ECE 5/7383

Introduction to Quantum Informatics

Instructor: Mitch Thornton

GOAL: Introduction to Information Representation, Manipulation, and Measurement using Quantum Mechanics

http://lyle.smu.edu/~mitch/class/5383/index.html

1

Class Grades

- In-class Exercise and Homework (20%)
 - Can be Presentation, Quiz, Guided Exercise, Homework Assignment
- Examination 1 (20%) Closed Notes
- Examination 2 (20%) Closed Notes
- (Final) Examination 3 (20%) Project Paper
- Project (20%) 15 to 20 Minute Project Video/Presentation Slides

REFER TO ONLINE GRADING POLICY!!!!

Desired Student Background

- Math linear algebra, discrete mathematics, probability and statistics
- Physics basic Physics courses (calculusbased) required for undergraduate in the sciences/engineering, an introduction to quantum mechanical principles is desirable but not necessary
- ECE/CS exposure to computer organization/programming/assembly, digital logic fundamentals, basic communication/network concepts are DESIRABLE

3

Books and Reading Material

Class will use Online Materials and Text

- Twenty-First Century Quantum Mechanics: Hilbert Space to Quantum Computers
 - G. Fano and S. Blinder

References

- A Student's Guide to Waves
 - D. Fleisch and L. Kinnaman
- A Student's Guide to Lagrangians and Hamiltonians
 - P. Hamill
- A Student's Guide to Schrödinger's Equation
 - D. Fleisch

Required Textbook

https://www.springer.com/us/book/9783319587318

5

Listed Reference Textbooks

https://www.cambridge.org/gb/academic/collections/physics-student-guide

6

Other Sources

- See Class Schedule Page to Guide Reading
- · Links to some Online Sources:
- · From Classical to Quantum Theory
 - Mark M. Wilde, Creative Commons-Noncommercial Sharealike 3.0 Unported License
- Quantum Physics arXiv
- · Academia.edu Website

7

All-inclusive Reference Textbook

8

Online Notes

- Online Notes contain the most important portions of the course material
- Accessible at:

https://s2.smu.edu/~mitch/class/5383/schedule.html

- Notes (may be) Password Protected
- Authentication Credentials (case sensitive):

Username: 5395-QI Password: MustangQ

9

Material other than Notes

- · Selected Material from:
 - References
 - Historical Readings
 - Archived Papers
 - Other Web Resources
- Will place all notes online, BUT,
 - YOU SHOULD TAKE NOTES ALSO
- URLs/Links Available in Class Syllabus:

https://s2.smu.edu/~mitch/class/5383/index.html

General Topic Outline

- Physics Fundamentals and Waves
- Review of Linear Algebra Topics
- Quantum Harmonic Oscillator and Schrödinger's Equation
- Information Representation & Communication
 - Classical and Quantum
- Quantum Communication Topics
- Quantum States and Measurement
- The Concept of the Qubit

11

General Topic Outline (cont)

- Quantum Superposition, Entanglement, Projective Measurement
- Physical Computation & Reversible Logic
- Qubit State Transformation: Quantum Logic Gates
- Quantum Algorithms as Circuits
- Introduction to Technology

Quantum Characteristics Exploited for QIS

- Quantum Superposition
- Entanglement
- Teleportation
- Pure and mixed states
- Observables and Measurement
- No cloning theorem

13