d2 do
not need to be distinct and are replaced by a single gap penalty
d, which may be a simple constant value or a function dependent
on the number of consecutive gaps inserted. Similarly, t can be a
constant, though it is normally determined by a function or a look-
up table.

If the two sequences are being compared in their entirety, the el-
ements in row 0 and column 0 must be calculated using only the
portion of the formula representing insertion of gaps. When the
algorithm is used instead to find the most closely matching sub-
sequences of A and B, these spaces are filled with zeros before
processing begins.

Once the first row and column are filled in as appropriate for
the type of matching being performed, the remaining values for
the entire matrix are calculated. The highest resulting score in the
matrix represents the minimal edit distance between the two se-
quences. To find the corresponding subsequences representing this
score, the matrix values can be traced back from the maximal value
in the opposite manner of the way they were calculated.

3.2.2 Previous Applications
Smith and Waterman [22] were among the first to apply approx-

imate matching algorithms to the comparison of biological molec-
ular sequences. The method they developed has been used ex-
tensively to compare structural similarities between pairs of DNA
and also between pairs of proteins. DNA is composed of long se-
quences of 4 nucleotides, while proteins are made up of sequences
of 20 amino acids. The values for t which describe the similarity of
two given symbols are provided in a table based on heuristics esti-
mating the relationships among the bases (for DNA) or acids (for
proteins). The enormous length of sequences representing DNA
and proteins makes this process very expensive computationally.
Subsequent work in bioinformatics has focused on preserving the
matching power of this algorithm while reducing the computation
time required. Notable improvements include the BLAST family
of algorithms by Altschul et al. [1, 2], which rely on heuristics to
improve search times.

Mongeau and Sankoff [19] were among the first to adapt these
techniques to the comparison of musical pieces. They compared
pitch intervals between two musical sequences, defining t as a look-
up table based on the difference between intervals; musically har-
monious intervals such as a fifth (seven semitones) were given very
low transformation values, while dissonant intervals were assigned
higher costs. Mongeau and Sankoff also introduced additional cal-
culations to weight separately the notion of a single note matching
more closely to a set of notes in the corresponding sequence. They
used the algorithm to compare the similarity of entire pieces of mu-
sic and the styles of disparate composers.

McNab et al. incorporated these ideas into their MELDEX sys-
tem [18] while comparing a relatively short user query string to
entire songs. However, the relative complexity of this algorithm
led them also to include a faster but less precise method devised by
Wu and Manber [25] as their default search method.

Uitdenbogerd and Zobel [23] examined the effectiveness of an
approximate pattern matching algorithm comparing songs repre-
sented by pitch intervals given in semitones, finding it to be the
most accurate of the matching methods they tested. They used
d = −2 and had only two possible values for t: t = 1 if the inter-
vals matched, and t = −1 if they did not. This scoring method was
feasible in their work, which assumed error-free query strings, but
is not appropriate for imprecise hummed input.

Most recently, Pauws [20] used a more complex recurrence rela-
tion along the lines of Mongeau and Sankoff in considering several
different transformation possibilities when calculating each matrix
element, additionally weighting the scoring using duration infor-
mation from the notes involved.

Some have suggested other techniques such as the use of Hidden
Markov Models to attack the matching problem. However, they
would likely be much less tolerant of any errors in the individual
music database songs than the types of approximate pattern match-
ing described here. While our own system used a database without
errors, difficulties in transcribing music from recordings or even
sheet music leave open the possibility of errors in the song collec-
tion.

4. APPROXIMATE MATCHING USING
PITCH INTERVALS

As we saw in our own experimentation in developing contour-
based matching algorithms, pitch-based contours proved to be more
discriminating than information based on note duration informa-
tion. This observation led first to the idea of using only pitch infor-
mation in the design of an approximate matching algorithm.
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In our view, the most straightforward application of approximate
string matching to the problem of music queries was to define sim-
ilarity with respect to pitch intervals. While others have proposed
and tested matching algorithms based solely on pitch data as de-
scribed above, none have described the approach we have taken in
utilizing pitch interval values directly, without additional transfor-
mation into other representations.

4.1 Design
Both user queries and database entries were converted into se-

quences of pitch interval values given in semitones. For the com-
parison of arbitrary elements of the two sequences Ai and Bj , we
assign a simple pairwise arithmetic difference calculation:

t = C − |Ai − Bj | (2)

We treated C as the maximum difference between pitch intervals
to be considered as making a positive contribution to the localized
matching score. With an eye toward computational efficiency, we
used constant values for C in all of our algorithms developed using
this approach. The gap penalty function d was also implemented
as a constant value, giving a uniform linear penalty based only on
the size of an introduced sequence gap which takes almost no time
to compute. Tests were run on the full set of user input queries for
several combinations, ranging from 3–6 for C and 0.5–2.0 for d, to
empirically find the optimal values. The algorithm is referred to as
PI-S (for Pitch Intervals, Solo measure).

After calculating the similarity matrix, the resulting score was
normalized by dividing it by the square root of the length of the
shorter of the two strings being compared. The PI-S algorithm,
and many of the others described in this paper, were tested both
with and without this normalization step. In each case where it was
used, it produced consistently better results.

4.2 Results
Several different combinations of values for C and d produced

similar overall results, with slight variations in the matching scores
of some input trials, but with no evident pattern to explain the dif-
ferences. The combination of C = 4 and d = 1 were chosen
empirically as the best values among those we tested; the results
reported here were generated using those values.

The results for this and subsequent algorithms are given in sev-
eral measures. The Rank 1 designation reports how many times
the intended song represented by a given input query was correctly
identified as the single best match in the music database. Rank
1–10indicates the intended song scored among the top ten results
returned by the algorithm, while Top 2% counts how often the
intended song scored among the highest two percent of database
songs. For tests performed against the full test database, this cor-
responds to a ranking in the range 1–71. The database used in our
testing was the Digital Tradition Folksong Database [7], a collec-
tion of nearly 3,600 songs freely available on the internet.

The matching scores obtained with PI-S were a dramatic im-
provement over all of the results obtained using only contour infor-
mation. As can be seen in Table 1, the algorithm correctly matched
the intended song more than 80% of the time for four of the sub-
jects, and 50% overall. In 61% of the cases, the correct song ap-
peared in the top ten results. When results were grouped by song,
two of the test songs (Twinkle Twinkle Little Star and Happy Birth-
day) stood out, recognized within the top ten results for 13 of 15
subjects.

At the other end of the spectrum, none of the queries were recog-
nized correctly for two of the subjects, and two of the songs tested
were identified within the top ten results for as few as 33% of the

PI-S: results by subject
Subject/ Rank Rank Top Total
Group 1 1–10 2% Trials

1 11 11 11 12
2 7 9 9 12
3 7 8 9 10

12 2 3 7 11
14 9 11 12 12

MUSI 63% 74% 84% 57

7 0 1 3 12
8 6 7 7 10
9 8 10 10 12

11 4 5 7 11
13 5 6 10 11
15 9 9 10 11

BTWN 48% 57% 70% 67

4 4 7 9 12
5 10 11 12 12
6 4 7 7 12

10 0 0 2 12
NONM 38% 52% 63% 48

ALL 50% 61% 73% 172

Table 1: Results of PI-S matching algorithm, tabulated by sub-
ject.

subjects. Nonmusicians as a group hummed well enough for the
intended song to be ranked number one only 38% of the time, and
in the top ten results 52% of the time.

4.3 Discussion
For the matching algorithm designed by Mongeau and Sankoff

and implemented in MELDEX, intervals such as one semitone were
given very high cost values, yet in our own experiments it was ob-
served that subjects attempting to hum the same note twice often
ended up producing notes which were transcribed to be one semi-
tone apart. Mongeau and Sankoff chose the values which com-
prise their transformation matrix t based on tonal similarities as
described in music theory. Their pitch distance measure is far less
appropriate for use with the imprecise input strings obtained from
hummed renditions of music due to the tendency of users to pro-
duce unintentionally dissonant pitch intervals.

Similarly, the algorithm used by Uitdenbogerd and Zobel relied
on query input which was free from errors, so the simple binary
values of match/no match made sense in their application area but
is quite impractical in representing hummed input.

The extra step of normalizing the resulting similarity score by
the lengths of the two compared sequences improved the matching
results noticeably. This added calculation was valuable because of
the large disparity in the lengths of songs found in the database.
This technique was incorporated into most of the subsequent algo-
rithms we developed, including those described here.

While PI-S produced excellent results in a number of cases, there
were other songs and subjects for which the matching scores were
quite poor. The robust matching offered by approximate pattern
matching provided huge gains over contour-based algorithms when
tested against our body of error-filled input samples.

Overall, though, there was room for improvement, particularly
for those subjects and songs which proved difficult to match. Based
on the promising idea of combining pitch and duration information,
we set about devising and testing algorithms which incorporated
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additional features from the input data. We wanted to represent du-
ration information in a more abstract manner than in the raw timing
data given in milliseconds by the transcription subsystem.

5. TEMPO ESTIMATION
The output of the music transcription process includes note tim-

ings given in absolute milliseconds from the start of the input. Only
a small percentage of hypothetical users of an MIR system could be
expected to consciously quantify a priori the tempo at which they
intended to hum an input phrase. A transcription program cannot
be expected to identify a nonexistent tempo. On the other hand,
anecdotal observation of our subjects and informal study of the re-
sulting input data indicated that a tempo estimate could be inferred
from these samples.

Several researchers have explored the process of extracting the
tempo or beats directly from an acoustic recording, among them
Dannenberg (e.g., [3]) and Scheirer [21]. Many of these projects
were designed for real-time processing, to be applied to applica-
tions such as automated accompaniment of live performances.

The requirements of an MIR system when processing hummed
input were less involved than those of the other researchers men-
tioned, and the Autoscoremusic transcription software took care
of the task of identifying individual notes out of a single-note acous-
tic input stream. Furthermore, a tempo estimation algorithm suit-
able for use with hummed input needed to be able to make a good
guess at a tempo for queries of any length. Very short input phrases
had to be expected, producing relatively little data on which to base
an estimate. Our algorithm would need to be able to return a rea-
sonable result whether it was given five notes or 25 from which to
approximate the value of the performance tempo.

The data received from the pitch transcription software for the
purpose of inferring a tempo value from an input phrase include the
time each note begins, measured from the beginning of the record-
ing, along with the INOT duration of the note. As mentioned in the
description of our experimental studies, it was shown that the inter-
note onset time (INOT) was a more reliable measure of a user’s
intended note durations than the actual duration values reported by
the transcription software for each note.

5.1 Method
If most of the INOT values were clustered around a single value,

one might be tempted to use a simple least-squares difference mea-
sure to find the best point to represent the cluster. However, the
least-squares computation is particularly susceptible to distortion in
the presence of outlier points. One popular robust technique known
as M-estimators [15] provides a method to evaluate closeness of fit
while minimizing the effect of outliers.

For almost any song, INOT values generally cluster around two
or possibly three points. Furthermore, because they are based on
the rhythm and timing of the song, these cluster points normally
have a simple arithmetic relationship of 1:2, 1:3, or 1:4. In the case
of a relatively short input query, it is more likely that only one or at
most two such points can be identified. Based on informal analysis
of the INOT values of the input queries we collected, we designed
the algorithm to expect the majority of notes to fall into two clusters
in the ratio of 1:2.

Thus, we have defined our own algorithm in the style of an M-
estimator but with the added property that data is fit to the parame-
ter being estimated at two related points rather than one.

The cost of a parameter estimate candidate c is defined to be

Cost(c) =
X

p

r(d(p, c)) (3)
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Figure 3: Plot of duration values for a user’s hummed input
with candidate tempoc and outlier boundaries given byy.

for all points p in the data set. Given a point p and a cluster candi-
date c, we define distance as

d(p, c) = min
|p − c|

c
,
|p − 2c|

2c
(4)

The contribution to the Cost function for p is based on the value d
but is governed by another test:

r(d) =

�
d, d < y
0, d >= y

(5)

The calculated distance to the nearest tempo candidate is scaled
by the value of that candidate, so that notes being measured against
the 2c cluster point contribute d values in the same proportion as
those measured against the c candidate value. The parameter y
determines the maximum distance an INOT value may be from its
nearest cluster point (c or 2c) and still contribute to the total Cost.
Notes outside of this range are rejected by the formula for r but
instead are counted separately as outliers. This definition of r is
the mechanism that prevents those few notes whose INOT values
are much higher or lower than average from skewing the tempo
estimation calculations; were they to be considered, they would
add a large d value to the overall Cost.

One observation during the initial testing of this algorithm was
that it would sometimes choose a tempo based on a low Cost score
computed by classifying a significant number of notes as outliers.
To counteract this undesired result, we added an extra provision
limiting the total percentage of outlier values allowed if a candi-
date tempo value was to be considered. If this cutoff causes every
candidate tempo to be rejected because too many of the notes end
up being classified as outliers, the threshold is increased iteratively
until at least one candidate tempo produces a sufficiently low out-
lier count. Another check ensures that, for a given candidate tempo,
a sufficient percentage of the notes in the song are being compared
against the base c value. This additional step eliminates the case
where the algorithm otherwise finds a lower Cost by incorrectly
selecting the candidate tempo that should really be the (2c) value,
pushing most or all of the notes which are near the intended c value
down into the outlier range. The example given in Figure 3 should
make this description more clear.

We anticipated that songs written in other time signatures such as
3
4

or 6
8

, where long notes would be expected to be held three times
as long as the base note duration, would cause this algorithm to fail
to find the correct tempo. However, when we applied the algorithm
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to those samples in our collection and from our subjects which fell
into this category, we were pleased to discover that the algorithm
correctly identified the tempo as accurately for these songs as it did
for songs which used 2

4
or 4

4
time signatures. We believe the main

reason for this surprising and beneficial behavior is that, regardless
of the time signature of the song, notes having durations of approx-
imately one beat will tend to outnumber other duration values, and
our algorithm normally finds that dominant value. The notes whose
durations are three times that of the dominant duration contribute
larger distance values when calculated against the (2c) tempo can-
didate than they would if compared to a (3c) candidate, but their
relative rarity diminishes the negative effect they have on the over-
all distance measure, and in fact some of them end up as outliers,
contributing nothing to the total.

There are cases where the tempo value reported by our algo-
rithm is incorrect. The most interesting situation occurs when a
given song has multiple sections where the tempo changes from
one section to another. Our algorithm only attempts to identify a
single tempo for any given song, so the song is encoded according
to whichever tempo value dominates the file according to its eval-
uation function. On the other hand, a user might hum as a query
a portion of the song from a section whose tempo differs from the
one calculated for the database representation, with the resulting
mismatch impeding efforts to identify the song correctly. A similar
source of potential problems crops up when a song is characterized
by a single tempo throughout, yet it has one or more sections for
which longer notes (perhaps half notes or whole notes) dominate
the melody. If the user hums an input phrase belonging exclusively
to one of these slower sections, it is likely that the tempo estima-
tor will identify these longer notes in the user query as the base
value for tempo determination purposes. Again, the interpretation
of the user input in light of this tempo estimate will differ from the
corresponding section of the intended match from the database.

One potential solution to this problem is to store two separate
encoded versions of each song in the database: once using the orig-
inal calculated tempo, and a second time at half that value. This
approach was used in the SoundCompass system implemented
by Kosugi et al. [12], which also made use of beat-based data rep-
resentations.

5.2 Discussion
Two other research groups have included features in their sys-

tems which incorporate tempo-based information in their search
algorithms. The approach taken in SoundCompass [12] is to re-
quire users of their program to set a virtual metronome to their
intended tempo before they begin humming, doing their best to
keep their humming in time with it. The MELDEX system [17]
offers “rhythm matching” as an advanced option in their system;
when this feature is selected, the user is required to explicitly spec-
ify the tempo at which the input query will be evaluated along
with the minimum beat-based duration value it should recognize
(e.g., quarter note, eighth note, etc.).

Our tempo estimation algorithm provides this same information
without burdening the user with the task of tempo estimation, which
may not be obvious or easy to someone without musical training.

6. DURATION-WEIGHTED PITCH
INTERVALS

With an effective tempo estimation algorithm in hand, we de-
veloped additional algorithms designed to augment the matching
power of pitch interval data by incorporating duration information
into the scoring method.

6.1 Design
The design of this algorithm attempted to address several per-

ceived problems from the initial pitch-only PI-S design. First, we
wanted to minimize the negative effects of extraneous notes (both
those erroneously injected into the data files by the transcription
process and those introduced by the user) on matching scores. Sec-
ond, since longer notes are relatively rare in user input phrases, we
wanted to emphasize the contribution made by such notes. Third,
we wanted to avoid the situation where two compared notes scored
as a good match because they had similar pitch intervals, even
though one was much longer in duration than the other.

As an initial step, both user and database songs were converted
to a representation where each note was given by a pair of num-
bers: the pitch interval in semitones as used in PI-S, and a duration
value expressed not in milliseconds but in beats. A pitch interval is
always calculated between two consecutive notes, so the duration
value associated with a pitch interval was that of the first of the two
notes involved in the transition.1

In this algorithm, named RePScaD (for Relative Pitch Scaled by
Duration), the arithmetic difference between the respective pitch
interval values is calculated as before. The resulting value is then
scaled by the smaller of the two associated note durations expressed
in beats. This scaling gives longer notes more weight in determin-
ing the score contributed by a given comparison. Very short notes
have only a small chance to affect the overall score regardless of
whether they were actually hummed or were introduced by tran-
scription errors. By taking the smaller of the two durations, the
case where a short note from sequence A is matched against a long
note in sequence B has a smaller impact on the overall score, as
opposed to two longer notes with the same relative pitch values.
Since the dominant duration value for a user query is one beat by
the nature of the tempo estimation algorithm, typical pairs of data
being compared will have a scaling factor of one. The important
features of the RePScaD algorithm can be expressed as follows:

s = min(Ai.durbeats, Bj .durbeats)
t = C − |Ai.pitchintvl − Bj .pitchintvl| × s

(6)

Along with most of the algorithms described here, C is treated
as a constant and the gap penalty d is a constant function in this
case. As before, we ran the algorithm using several values for C
and d, and we report the best results obtained among these trials.

6.2 Results
The performance data summarized in Table 2 show that this al-

gorithm did not perform as well as PI-S in any category of subject
or group. There were individual trials for which it gave a better
ranking of the correct song, but these were rare. The number of
trials where the intended song was ranked first was 51% for MUSI,
28% for BTWN, and 17% for the NONM group.

6.3 Discussion
We cannot say with certainty why this algorithm gave such dis-

appointing results as compared to the unscaled PI-S version, but
there is a likely culprit. The largest contribution to a song’s score
occurs when long notes from query and candidate are aligned to-
gether. If the pitch interval values differ widely at these points, such

1As a consequence of there being only n − 1 pitch intervals yet n
duration values for a musical phrase of n notes, one of the duration
values had to be discarded. It seemed more logical to associate with
a pitch interval the duration value corresponding to the first note of
the pair comprising the interval, thus the final duration value is the
one dropped.
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RePScaD: results by subject
Subject/ Rank Rank Top Total
Group 1 1–10 2% Trials

1 11 11 11 12
2 4 5 9 12
3 5 6 7 10

12 1 1 2 11
14 8 8 10 12

MUSI 51% 54% 68% 57

7 0 0 2 12
8 4 6 7 10
9 3 6 9 12

11 2 3 6 11
13 5 6 6 11
15 5 5 8 11

BTWN 28% 39% 57% 67

4 2 5 8 12
5 3 10 11 12
6 3 3 6 12

10 0 0 2 12
NONM 17% 38% 56% 48

ALL 33% 44% 60% 172

Table 2: Results of RePScaD matching algorithm.

pairings decrease the overall matching score substantially. This sit-
uation can occur any time an interval is preceded by an incorrect
interval created from an erroneous note (whether the source of the
error is the user or the transcriber).

Mongeau and Sankoff [19] introduced the idea of using duration
information to weight pitch interval scores in their approximate
matching algorithm. Their work focused exclusively on compar-
ing written scores free of errors and irregularities in note durations,
which may help to explain why their evaluation yielded better re-
sults than we obtained with error-filled query data. The MIR sys-
tem built by Kageyama et al. [10] used some form of duration
weighting in their matching algorithm as well, but the details of its
implementation were not described.

7. RELATIVE PITCH AND RELATIVE
DURATION INTERVALS

From the previous results it was clear that our attempts at incor-
porating duration information into a more robust matching algo-
rithm were actually providing inferior results to the pitch-interval-
only (PI-S) algorithm. After additional study of our user test data,
we eventually devised a new technique for representing duration
information, and from it we created our most effective matching al-
gorithm. It is named RePReD (pronounced “rep-red”) for Relative
Pitch – Relative Duration.

7.1 Design
A review of the data transformations we had created and used to

date revealed that, while our duration representations were free of
the absolute values of milliseconds in favor of a beat-based repre-
sentation, the fact that the values were scaled did not affect that this
was still an absolute measure. What was missing was the duration
equivalent of our pitch interval representation.

Early examination of the data collected in our study revealed
that raw duration values generally were shorter than INOT values,
and the discrepancy between the two increased as INOT increased.

With the use of our tempo estimator, we examined the INOT data
again after transforming it into beat-based values. With this addi-
tional information we confirmed a result that was somewhat evident
from carefully listening to our user input: the longer the intended
INOT duration measured in beats, the more likely the performed
INOT would be compressed by a subject.

This observation led to our definition of duration intervals. As
we had done with pitch intervals, we consider consecutive pairs of
INOT values. For each pair, we divide the later value by the earlier
one, then take the base-2 logarithm of the quotient. As an example,
if a melody contained a one-beat note followed immediately by a
four-beat note, the transition between them would be represented
by the duration interval 2.0, i.e., log2(

4
1
). If a subject attempted

to hum these notes, he or she might end up with respective notes
at 1.05 and 3.45 beats, which yields a duration interval of 1.72.
The larger the difference between the pair of INOT values being
considered, the more leeway is given in the log-based scale for the
user to be off in his or her durations. Figure 4 provides an example
of a short musical phrase transformed to relative pitch intervals and
relative duration intervals.

After encoding all data files using this new representation, the
RePReD algorithm compared user queries against the database us-
ing the following method of distance calculation:

t = C − |Ai.pitchintvl − Bj .pitchintvl| × sp

− |Ai.durintvl − Bj .durintvl| × sd
(7)

Here, the difference in the duration interval values contribute to
the distance score alongside the difference in the pitch interval val-
ues. Each difference is in turn subtracted from a constant which we
again varied in our testing along with the usual penalty gap constant
d. The results shown are for the values C = 5, d = 1. As before,
several values for C, d, sp, and sd were tested experimentally.

7.2 Results
As Table 3 demonstrates, the RePReD algorithm produces re-

sults superior to those using pitch information alone. When com-
pared to the previous best algorithm, PI-S, the scores for the musi-
cian group improved by 5%, and the gains for the other groups were
more significant, averaging 7% each across all categories. The av-
erage rank of all trials rose from 414 for PI-S to 248 here.

One of the main goals of this research has been to produce a
system that would work well for as wide a variety of people as
possible, regardless of their vocal skills. On the other hand, there
will always be some people who simply cannot hum a recogniz-
able tune. With that in mind, we also report for this algorithm the
results for all but the three subjects who consistently gave the low-
est search results among all algorithms tested. The Best 12cate-
gory shows the average scores for all subjects once the three lowest
scorers were removed. With this smaller set, the number of trials
correctly identified at the first rank jumps to 68%, and the correct
song is found within the top ten results 78% of the time. These
numbers are nearly identical to those of the MUSI group.

7.3 Discussion
Many of the algorithms described earlier work well for those few

people whose humming is of good quality and whose voices elicit
few errors induced by the music transcription software. The re-
sults tables for most of these algorithms appear nearly bipolar, with
certain subjects’ input ranked near the top while others’ were near
the bottom. Throughout our work we considered the possibility
that differences among people’s humming skills would necessitate
multiple search algorithms being used, with the system first inquir-
ing about or testing a given user’s abilities in order to select the
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4
3

PV: 62 74 71 69 66 69 64 62 74 71 69 66 69
PINT: +12 -3 -2 -3 +3 -5 -2 +12 -3 -2 -3 +3

DB: 2 1 1 1 1 3 3 2 1 1 1 1 6
DINT: -1.0 0 0 0 +1.6 0 -0.6 -1.0 0 0 0 +2.6

Legend:
PV MIDI pitch values
PINT pitch intervals in semitones
DB note durations, expressed in beats
DINT duration intervals

Figure 4: Encoding of a musical phrase into relative pitch and relative duration intervals (RePReD).

RePReD: results by subject
Subject/ Rank Rank Top Total
Group 1 1–10 2% Trials

1 11 11 11 12
2 8 8 10 12
3 6 8 9 10

12 2 6 9 11
14 11 12 12 12

MUSI 67% 79% 89% 57

7 1 1 5 12
8 7 7 7 10
9 8 10 10 12

11 4 6 8 11
13 8 9 10 11
15 10 10 10 11

BTWN 57% 64% 75% 67

4 5 7 7 12
5 10 12 12 12
6 5 7 9 12

10 2 2 4 12
NONM 46% 58% 67% 48

ALL 57% 67% 77% 172
Best 12 68% 78% 84% 137

Table 3: Results of RePReD matching algorithm.

appropriate strategy for processing that user’s hummed queries.
As was seen in this algorithm, however, it was possible to achieve

dramatic improvements in the scores of non-musicians while at the
same time upgrading the results of musicians as well. It was also
surprising that the differences between the results obtained by the
RePScaD and RePReD algorithms were as great as was observed.
Indeed, it seemed counterintuitive that adding duration informa-
tion – which seemed more reliable than pitch information from user
queries – to a search would reduce the effectiveness of the search
process, yet this behavior persisted through several iterations of al-
gorithm design and testing, right up until the development of the
RePReD algorithm.

In the CubyHum system, Pauws [20] independently developed a
duration ratio and included it in his algorithm, though he did not

include log-based scaling and his use of this information is more
complex (and time-consuming to calculate) than our own.

8. EVALUATION OF REPRED
In order to discuss the effectiveness of the RePReD algorithm,

we must consider how well the system performs as the size of the
database being searched is increased. This factor impacts both the
running time of a search and the quality of the results returned. We
also compared its results against other current systems.

8.1 Computational Efficiency
In general, the dynamic programming approach to approximate

pattern matching is not efficient. When comparing two sequences
A and B with lengths a and b respectively, the cost of calculating
one similarity matrix is O(ab). When A is being compared to a
database of n sequences, the total cost of finding the best match is
O(abn), assuming the values of b for the sequences stored in the
database are comparable.

When working with data such as biological molecular sequen-
ces [22], a and b can reach into the millions, resulting a very slow
algorithm. This computational expense is the reason for the devel-
opment of heuristic improvements such as BLAST [1, 2]. These
algorithms were specifically tuned to work with biological data, so
while it is possible they could be utilized to improve the search ef-
ficiency in the MIR problem domain, some adaptation would be
required.

In an MIR system using hummed input queries, unlike the situa-
tion for which Mongeau and Sankoff developed their dynamic pro-
gramming algorithm [19], a user input query sequence A will have
a small limit which can be considered constant. Similarly, even the
longest recorded melody can get only into the range of a few thou-
sand notes in the case of a symphony. In this way, a and b can both
be considered constant values, reducing the effective complexity of
our algorithms to O(n), i.e., linear in the size of the database.

The implementation described here compares an input query to a
database of nearly 3,600 songs in less than one second on a 1.4GHz
Athlon computer system. This speed is comparable to that of other
current MIR systems, and the performance is more than fast enough
for interactive use. Some potential applications of music informa-
tion retrieval systems may require databases along the size of mil-
lions of melodies, but in most practical situations for which search
results are expected to be returned in real time, the database size
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Rank 1 Rank 1–10 Top 2%
Group Small Full Small Full Small Full
MUSI 78% 67% 89% 79% 89% 89%
BTWN 62% 57% 74% 64% 74% 75%
NONM 56% 46% 70% 58% 70% 67%

ALL 67% 57% 78% 67% 78% 77%
Best 12 76% 68% 86% 78% 86% 84%

Table 4: Comparative search results between the average of
360-song subsets and the full 3,600-song database for RePReD.

can be limited through the use of metadata. For instance, one likely
application of this research is to provide a search mechanism to be
used at a music store or library. In such a situation, a user of the
system often will be able to specify at least one additional piece of
information, such as the genre of the music, or perhaps the artist,
publisher, or a few words of the lyrics of the song. The inclusion
of such metadata can very quickly reduce the search space into the
thousands, if not hundreds, of database entries.

8.2 Scalability of Results
In order to test how well the RePReD algorithm identifies the

correct song when the size of the database changes, we created
several random subsets of approximately 360 songs out of our full
3,600-song database. All of the user input queries were tested
against the subsets using the RePReD algorithm, and the search
results for each of these smaller databases were recorded and aver-
aged.

These results are detailed in Table 4 and shown alongside the cor-
responding results from using the full database (reproduced from
Table 3). Not surprisingly, the correct song was identified as the
top-ranked result or within the top ten results less often when the
database was larger, as could be expected. For all subjects, in-
stances where the correct answer was ranked first diminished from
67% to 57% when the database grew by a factor of ten; similarly,
the correct answer appeared in the top ten results 78% of the time
for the smaller databases, but in 67% of the trials involving the full
database. When considering how often the rank of the correct an-
swer falls within the top 2% of the database, however, there is only
a 1% dropoff as the database grows by a factor of ten.

8.3 Comparative Results
Several other systems implementing query-by-humming have re-

ported success rates very similar to our own. For a better compar-
ison against our RePReD algorithm, we directly tested several of
these other systems against our own using identical input queries.

The SoundCompass system developed by Kosugi et al. and
reported in [12] gave search results within one second on a dual-
processor Pentium III 500MHz system against a database of ap-
proximately 11,000 songs. They tested 183 user queries, and their
best algorithms ranked the correct song first about 70% of the time
and within the top ten 78% of the time. These numbers are very
close to both our MUSI group and the average of the top 12 of
our 15 subjects as shown in Table 3. SoundCompass is not cur-
rently available for public testing, but Kosugi kindly shared with
us sixteen hummed samples of Jingle Bells recorded by their group
during testing. [11] For these samples, the latest version of their
system (which had grown to 20,000 database songs) ranked the cor-
rect song first for five of the queries, and within the top 100 for nine
of the 16. We ran the same samples through our own database: the

RePReD algorithm ranked the correct song first in 15 of 16 sam-
ples, with the final one ranked third. For most of these queries, the
score of the correct match in the database was an extremely signif-
icant 10–20% higher than the second-ranked song.

Jang et al. [9] also reported test results very similar to both
SoundCompass and to our own work for their SuperMBox sys-
tem: for 1,000 input samples matching only against the start of a
melody in their 3,000-song database, the correct song was ranked
first 59% of the time and in the top ten 71% of the time. Their sys-
tem took nearly the same time as ours for similarly-sized databases
when set to search only the start of a melody, while allowing a
search to match anywhere took much longer – about 30 seconds,
and they did not report matching results for this condition. We
tested SuperMBox with 30 of our input samples taken from six
subjects whose input quality varied widely. When matching only
at the start of a melody, SuperMBox ranked the correct song first
in 10 of 30 cases, vs. 16 of 30 for RePReD. When matching any-
where within a song, SuperMBox ranked the correct song first in
only six of 30 queries.

We also attempted to compare our results to those provided by
the New Zealand Digital Library MELDEX system [18]. We sent
ten of our better input samples to their web-based query system,
which contained 9,000 songs, including all of those in our own test
database. MELDEX returned zero matches for six of these samples,
and in three of the four remaining, the intended song was not in the
set of returned results. Only in one case did it correctly identify the
song as the top-ranked result.

Several factors prevent us from drawing any broad conclusions
from these comparisons. The databases differed in composition
and in size by more than a factor of six. SoundCompass queries
must be hummed in time with a metronome and must be at least
four measures in length. The number of samples tested here was
quite small. Nevertheless, these comparisons are very encouraging
in showing the powerful matching ability of the RePReD algorithm
with error-filled input.

9. CONCLUSION
Approximate pattern matching offers a robust method of per-

forming inexact comparison of strings. A straightforward yet novel
application of this technique to an algorithm matching music only
through pitch interval data (PI-S) against our collection of real-
world hummed input queries gave good results for more skilled
subjects but worked poorly for those with lesser humming abilities.

Several new algorithms were developed to incorporate duration
information into the similarity calculations. These new matching
algorithms made use of data in ways suggested by the analysis of
our experimental studies on the nature and frequency of errors in
music hummed by untrained subjects. To support this goal, an al-
gorithm was developed to find a reasonable estimate of the tempo
of a user’s hummed query. Most of the subsequent algorithms de-
veloped proved less effective than the pitch-only PI-S method.

The resulting RePReD algorithm gave results which improved
upon those of the PI-S algorithm, most dramatically for those sub-
jects whose hummed input had consistently been hardest to iden-
tify. The algorithm makes better use of both pitch and duration
information than previous efforts. RePReD correctly identified a
hummed tune out of a set of almost 3,600 songs for most subjects
over two-thirds of the time, and it placed the correct song within the
top ten results for almost 80% of our test trials. Direct comparisons
with other existing MIR systems suggest that RePReD is better at
identifying user queries when several input errors, typical of users
with relatively little music experience or ability, are present.
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