
8/4/24

1

Big Picture Motivation

Representation, models, and the origin of 
Quantum Mechanics

is essential to understand the
Quantum Computing Program depicted 

above

H| 0〉

| 0〉

| 0〉

| 1〉 | 0〉( )

| 1〉( )

1

Young’s Double Slit Experiment
as a Computation

*A.D. Aczel, Entanglement, 2002, ISBN 1-55192-549-4

Very Weak Laser 
(single photon 

source)
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Label the Apertures

Very Weak Laser 
(single photon 

source)

0

1

The photon is an “information carrier” and its Path
indicates/encodes the “value” of the information

3

Label the Apertures

Very Weak Laser 
(single photon 

source)

0

1

As long as the “path” is not observed or measured,
Young’s experiment indicates the photon has traveled 
through BOTH paths (quantum superposition)

4
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Thomas Young’s Experiment

“We choose to examine a phenomenon (the 
double-slit experiment) that is impossible, 
absolutely impossible, to explain in any classical 
way, and which has in it the heart of quantum 
mechanics.  In reality it contains the only 
mystery.”

     -Richard Feynman

5

Label the Apertures

Very Weak Laser 
(single photon 

source)

0

1

Thus, the photon is now carrying an information content of
both “1” AND “0” !!!!! Referred to as | ⟩0  and | ⟩1 . 

6
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Label the Apertures

Very Weak Laser 
(single photon 

source)

0

1

Thus, the photon is now carrying an information content of
both “1” AND “0” !!!!!

But, when we measure or observe the path, it will appear to
only have traveled through either the top or the bottom path
7

Double Slit Computation
• The CHARACTERISTIC/PROPERTY of the photon is 

serving as the Quantum Digit (or qubit)
– in this case, the characteristic is its location (quantum 

observable)
• Causing the photon to have apparently traveled through 

BOTH paths is an example of “Quantum Superposition”
• Initializing qubits to be in a state of superposition is a 

common initial step in quantum informatics processing
• This is modeled mathematically as a “Hadamard” 

operation
• Denoted symbolically as:

H|ψ 〉 |ϕ〉

| ⟩𝜑 = 𝐇| ⟩𝜓

8
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Hadamard

H = 1
2

1 1
1 −1

⎡

⎣
⎢

⎤

⎦
⎥

Qubit Basis States & Hadamard

| 0〉 = 1
0

⎡

⎣
⎢

⎤

⎦
⎥ | 1〉 = 0

1
⎡

⎣
⎢

⎤

⎦
⎥

H|ψ 〉 |ϕ〉

9

Example Computation

H | 0〉 = 1
2

1
1

⎡

⎣
⎢

⎤

⎦
⎥ =

0 + 1
2

H

| ?〉 =H |ψ 〉 = 1
2

1 1
1 −1

⎡

⎣
⎢

⎤

⎦
⎥
1
0

⎡

⎣
⎢

⎤

⎦
⎥ =

1
2

1
1

⎡

⎣
⎢

⎤

⎦
⎥ =

1
2

1
0

⎡

⎣
⎢

⎤

⎦
⎥ +

1
2

0
1

⎡

⎣
⎢

⎤

⎦
⎥

| 0〉

| 0〉 = 1
0

⎡

⎣
⎢

⎤

⎦
⎥ |1〉 = 0

1
⎡

⎣
⎢

⎤

⎦
⎥

| ?〉

10
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Example Computation (Init. to ket-1)

H |1〉 = 1
2

1
−1

⎡

⎣
⎢

⎤

⎦
⎥ =

0 − 1
2

H

| 0〉 = 1
0

⎡

⎣
⎢

⎤

⎦
⎥ |1〉 = 0

1
⎡

⎣
⎢

⎤

⎦
⎥

| ?〉| ⟩1

| ⟩? = 𝐇| ⟩1 =
1
2
1 	 1
1 −1

0
1 =

1
2
	 1
−1 =

1
2
1
0 +

1
2
	 0
−1

11

Qubit Model
• Qubit exists in Linear Combination of Basis 

States
• “Ket" Notation Represents a Column Vector

 
|ψ 〉 = α

β
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

|0〉 = 1
0

⎡

⎣
⎢

⎤

⎦
⎥

 
|1〉 = 0

1
⎡

⎣
⎢

⎤

⎦
⎥

 
|ψ 〉 = α |0〉 + β|1〉 = α 1

0
⎡

⎣
⎢

⎤

⎦
⎥ + β 0

1
⎡

⎣
⎢

⎤

⎦
⎥ =

α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

12
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Example Computation

H | 0〉 = 1
2

1
1

⎡

⎣
⎢

⎤

⎦
⎥ =

0 + 1
2

H |1〉 = 1
2

1
−1

⎡

⎣
⎢

⎤

⎦
⎥ =

0 − 1
2

H

|ϕ〉 = H |ψ 〉 = 1
2

1 1
1 −1

⎡

⎣
⎢

⎤

⎦
⎥

α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

2
α + β
α − β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

|ψ 〉 |ϕ〉

|ψ 〉 =
α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=α 0 + β 1

13

Example Computation

H | 0〉 = 1
2

1
1

⎡

⎣
⎢

⎤

⎦
⎥ =

0 + 1
2

H |1〉 = 1
2

1
−1

⎡

⎣
⎢

⎤

⎦
⎥ =

0 − 1
2

H

|ϕ〉 = H |ψ 〉 = 1
2

1 1
1 −1

⎡

⎣
⎢

⎤

⎦
⎥

α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

2
α + β
α − β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

|ψ 〉 |ϕ〉

|ψ 〉 =
α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=α 0 + β 1

This is actually the Discrete Fourier Transform in Galois Field 2 (𝔽!)

14
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Physics/Math Class Content
• This is why we are reviewing classical and 

quantum behavior
• It is also why we are reviewing linear 

algebra
• QI is based on QM theory
• QI theory is described with linear algebra
• Please have patience, after one or two more 

classes, we will be prepared to focus solely 
on Quantum Informatics !!!!!

15

Anyone who is not shocked about 
quantum theory has not understood it
    Niels Bohr

16
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Selected Abstract Algebra
Concepts

17

Groups

∃ 𝑎", 𝑎# ∈ ℝ| 𝑎" −𝑎# ≠ 𝑎# −𝑎"

18
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Group Axioms using Quantifiers
• A Group is an Algebraic Structure Composed of a Set of 

elements with an Associated Binary Operator usually 
called Multiplication or the Group Product Operator

• A Group Must Satisfy the Three "Group Axioms" with 
closure:

G1: Associativity with respect to the group operator:

G2: Identity Element Exists with respect to group operator:

G3: Inverse Elements Exist:

binary product operatorgroup notation

19

Abelian Group Axiom
• A Group that Also Obeys the Property of 

Commutativity is a Commutative or Abelian 
Group:

G4: Commutativity (not required for group to exist):

• If Commutativity is not Obeyed, the Group is said 
to be non-Abelian or non-Commutative

binary product operatorgroup notation

Niels Henrik Abel

Proved that there is no general solution of a fifth-
degree polynomial using radicals.  Performed 
most of his research in poverty and died of 
tuberculosis at age 26.

20
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Group Examples (TRY THIS)
• The Integers Under the Group Product Operation 

of Addition

– Identity Element?
– Inverse Elements?
– Abelian?

• Positive Real Numbers Under Multiplication

– Identity Element?
– Inverse Elements?
– Abelian?

  (!,+)   ! = {...,−2,−1,0,1,2,...}

  (!,•)    ! = {r | r > 0}

21

Group Examples
• The Integers Under the Group Product Operation 

of Addition

– Identity Element?
– Inverse Elements?
– Abelian?

• Positive Real Numbers Under Multiplication

– Identity Element?
– Inverse Elements?
– Abelian?

  (!,+)   ! = {...,−2,−1,0,1,2,...}

  (!,•)    ! = {r | r > 0}

 0
   ∀zi ∈!, zi

−1 = −zi

  zi + −zi = −zi + zi = 0

   
YES   zi + z j = z j + zi      ∀(zi , z j ) ∈!

 1
   ∀ri ∈!,ri

−1 = 1 / ri

  ri • (1 / ri ) = (1 / ri ) • ri = 1

   
YES   ri • rj = rj • ri      ∀(ri ,rj ) ∈!

22
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Ring Structure

§ ) Takes Precedence Over +

23

The Ring Axioms

Axioms R1 through R4 indicate that a Ring satisfies the 
definition of an Abelian group with an additive group operator

24
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The Ring Axioms (cont.)
R5: The Multiplicative Operator is Associative and Obeys 
Closure

R6: Distributivity over the Additive Operator with Closure

R7: Distributivity over the Multiplicative Operator with Closure

A Ring is further referred to as a Commutative Ring when:

A Ring is further referred to as Unital or a Ring with Identity 
when it comprises a Multiplicative Identity Element, 1:

25

Field Structure

26
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Field Structure
• A Field can be a Ring (not always) with Additional 

Properties (eg,. R6 may not hold):

27

The Field Axioms
F1: Closure holds with respect to both the additive and the 
multiplicative operators 

F2: Associativity holds for both the additive and the 
multiplicative operators with closure

F3: Commutativity holds for both the additive and the 
multiplicative operators with closure

28
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The Field Axioms (cont.)
F4: Identity elements exist for both the additive and the 
multiplicative operators 

F5: Inverse elements exist for both the additive and the 
multiplicative operators 

F6: Distributivity with respect to the multiplicative operator 
holds with closure

Note that distributivity with respect to the additive operator is 
NOT a required Field axiom

29

Example Exercise

Ring? Field?

30
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Ring?  YES 
Field?  NO, 2 has no Mult. Inv.

Example Exercise

31

Ring? Field?

Example Exercise

32
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Ring?  YES 
Field?  YES

Example Exercise

33

Groups and Fields

Groups: 
https://www.youtube.com/watch?v=g7L_r6zw4-c (11:12)

Fields:
https://www.youtube.com/watch?v=KCSZ4QhOw0I (8:03)

34

https://www.youtube.com/watch?v=g7L_r6zw4-c
https://www.youtube.com/watch?v=KCSZ4QhOw0I
https://www.youtube.com/watch?v=g7L_r6zw4-c
https://www.youtube.com/watch?v=KCSZ4QhOw0I
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Algebra

35

Lattice Algebra
Lattice Algebra – defined by the tuple:   

  
Where:

  A     is a non-empty set   
         are binary operations disjunction and 
                         conjunction

And, the Following Axioms Hold:

A,∨,∧

∨,∧

36
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Distributive Lattice Algebra
Distributive Lattice Algebra 

And, the Following Distributive Laws Hold:
   

Complemented Distributive Lattice Algebra

A Complemented Distributive Algebra is a Boolean Algebra
   

37

Lattice Algebra
Lattice Algebra – defined by the tuple:   

  áA, Ú, •ñ
Where:

  A     is a non-empty set   
  Ú, • are binary operations

And, the Following Axioms Hold:

 a Ú a = a   a • a = a      (Idempotence)
 a Ú b = b Ú a  a • b = b • a     (Commutativity)
 a Ú (b Ú c) = (a Ú b) Ú c a • (b • c) = (a • b) • c (Associativity)
 a Ú (a • b) = a  a • (a Ú b) = a     (Absorption)

a,b,cÎA

38
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Distributive Lattice Algebra
Distributive Lattice Algebra 

And, the Following Distributive Laws Hold:
   a Ú (b • c)  = (a Ú b) • (a Ú c)

  a • (b Ú c)  = (a • b) Ú (a • c)

Complemented Distributive Lattice Algebra
 1) maximal element = 1
 2) minimal element = 0
 3) For any aÎA if $ xaÎA such that  a • xa = 0 
 4) For any aÎA if $ xaÎA such that  a Ú xa = 1

A Complemented Distributive Algebra is a Boolean Algebra
   

39

Boolean Algebra
áB, Ú, •,    , 0, 1ñ

0, 1ÎB 
          is a unary operation over B
   Ú, • are binary operations over B
   0 is the “identity element” wrt Ú 

  1 is the “identity element” wrt •

Ordered Set

Lattice

Dist. Lattice

Boolean Algebra

40
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Selected Linear Algebra
Concepts

41

Vector Space
• Consists of

1) An Abelian (commutative) group (𝕍, +) whose elements 
are called vectors and whose product operator is vector 
addition, characterized by a “dimension,” n 

2) A field 𝔽 (usually the real field ℝ or the complex field ℂ) 
whose elements are called “scalars”

3) An multiplicative operation called “scaling” denoted by 
an absence of an operation symbol between a scalar and 
a vector that associates a scalar α∈𝔽 and vector x∈𝕍 and 
results in another vector αx∈𝕍 or αx∈𝕍 , {α, x}→αx

𝛼 𝐱 + 𝐲 = 𝛼𝐱 + 𝛼𝐲
𝛼 + 𝛽 𝐱 = 𝛼𝐱 + 𝛽𝐱
𝛼𝛽 𝐱 = 𝛼 𝛽𝐱
1 𝐱 = 𝐱

42
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Complex/Hilbert Vector Spaces
• Hilbert Space is generally an infinite-dimensional 

vector space 

– with an inner product 

– and with associated norm

• Quantum Computing Literature Traditionally Refers 
to Finite n-dimensional Complex Euclidean Vector 
Space as a Hilbert Space (technically correct)

• FOR OUR PURPOSES: Hilbert Space: 
n-dimensional vector space over the field of 
complex numbers with an inner product and 
associated norm

43

Vector Space Inner Products
• Consider an n-dimensional Vector Space:
• If, for all pairs of vectors x and y, an associated real number 

exists, an inner product (x, y), such that the following conditions 
are satisfied: (x,y) = (y,x)

(cx,y) = c(x,y) if c∈! (or C)

(x + z,y) = (x,y) + (z,y)  ∀z∈!n  (or "n )

(x,x) ≥ 0 such that   (x,x) = 0 if and only if x = 0
• Then, we have an n-dimensional Euclidean Vector Space
•  (x, y) is the Inner Product of Vectors x and y
- “dot” product, (x, y)=x•y, is one form of an inner product that 

yields a scalar product value
- most common is the "Euclidean" inner product

44
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Euclidean Vector Spaces
• Euclidean Spaces use “dot product” & “L2 norm”
• “Length” of a Euclidean Vector & inner/dot product:

x = (x,x)

θ = cos−1 (x,y)
x y

• Euclidean Angle between the two vectors α and β:

cos(θ ) = (x,y)
x y

• If (x, y)=0, then x and y are orthogonal
- Orthogonality occurs when the inner product is zero

• From a Euclidean viewpoint, 90 degrees apart
  θ = π / 2 = 90!

(x,y) = xiy

45

Orthogonal Basis Sets
• Consider a set of n Vectors: V ={e1,e2 ,...,en}

(ei ,e j ) = 0,∀i ≠ j
• This set forms an Orthogonal Basis of the  
n-Dimensional Vector Space if:

• Vector space elements ( all vectors in the space) can 
ALWAYS be represented as a linear combination of 
scaled basis vectors, the Basis Set or Basis of the Space
- Different/Alternative Basis sets (Bases) may be used to 

represent the SAME Vector Space

• Finding an alternative Basis Set is known as a Change 
of Basis and can be accomplished via a Basis 
Transform
• very important in QM, provides a different “point of view” of 

the Vector Space
46
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• This set forms an Orthonormal Basis of the  
n-Dimensional Vector Space if:
-  it is Orthogonal
- the following holds:

• Where δi,j is “Delta-Dirac” function(al)
- In signal processing, another form is known as the “unit 

impulse function” and is usually a functional of continuous 
time

Orthonormal Basis Sets
• Consider a set of n Vectors:

V ={e1,e2 ,...,en}

(ei ,e j ) = δ i , j =
0 if i ≠ j
1 if i = j

⎧
⎨
⎩

47

Euclidean Space Basis
• All Vectors in a Euclidean Space may be Represented as a 

Linear Combination of the Orthogonal or Orthonormal Basis 
Vectors:

x = a1e1 + a2e2 + ...+ anen
y = b1e1 + b2e2 + ...+ bnen

• When basis set is “Orthonormal,” then: (ei ,e j ) = δ i , j

• Then, when Orthonormal: (x,ei ) = ai

• Thus: (x,y) = xi yi
i=1

n

∑
This form of the inner product is consistent with the “dot product”

48
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Vector Spaces

https://www.youtube.com/watch?v=ozwodzD5bJM (6:57)

49

Matrices

    

A =

a11 a12 ... a1n

a21 a22 ... a2n

! ! " !
am1 am2 ... amn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

• A maps/transforms/operates on Vectors from a Vector Space of 
Dimension n to Vector Space of Dimension m: 

• When A is a Square Matrix, n=m, it Represents a Linear Mapping 
to od vector to another within the same space:

• Each Row of A is a Row Vector and Each Column is a Column 
Vector

• Row/Column Vectors Span the Domain/Range of the 
Vector Spaces, 𝕍$ and 𝕍% 

A = aij⎡⎣ ⎤⎦n×m

A :Vn → Vm

A :Vn → Vn

50

https://www.youtube.com/watch?v=ozwodzD5bJM
https://www.youtube.com/watch?v=ozwodzD5bJM
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Elementary Row Operations

    

A =

a11 a12 ... a1n

a21 a22 ... a2n

! ! " !
am1 am2 ... amn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1. Any row may be interchanged with any other
2. Any row may be replaced by itself multiplied by a 

constant
3. Any row may be replaced by the column-wise sum of 

itself and a multiple of another row
Two Matrices are Row-Equivalent if one is Obtained from

the Other by a Finite Sequence of Row Operations

51

Identity Matrix

   

I =
1 0 ... 0
0 1 ... 0
! ! " !
0 0 ... 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

• Identity Matrix is n×n Square Matrix whose Row-
Vectors and Column Vectors Form an Orthonormal 
Basis for the n-dimensional Euclidean Vector Space

• Sometimes denoted as In to emphasize its dimension 
is n×n 

• A Permutation Matrix is an Identity Matrix that has 
Undergone an Arbitrary Series of Row or Column 
Interchanges

52
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Trace of a Matrix
• Trace of a Matrix A is:

Tr(A) = tr(A) = aii
i=1

n

∑
• Given two matrices A and B:

  Tr(AB) = Tr(BA)

  Tr(A + B) = Tr(A) + Tr(B)

   Tr(cA) = cTr(A)

Tr(SAS† ) = Tr(S†SA) = Tr(A)

Similarity Transform when A and B are “similar” Matrices

Tr(SBS† ) = Tr(S†SB) = Tr(B)

53

Matrix Determinant
• Determinant of a Matrix is Denoted as:

  | A |   det(A)
• Examples of Determinant Computation:

|A1 | = a11

   
A1 = a11⎡⎣ ⎤⎦

   
A2 =

a11 a12

a21 a22

⎡

⎣
⎢

⎤

⎦
⎥

   

A3 =
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

|A2 | = a11a22 − a12a21

|A3 | = a11
a22 a23
a32 a33

− a12
a21 a23
a31 a33

+ a13
a21 a22
a31 a32

scalar case

scalar case is 
absolute value

54
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Matrix Operations
• Transpose of a matrix, reflection about the diagonal:

   
AT = aji

⎡⎣ ⎤⎦
• Determinant of A is Equal to Determinant of AT

• If Two or More Rows (or columns) of A are Equivalent 
then |A|=0

• A Square n×n Matrix is Triangular When:

  
A = aij

⎡⎣ ⎤⎦

  
∀i > j,aij = 0 (upper triangular)

  
∀i < j,aij = 0 (lower triangular)

• Determinant of Triangular Matrix Atri

   det(A tri ) =| A tri |= a11 • a22 • ...• ann

55

Rank of a Matrix
• Rank of a Square Matrix, r, is an Integer that is Equal to 

Number of Linearly Independent Row (Column) Vectors 
of a Square Matrix

• A Matrix must be Full Rank for a Distinct inverse to Exist
• All Full Rank Matrices may be Converted into Triangular 

Matrices through Elementary Row Operations
- allows iterative solution to Ax=b through back 

substitution
• A Full Rank Matrix Must have a non-zero Determinant
• A non-Square Matrix Cannot Have a Rank Larger than 
min(m,n)

56
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Linear Independence
• Given:

• The set of m Vectors are Linearly Independent 
if:

• Otherwise, the set of Vectors are Said to be 
Linearly Dependent

• Linear Independence is a Property of a 
Specific Subset of Vectors all of dimension n

No Solution for ci Other Than all Equal 0

c1,c2 ,!,cm{ }∈C a1,a2 ,!,am{ }∈Rn

c1a1 + c2a2 +!+ cia i +!+ cmam = 0⇒ ci = 0∀i

57

Linear Independence Example
(TRY THIS)

• Is the Following set of Vectors Linearly Dependent?:

• Check solution for:

 

α1 =
0
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

α2 =
0
2
−2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

α3 =
1
−2
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

α4 =
4
2
3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 {α1,α2 ,α3}

  c1α1 + c2α2 + c3α3 = 0

Compute This on Paper

58



8/4/24

30

Linear Independence Example

• Check solution for:

• Only Solution is:
• Not Dependent  (they are linearly Independent)

 

α1 =
0
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

α2 =
0
2
−2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

α3 =
1
−2
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

α4 =
4
2
3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  c1α1 + c2α2 + c3α3 = 0

0c1 + 0c2 +1c3 = 0
0c1 + 2c2 − 2c3 = 0
1c1 − 2c2 +1c3 = 0

  c1 = c2 = c3 = 0
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Linear Independence Example

• Are the Following set of Vectors Linearly 
Dependent?:

 

α1 =
0
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

α2 =
0
2
−2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

α3 =
1
−2
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

α4 =
4
2
3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 {α2 ,α3,α4}

Compute This on Paper
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31

Linear Independence Example

• Not Dependent  (they are linearly Independent)

  0c2 +1c3 + 4c4 = 0   2c2 − 2c3 + 2c4 = 0   −2c2 +1c3 + 3c4 = 0

  c3 = −4c4   2c2 − 2(−4c4 ) + 2c4 = 0

  c2 = −5c4

  −2(−5c4 ) − 4c4 + 3c4 = 0

  c4 = 0

  c2 = c3 = c4 = 0
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Linear Independence Example

• The following sets are Linearly Independent:

• The following set is Linearly Dependent:

 

α1 =
0
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

α2 =
0
2
−2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

α3 =
1
−2
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

α4 =
4
2
3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 {α1,α2 ,α3}  α4 = 9α1 + 5α2 + 4α3

 {α2 ,α3,α4}
 
α1 = −

5
9

⎛
⎝⎜

⎞
⎠⎟
α2 + −

4
9

⎛
⎝⎜

⎞
⎠⎟
α3 +

1
9

⎛
⎝⎜

⎞
⎠⎟
α4

 {α1,α2 ,α3,α4}
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