Introduction to Eigensystems

1

The Eigensystem of a Matrix • Let \mathbf{a}_i represent a special vector and λ_i

- Let \mathbf{a}_i represent a special vector and λ_i represent a special scaling factor with respect to matrix \mathbf{A}
- What is so "special" about this type of vector and scalar?

The Eigensystem of a Matrix

- Let \mathbf{a}_i represent a special vector and λ_i represent a special scaling factor with respect to matrix \mathbf{A}
- What is so "special" about this type of vector and scalar?
- When operator A is applied, the resulting mapped vector "points" in the same direction!

$$\mathbf{A}\mathbf{a}_{i} = \lambda_{i}\mathbf{a}_{i}$$

In other words, its Maps to a Scaled Version of itself

3

The Eigensystem of a Matrix

- Let \mathbf{a}_i represent a special vector and λ_i represent a special scaling factor with respect to matrix \mathbf{A}
- What is so "special" about this type of vector and scalar?
- When operator A is applied, the resulting mapped vector "points" in the same direction!

$$\mathbf{A}\mathbf{a}_{i} = \lambda_{i}\mathbf{a}_{i}$$

• Vector \mathbf{a}_i is an "eigenvector" and scalar λ_i is its associated real/complex non-zero "eigenvalue"

"eigen" is a German word meaning "own," "inherent," "characteristic," or "proper"

Finding Eigenvectors

• By definition, the Eigensystem satisfies:

$$\mathbf{A}\mathbf{a}_{i} = \lambda_{i}\mathbf{a}_{i}$$
 $\mathbf{A}\mathbf{a}_{i} - \lambda_{i}\mathbf{a}_{i} = \mathbf{0}$
 $\mathbf{A}\mathbf{a}_{i} - \lambda_{i}\mathbf{I}\mathbf{a}_{i} = \mathbf{0}$
 $(\mathbf{A} - \mathbf{I}\lambda_{i})\mathbf{a}_{i} = \mathbf{0}$

- This system of n equations must be solved for real/complex non-zero values of vectors \mathbf{a}_i
- This solution exists if, and only if, the determinant of the coefficient matrix is non-zero
- Thus, we need to solve the "eigen" or characteristic equation for the scalars, λ_i , (components in vector, λ)

$$|\mathbf{A} - \mathbf{I}\lambda| = 0$$

5

Characteristic Equation

• Characteristic Equation of a Matrix A is:

$$c(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = |\mathbf{A} - \lambda \mathbf{I}|$$

• Roots of the Characteristic Equation yield the characteristic values, or eigenvalues, λ_i , of **A**:

$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$

- Eigenvalues of A are Scalar Multiples of Eigenvectors, $\{a_i\}$, of A:
- Eigenvectors of A are Those Vectors, $\{a_i\}$, when Mapped by A are Equivalent to a scaled version of themselves by a Real/Complex non-zero Scale Factor λ_i

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| \qquad \mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 5 - \lambda & 2 & 2 \\ 2 & 2 - \lambda & 1 \\ 2 & 1 & 2 - \lambda \end{bmatrix}$$

7

Eigensystem Example

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| \qquad \mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 5 - \lambda & 2 & 2 \\ 2 & 2 - \lambda & 1 \\ 2 & 1 & 2 - \lambda \end{bmatrix}$$
$$c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = (5 - \lambda) \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} - (2) \begin{vmatrix} 2 & 1 \\ 2 & 2 - \lambda \end{vmatrix} + (2) \begin{vmatrix} 2 & 2 - \lambda \\ 2 & 1 \end{vmatrix}$$
$$c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = (5 - \lambda) [(2 - \lambda)^2 - 1] - (2) [(4 - 2\lambda) - 2] + (2) [2 - (4 - 2\lambda)]$$

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| \qquad \mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 5 - \lambda & 2 & 2 \\ 2 & 2 - \lambda & 1 \\ 2 & 1 & 2 - \lambda \end{bmatrix}$$

$$c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = (5 - \lambda) \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} - (2) \begin{vmatrix} 2 & 1 \\ 2 & 2 - \lambda \end{vmatrix} + (2) \begin{vmatrix} 2 & 2 - \lambda \\ 2 & 1 \end{vmatrix}$$

$$c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = (5 - \lambda) [(2 - \lambda)^2 - 1] - (2) [(4 - 2\lambda) - 2] + (2) [2 - (4 - 2\lambda)]$$

$$c(\lambda) = (5 - \lambda)(2 - \lambda)^2 - (5 - \lambda) - (8 - 4\lambda) + 4 + 4 - (8 - 4\lambda)$$

9

Eigensystem Example

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| \qquad \mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 5 - \lambda & 2 & 2 \\ 2 & 2 - \lambda & 1 \\ 2 & 1 & 2 - \lambda \end{bmatrix}$$

$$c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = (5 - \lambda) \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} - (2) \begin{vmatrix} 2 & 1 \\ 2 & 2 - \lambda \end{vmatrix} + (2) \begin{vmatrix} 2 & 2 - \lambda \\ 2 & 1 \end{vmatrix}$$

$$c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = (5 - \lambda) [(2 - \lambda)^2 - 1] - (2) [(4 - 2\lambda) - 2] + (2) [2 - (4 - 2\lambda)]$$

$$c(\lambda) = (5 - \lambda)(2 - \lambda)^2 - (5 - \lambda) - (8 - 4\lambda) + 4 + 4 - (8 - 4\lambda)$$

$$c(\lambda) = (5 - \lambda)(2 - \lambda)^2 - 5 + \lambda - 8 + 4\lambda + 8 - 8 + 4\lambda$$

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| \qquad \mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 5 - \lambda & 2 & 2 \\ 2 & 2 - \lambda & 1 \\ 2 & 1 & 2 - \lambda \end{bmatrix}$$

$$c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = (5 - \lambda) \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} - (2) \begin{vmatrix} 2 & 1 \\ 2 & 2 - \lambda \end{vmatrix} + (2) \begin{vmatrix} 2 & 2 - \lambda \\ 2 & 1 \end{vmatrix}$$

$$c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = (5 - \lambda) [(2 - \lambda)^2 - 1] - (2) [(4 - 2\lambda) - 2] + (2) [2 - (4 - 2\lambda)]$$

$$c(\lambda) = (5 - \lambda)(2 - \lambda)^2 - (5 - \lambda) - (8 - 4\lambda) + 4 + 4 - (8 - 4\lambda)$$

$$c(\lambda) = (5 - \lambda)(2 - \lambda)^2 - 5 + \lambda - 8 + 4\lambda + 8 - 8 + 4\lambda$$

$$c(\lambda) = (5 - \lambda)(2 - \lambda)^2 - 13 + 9\lambda$$

11

Eigensystem Example

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| \qquad \mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 5 - \lambda & 2 & 2 \\ 2 & 2 - \lambda & 1 \\ 2 & 1 & 2 - \lambda \end{bmatrix}$$

$$c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = (5 - \lambda) \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} - (2) \begin{vmatrix} 2 & 1 \\ 2 & 2 - \lambda \end{vmatrix} + (2) \begin{vmatrix} 2 & 2 - \lambda \\ 2 & 1 \end{vmatrix}$$

$$c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = (5 - \lambda) [(2 - \lambda)^2 - 1] - (2) [(4 - 2\lambda) - 2] + (2) [2 - (4 - 2\lambda)]$$

$$c(\lambda) = (5 - \lambda)(2 - \lambda)^2 - (5 - \lambda) - (8 - 4\lambda) + 4 + 4 - (8 - 4\lambda)$$

$$c(\lambda) = (5 - \lambda)(2 - \lambda)^2 - 5 + \lambda - 8 + 4\lambda + 8 - 8 + 4\lambda$$

$$c(\lambda) = (5 - \lambda)(2 - \lambda)^2 - 13 + 9\lambda$$

$$c(\lambda) = (5 - \lambda)(4 - 4\lambda + \lambda^2) - 13 + 9\lambda$$

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \quad c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| \qquad \mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 5 - \lambda & 2 & 2 \\ 2 & 2 - \lambda & 1 \\ 2 & 1 & 2 - \lambda \end{bmatrix}$$

$$c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = (5 - \lambda) \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} - (2) \begin{vmatrix} 2 & 1 \\ 2 & 2 - \lambda \end{vmatrix} + (2) \begin{vmatrix} 2 & 2 - \lambda \\ 2 & 1 \end{vmatrix}$$

$$c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = (5 - \lambda) [(2 - \lambda)^2 - 1] - (2) [(4 - 2\lambda) - 2] + (2) [2 - (4 - 2\lambda)]$$

$$c(\lambda) = (5 - \lambda)(2 - \lambda)^2 - (5 - \lambda) - (8 - 4\lambda) + 4 + 4 - (8 - 4\lambda)$$

$$c(\lambda) = (5 - \lambda)(2 - \lambda)^2 - 5 + \lambda - 8 + 4\lambda + 8 - 8 + 4\lambda$$

$$c(\lambda) = (5 - \lambda)(2 - \lambda)^2 - 13 + 9\lambda$$

$$c(\lambda) = (5 - \lambda)(4 - 4\lambda + \lambda^2) - 13 + 9\lambda$$

$$c(\lambda) = 20 - 20\lambda + 5\lambda^2 - 4\lambda + 4\lambda^2 - \lambda^3 - 13 + 9\lambda$$

13

Eigensystem Example

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \quad c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| \qquad \mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 5 - \lambda & 2 & 2 \\ 2 & 2 - \lambda & 1 \\ 2 & 1 & 2 - \lambda \end{bmatrix}$$

$$c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = (5 - \lambda) \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} - (2) \begin{vmatrix} 2 & 1 \\ 2 & 2 - \lambda \end{vmatrix} + (2) \begin{vmatrix} 2 & 2 - \lambda \\ 2 & 1 \end{vmatrix}$$

$$c(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = (5 - \lambda) [(2 - \lambda)^2 - 1] - (2) [(4 - 2\lambda) - 2] + (2) [2 - (4 - 2\lambda)]$$

$$c(\lambda) = (5 - \lambda)(2 - \lambda)^2 - (5 - \lambda) - (8 - 4\lambda) + 4 + 4 - (8 - 4\lambda)$$

$$c(\lambda) = (5 - \lambda)(2 - \lambda)^2 - 5 + \lambda - 8 + 4\lambda + 8 - 8 + 4\lambda$$

$$c(\lambda) = (5 - \lambda)(2 - \lambda)^2 - 13 + 9\lambda$$

$$c(\lambda) = (5 - \lambda)(4 - 4\lambda + \lambda^2) - 13 + 9\lambda$$

$$c(\lambda) = 20 - 20\lambda + 5\lambda^2 - 4\lambda + 4\lambda^2 - \lambda^3 - 13 + 9\lambda$$

$$c(\lambda) = -\lambda^3 + 9\lambda^2 - 15\lambda + 7$$

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad c(\lambda) = -\lambda^3 + 9\lambda^2 - 15\lambda + 7$$

• Next, we find the roots of the characteristic equation to obtain the eigenvalues, so we need to solve:

$$c(\lambda) = 0 \qquad -\lambda^3 + 9\lambda^2 - 15\lambda + 7 = 0$$

• A "good" guess is to divide the λ^0 coefficient by leading (λ^3) coefficient: 7/(-1)=-7, try (λ -7):

$$\frac{-\boldsymbol{\lambda}^3 + 9\boldsymbol{\lambda}^2 - 15\boldsymbol{\lambda} + 7}{\boldsymbol{\lambda} - 7} = -\boldsymbol{\lambda}^2 + 2\boldsymbol{\lambda} - 1$$

- It worked! Zero remainder, so first factor is: (λ -7)
- Next factor the quotient (note that leading -1 is irrelevant):

$$-\lambda^2 + 2\lambda - 1 = -(\lambda^2 - 2\lambda + 1) = -(\lambda - 1)(\lambda - 1)$$

15

Eigensystem Example (cont.)

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad c(\lambda) = -\lambda^3 + 9\lambda^2 - 15\lambda + 7$$

- We have found the binomial factors of the characteristic equation: $c(\lambda) = -\lambda^3 + 9\lambda^2 - 15\lambda + 7 = -(\lambda - 7)(\lambda - 1)(\lambda - 1)$
- It never hurts to double check by multiplying it back out:

$$c(\lambda) = -(\lambda - 7)(\lambda - 1)(\lambda - 1) = -(\lambda - 7)(\lambda^2 - 2\lambda + 1)$$
$$= -(\lambda^3 - 2\lambda^2 + \lambda - 7\lambda^2 + 14\lambda - 7) = -\lambda^3 + 9\lambda^2 - 15\lambda + 7$$

• Thus, we have the eigenvalues (spectrum) of the matrix A:

 $\{\lambda_1, \lambda_2, \lambda_3\} = \{7,1,1\}$ • Note that we have the eigenvalue 7 with multiplicity 1 and the eigenvalue 1 with multiplicity 2

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad c(\lambda) = -\lambda^3 + 9\lambda^2 - 15\lambda + 7$$
$$\{\lambda_1, \lambda_2, \lambda_3\} = \{7, 1, 1\}$$
$$\lambda_1 = 7$$

• Next, find the eigenvectors, start with $\lambda_1 = 7$:

$$\mathbf{A}\mathbf{a}_1 = 7\mathbf{a}_1$$
$$\mathbf{A}\mathbf{a}_1 - 7\mathbf{a}_1 = \mathbf{0}$$
$$(\mathbf{A} - 7\mathbf{I})\mathbf{a}_1 = \mathbf{0}$$

$$\begin{bmatrix} -2 & 2 & 2 \\ 2 & -5 & 1 \\ 2 & 1 & -5 \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{aligned} -2a_x + 2a_y + 2a_z &= 0 \\ 2a_x - 5a_y + a_z &= 0 \\ 2a_x + a_y - 5a_z &= 0 \end{aligned}$$

17

Eigensystem Example (cont.)

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad \begin{aligned} c(\lambda) &= -\lambda^3 + 9\lambda^2 - 15\lambda + 7 \\ \{\lambda_1, \lambda_2, \lambda_3\} &= \{7, 1, 1\} \\ \lambda_1 &= 7 \end{aligned} \qquad \begin{aligned} -2a_x + 2a_y + 2a_z &= 0 \\ 2a_x - 5a_y + a_z &= 0 \\ 2a_x + a_y - 5a_z &= 0 \end{aligned}$$

- We want the non-trivial solution. One way is to use Gaussian elimination.
- First, write the augmented matrix representing the equations for λ_1 =7:

$$\left[\begin{array}{ccc|c}
-2 & 2 & 2 & 0 \\
2 & -5 & 1 & 0 \\
2 & 1 & -5 & 0
\end{array} \right]$$

• Next, perform elementary row operations attempt to transform the leftmost side to the identity matrix.

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \quad \begin{array}{c} c(\lambda) = -\lambda^3 + 9\lambda^2 - 15\lambda + 7 \\ \{\lambda_1, \lambda_2, \lambda_3\} = \{7, 1, 1\} \\ \lambda_1 = 7 \end{array} \quad \begin{bmatrix} -2 & 2 & 2 & 0 \\ 2 & -5 & 1 & 0 \\ 2 & 1 & -5 & 0 \end{bmatrix}$$

• Perform elementary row operations:

Perform elementary row operations:
$$\begin{bmatrix} -2 & 2 & 2 & 0 \ 2 & -5 & 1 & 0 \ 2 & 1 & -5 & 0 \end{bmatrix} \xrightarrow{R_1 + R_2 \to R_2} \begin{bmatrix} -2 & 2 & 2 & 0 \ 0 & -3 & 3 & 0 \ 2 & 1 & -5 & 0 \end{bmatrix} \xrightarrow{R_1 + R_2 \to R_2} \begin{bmatrix} -2 & 2 & 2 & 0 \ 0 & -3 & 3 & 0 \ 2 & 1 & -5 & 0 \end{bmatrix} \xrightarrow{R_1 + R_2 \to R_3} \begin{bmatrix} -2 & 2 & 2 & 0 \ 0 & -3 & 3 & 0 \ 0 & 3 & -3 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 2 & 2 & 0 \ 0 & -3 & 3 & 0 \ 0 & 3 & -3 & 0 \end{bmatrix} \xrightarrow{-(1/2)R_1 \to R_1} \begin{bmatrix} 1 & -1 & -1 & 0 \ 0 & -3 & 3 & 0 \ 0 & 3 & -3 & 0 \end{bmatrix} \xrightarrow{R_2 + R_3 \to R_3} \begin{bmatrix} 1 & -1 & -1 & 0 \ 0 & -3 & 3 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & -1 & 0 \ 0 & -3 & 3 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{-(1/3)R_2 \to R_2} \begin{bmatrix} 1 & -1 & -1 & 0 \ 0 & 1 & -1 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 + R_2 \to R_1} \begin{bmatrix} 1 & 0 & -2 & 0 \ 0 & 1 & -1 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

19

Eigensystem Example (cont.)

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad \begin{pmatrix} \mathbf{c}(\lambda) = -\lambda^3 + 9\lambda^2 - 15\lambda + 7 \\ \{\lambda_1, \lambda_2, \lambda_3\} = \{7, 1, 1\} \\ \lambda_1 = 7 \qquad \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

• These equations define the family of eigenvectors for $\lambda_1 = 7$:

$$a_x - 2a_z \Rightarrow a_x = 2a_z$$

 $a_y - a_z \Rightarrow a_y = a_z$

- Solve the equations with a parameter, a_z =s, for the reduced all-zero row (third a_z row of reduced matrix)
- Parameterized eigenvector for $\lambda_1 = 7$:

$$\mathbf{a}_{1} = \begin{bmatrix} 2s \\ s \\ s \end{bmatrix} \qquad \mathbf{A}\mathbf{a}_{1} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2s \\ s \\ s \end{bmatrix} = \begin{bmatrix} 14s \\ 7s \\ 7s \end{bmatrix} = \begin{pmatrix} 7 \\ 1 \\ 1 \\ 1 \\ 2 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad c(\lambda) = -\lambda^3 + 9\lambda^2 - 15\lambda + 7$$
$$\{\lambda_1, \lambda_2, \lambda_3\} = \{7, 1, 1\}$$
$$\lambda_2 = \lambda_3 = 1$$

• Next, find the eigenvectors, start with $\lambda_2 = \lambda_3 = 1$:

$$\mathbf{A}\mathbf{a}_{2} = \mathbf{a}_{2} \qquad \mathbf{A}\mathbf{a}_{3} = \mathbf{a}_{3}$$

$$\mathbf{A}\mathbf{a}_{2} - \mathbf{a}_{2} = \mathbf{0} \qquad \mathbf{A}\mathbf{a}_{3} - \mathbf{a}_{3} = \mathbf{0}$$

$$(\mathbf{A} - \mathbf{I})\mathbf{a}_{2} = \mathbf{0} \qquad (\mathbf{A} - \mathbf{I})\mathbf{a}_{3} = \mathbf{0}$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} a_{x} \\ a_{y} \\ a_{z} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{aligned} 4a_{x} + 2a_{y} + 2a_{z} &= 0 \\ 2a_{x} + a_{y} + a_{z} &= 0 \\ 2a_{x} + a_{y} + a_{z} &= 0 \end{aligned}$$

21

Eigensystem Example (cont.)

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad \begin{aligned} c(\lambda) &= -\lambda^3 + 9\lambda^2 - 15\lambda + 7 \\ \{\lambda_1, \lambda_2, \lambda_3\} &= \{7, 1, 1\} \\ \lambda_2 &= \lambda_3 = 1 \end{aligned}$$

- Use Gaussian elimination to find the non-trivial solution for $\lambda_2 = \lambda_3 = 1$:
- Write the augmented matrix representing the equations for $\lambda_2 = \lambda_3 = 1$:

 Perform elementary row operations attempt to transform the leftmost side to the identity matrix.

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \quad \begin{cases} \boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2, \boldsymbol{\lambda}_3 \\ \boldsymbol{\lambda}_2 = \boldsymbol{\lambda}_3 = 1 \end{cases} \quad \begin{bmatrix} 4 & 2 & 2 & 0 \\ 2 & 1 & 1 & 0 \\ 2 & 1 & 1 & 0 \end{bmatrix}$$
• Perform elementary row operations:

• This equation defines the family of eigenvectors for $\lambda_2 = \lambda_3 = 1$:

$$a_x + \frac{1}{2}a_y + \frac{1}{2}a_z \Rightarrow a_x = -\frac{1}{2}a_y - \frac{1}{2}a_z$$

23

Eigensystem Example (cont.)

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \quad \begin{array}{c} c(\lambda) = -\lambda^3 + 9\lambda^2 - 15\lambda + 7 \\ \{\lambda_1, \lambda_2, \lambda_3\} = \{7, 1, 1\} \\ \lambda_2 = \lambda_3 = 1 \end{array} \quad \begin{bmatrix} 4 & 2 & 2 & 0 \\ 2 & 1 & 1 & 0 \\ 2 & 1 & 1 & 0 \end{bmatrix}$$

- Solve the equation with parameters, $a_v = s$, $a_z = t$, for the reduced all-zero rows (second/third a_v/a_z rows of reduced matrix)
- Parameterized eigenvector for $\lambda_2 = \lambda_3 = 1$:

$$\mathbf{a}_{2,3} = \begin{bmatrix} -\frac{1}{2}s - \frac{1}{2}t \\ s \\ t \end{bmatrix} \qquad \mathbf{A}\mathbf{a}_{2,3} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} -\frac{1}{2}s - \frac{1}{2}t \\ s \\ t \end{bmatrix} = (1) \begin{bmatrix} -\frac{1}{2}s - \frac{1}{2}t \\ s \\ t \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad \begin{aligned} c(\lambda) &= -\lambda^3 + 9\lambda^2 - 15\lambda + 7 \\ \{\lambda_1, \lambda_2, \lambda_3\} &= \{7, 1, 1\} \\ \lambda_2 &= \lambda_3 = 1 \end{aligned} \qquad \mathbf{a}_{2,3} = \begin{bmatrix} -\frac{1}{2}s - \frac{1}{2}t \\ s \\ t \end{bmatrix}$$

• Parameterized eigenvector for $\lambda_2 = \lambda_3 = 1$:

$$\mathbf{a}_{2,3} = \begin{bmatrix} -\frac{1}{2}s - \frac{1}{2}t \\ s \\ t \end{bmatrix}$$

$$\mathbf{A}\mathbf{a}_{2,3} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} -\frac{1}{2}s - \frac{1}{2}t \\ s \\ t \end{bmatrix} = (1) \begin{bmatrix} -\frac{1}{2}s - \frac{1}{2}t \\ s \\ t \end{bmatrix}$$

25

Eigensystem Example Summary

$$\mathbf{A} = \left[\begin{array}{ccc} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{array} \right]$$

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \qquad c(\lambda) = -\lambda^3 + 9\lambda^2 - 15\lambda + 7 \\ \{\lambda_1, \lambda_2, \lambda_3\} = \{7, 1, 1\} \\ \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$$

• Parameterized eigenvectors:

$$\mathbf{a}_{1} = \begin{bmatrix} 2s \\ s \\ s \end{bmatrix}$$

$$\mathbf{a}_2 = \begin{bmatrix} -\frac{1}{2}s - \frac{1}{2}t \\ s \\ t \end{bmatrix}$$

$$\mathbf{a}_{1} = \begin{bmatrix} 2s \\ s \\ s \end{bmatrix} \qquad \mathbf{a}_{2} = \begin{bmatrix} -\frac{1}{2}s - \frac{1}{2}t \\ s \\ t \end{bmatrix} \qquad \mathbf{a}_{3} = \begin{bmatrix} -\frac{1}{2}s - \frac{1}{2}t \\ s \\ t \end{bmatrix}$$

• Rank, r, of matrix A is number of unique eigenvalues:

$$r = 2$$

• Determinate, |A|, is product of eigenvalues:

$$|\mathbf{A}| = \det(\mathbf{A}) = (\lambda_1)(\lambda_2)(\lambda_3) = (7)(1)(1) = 7$$

• Trace, tr(A), is the sum of eigenvalues:

$$\operatorname{tr}(\mathbf{A}) = \lambda_1 + \lambda_2 + \lambda_3 = 7 + 1 + 1 = 9$$

Eigenvectors/Eigenvalues Facts • Only Exist for Square Matrices

- If the same eigenvalue, λ_i , is repeated m_i times, then that eigenvalue is said to have an "algebraic multiplicity" of m_i
- The number of Unique eigenvalues, r, of a Matrix A is Equivalent to the Rank of A
- Determinate of **A**: $det(\mathbf{A}) = |\mathbf{A}| = \prod_{i=1}^{n} \lambda_i$
- Sum of eigenvalues is Trace of $\mathbf{A}^{i=1}$ $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_{i}$
- Invertible **A**: r=n and eigenvalues of \mathbf{A}^{-1} are $\{\lambda_i^{-\frac{1}{1}}\}$
- The set of eigenvalues of A are the "spectrum" of A

Eigenvalues are the "vital signs" of a Matrix !!!!

27

(optional) Eigensystems

https://www.youtube.com/watch?v=ue3yoeZvt8E (4:00)

Introduction to Operators

29

Mathematical Operator

- Generally a mapping that acts on elements of a space to produce elements of another space
 - common operator is a linear map that acts on a vector space (others are possible)
 - often means actions on vector spaces of functions
 - general linear operator takes the form of a matrix \mathbf{A} and obeys the following where \mathbb{W} and \mathbb{V} are vector spaces and $\mathbf{A} \colon \mathbb{W} \to \mathbb{V}$ and where (α, β) are scalars and \mathbf{x} , \mathbf{y} are elements of \mathbb{W}):

$$\mathbf{A}(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \mathbf{A} \mathbf{x} + \beta \mathbf{A} \mathbf{y}$$

Linear Operator/Map

 Matrix that Maps one Element of a Vector Space to Another and Preserves Addition and Scalar Multiplication

$$\hat{A}(x+y) = \hat{A}x + \hat{A}y$$
 $\hat{A}(\alpha x) = \alpha \hat{A}x$

- To Emphasize a Matrix is an Operator, it often "wears a hat" (eg. Â)
 - not necessary, just used for emphasis
- Many Different Linear Operators used in Quantum Mechanics
- The "hat" Notation is not always used

31

Mathematical Operators (optional)

General Notions:

https://www.youtube.com/watch?v=LtFsf-TR M0 (5:49)

Matrices as Operators on Vectors:

https://www.youtube.com/watch?v=f74DQnYjJes (14:14)

Adjoint Operator

- The "adjoint" of a Matrix A is the "conjugatetranspose" or "transpose-conjugate" of A Denoted by A[†]using the Superscript "dagger" Symbol †
- Applicable to Vectors and Matrices

- Vector:
$$\mathbf{a}^{\dagger} = (\mathbf{a}^*)^{\mathrm{T}} = (\mathbf{a}^{\mathrm{T}})^*$$
- Matrix: $\mathbf{A}^{\dagger} = (\mathbf{A}^*)^{\mathrm{T}} = (\mathbf{A}^{\mathrm{T}})^*$
EXAMPLE

$$\mathbf{A} = \begin{bmatrix} 1 - 5i & 1 + i \\ 1 + 3i & 7i \end{bmatrix}$$
Find: $\mathbf{A}^{\dagger} = ?$
Compute This on Paper

33

Adjoint Operator Example

- The "conjugate-transpose" or "transpose-conjugate"
 Denoted by Superscript "dagger" Symbol †
- Applicable to Vectors and Matrices

Vector:
$$\mathbf{a}^{\dagger} = (\mathbf{a}^{*})^{\mathrm{T}} = (\mathbf{a}^{\mathrm{T}})^{*}$$

Matrix: $\mathbf{A}^{\dagger} = (\mathbf{A}^{*})^{\mathrm{T}} = (\mathbf{A}^{\mathrm{T}})^{*}$

EXAMPLE
$$\mathbf{A} = \begin{bmatrix} 1 - 5i & 1 + i \\ 1 + 3i & 7i \end{bmatrix}$$

$$\mathbf{A}^{\dagger} = \begin{bmatrix} 1 - 5i & 1 + i \\ 1 + 3i & 7i \end{bmatrix}^{\dagger} = \begin{bmatrix} 1 - 5i & 1 + i \\ 1 + 3i & 7i \end{bmatrix}^{\mathrm{T}}$$

$$\mathbf{A}^{\dagger} = \begin{bmatrix} 1 + 5i & 1 - i \\ 1 - 3i & -7i \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 + 5i & 1 - 3i \\ 1 - i & -7i \end{bmatrix}$$

Adjoint Operator Properties

Definition and Properties of the Adjoint

$$\mathbf{A}_{ij}^{\dagger} = \mathbf{A}_{ji}^{*} \quad \forall \ \{(i,j)|i=0,1,\cdots,n-1 \text{ and } j=0,1,\cdots,n-1\}$$

$$(\mathbf{A}\mathbf{B})^{\dagger} = \mathbf{B}^{\dagger}\mathbf{A}^{\dagger}$$

$$(\mathbf{A}^{\dagger})^{\dagger} = \mathbf{A}$$

$$(\mathbf{A}+\mathbf{B})^{\dagger} = \mathbf{A}^{\dagger} + \mathbf{B}^{\dagger}$$

$$(c\mathbf{A})^{\dagger} = c^{*}\mathbf{A}^{\dagger}$$

• Theorem of the Adjoint: For every pair of vector, **x** and **y**, and every operator **A**, the inner product relations hold:

$$\mathbf{y} \cdot \mathbf{A} \mathbf{x} = \mathbf{A}^{\dagger} \mathbf{y} \cdot \mathbf{x}$$
 $\mathbf{A} \mathbf{y} \cdot \mathbf{x} = \mathbf{y} \cdot \mathbf{A}^{\dagger} \mathbf{x}$

• In Dirac's notation (explained later) these relations are:

$$\langle y|\mathbf{A}x\rangle = \langle \mathbf{A}^{\dagger}y|x\rangle$$
 $\langle \mathbf{A}y|x\rangle = \langle y|\mathbf{A}^{\dagger}x\rangle$

35

Special Forms of Matrices

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix}_{n \times n}$$

- Symmetric if: $\mathbf{A}^{\mathrm{T}} = \mathbf{A}$
- Hermitian if: $A^{\dagger} = A$
- Normal if: $A^{\dagger}A = AA^{\dagger}$
- Orthogonal if: $\mathbf{A}^{\mathrm{T}} \mathbf{A} = \mathbf{I}$
- Unitary if: $A^{\dagger}A = I$
- Lower Triangular if: $a_{ij} = 0 \ \forall i > j$
- Upper Triangular if: $a_{ij} = 0 \ \forall i < j$
- Diagonal if: $a_{ij} = 0 \ \forall i \neq j$

Normal Matrices

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix}_{n \times n}$$

- A is a normal matrix, by definition, if it commutes under direct multiplication: $\mathbf{A}\mathbf{A}^\dagger = \mathbf{A}^\dagger\mathbf{A}$
- The definition implies that **A** must be square, $n \times n$
- Since **A** is square, it maps/transforms/operates on vectors within the same vector space
- If $\bf A$ and $\bf B$ are normal, then so are the product matrix $\bf A \bf B$ and the summation matrix, $\bf A + \bf B$
 - A and B are simultaneously diagonalizable, SAS⁻¹=SBS⁻¹=D, for some invertible similarity matrix S and diagonal matrix, D

37

Hermitian Matrices

- Consider a matrix, $\hat{\mathbf{H}}$, that is Hermitian
 - Hermitian means that matrix is a complex square matrix that is equal to its own adjoint
 - conjugate transpose of $\hat{\mathbf{H}} = [h_{ij}]_{n \times n}$: $(\hat{\mathbf{H}}^{\mathrm{T}})^* = (\hat{\mathbf{H}}^*)^{\mathrm{T}} = \hat{\mathbf{H}}^{\dagger}$
 - Hermitian means: $\hat{\mathbf{H}} = \hat{\mathbf{H}}^{\dagger}$ $\begin{bmatrix} h_{ij} \end{bmatrix} = \begin{bmatrix} h_{ji}^* \end{bmatrix}$
 - Hermitian matrices are not always invertible
 - Real Hermitian matrices are symmetric
- Spectral Decomposition (defined later) has Desirable Properties for Hermitian matrices
- Spectral Decomposition is useful in Describing the Hamiltonian Operator actions for Quantum Mechanical Systems

Hermitian Matrices are Normal

• Consider a matrix, $\hat{\mathbf{H}}$, that is Hermitian

$$\hat{H} = \hat{H}^{\dagger}$$

$$\hat{H}\hat{H} = \hat{H}\hat{H}^{\dagger} = \hat{H}^{\dagger}\hat{H} = \hat{H}^{2}$$

 Real-valued Symmetric Matrices are Hermitian and also Normal

39

Eigensystem Facts for Hermitian H

- H is full rank/invertible only when r=n
 − eg., All zeros matrix, 0, is Hermitian
- All eigenvalues of **H** are real $\lambda_i \in \mathbb{R}$
- The eigenvectors $\{\mathbf{h}_i|i=1,n\}$ are identical for \mathbf{H} and \mathbf{H}^{\dagger} , since $\mathbf{H}=\mathbf{H}^{\dagger}$
- The nontrivial eigenvectors $\{\mathbf{h}_i|i=1,n\}$ are orthogonal for \mathbf{H} : $\mathbf{h}_i\mathbf{h}_j^{\dagger} = \mathbf{h}_i \cdot \mathbf{h}_j = 0, \forall i \neq j$
- Inner (dot is used here) product property of Hermitian matrix:

$$\mathbf{a} \cdot \mathbf{H} \mathbf{b} = \mathbf{H} \mathbf{a} \cdot \mathbf{b}$$
 $\mathbf{a} (\mathbf{H} \mathbf{b})^{\dagger} = (\mathbf{H} \mathbf{a})^{\dagger} \mathbf{b}$

• Eigenvector Definition:

$$\mathbf{H}\mathbf{x} = \lambda \mathbf{x}$$

41

Eigenvalues of Hermitian ${f H}$ are Real

• Eigenvector Definition:

$$\mathbf{H}\mathbf{x} = \lambda \mathbf{x}$$

• Multiply both sides by adjoint of eigenvector:

$$\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x} = \mathbf{x}^{\dagger}\lambda\mathbf{x}$$

• Eigenvector Definition:

$$\mathbf{H}\mathbf{x} = \lambda \mathbf{x}$$

• Multiply both sides by adjoint of eigenvector:

$$\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x} = \mathbf{x}^{\dagger}\lambda\mathbf{x}$$

Scaling property:

$$\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x} = \lambda \big(\mathbf{x}^{\dagger}\mathbf{x}\big)$$

43

Eigenvalues of Hermitian H are Real

• Eigenvector Definition:

$$\mathbf{H}\mathbf{x} = \lambda \mathbf{x}$$

• Multiply both sides by adjoint of eigenvector:

$$\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x} = \mathbf{x}^{\dagger}\lambda\mathbf{x}$$

• Scaling property:

$$\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x} = \lambda(\mathbf{x}^{\dagger}\mathbf{x})$$

• Recognizing the dot product yields norm:

$$\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x} = \lambda ||\mathbf{x}||$$

• Recognizing the dot product yields norm:

$$\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x} = \lambda \|\mathbf{x}\|$$

• Take adjoint of both sides of this equation:

$$\left(\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x}\right)^{\dagger} = (\lambda \|\mathbf{x}\|)^{\dagger}$$

45

Eigenvalues of Hermitian H are Real

• Recognizing the dot product yields norm:

$$\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x} = \lambda \|\mathbf{x}\|$$

• Take adjoint of both sides of this equation:

$$\left(\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x}\right)^{\dagger} = (\lambda \|\mathbf{x}\|)^{\dagger}$$

$$(\mathbf{x})^{\dagger}\mathbf{H}^{\dagger}(\mathbf{x}^{\dagger})^{\dagger} = \lambda^* \|\mathbf{x}\|^*$$

• Recognizing the dot product yields norm:

$$\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x} = \lambda \|\mathbf{x}\|$$

• Take adjoint of both sides of this equation:

$$\left(\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x}\right)^{\dagger} = (\lambda \|\mathbf{x}\|)^{\dagger}$$

$$(\mathbf{x})^{\dagger}\mathbf{H}^{\dagger}(\mathbf{x}^{\dagger})^{\dagger} = \lambda^* ||\mathbf{x}||^*$$

• Norm is real since $\mathbf{x}^{\dagger}\mathbf{x} \in \mathbb{R}$:

$$(\mathbf{x})^{\dagger}\mathbf{H}^{\dagger}(\mathbf{x}^{\dagger})^{\dagger} = \lambda^* \|\mathbf{x}\|$$

47

Eigenvalues of Hermitian H are Real

• Norm is real since $\mathbf{x}^{\dagger}\mathbf{x} \in \mathbb{R}$:

$$(\mathbf{x})^{\dagger}\mathbf{H}^{\dagger}(\mathbf{x}^{\dagger})^{\dagger} = \lambda^* \|\mathbf{x}\|$$

• Since **H** is Hermitian, $\mathbf{H}^{\dagger} = \mathbf{H}$:

$$(\mathbf{x})^{\dagger}\mathbf{H}(\mathbf{x}^{\dagger})^{\dagger} = \lambda^* ||\mathbf{x}||$$

• Norm is real since $\mathbf{x}^{\dagger}\mathbf{x} \in \mathbb{R}$:

$$(\mathbf{x})^{\dagger}\mathbf{H}^{\dagger}(\mathbf{x}^{\dagger})^{\dagger} = \lambda^* \|\mathbf{x}\|$$

• Since **H** is Hermitian, $\mathbf{H}^{\dagger} = \mathbf{H}$:

$$(\mathbf{x})^{\dagger} \mathbf{H} (\mathbf{x}^{\dagger})^{\dagger} = \lambda^* ||\mathbf{x}||$$
$$\mathbf{x}^{\dagger} \mathbf{H} \mathbf{x} = \lambda^* ||\mathbf{x}||$$
(1)

49

Eigenvalues of Hermitian H are Real

• Norm is real since $\mathbf{x}^{\dagger}\mathbf{x} \in \mathbb{R}$:

$$(\mathbf{x})^{\dagger}\mathbf{H}^{\dagger}(\mathbf{x}^{\dagger})^{\dagger} = \lambda^* \|\mathbf{x}\|$$

• Since **H** is Hermitian, $\mathbf{H}^{\dagger} = \mathbf{H}$:

$$(\mathbf{x})^{\dagger} \mathbf{H} (\mathbf{x}^{\dagger})^{\dagger} = \lambda^* ||\mathbf{x}||$$
$$\mathbf{x}^{\dagger} \mathbf{H} \mathbf{x} = \lambda^* ||\mathbf{x}||$$
(1)

• Recognize Definition of Eigenvector in LHS:

$$\mathbf{x}^{\dagger}(\mathbf{H}\mathbf{x}) = \mathbf{x}^{\dagger}(\lambda \mathbf{x}) = \lambda \mathbf{x}^{\dagger}\mathbf{x} = \lambda ||\mathbf{x}||$$
 (2)

• Norm is real since $\mathbf{x}^{\dagger}\mathbf{x} \in \mathbb{R}$:

$$(\mathbf{x})^{\dagger}\mathbf{H}^{\dagger}(\mathbf{x}^{\dagger})^{\dagger} = \lambda^* \|\mathbf{x}\|$$

• Since **H** is Hermitian, $\mathbf{H}^{\dagger} = \mathbf{H}$:

$$(\mathbf{x})^{\dagger} \mathbf{H} (\mathbf{x}^{\dagger})^{\dagger} = \lambda^* ||\mathbf{x}||$$
$$\mathbf{x}^{\dagger} \mathbf{H} \mathbf{x} = \lambda^* ||\mathbf{x}||$$
(1)

• Recognize Definition of Eigenvector in LHS:

$$\mathbf{x}^{\dagger}(\mathbf{H}\mathbf{x}) = \mathbf{x}^{\dagger}(\lambda \mathbf{x}) = \lambda \mathbf{x}^{\dagger}\mathbf{x} = \lambda ||\mathbf{x}||$$
 (2)

• Equating Equations (1) and (2):

$$\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x} = \lambda^* ||\mathbf{x}|| = \lambda ||\mathbf{x}||$$

51

Eigenvalues of Hermitian H are Real

• Equating Equations (1) and (2):

$$\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x} = \lambda^* ||\mathbf{x}|| = \lambda ||\mathbf{x}||$$

• For non-trivial case, $||\mathbf{x}|| > 0$. Divide both sides of $\lambda^* ||\mathbf{x}|| = \lambda ||\mathbf{x}||$ by $||\mathbf{x}||$:

• Equating Equations (1) and (2):

$$\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x} = \lambda^* ||\mathbf{x}|| = \lambda ||\mathbf{x}||$$

• For non-trivial case, $\|\mathbf{x}\| > 0$. Divide both sides of $\lambda^* \|\mathbf{x}\| = \lambda \|\mathbf{x}\|$ by $\|\mathbf{x}\|$:

$$\lambda^* = \lambda$$

53

Eigenvalues of Hermitian H are Real

• Equating Equations (1) and (2):

$$\mathbf{x}^{\dagger}\mathbf{H}\mathbf{x} = \lambda^* ||\mathbf{x}|| = \lambda ||\mathbf{x}||$$

• For non-trivial case, $\|\mathbf{x}\| > 0$. Divide both sides of $\lambda^* \|\mathbf{x}\| = \lambda \|\mathbf{x}\|$ by $\|\mathbf{x}\|$:

$$\lambda^* = \lambda$$

• This can only hold if the eigenvalues are real.

Unitary Matrices

- Consider matrix, U, that is Unitary
 - Unitary means that the conjugate transpose of \mathbf{U} is its own inverse (\mathbf{U} is may or may not be Hermitian)

$$\mathbf{U}^{-1} = \mathbf{U}^{\dagger}$$

- Thus, unitaries are normal matrices

$$UU^{\dagger} = U^{\dagger}U = I$$

- Property giving the name "unitary:"

$$\det(\mathbf{U}) = |\mathbf{U}| = 1$$

- Colum/Row vectors are Orthonormal
- Matrix exponential of a Hermitian matrix, $\hat{\mathbf{H}}$ is unitary: $\mathbf{I} \hat{\mathbf{J}} = e^{i\hat{\mathbf{H}}}$

$$\mathbf{U}^{\dagger} = e^{-i\widehat{\mathbf{H}}^{\dagger}} = e^{-i\widehat{\mathbf{H}}}$$

$$\mathbf{U}\mathbf{U}^{\dagger} = (e^{i\widehat{\mathbf{H}}})(e^{-i\widehat{\mathbf{H}}}) = \mathbf{I}$$

55

Unitary Matrices

• Consider matrix, U, that is Unitary

$$\mathbf{U}^{-1} = \mathbf{U}^{\dagger} \quad \mathbf{U}\mathbf{U}^{\dagger} = \mathbf{U}^{\dagger}\mathbf{U} = \mathbf{I} \quad \det(\mathbf{U}) = |\mathbf{U}| = 1$$

- Colum/Row vectors are Orthonormal
- A unitary, U, \underline{can} be formed as the matrix exponential of a Hermitian matrix, \hat{H} :

$$U = e^{iH}$$

- U may also be Hermitian when the matrix exponent of a Hermitian matrix is also a Hermitian matrix
 - Eigenvalues lie on unit circle, eigenvalue magnitudes are 1; n roots of Unity in complex plane

Matrix Exponentiation Identities

 In general, a power series for an n×n real/complex matrix:

$$e^{\mathbf{A}} = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^k$$

• Special case when **A** is Hermitian/Unitary and $\mathbf{A}\mathbf{A} = \mathbf{A}^2 = \mathbf{I}$ and β is a real number:

$$e^{\beta \mathbf{A}} = \sum_{k=0}^{\infty} \frac{(\boldsymbol{\beta})^k}{k!} \mathbf{A}^k$$
 $e^{\beta \mathbf{A}} = \cosh(\boldsymbol{\beta}) \mathbf{I} + \sinh(\boldsymbol{\beta}) \mathbf{A}$

$$e^{i\boldsymbol{\beta}\mathbf{A}} = \sum_{k=0}^{\infty} \frac{\left(i\boldsymbol{\beta}\right)^k}{k!} \mathbf{A}^k$$
 $e^{i\boldsymbol{\beta}\mathbf{A}} = \cos(\boldsymbol{\beta}) \mathbf{I} + i\sin(\boldsymbol{\beta}) \mathbf{A}$

57

Matrix Exponentiation: with Real Scalar

- In general, a power series for an $n \times n$ real/complex matrix: $e^{\beta A} = \sum_{k=0}^{\infty} \frac{(\beta)^k}{k!} A^k$
- Special case when \mathbf{A} is Hermitian and $\mathbf{A}\mathbf{A}=\mathbf{A}^2=\mathbf{I}$ and $\boldsymbol{\beta}$ is a real number
- Expanding according to power series:

$$e^{\beta \mathbf{A}} = \sum_{k=0}^{\infty} \frac{\left(\boldsymbol{\beta}\right)^{k}}{k!} \mathbf{A}^{k} = \mathbf{I} + \boldsymbol{\beta} \mathbf{A} + \frac{\boldsymbol{\beta}^{2}}{2!} \mathbf{I} + \frac{\boldsymbol{\beta}^{3}}{3!} \mathbf{A} + \cdots$$
$$= \left(1 + \frac{\boldsymbol{\beta}^{2}}{2!} + \frac{\boldsymbol{\beta}^{4}}{4!} + \cdots\right) \mathbf{I} + \left(\boldsymbol{\beta} + \frac{\boldsymbol{\beta}^{3}}{3!} + \frac{\boldsymbol{\beta}^{5}}{5!} + \cdots\right) \mathbf{A}$$

Matrix Exponentiation: with Real Scalar (cont.)

$$e^{\boldsymbol{\beta}\mathbf{A}} = \sum_{k=0}^{\infty} \frac{\left(\boldsymbol{\beta}\right)^k}{k!} \mathbf{A}^k = \mathbf{I} + \boldsymbol{\beta}\mathbf{A} + \frac{\boldsymbol{\beta}^2}{2!} \mathbf{I} + \frac{\boldsymbol{\beta}^3}{3!} \mathbf{A} + \cdots$$
$$= \left(1 + \frac{\boldsymbol{\beta}^2}{2!} + \frac{\boldsymbol{\beta}^4}{4!} + \cdots\right) \mathbf{I} + \left(\boldsymbol{\beta} + \frac{\boldsymbol{\beta}^3}{3!} + \frac{\boldsymbol{\beta}^5}{5!} + \cdots\right) \mathbf{A}$$

Power Series for an Exponential of Real Scalar, β :

$$e^{\beta} = \sum_{k=0}^{\infty} \frac{\beta^k}{k!} = 1 + \frac{\beta}{1!} + \frac{\beta^2}{2!} + \frac{\beta^3}{3!} + \dots + \frac{\beta^n}{n!} + \dots$$

$$\stackrel{\sim}{} \left(-\beta \right)^k \qquad \beta \qquad \beta^2 \qquad \beta^3 \qquad \beta^3 \qquad \beta^4 \qquad$$

$$e^{-\beta} = \sum_{k=0}^{\infty} \frac{(-\beta)^k}{k!} = 1 - \frac{\beta}{1!} + \frac{\beta^2}{2!} - \frac{\beta^3}{3!} + \dots + (-1)^n \frac{\beta^n}{n!} + \dots$$

Definition hyperbolic cosine of Real Scalar, β :

$$\cosh(\boldsymbol{\beta}) = \frac{e^{\boldsymbol{\beta}} + e^{-\boldsymbol{\beta}}}{2} = \frac{1}{2} \left(1 + \frac{\boldsymbol{\beta}}{1!} + \frac{\boldsymbol{\beta}^2}{2!} + \frac{\boldsymbol{\beta}^3}{3!} + \dots + \frac{\boldsymbol{\beta}^n}{n!} + \dots \right) + \frac{1}{2} \left(1 - \frac{\boldsymbol{\beta}}{1!} + \frac{\boldsymbol{\beta}^2}{2!} - \frac{\boldsymbol{\beta}^3}{3!} + \dots + \left(-1 \right)^n \frac{\boldsymbol{\beta}^n}{n!} + \dots \right)$$

$$\frac{e^{\boldsymbol{\beta}} + e^{-\boldsymbol{\beta}}}{2} = \left(1 + \frac{\boldsymbol{\beta}^2}{2!} + \frac{\boldsymbol{\beta}^4}{4!} + \dots \right)$$

59

Matrix Exponentiation: with Real Scalar (cont.)

$$e^{\boldsymbol{\beta}\mathbf{A}} = \sum_{k=0}^{\infty} \frac{\left(\boldsymbol{\beta}\right)^{k}}{k!} \mathbf{A}^{k} = \mathbf{I} + \boldsymbol{\beta}\mathbf{A} + \frac{\boldsymbol{\beta}^{2}}{2!} \mathbf{I} + \frac{\boldsymbol{\beta}^{3}}{3!} \mathbf{A} + \cdots$$
$$= \left(1 + \frac{\boldsymbol{\beta}^{2}}{2!} + \frac{\boldsymbol{\beta}^{4}}{4!} + \cdots\right) \mathbf{I} + \left(\boldsymbol{\beta} + \frac{\boldsymbol{\beta}^{3}}{3!} + \frac{\boldsymbol{\beta}^{5}}{5!} + \cdots\right) \mathbf{A}$$

Definition hyperbolic cosine of Real Scalar, β :

$$\cosh(\boldsymbol{\beta}) = \frac{e^{\boldsymbol{\beta}} + e^{-\boldsymbol{\beta}}}{2} = \frac{1}{2} \left(1 + \frac{\boldsymbol{\beta}}{1!} + \frac{\boldsymbol{\beta}^2}{2!} + \frac{\boldsymbol{\beta}^3}{3!} + \dots + \frac{\boldsymbol{\beta}^n}{n!} + \dots \right) + \frac{1}{2} \left(1 - \frac{\boldsymbol{\beta}}{1!} + \frac{\boldsymbol{\beta}^2}{2!} - \frac{\boldsymbol{\beta}^3}{3!} + \dots + \left(-1 \right)^n \frac{\boldsymbol{\beta}^n}{n!} + \dots \right)$$

$$\frac{e^{\boldsymbol{\beta}} + e^{-\boldsymbol{\beta}}}{2} = \left(1 + \frac{\boldsymbol{\beta}^2}{2!} + \frac{\boldsymbol{\beta}^4}{4!} + \dots \right)$$

Definition hyperbolic sine of Real Scalar, β :

$$\sinh(\boldsymbol{\beta}) = \frac{e^{\boldsymbol{\beta}} - e^{-\boldsymbol{\beta}}}{2} = \left(1 + \frac{\boldsymbol{\beta}}{1!} + \frac{\boldsymbol{\beta}^2}{2!} + \frac{\boldsymbol{\beta}^3}{3!} + \dots + \frac{\boldsymbol{\beta}^n}{n!} + \dots\right) - \left(1 - \frac{\boldsymbol{\beta}}{1!} + \frac{\boldsymbol{\beta}^2}{2!} - \frac{\boldsymbol{\beta}^3}{3!} + \dots + \left(-1\right)^n \frac{\boldsymbol{\beta}^n}{n!} + \dots\right)$$

$$\frac{e^{\boldsymbol{\beta}} - e^{-\boldsymbol{\beta}}}{2} = \left(\frac{\boldsymbol{\beta}}{1!} + \frac{\boldsymbol{\beta}^3}{3!} + \frac{\boldsymbol{\beta}^5}{5!} + \dots\right)$$

Matrix Exponentiation: with Real Scalar (cont.)

$$e^{\beta \mathbf{A}} = \sum_{k=0}^{\infty} \frac{\left(\boldsymbol{\beta}\right)^{k}}{k!} \mathbf{A}^{k} = \mathbf{I} + \boldsymbol{\beta} \mathbf{A} + \frac{\boldsymbol{\beta}^{2}}{2!} \mathbf{I} + \frac{\boldsymbol{\beta}^{3}}{3!} \mathbf{A} + \cdots$$
$$= \left(1 + \frac{\boldsymbol{\beta}^{2}}{2!} + \frac{\boldsymbol{\beta}^{4}}{4!} + \cdots\right) \mathbf{I} + \left(\boldsymbol{\beta} + \frac{\boldsymbol{\beta}^{3}}{3!} + \frac{\boldsymbol{\beta}^{5}}{5!} + \cdots\right) \mathbf{A}$$

Definition hyperbolic cosine of Real Scalar, β :

$$\cosh(\boldsymbol{\beta}) = \frac{e^{\boldsymbol{\beta}} + e^{-\boldsymbol{\beta}}}{2} = \frac{1}{2} \left(1 + \frac{\boldsymbol{\beta}}{1!} + \frac{\boldsymbol{\beta}^2}{2!} + \frac{\boldsymbol{\beta}^3}{3!} + \dots + \frac{\boldsymbol{\beta}^n}{n!} + \dots \right) + \frac{1}{2} \left(1 - \frac{\boldsymbol{\beta}}{1!} + \frac{\boldsymbol{\beta}^2}{2!} - \frac{\boldsymbol{\beta}^3}{3!} + \dots + \left(-1 \right)^n \frac{\boldsymbol{\beta}^n}{n!} + \dots \right)$$

$$\frac{e^{\boldsymbol{\beta}} + e^{-\boldsymbol{\beta}}}{2} = \left(1 + \frac{\boldsymbol{\beta}^2}{2!} + \frac{\boldsymbol{\beta}^4}{4!} + \dots \right)$$

Definition hyperbolic sine of Real Scalar, β :

$$\sinh(\boldsymbol{\beta}) = \frac{e^{\boldsymbol{\beta}} - e^{-\boldsymbol{\beta}}}{2} = \left(1 + \frac{\boldsymbol{\beta}}{1!} + \frac{\boldsymbol{\beta}^{2}}{2!} + \frac{\boldsymbol{\beta}^{3}}{3!} + \dots + \frac{\boldsymbol{\beta}^{n}}{n!} + \dots\right) - \left(1 - \frac{\boldsymbol{\beta}}{1!} + \frac{\boldsymbol{\beta}^{2}}{2!} - \frac{\boldsymbol{\beta}^{3}}{3!} + \dots + \left(-1\right)^{n} \frac{\boldsymbol{\beta}^{n}}{n!} + \dots\right)$$

$$\frac{e^{\boldsymbol{\beta}} - e^{-\boldsymbol{\beta}}}{2} = \left(\frac{\boldsymbol{\beta}}{1!} + \frac{\boldsymbol{\beta}^{3}}{3!} + \frac{\boldsymbol{\beta}^{5}}{5!} + \dots\right)$$

61

Matrix Exponentiation: with Real Scalar (cont.)

$$e^{\boldsymbol{\beta}\mathbf{A}} = \sum_{k=0}^{\infty} \frac{\left(\boldsymbol{\beta}\right)^{k}}{k!} \mathbf{A}^{k} = \mathbf{I} + \boldsymbol{\beta}\mathbf{A} + \frac{\boldsymbol{\beta}^{2}}{2!} \mathbf{I} + \frac{\boldsymbol{\beta}^{3}}{3!} \mathbf{A} + \cdots$$
$$= \left(1 + \frac{\boldsymbol{\beta}^{2}}{2!} + \frac{\boldsymbol{\beta}^{4}}{4!} + \cdots\right) \mathbf{I} + \left(\boldsymbol{\beta} + \frac{\boldsymbol{\beta}^{3}}{3!} + \frac{\boldsymbol{\beta}^{5}}{5!} + \cdots\right) \mathbf{A}$$

Substituting hyperbolic cosine, sine of β into above:

$$e^{\beta \mathbf{A}} = \cosh(\beta) \mathbf{I} + \sinh(\beta) \mathbf{A} \quad (QED)$$

(review) Euler's Identity and Series Definitions

https://www.youtube.com/watch?v=sKtloBAuP74 (14:30)

63

Matrix Exponentiation: complex scalar

• Previous result: $e^{i\beta A} = \sum_{k=0}^{\infty} \frac{\left(i\beta\right)^k}{k!} A^k$

$$e^{\beta \mathbf{A}} = \cosh(\beta)\mathbf{I} + \sinh(\beta)\mathbf{A}$$

• Changing argument from real, β , to complex, $i\beta$

$$\sinh(i\boldsymbol{\beta}) = \frac{1}{2} \left(e^{i\boldsymbol{\beta}} - e^{-i\boldsymbol{\beta}} \right) \qquad \cosh(i\boldsymbol{\beta}) = \frac{1}{2} \left(e^{i\boldsymbol{\beta}} + e^{-i\boldsymbol{\beta}} \right)$$

$$e^{i\boldsymbol{\beta}} = \cos(\boldsymbol{\beta}) + i\sin(\boldsymbol{\beta}) \qquad e^{-i\boldsymbol{\beta}} = \cos(\boldsymbol{\beta}) - i\sin(\boldsymbol{\beta})$$

$$\sinh(i\boldsymbol{\beta}) = \frac{1}{2} \left[\cos(\boldsymbol{\beta}) + i\sin(\boldsymbol{\beta}) - \cos(\boldsymbol{\beta}) + i\sin(\boldsymbol{\beta}) \right] = i\sin(\boldsymbol{\beta})$$

$$\cosh(i\boldsymbol{\beta}) = \frac{1}{2} \left[\cos(\boldsymbol{\beta}) + i\sin(\boldsymbol{\beta}) + \cos(\boldsymbol{\beta}) - i\sin(\boldsymbol{\beta}) \right] = \cos(\boldsymbol{\beta})$$

$$\therefore e^{i\boldsymbol{\beta}A} = \cosh(i\boldsymbol{\beta})\mathbf{I} + \sinh(i\boldsymbol{\beta})\mathbf{A} = \cos(\boldsymbol{\beta})\mathbf{I} + i\sin(\boldsymbol{\beta})\mathbf{A} \quad (QED)$$

• Let \mathbf{a}_i represent an eigenvector and λ_i represent the corresponding eigenvalue of \mathbf{U}

$$\mathbf{U}\mathbf{a}_{i} = \boldsymbol{\lambda}_{i}\mathbf{a}_{i}$$

65

Eigenvalues of a Unitary Matrix have unity magnitude

- Let \mathbf{a}_i represent an eigenvector and λ_i represent the corresponding eigenvalue of U

$$\mathbf{U}\mathbf{a}_{i} = \boldsymbol{\lambda}_{i}\mathbf{a}_{i}$$

• Taking the adjoint of both sides:

$$\left(\mathbf{U}\mathbf{a}_{i}\right)^{\dagger} = \left(\boldsymbol{\lambda}_{i}\mathbf{a}_{i}\right)^{\dagger}$$

• Let \mathbf{a}_i represent an eigenvector and λ_i represent the corresponding eigenvalue of \mathbf{U}

 $\mathbf{U}\mathbf{a}_{i} = \boldsymbol{\lambda}_{i}\mathbf{a}_{i}$

• Taking the adjoint of both sides:

$$(\mathbf{U}\mathbf{a}_{i})^{\dagger} = (\boldsymbol{\lambda}_{i}\mathbf{a}_{i})^{\dagger}$$

$$\mathbf{a}_{i}^{\dagger}\mathbf{U}^{\dagger} = \boldsymbol{\lambda}_{i}^{*}\mathbf{a}_{i}^{\dagger}$$

67

Eigenvalues of a Unitary Matrix have unity magnitude

• Let \mathbf{a}_i represent an eigenvector and λ_i represent the corresponding eigenvalue of \mathbf{U}

$$\mathbf{U}\mathbf{a}_{i} = \boldsymbol{\lambda}_{i}\mathbf{a}_{i}$$

• Taking the adjoint of both sides:

$$\left(\mathbf{U} \mathbf{a}_{i} \right)^{\dagger} = \left(\boldsymbol{\lambda}_{i} \mathbf{a}_{i} \right)^{\dagger}$$

$$\mathbf{a}_{i}^{\dagger} \mathbf{U}^{\dagger} = \boldsymbol{\lambda}_{i}^{*} \mathbf{a}_{i}^{\dagger}$$

 Multiply each side of previous equation with each side of top equation:

$$\left(\mathbf{a}_{i}^{\dagger}\mathbf{U}^{\dagger}\right)\left(\mathbf{U}\mathbf{a}_{i}\right) = \left(\boldsymbol{\lambda}_{i}^{*}\mathbf{a}_{i}^{\dagger}\right)\left(\boldsymbol{\lambda}_{i}\mathbf{a}_{i}\right)$$

• Let \mathbf{a}_i represent an eigenvector and λ_i represent the corresponding eigenvalue of \mathbf{U}

$$\mathbf{U}\mathbf{a}_{i} = \boldsymbol{\lambda}_{i}\mathbf{a}_{i}$$

Taking the adjoint of both sides:

$$\left(\mathbf{U} \mathbf{a}_{i} \right)^{\dagger} = \left(\boldsymbol{\lambda}_{i} \mathbf{a}_{i} \right)^{\dagger}$$

$$\mathbf{a}_{i}^{\dagger} \mathbf{U}^{\dagger} = \boldsymbol{\lambda}_{i}^{*} \mathbf{a}_{i}^{\dagger}$$

 Multiply each side of previous equation with each side of top equation:

$$(\mathbf{a}_{i}^{\dagger}\mathbf{U}^{\dagger})(\mathbf{U}\mathbf{a}_{i}) = (\boldsymbol{\lambda}_{i}^{*}\mathbf{a}_{i}^{\dagger})(\boldsymbol{\lambda}_{i}\mathbf{a}_{i})$$

$$\mathbf{a}_{i}^{\dagger}(\mathbf{U}^{\dagger}\mathbf{U})\mathbf{a}_{i} = \boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i}$$

69

Eigenvalues of a Unitary Matrix have unity magnitude

• Let \mathbf{a}_i represent an eigenvector and λ_i represent the corresponding eigenvalue of \mathbf{U}

$$\mathbf{U}\mathbf{a}_{i} = \boldsymbol{\lambda}_{i}\mathbf{a}_{i}$$

• Taking the adjoint of both sides:

$$\left(\mathbf{U} \mathbf{a}_{i} \right)^{\dagger} = \left(\boldsymbol{\lambda}_{i} \mathbf{a}_{i} \right)^{\dagger}$$

$$\mathbf{a}_{i}^{\dagger} \mathbf{U}^{\dagger} = \boldsymbol{\lambda}_{i}^{*} \mathbf{a}_{i}^{\dagger}$$

• Multiply each side of previous equation with each side of top equation:

$$(\mathbf{a}_{i}^{\dagger}\mathbf{U}^{\dagger})(\mathbf{U}\mathbf{a}_{i}) = (\boldsymbol{\lambda}_{i}^{*}\mathbf{a}_{i}^{\dagger})(\boldsymbol{\lambda}_{i}\mathbf{a}_{i})$$

$$\mathbf{a}_{i}^{\dagger}(\mathbf{U}^{\dagger}\mathbf{U})\mathbf{a}_{i} = \boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i}$$

$$\mathbf{a}_{i}^{\dagger}(\mathbf{I})\mathbf{a}_{i} = \boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i}$$

• Let \mathbf{a}_i represent an eigenvector and λ_i represent the corresponding eigenvalue of \mathbf{U}

$$\mathbf{U}\mathbf{a}_{i} = \boldsymbol{\lambda}_{i}\mathbf{a}_{i}$$

Taking the adjoint of both sides:

$$\left(\mathbf{U} \mathbf{a}_{i} \right)^{\dagger} = \left(\boldsymbol{\lambda}_{i} \mathbf{a}_{i} \right)^{\dagger}$$

$$\mathbf{a}_{i}^{\dagger} \mathbf{U}^{\dagger} = \boldsymbol{\lambda}_{i}^{*} \mathbf{a}_{i}^{\dagger}$$

 Multiply each side of previous equation with each side of top equation:

$$\begin{aligned} & \left(\mathbf{a}_{i}^{\dagger}\mathbf{U}^{\dagger}\right)\left(\mathbf{U}\mathbf{a}_{i}\right) = \left(\boldsymbol{\lambda}_{i}^{*}\mathbf{a}_{i}^{\dagger}\right)\left(\boldsymbol{\lambda}_{i}\mathbf{a}_{i}\right) \\ & \mathbf{a}_{i}^{\dagger}\left(\mathbf{U}^{\dagger}\mathbf{U}\right)\mathbf{a}_{i} = \boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} \\ & \mathbf{a}_{i}^{\dagger}\left(\mathbf{I}\right)\mathbf{a}_{i} = \boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} \\ & \mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = \left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\right)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} \end{aligned}$$

71

Eigenvalues of a Unitary Matrix have unity magnitude (cont.)

• Because:

$$\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = \left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\right)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i}$$
$$\left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\right)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} - \mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = 0$$

Eigenvalues of a Unitary Matrix have unity magnitude (cont.)

• Because:

$$\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = \left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\right)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i}$$
$$\left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\right)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} - \mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = 0$$
$$\left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i} - 1\right)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = 0$$

73

Eigenvalues of a Unitary Matrix have unity magnitude (cont.)

• Because:

$$\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = (\lambda_{i}^{*}\lambda_{i})\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i}$$
$$(\lambda_{i}^{*}\lambda_{i})\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} - \mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = 0$$
$$(\lambda_{i}^{*}\lambda_{i} - 1)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = 0$$

 $(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}-1)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i}=0$ • We know that the inner product of an eigenvector with itself (square of its norm) cannot be 0, since \mathbf{U} is full rank, thus

 $\left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\right)=1$

Eigenvalues of a Unitary Matrix have unity magnitude (cont.)

• Because:

$$\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = \left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\right)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i}$$
$$\left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\right)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} - \mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = 0$$
$$\left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i} - 1\right)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = 0$$

 $(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}-1)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i}=0$ • We know that the inner product of an eigenvector with itself (square of its norm) cannot be 0, since \mathbf{U} is full rank, thus

 $\left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\right)=1$

• Taking the magnitude of each side:

$$\left|\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\right|=1$$

75

Eigenvalues of a Unitary Matrix have unity magnitude (cont.)

• Because:

$$\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = (\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i})\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i}$$
$$(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i})\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} - \mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = 0$$
$$(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i} - 1)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = 0$$

 $\left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\right)=1$

• Taking the magnitude of each side:

$$\begin{vmatrix} \boldsymbol{\lambda}_i^* \boldsymbol{\lambda}_i \end{vmatrix} = 1$$
$$\begin{vmatrix} \boldsymbol{\lambda}_i^* | |\boldsymbol{\lambda}_i| = 1$$

Eigenvalues of a Unitary Matrix have unity magnitude (cont.)

• Because:

$$\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = \left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\right)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i}$$
$$\left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\right)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} - \mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = 0$$
$$\left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i} - 1\right)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i} = 0$$

 $(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}-1)\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i}=0$ • We know that the inner product of an eigenvector with itself (square of its norm) cannot be 0, since \mathbf{U} is full rank, thus

 $\left(\boldsymbol{\lambda}_{i}^{*}\boldsymbol{\lambda}_{i}\right)=1$

• Taking the magnitude of each side:

$$\begin{vmatrix} \boldsymbol{\lambda}_{i}^{*} \boldsymbol{\lambda}_{i} \end{vmatrix} = 1$$
$$\begin{vmatrix} \boldsymbol{\lambda}_{i}^{*} | |\boldsymbol{\lambda}_{i}| = 1$$
$$\therefore \quad |\boldsymbol{\lambda}_{i}^{*}| = |\boldsymbol{\lambda}_{i}| = 1 \quad (QED)$$

77

Eigenvalues of a Real-valued Unitary Matrix are Real

• Let \mathbf{a}_i represent an eigenvector and λ_i represent the corresponding eigenvalue of \mathbf{U}

$$\mathbf{U}\mathbf{a}_{i} = \boldsymbol{\lambda}_{i}\mathbf{a}_{i}$$

• Let \mathbf{a}_i represent an eigenvector and λ_i represent the corresponding eigenvalue of \boldsymbol{U}

$$\mathbf{U}\mathbf{a}_{i} = \lambda_{i}\mathbf{a}_{i}$$

• Taking the adjoint of both sides:

$$\left(\mathbf{U}\mathbf{a}_{i}\right)^{\dagger} = \left(\boldsymbol{\lambda}_{i}\mathbf{a}_{i}\right)^{\dagger}$$

79

Eigenvalues of a Real-valued Unitary Matrix are Real

• Let \mathbf{a}_i represent an eigenvector and λ_i represent the corresponding eigenvalue of U

$$\mathbf{U}\mathbf{a}_{i} = \boldsymbol{\lambda}_{i}\mathbf{a}_{i}$$

• Taking the adjoint of both sides:

$$\left(\mathbf{U}\mathbf{a}_{i}\right)^{\dagger} = \left(\boldsymbol{\lambda}_{i}\mathbf{a}_{i}\right)^{\dagger}$$

$$\mathbf{a}_{i}^{\dagger}\mathbf{U}^{\dagger}=\boldsymbol{\lambda}_{i}^{\ast}\mathbf{a}_{i}^{\dagger}$$

• Let \mathbf{a}_i represent an eigenvector and λ_i represent the corresponding eigenvalue of \mathbf{U}

$$\mathbf{U}\mathbf{a}_{i} = \lambda_{i}\mathbf{a}_{i}$$

• Taking the adjoint of both sides:

$$(\mathbf{U}\mathbf{a}_{i})^{\dagger} = (\boldsymbol{\lambda}_{i}\mathbf{a}_{i})^{\dagger}$$

$$\mathbf{a}_{i}^{\dagger}\mathbf{U}^{\dagger} = \boldsymbol{\lambda}_{i}^{*}\mathbf{a}_{i}^{\dagger}$$

 $\mathbf{a}_{i}^{\dagger}\mathbf{U}^{\dagger} = \boldsymbol{\lambda}_{i}^{*}\mathbf{a}_{i}^{\dagger}$ • Multiply both sides by \mathbf{a}_{i} :

$$\mathbf{a}_{i}^{\dagger}\mathbf{U}^{\dagger}\mathbf{a}_{i}=\boldsymbol{\lambda}_{i}^{\ast}\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i}$$

81

Eigenvalues of a Real-valued Unitary Matrix are Real

• Let ${f a}_i$ represent an eigenvector and ${f \lambda}_i$ represent the corresponding eigenvalue of ${f U}$

$$\mathbf{U}\mathbf{a}_{i} = \lambda_{i}\mathbf{a}_{i}$$

• Taking the adjoint of both sides:

$$\left(\mathbf{U} \mathbf{a}_{i} \right)^{\dagger} = \left(\boldsymbol{\lambda}_{i} \mathbf{a}_{i} \right)^{\dagger}$$

$$\mathbf{a}^{\dagger} \mathbf{U}^{\dagger} = \boldsymbol{\lambda}^{*} \mathbf{a}^{\dagger}$$

 $\mathbf{a}_i^{\dagger}\mathbf{U}^{\dagger} = \boldsymbol{\lambda}_i^*\mathbf{a}_i^{\dagger}$ • Multiply both sides by \mathbf{a}_i :

$$\mathbf{a}_{i}^{\dagger}\mathbf{U}^{\dagger}\mathbf{a}_{i} = \boldsymbol{\lambda}_{i}^{*}\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i}$$
$$\mathbf{a}_{i}^{\dagger}(\mathbf{U}^{\dagger}\mathbf{a}_{i}) = \boldsymbol{\lambda}_{i}^{*}(\mathbf{a}_{i} \cdot \mathbf{a}_{i})$$

$$\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{\ast} \left(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \right)$$

 $\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{*} \left(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \right)$ • Inner (dot) product of eigenvectors of unitary matrix, **U**, must be unity valued:

83

Eigenvalues of a Real-valued Unitary Matrix are Real (cont.)

$$\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{*} \left(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \right)$$

 $\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \boldsymbol{\lambda}_{i}^{*} \left(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \right)$ • Inner (dot) product of eigenvectors of unitary matrix, U, must be unity valued:

$$\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{\ast} \left(1 \right) = \lambda_{i}^{\ast}$$

$$\mathbf{a}_{i}^{\dagger}\left(\mathbf{U}^{\dagger}\mathbf{a}_{i}\right) = \boldsymbol{\lambda}_{i}^{\ast}\left(\mathbf{a}_{i} \cdot \mathbf{a}_{i}\right)$$

 $\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{*} \left(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \right)$ • Inner (dot) product of eigenvectors of unitary matrix, U, must be unity valued:

$$\mathbf{a}_{i}^{\dagger}\left(\mathbf{U}^{\dagger}\mathbf{a}_{i}\right) = \boldsymbol{\lambda}_{i}^{*}\left(1\right) = \boldsymbol{\lambda}_{i}^{*}$$

• When U is a real-valued unitary matrix:

85

Eigenvalues of a Real-valued Unitary Matrix are Real (cont.)

$$\mathbf{a}_{i}^{\dagger}\left(\mathbf{U}^{\dagger}\mathbf{a}_{i}\right) = \boldsymbol{\lambda}_{i}^{\ast}\left(\mathbf{a}_{i} \cdot \mathbf{a}_{i}\right)$$

 $\mathbf{a}_{i}^{\dagger} \Big(\mathbf{U}^{\dagger} \mathbf{a}_{i} \Big) = \boldsymbol{\lambda}_{i}^{*} \Big(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \Big)$ • Inner (dot) product of eigenvectors of unitary matrix, \mathbf{U} , must be unity valued:

 $\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{*} \left(1 \right) = \lambda_{i}^{*}$ • When \mathbf{U} is a real-valued unitary matrix:

$$\mathbf{U} = \mathbf{U}^{\dagger} \qquad \mathbf{a}_{i}^{\dagger} \left(\mathbf{U} \mathbf{a}_{i} \right) = \boldsymbol{\lambda}_{i}^{*}$$

$$\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{*} \left(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \right)$$

 $\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{*} \left(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \right)$ • Inner (dot) product of eigenvectors of unitary matrix, U, must be unity valued:

$$\mathbf{a}_{i}^{\dagger}\left(\mathbf{U}^{\dagger}\mathbf{a}_{i}\right) = \boldsymbol{\lambda}_{i}^{*}\left(1\right) = \boldsymbol{\lambda}_{i}^{*}$$

 \bullet When U is a real-valued unitary matrix:

$$\mathbf{U} = \mathbf{U}^{\dagger} \qquad \mathbf{a}_{i}^{\dagger} \left(\mathbf{U} \mathbf{a}_{i} \right) = \boldsymbol{\lambda}_{i}^{*}$$

· Quantity in parentheses is definition of eigenvector:

87

Eigenvalues of a Real-valued Unitary Matrix are Real (cont.)

$$\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{*} \left(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \right)$$

 $\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{*} \left(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \right)$ • Inner (dot) product of eigenvectors of unitary matrix, U, must be unity valued:

$$\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{\ast} \left(1 \right) = \lambda_{i}^{\ast}$$

• When \mathbf{U} is a real-valued unitary matrix: $\mathbf{U} = \mathbf{U}^{\dagger} \qquad \mathbf{a}_{i}^{\dagger} \left(\mathbf{U} \mathbf{a}_{i} \right) = \boldsymbol{\lambda}_{i}^{*}$

$$\mathbf{U} = \mathbf{U}^{\dagger} \qquad \mathbf{a}_{i}^{\dagger} \left(\mathbf{U} \mathbf{a}_{i} \right) = \boldsymbol{\lambda}_{i}^{*}$$

 Quantity in parentheses is definition of eigenvector: $\mathbf{a}_{i}^{\dagger}(\boldsymbol{\lambda}_{i}\mathbf{a}_{i}) = \boldsymbol{\lambda}_{i}^{*}$

$$\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{*} \left(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \right)$$

 $\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{*} \left(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \right)$ • Inner (dot) product of eigenvectors of unitary matrix, U, must be unity valued:

$$\mathbf{a}_{i}^{\dagger}\left(\mathbf{U}^{\dagger}\mathbf{a}_{i}\right) = \boldsymbol{\lambda}_{i}^{\ast}\left(1\right) = \boldsymbol{\lambda}_{i}^{\ast}$$

ullet When $oldsymbol{U}$ is a real-valued unitary matrix:

$$\mathbf{U} = \mathbf{U}^{\dagger} \qquad \mathbf{a}_{i}^{\dagger} \left(\mathbf{U} \mathbf{a}_{i} \right) = \boldsymbol{\lambda}_{i}^{*}$$

· Quantity in parentheses is definition of eigenvector:

$$\mathbf{a}_{i}^{\dagger} (\lambda_{i} \mathbf{a}_{i}) = \lambda_{i}^{*}$$
$$\lambda_{i} (\mathbf{a}_{i}^{\dagger} \mathbf{a}_{i}) = \lambda_{i}^{*}$$

89

Eigenvalues of a Real-valued Unitary Matrix are Real (cont.)

$$\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{*} \left(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \right)$$

 $\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{*} \left(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \right)$ • Inner (dot) product of eigenvectors of unitary matrix, U, must be unity valued:

$$\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{\ast} \left(1 \right) = \lambda_{i}^{\ast}$$

 \bullet When U is a real-valued unitary matrix:

$$\mathbf{U} = \mathbf{U}^{\dagger} \qquad \mathbf{a}_{i}^{\dagger} \left(\mathbf{U} \mathbf{a}_{i} \right) = \boldsymbol{\lambda}_{i}^{*}$$

 Quantity in parentheses is definition of $\mathbf{a}_{i}^{\dagger} (\boldsymbol{\lambda}_{i} \mathbf{a}_{i}) = \boldsymbol{\lambda}_{i}^{*}$ eigenvector:

$$\lambda_i(\mathbf{a}_i^{\dagger}\mathbf{a}_i) = \lambda_i^*$$

 $\lambda_i(\mathbf{a}_i^{\dagger}\mathbf{a}_i) = \lambda_i^*$

 $\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \boldsymbol{\lambda}_{i}^{*} \left(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \right)$ • Inner (dot) product of eigenvectors of unitary matrix, U, must be unity valued:

 $\mathbf{a}_{i}^{\dagger}(\mathbf{U}^{\dagger}\mathbf{a}_{i}) = \lambda_{i}^{*}(1) = \lambda_{i}^{*}$ • When \mathbf{U} is a real-valued unitary matrix:

 $\mathbf{a}_{i}^{\dagger}\left(\mathbf{U}\mathbf{a}_{i}\right) = \boldsymbol{\lambda}_{i}^{*}$ $\mathbf{U} = \mathbf{U}^{\dagger}$

 Quantity in parentheses is definition of eigenvector:

 $\mathbf{a}_{i}^{\dagger} \left(\boldsymbol{\lambda}_{i} \mathbf{a}_{i} \right) = \boldsymbol{\lambda}_{i}^{*}$ $\boldsymbol{\lambda}_{i} \left(\mathbf{a}_{i}^{\dagger} \mathbf{a}_{i} \right) = \boldsymbol{\lambda}_{i}^{*}$ $\lambda_{i}(1) = \lambda_{i}^{*}$ $\lambda_{i} = \lambda_{i}^{*}$

91

Eigenvalues of a Real-valued Unitary Matrix are Real (cont.)

- $\mathbf{a}_{i}^{\dagger} \left(\mathbf{U}^{\dagger} \mathbf{a}_{i} \right) = \lambda_{i}^{*} \left(\mathbf{a}_{i} \cdot \mathbf{a}_{i} \right)$ Inner (dot) product of eigenvectors of unitary matrix, U, must be unity valued:
- When U is a real-valued unitary matrix:

 $\mathbf{U} = \mathbf{U}^{\dagger} \qquad \mathbf{a}^{\dagger} \left(\mathbf{U} \mathbf{a}_{\cdot} \right) = \boldsymbol{\lambda}^{*}$ • Quantity in parentheses is definition of $\mathbf{a}_{i}^{\dagger} (\lambda_{i} \mathbf{a}_{i}) = \lambda_{i}^{*}$ eigenvector:

$$\lambda_{i}(\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i}) = \lambda_{i}^{*}$$
$$\lambda_{i}(1) = \lambda_{i}^{*}$$
$$\lambda_{i} = \lambda_{i}^{*}$$

: real-valued unitary matrix eigenvalues are real (QED)

Eigensystem Facts for Unitary matrix, U

- All Unitary matrices are also normal
 - May or may not be Hermitian
- All unitary matrices are full rank and thus have n distinct nontrivial eigenvectors that are orthogonal
- All eigenvalues are "roots of unity" meaning they lie on the unit circle in the complex plane
 - eigenvalue magnitude is unity
 - for real-valued U, eigenvalues are ± 1

93

Spectral Decomposition of Matrix

- Also known as the Eigendecomposition
- Recall that the Spectrum of an $n \times n$ Matrix, $\hat{\mathbf{A}}$, is its <u>set of eigenvalues</u>, $\{\lambda_i | i=1,n\}$
- The Spectral Decomposition holds for and Normal matrix, $\hat{A}\hat{A}^{\dagger}=\hat{A}^{\dagger}\hat{A}$, (includes all Hermitian and Unitary matrices are normal)
- Let $\hat{\mathbf{A}}$ be $n \times n$ Square Matrix with n Linearly Independent Eigenvectors, λ_i
- Spectral Decomposition allows us to Analyze/Represent Operators based on their Eigensystem

The Spectral Theorem

• The Spectral Theorem states:

$$\hat{\mathbf{A}} = \Lambda \mathbf{D} \Lambda^{-1}$$

- $\hat{\mathbf{A}} = \Lambda \mathbf{D} \Lambda^{-1}$ Λ is $n \times n$ Matrix with i^{th} Column Vector equivalent to the i^{th} Eigenvector, λ_i
- D is a Diagonal Matrix with Corresponding Eigenvalues λ_i to Eigenvectors λ_i
- Alternatively:

$$\hat{\mathbf{A}} = \sum_{i=1}^{n} \lambda_{i} \left(\mathbf{a}_{i} \otimes \mathbf{a}_{i}^{\dagger} \right) = \sum_{i=1}^{n} \lambda_{i} \left| a_{i} \right\rangle \left\langle a_{i} \right|$$

– where ⊗ denotes the "outer" or "tensor" or "Kronecker" operation

95

Spectral Theorem Example

• Consider an operator, X, (known as the Pauli-X operator in QM):

$$\mathbf{X} = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

$$\mathbf{X} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \mathbf{X} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 Computing the Eigensystem of X and Applying the Spectral Theorem yields the decomposition: $X = \Lambda D \Lambda^{-1}$

$$\mathbf{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Spectral Theorem Example (cont.)

• Spectral Decomposition of $X: X = \Lambda D \Lambda^{-1}$

$$\mathbf{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

• In QIS, Λ and Λ^{-1} are "Hadamard" operators, H, and D is the Pauli-Z operator, Z (for X only)

$$\mathbf{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \left(\frac{1}{\sqrt{2}}\right) \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \left(\frac{1}{\sqrt{2}}\right) \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$\mathbf{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\mathbf{X} = \mathbf{\Lambda} \mathbf{D} \mathbf{\Lambda}^{-1} = \mathbf{H} \mathbf{Z} \mathbf{H}$$

97

Matrix Operators

Matrix Operator

- Square Matrices can Represent a Transformation of an Element in a Vector Space to Another Element in that same Space
- When there is a Relationship between the two Vector Elements, Matrices can formed that perform Mapping in Accordance with that Relationship
- If the Relationship is a Mathematical "operation" then such Matrices are called "Operators"
 - sometimes denoted with a "hat" to emphasize they are operators
- Rich set of mathematics in Operator Theory

99

Matrix Operator Example

• Example: Relationship is to increment each component of a 2D vector, \mathbf{x} yielding vector \mathbf{x}_{+1} .

$$\mathbf{x}_{+1} = \hat{\mathbf{A}}\mathbf{x}$$

$$\begin{bmatrix} x_1 + 1 \\ x_2 + 1 \end{bmatrix} = \hat{\mathbf{A}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \hat{\mathbf{A}} = \begin{bmatrix} 1 & \frac{1}{x_2} \\ \frac{1}{x_1} & 1 \end{bmatrix}$$

• Numerical check: Let $\mathbf{x}^{T}=[\ 3\ 5\]$

$$\hat{\mathbf{A}} = \begin{bmatrix} 1 & \frac{1}{5} \\ \frac{1}{3} & 1 \end{bmatrix} \qquad \begin{bmatrix} 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{5} \\ \frac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

Linear Differential Equation System

- Consider a system of first-order differential equations of the form: $\frac{du_1(t)}{dt} = -u_1(t) + 2u_2(t) \qquad \frac{du_2(t)}{dt} = u_1(t) 2u_2(t)$
- System can be expressed as a matrix equation:

$$\frac{d\mathbf{u}(t)}{dt} = \hat{\mathbf{D}}\mathbf{u}(t) \quad \mathbf{u}(t) = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix} \quad \hat{\mathbf{D}} = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix} \\
\begin{bmatrix} \frac{du_1(t)}{dt} \\ \frac{du_2(t)}{dt} \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

ullet $\hat{\mathbf{D}}$ is a Differential Matrix Operator

101

Linear Differential Equation System

- General solution of this equation: $\frac{d\mathbf{u}(t)}{dt} = \hat{\mathbf{D}}\mathbf{u}(t)$
- Assuming that the $u_i(t)$ functions are in a linear form:

$$\mathbf{u}(t) = e^{\hat{\mathbf{D}}t}$$

- Thus, finding the operator is equivalent to solving the differential equation.
- In this case, $\frac{du_1(t)}{dt} = -u_1(t) + 2u_2(t) \qquad \frac{du_2(t)}{dt} = u_1(t) 2u_2(t)$
- Thus, $\hat{\mathbf{D}} = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix} \quad \mathbf{u}(t) = e^{\hat{\mathbf{D}}t} = e^{\begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix}t}$

Linear Differential Equation System

• Find eigensystem of the operator:

$$c(\lambda) = \lambda^2 + 3\lambda = \lambda(\lambda + 3), \quad \lambda_1 = 0, \lambda_1 = -3$$

• The solution has the form:

$$u_i(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

• We have the eigenvalues, find eigenvectors that satisfy:

$$\hat{\mathbf{D}}\mathbf{x}_1 = \mathbf{0}$$

$$\hat{\mathbf{D}}\mathbf{x}_2 = -3\mathbf{x}_2$$

$$\mathbf{x}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

- Given initial conditions, we can now solve for the constants in the solution.
- Assume: $\mathbf{u}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

103

Linear Differential Equation System

• With this eigensystem, the solution is of the form:

$$\lambda_1 = 0, \lambda_1 = -3$$
 $\mathbf{x}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $\mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

• The solution has the form:

$$\mathbf{u}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad u_i(0) = c_1 e^{0t} + c_2 e^{-3t}$$

$$\mathbf{u}(0) = c_1(1) \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 e^{-3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \Rightarrow c_1 = \frac{1}{3}, c_2 = \frac{1}{3}$$

$$\mathbf{u}(t) = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \frac{1}{3} e^{-3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Linear Differential Equation System

• Differential equation system and solution:

$$\frac{d\mathbf{u}(t)}{dt} = \hat{\mathbf{D}}\mathbf{u}(t) \quad \hat{\mathbf{D}} = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix} \qquad \mathbf{u}(t) = e^{\hat{\mathbf{D}}t}$$

• The solution has the form:

The solution has the form:
$$\mathbf{u}(t) = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \frac{1}{3} e^{-3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad \lim_{t \to \infty} \mathbf{u}(t) = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$$

- Eigenvalues of operator indicate:
 - 1) Stability, negative eigenvalues, need:

$$\mathbf{u}(t) \rightarrow 0, e^{\lambda_i t} \rightarrow 0, \operatorname{Re}[\lambda_i] < 0 \forall i$$

- 2) Steady State, $\exists \lambda_i = 0$, and $\text{Re} \left[\lambda_i \right] < 0 \forall (j \neq i)$
- 3) Instability if, $\exists \operatorname{Re} \left[\lambda_{i} \right] > 0$

105

Another Example

• Consider the set of scalar functions:

$$x_1 = \cos^2 t$$
 $x_2 = \sin^2 t$ $x_3 = \sin 2$

• Let the vectors **x** and **y** be defined as follows:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \qquad \qquad y_i = \frac{dx_i}{dt}$$

- This system can be described with a differential operator matrix as: $y = \hat{D}x$
- Let us determine the operator matrix, $\hat{\mathbf{D}}$

Finding the Operator

- First, we need to determine if we can express the y_i as LINEAR combinations of the x_i .
 - This would allow us to express the solution to the differential equations as linear functions:

$$\mathbf{y} = \hat{\mathbf{D}}\mathbf{x} \qquad \mathbf{y}(t) = e^{\hat{\mathbf{D}}t}$$

· Recall the chain rule:

$$\frac{df\left(g\left(t\right)\right)}{dt} = \left(\frac{df}{dg}\right)\left(\frac{dg}{dt}\right)$$

• Then:

$$y_1 = \frac{dx_1}{dt} = -2\cos t \sin t = -\sin(2t)$$

107

Finding the Operator (cont.)

• Then:

$$y_{1} = \frac{dx_{1}}{dt} = -2\cos t \sin t = -\sin(2t)$$

$$y_{2} = \frac{dx_{2}}{dt} = 2\cos t \sin t = \sin(2t)$$

$$y_{3} = \frac{dx_{3}}{dt} = 2\cos(2t) = \cos^{2} t - \sin^{2} t$$

Note that:

$$x_1 = \cos^2 t \qquad x_2 = \sin^2 t \qquad x_3 = \sin 2t$$

$$y_1 = -2\cos t \sin t = -\sin(2t) = -x_3$$

$$y_2 = 2\sin t \cos t = \sin(2t) = x_3$$

$$y_3 = 2\cos(2t) = \cos^2 t - \sin^2 t = x_1 - x_2$$

Finding the Operator (cont.)

 This means that there is the LINEAR relationship we are looking for since:

$$x_1 = \cos^2 t$$
 $x_2 = \sin^2 t$ $x_3 = \sin 2t$
 $y_1 = -x_3$ $y_2 = x_3$ $y_3 = x_1 - x_2$

• Finding these relationships allows to construct the operator as a matrix of constant values:

$$\hat{\mathbf{D}} = \begin{bmatrix} x_1 & x_2 & x_3 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

$$\mathbf{y} = \hat{\mathbf{D}}\mathbf{x} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} \cos^2 t \\ \sin^2 t \\ \sin(2t) \end{bmatrix} = \begin{bmatrix} -\sin(2t) \\ \sin(2t) \\ \cos^2 t - \sin^2 t \end{bmatrix} = \begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \\ \frac{dx_3}{dt} \end{bmatrix}$$

109

Finding the Operator (cont.)

We know that the solution of the differential equations is of the form of an exponential of the operator matrix multiplied by time:

$$\mathbf{y} = \hat{\mathbf{D}}\mathbf{x} \qquad \mathbf{y}(t) = e^{\hat{\mathbf{D}}t} \qquad \qquad \hat{\mathbf{D}} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

• Lets analyze the operator. By inspection, we see that the rank is 2.

$$\hat{\mathbf{D}}^2 = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

$$\widehat{\mathbf{D}}^3 = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & -2 \\ -2 & 2 & 0 \end{bmatrix} = (-2)\widehat{\mathbf{D}}$$

Finding the Solution

• The solution of this system is of the form:

$$y_i(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + c_3 e^{\lambda_3 t}$$

• Find the eigensystem of the operator.

$$\lambda_1 = 0, \lambda_2 = i\sqrt{2}, \lambda_3 = -i\sqrt{2}$$

• Thus, we see this system has a steady state since:

$$\exists \lambda_i = 0$$
, and $\text{Re}[\lambda_j] < 0 \forall (j \neq i)$

- The imaginary values indicate that the exponentials associated just revolve around the complex unit circle.
- Eigenvectors are:

$$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_{2} = \begin{bmatrix} i\sqrt{2} \\ -i\sqrt{2} \\ 2 \end{bmatrix}, \mathbf{v}_{3} = \begin{bmatrix} -i\sqrt{2} \\ i\sqrt{2} \\ 2 \end{bmatrix}$$

111

Finding the Solution (cont.)

• The eigensystem is of the form:

$$y_{i}(t) = c_{1}e^{\lambda_{1}t} + c_{2}e^{\lambda_{2}t} + c_{3}e^{\lambda_{3}t}$$

$$\lambda_{1} = 0, \lambda_{2} = i\sqrt{2}, \lambda_{3} = -i\sqrt{2}$$

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \mathbf{v}_{2} = \begin{bmatrix} i\sqrt{2}\\-i\sqrt{2}\\2 \end{bmatrix}, \mathbf{v}_{3} = \begin{bmatrix} -i\sqrt{2}\\i\sqrt{2}\\2 \end{bmatrix}$$

- We can find an explicit solution given initial conditions.
- Assume:

$$\mathbf{y}(t=0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{y}(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} e^{(0)t} + c_2 \begin{bmatrix} -i\sqrt{2} \\ i\sqrt{2} \\ 2 \end{bmatrix} e^{-i\sqrt{2}t} + c_3 \begin{bmatrix} i\sqrt{2} \\ -i\sqrt{2} \\ 2 \end{bmatrix} e^{i\sqrt{2}t}$$

Finding the Solution (cont.)

• Solve for constants c_1 , c_2 , c_3 by solving this set o linear equations:

$$\mathbf{y}(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} e^{(0)t} + c_2 \begin{bmatrix} -i\sqrt{2} \\ i\sqrt{2} \\ 2 \end{bmatrix} e^{-i\sqrt{2}t} + c_3 \begin{bmatrix} i\sqrt{2} \\ -i\sqrt{2} \\ 2 \end{bmatrix} e^{i\sqrt{2}t}$$
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} (1) + c_2 \begin{bmatrix} -i\sqrt{2} \\ i\sqrt{2} \\ 2 \end{bmatrix} e^{-i\sqrt{2}t} + c_3 \begin{bmatrix} i\sqrt{2} \\ -i\sqrt{2} \\ 2 \end{bmatrix} e^{i\sqrt{2}t}$$

113

Finding the Solution (cont.)

• These are my solutions for c_1 , c_2 , c_3 (they should be double-checked and simplified):

$$c_{1} = 1 + \left(\frac{i\frac{\sqrt{2}}{2} + (1 + i2\sqrt{2})e^{-i\sqrt{2}t} - i\sqrt{2}e^{i\sqrt{2}t} - 4}{2 + i\frac{3\sqrt{2}}{2}}\right)$$

$$c_{2} = \frac{1 + i2\sqrt{2} - 2e^{i\sqrt{2}t}}{2 + i\frac{3\sqrt{2}}{2}}$$

$$c_{3} = \frac{1 - i\sqrt{2}e^{-i\sqrt{2}t}}{2 + i\frac{3\sqrt{2}}{2}}$$

Finding the Solution (cont.)

• Final Solution for initial conditions of $\mathbf{y}^T = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ is:

$$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + c_3 e^{\lambda_3 t} \quad \lambda_1 = 0, \lambda_2 = i\sqrt{2}, \lambda_1 = -i\sqrt{2}$$
$$y(t) = c_1 e^{0t} + c_2 e^{i\sqrt{2}t} + c_3 e^{-i\sqrt{2}t} = c_1 + c_2 e^{i\sqrt{2}t} + c_3 e^{-i\sqrt{2}t}$$

$$y(t) = 1 + \left(\frac{i\frac{\sqrt{2}}{2} + (1 + i2\sqrt{2})e^{-i\sqrt{2}t} - i\sqrt{2}e^{i\sqrt{2}t} - 4}{2 + i\frac{3\sqrt{2}}{2}}\right) + \left(\frac{1 + i2\sqrt{2} - 2e^{i\sqrt{2}t}}{2 + i\frac{3\sqrt{2}}{2}}\right)e^{i\sqrt{2}t} + \left(\frac{1 - i\sqrt{2}e^{-i\sqrt{2}t}}{2 + i\frac{3\sqrt{2}}{2}}\right)e^{-i\sqrt{2}t}$$

Solution contains <u>Oscillatina</u> Functions, Sine and Cosine Functions with Imaginary Components!