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Introduction to Eigensystems

The Eigensystem of a Matrix
* Let a; represent a special vector and 4,
represent a special scaling factor with respect
to matrix A
* What is so “special” about this type of vector

and scalar?




The Eigensystem of a Matrix
* Let a, represent a special vector and 4,
represent a special scaling factor with respect
to matrix A
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* What is so “special” about this type of vector

and scalar?
* When operator A is applied, the resulting
mapped vector “points” in the same direction!
Aa =Aa
* |In other words, its Maps to a Scaled Version of
itself

The Eigensystem of a Matrix
* Let a; represent a special vector and 4,
represent a special scaling factor with respect
to matrix A

|”

* What is so “special” about this type of vector

and scalar?

* When operator A is applied, the resulting
mapped vector “points” in the same direction!

Aa =2a
* Vector a; is an “eigenvector” and scalar 4; is its

associated real/complex non-zero
“eigenvalue”

“eigen” is a German word meaning “own,” “inherent,” “characteristic,” or “proper”
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Finding Eigenvectors

* By definition, the Eigensystem satisfies:

Aa, = A, | AT
Aa —-Aa =0

Aa —2Ala =0
(A=1A)a, =0
* This system of n equations must be solved for
real/complex non-zero values of vectors a,

* This solution exists if, and only if, the determinant
of the coefficient matrix is non-zero

* Thus, we need to solve the “eigen” or
characteristic equation for the scalars, 4;,
(components in vector, 4)

|A—1,1=0

Characteristic Equation

e Characteristic Equation of a Matrix A is:

c(A) = det(A — A1) =| A — AL |

e Roots of the Characteristic Equation yield the
characteristic values, or eigenvalues, 4,, of A:
|A—AL|=0
e Eigenvalues of A are Scalar Multiples of Eigenvectors,
{a;}, of A:
e Eigenvectors of A are Those Vectors, {a,}, when
Mapped by A are Equivalent to a scaled version of

themselves by a Real/Complex non-zero Scale Factor 4,
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Eigensystem Example

52 2 54 2 2
A=| 2 2 1 c(A)=|A-2a1 A-A=| 2 2-4 1
21 2 2 1 2-2

Eigensystem Example

52 2 5-4 2 2

A= 2 2 1 c(4)=|A-A1] A-M=| 2 2-4 1
2 1 2 2 1 2-2
2-4 1 2 1 2 2-4
c(2)=|A-A1|=(5-2) R -(2) Y 2 +(2) >

o(2)=[a-a1|=(5-2) (2-2)" 1]~ (2)[(4-22)-2]+(2)[ 2~ (4-24)]
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Eigensystem Example

52 2 54 2 2
A=| 2 2 1 c(A)=|aA-21] A-A=| 2 2-4 1

21 2 2 1 2-2

A ad(eoa 24 1 |2 1 2 2-4
() -la-ai=(s-a] 4 1 L) 2 1 a2

o(2)=|A-21|=(5-2) (2-2) 1]~ (2)[(4-22)-2]+(2)[ 2~ (4-24)]

c(A)=(5-2)(2-A) —(5-2)-(8—4A)+4+4—(8-4A)

Eigensystem Example

52 2 5-4 2 2

A= 2 2 1 c(A)=|A-21 A-M=| 2 2-4 1
2 1 2 2 1 2-2
2-4 1 2 1 2 2-4
c(2)=|A-A1|=(5-2) R -(2) Y 2 +(2) >

o(2)=|A-21|=(5-2)] (2- ) A)-1]-(2)[(4-24)-2]+(2)[2-(4-22)]
c(A)=(5-2)(2-4) (2 A)-(8-42)+4+4—(8-44)

c(2)=(5-2)(2-2) =5+ A-8+4A+8-8+44
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Eigensystem Example

52 2 54 2 2
A=| 2 2 1 c(A)=|aA-21] A-A=| 2 2-4 1

21 2 2 1 2-2

A ad(eoa 24 1 |2 1 2 2-4
() -la-ai=(s-a] 4 1 L) 2 1 a2

o(2)=|A-21|=(5-2) (2-2) 1]~ (2)[(4-22)-2]+(2)[ 2~ (4-24)]
c(A)=(5-2)(2-A) (2 A)-(8-44)+4+4-(8-44)

c(2)=(5-4)(2-2) =5+ A-8+4A+8-8+44
c(2)=(5-4)(2-2) ~13+94

11

Eigensystem Example

52 2 5-4 2 2

A= 2 2 1 c(A)=|A-21 A-M=| 2 2-4 1
2 1 2 2 1 2-2
2-4 1 2 1 2 2-4
c(2)=|A-A1|=(5-2) R -(2) Y 2 +(2) >

o(4)=|a-a1|=(s-2) (2 —21) ~1]-(@)[(+-22)-2]+(2)[2~(4-24)]
c(A)=(5-2)(2-2) ~(5-2)-(8-42)+4+4-(8-42)

c(2)=(5-4)(2-A) ~5+A-8+4A+8-8+42
¢(A)=(5-2)(2-2) ~13+94
c(A)=(5-2)(4-44+A%)-13+9A

12
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Eigensystem Example

52 2 54 2 2
A=| 2 2 1 c(A)=|aA-21] A-A=| 2 2-4 1

21 2 2 1 2-2

A ad(eoa 24 1 |2 1 2 2-4
() -la-ai=(s-a] 4 1 L) 2 1 a2

A

e A)=|A~A|=(5-4) (2-2) -1 |- (2)[(4-22) 2]+ (2 (4-22)]
o(2)=(5-2)(2-2) = (5-2)-(8-42)+4+4-(s-42)
c(A)=(5-A)(2-A) ~5+A-8+4A+8-8+44
c(2)=(5-4)(2-2) ~13+94
c(A)=(5-2)(4-44+27)-13+94

c(A)=20-20A+517 =44 +4A° - A*~13+91

13

Eigensystem Example

52 2 5-4 2 2

A= 2 2 1 c(A)=|A-21 A-M=| 2 2-4 1
2 1 2 2 1 2-2
2-4 1 2 1 2 2-4
c(2)=|A-A1|=(5-2) R -(2) Y 2 +(2) >

o(A)=|A-21|=(5-2)| (2-2)" 1]~ (2)[(4-22)-2]+(2) [ 2- (4-24)]

c(A)=(5-2)(2=A) =(5-2)-(8-4A)+4+4—(8-4A)
c(2)=(5-4)(2-A) ~5+A-8+4A+8-8+42
¢(A)=(5-2)(2-2) ~13+94
c(A)=(5-2)(4-44+A%)-13+9A
c(A)=20-204+547 —4A+44> = 1’ ~13+94
c(A)==A"+9A> =152 +7

14
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Eigensystem Example (cont.)

NN W
—_— NN
NS IR \S]

] c(A)=-A"+947 =154 +7

* Next, we find the roots of the characteristic equation to
obtain the eigenvalues, so we need to solve:
c(2)=0 ~A+9A7=154+7=0
* A “good” guess is to divide the
Y coefficient by leading (4%) coefficient: 7/(-1)=-7, try (1-7):
—A+9A7 154 +7
A-7
* |t worked! Zero remainder, so first factor is: (A-7)
* Next factor the quotient (note that leading -1 is irrelevant):
—A+24-1=—(A-24+1)=—(2-1)(2-1)

=-A"+22-1

15

Eigensystem Example (cont.)

c(A)==A+9A* =154 +7

N W
— NN
N o= N

We have found the binomial factors of the characteristic
equation: c(/l):—/l3+9/12—15/1+7:—(/1—7)(/1—1)(ﬂ,—1)
It never hurts to double check by multiplying it back out:
c(4)=-(A-7)(A-1)(A-1)=-(A-7)(A* -24+1)
=—(A =207+ A-TA7+144-7)=—A"+9A* ~ 154 +7
Thus, we have the eigenvalues (spectrum) of the matrix A:
{/’1’192’29/13}:{7’1’1}
Note that we have the eigenvalue 7 with multiplicity 1 and
the eigenvalue 1 with multiplicity 2

16
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Eigensystem Example (cont.)
2 ] c(A)=-A"+947 =154 +7

5
A{ ; {’11”12”13}:{7’1’1}
A =17

* Next, find the eigenvectors, start with 4,=7:

—_— NN

Aa =7a,

Aa —7a =0

(A-7I)a, =0
5 2 2] a 0 —2a +2a,+2a. =0
2 =5 1 a, |=| 0 2ax—5ay+a2=0
2 b= a, 0 2ax+ay—5a2=0

17

Eigensystem Example (cont.)

< s c(A)=-A+9A°-15A+7 24 424 +24.=0
X y z

A{ 2 21 {44,2,}={7.1.1]) 2a —5a,+a, =0

22 A =1 2a,+a,—5a =0

* We want the non-trivial solution. One way is to use
Gaussian elimination.

* First, write the augmented matrix representing the
equations for 4,=7:

-2 2 210
2 -5 1]0
2 1 -5|0

* Next, perform elementary row operations attempt to
transform the leftmost side to the identity matrix.

18
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Eigensystem Example (cont.)

s 5 5 c(A)=-2"+9A*~154+7 2 2 2o
A{ 2 21 {4.4,,4,}={7.1,1} 2 -5 1[0
2 1 =50

21 2 227

. Perform elementary row operations:

2 2 2]o0 ) 2 0 2 2o
2 _5 1 0 RI+R2—>R2 0 0 RI+R3—R3 _3 3 0
2 1 =5]0 2 1 —5 0 3 300
2 2 20| 1—1—10 1 -1 1o
0 -3 3lo ~(/2)RI-R1 0 R2+R35R3 0 -3 3o
0 3 =3]0 0 3 —3 o 0 0 olo
121 2o 1 -1 -1]o 10 =20
0 -3 3lo —(3)R255R2 o 1 -1lo RI+R25RI 01 -1lo0
0 0 olo 0 0 olo0 00 o0lo0

19

Eigensystem Example (cont.)

C(/l):—ﬂ,3+9ﬂ«2—152,+7 1 0 =210

52 2

Al 2 o] {A.4,.4,}={7.1.1} 0 1 1|0
21 2 11:7 00 0(0

* These equations define the family of eigenvectors for 4,=7:
a —2a =a =2a,
a —a.—=a =a
y z y z
* Solve the equations with a parameter, a_.=s, for the reduced

all-zero row (third a, row of reduced matrix)
* Parameterized eigenvector for 4,=7:

2s 5 2 2 2s 14s 2s
a=| s Aa = 2 2 1 s |=| 7s |= (7) s
s 21 2 s Ts s

20
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Eigensystem Example (cont.)
c(A)==A+9A* 154 +7

52 2
A=| 2 2 1 {2,.4,.4,}={7.1,1}
21 2
A=2=1
* Next, find the eigenvectors, start with 4,=4,=1:
Aa, =a, Aa =a,
Aa,—-a, =0 Aa,—a,=0
(A-T)a,=0 (A-T)a,=0
) a, 0 4ax+2ay+2aZ=0
2 11 a, |=| 0 2QA15+aZ:O
2 1 a, 0 2ax+ay+a2=0

21

Eigensystem Example (cont.)

c(A)==-A"+947 - 154+7
{A.4,.4,}={7.1.1}
A =2=1
* Use Gaussian elimination to find the non-trivial solution for
Ary=A=1:
* Write the augmented matrix representing the equations for
Ay=A=1:

>

I
N W
— NN
N o= N

NN
—_ = N
[\ ]
S O O

* Perform elementary row operations attempt to transform
the leftmost side to the identity matrix.

22
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Eigensystem Example (cont.)

c(A)==A"+9A* =151 +7

5 2 2 4 2 210
A=| 2 2 1 {'11"12"13}={7’1’1} 2 1 110
21 2 A=A =1 2 1 1]0
* Perform elementary row operations:
4 2 2|0 4 2 2|0 4 2 2|0
2 1 1|0 |[—BIBRER 51 0 0 00 |—RUERER 10 0 00
2 1 1|0 2 1 1|0 0 0 0]0
4 2 2]0 ] 1140
0 0 0|0 |[-WRER 10 0 0
00 0]0 00 00
* This equation defines the family of eigenvectors for 4,=1;=1:

1 1 1 1
a+—-a +—-a =a =——a ——a
22 2727

23

Eigensystem Example (cont.)
{ c(A)==-A"+947 - 154+7

(4.2,4)={701] > 1 1o
A=A =1 2 1 1]0
* Solve the equation with parameters, a,=s, a,=t, for the
reduced all-zero rows (second/third ay/az rows of reduced
matrix)
* Parameterized eigenvector for 1,=1,=1:

N W
— NN
N o= N

24
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Eigensystem Example (cont.)

c(/l):—/'t3+9/12—15/1+7 _lg_ 1y
5 2 2 2 2
A=| 2 2 1] {2.4,.4,}={7.1,1} a,, = s
2 12 A=4=1
* Parameterized eigenvector for 1,=1,=1:
—3s5—1t
a A6 = S

25

Eigensystem Example Summary

522 c(A)==A+9A* 154 +7
A=| 2 2 1 {A.2,.4}={7.11}
21 2 [a.a,.a,)

Parameterized eigenvectors:

1 1
2s —ls—1¢ BEREL
al = S a,= s a, = N
N t t

Rank, 7, of matrix A is number of unique eigenvalues:
r=2
Determinate, |A|, is product of eigenvalues:
|4 =det(4)=(4)(2.)(4,)=(7)(1)(1)=7
Trace, tr(A), is the sum of eigenvalues:
tr(A)=A,+A,+4,=T+1+1=9

26

8/3/24

13



Eigenvectors/Eigenvalues Facts
Only Exist for Square Matrices

If the same eigenvalue, 4, is repeated m; times,
then that eigenvalue is said to have an “algebraic
multiplicity” of m;

The number of Unique eigenvalues, 7, of a Matrix A
is Equivalent to the Rank of A

Determinate of A: det(A)=|A|= ﬁﬂi

Sum of eigenvalues is Trace of A~ tr(A)= iaﬁ = zn‘/li
Invertible A: r=n and eigenvalues of A"l are {xli‘ﬁ»
The set of eigenvalues of A are the “spectrum” of A

Eigenvalues are the “vital signs” of a Matrix 111!

27

(optional)
Eigensystems

https://www.youtube.com/watch?v=ue3yoeZvt8E (4:00)

28
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https://www.youtube.com/watch?v=ue3yoeZvt8E
https://www.youtube.com/watch?v=ue3yoeZvt8E

Introduction to Operators

29

Mathematical Operator
* Generally a mapping that acts on elements of
a space to produce elements of another space

— common operator is a linear map that acts on a
vector space (others are possible)

— often means actions on vector spaces of functions

— general linear operator takes the form of a matrix
A and obeys the following where W and V are
vector spaces and A: W - V and where (a, 5 are
scalars and x, y are elements of W):

A(ax + ﬂy) = 0 AX + Ay

30
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Linear Operator/Map

Matrix that Maps one Element of a Vector
Space to Another and Preserves Addition and
Scalar Multiplication

A(x+y)=Ax+Ay  A(ax)=aAx
To Emphasize a Matrix is an Operator, it often
“wears a hat” (eg. A)
— not necessary, just used for emphasis

Many Different Linear Operators used in
Quantum Mechanics

The “hat” Notation is not always used

31

Mathematical Operators
(optional)

General Notions:
https://www.youtube.com/watch?v=LtFsf-TR_MO0 (5:49)

Matrices as Operators on Vectors:
https://www.youtube.com/watch?v=f74DQnYjles (14:14)

32
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https://www.youtube.com/watch?v=ue3yoeZvt8E
https://www.youtube.com/watch?v=f74DQnYjJes

Adjoint Operator

« The "adjoint" of a Matrix A is the “conjugate-
transpose” or “transpose-conjugate” of A Denoted
by Afusing the Superscript “dagger” Symbol

« Applicable to Vectors and Matrices

%

— Vector: a = (a*)T = (aT) )

. T
- e ¥l {00

A=| 150 1+i
1+3i 7i
Find:  A"=2?
Compute This on Paper

33

Adjoint Operator Example

*  The “conjugate-transpose” or “transpose-conjugate”
Denoted by Superscript “dagger” Symbol

*  Applicable to Vectors and Matrices

— Vector: af = a*)T = (aT)

— Matrix: AT = A* )T = (AT)
EXAMPLE

_| 1-51 1+i
1+3i 7i

t #\T
Af = 1-5 1+7 | _|| 1=-51 1+1
1+3i 7i 1+3i 7i

T
AT=|: 145 1—11 z[ 1+5i 1—31'}
1-3i ~7i 1—i -7

34
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Adjoint Operator Properties
*  Definition and Properties of the Adjoint
Al =A% v {()li=01-,n—1andj=01,-,n—1}
(AB)T = BtAT
(ahT=a
(A+B)t =AT +BY
(cA)t = c*At
*  Theorem of the Adjoint: For every pair of vector, x and y,
and every operator A, the inner product relations hold:
y-Ax = Afy.-x Ay -x=y-Afx
* In Dirac's notation (explained later) these relations are:
(v1Ax) = (ATy|x) (Aylx) = (y|ATx)

35

Special Forms of Matrices

Al @ a a=[a]
0 a, . a
e Symmetric if: AT =A
e Hermitian if: At =A
* Normal if: ATA = AAT
e Orthogonal if: ATA =1
e Unitary if: ATA =1
e Lower Triangular if: ai;; =0 Vi>j
e Upper Triangular if: a;; =0 Vi<j
e Diagonal if: a;; =0 Vi#j

36
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Normal Matrices

all alz Clln
A= ay Gy v Gy, A=|:al.:|
S Y dnxn
L anl an2 ann i
A is a normal matrix, by definition, if it commutes under direct
multiplication: AAT = ATA

The definition implies that A must be square, nxn

Since A is square, it maps/transforms/operates on vectors within
the same vector space

If A and B are normal, then so are the product matrix AB and the
summation matrix, A+B

- A and B are simultaneously diagonalizable, SAS''=SBS-'=D ,
for some invertible similarity matrix S and diagonal matrix, D

37

Hermitian Matrices

* Consider a matrix, ﬁ, that is Hermitian

— Hermitian means that matrix is a complex square
matrix that is equal to its own adjoint

— conjugate transpose of H=[/1;],x,: (f{?* — (ﬁ*)T .y
— Hermitian means: f=H' (1 ])=]";]

— Hermitian matrices are not always invertible

— Real Hermitian matrices are symmetric

* Spectral Decomposition (defined later) has
Desirable Properties for Hermitian matrices

* Spectral Decomposition is useful in Describing the
Hamiltonian Operator actions for Quantum
Mechanical Systems

38
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Hermitian Matrices are Normal
* Consider a matrix, ﬁ, that is Hermitian

H
AR= AR

A

I
o T

H = B2

* Real-valued Symmetric Matrices are Hermitian
and also Normal

39

Eigensystem Facts for Hermitian H
H is full rank/invertible only when r=n
— eg., All zeros matrix, 0, is Hermitian
All eigenvalues of H are real L,ER
The eigenvectors {h,;|i=1,n} are identical for H
and HY, since H=H'
The nontrivial eigenvectors {h,|i=1,n} are
orthogonal for H: hh'=h +h =0,Vi# |
Inner (dot is used here) product property of
Hermitian matrix:

a-Hb=Ha-b  a(Hb) =(Ha)'b

40
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Eigenvalues of Hermitian H are Real
* Eigenvector Definition:
Hx = Ax

41

Eigenvalues of Hermitian H are Real
* Eigenvector Definition:
Hx = Ax
* Multiply both sides by adjoint of eigenvector:
xTHx = xTAx

42
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Eigenvalues of Hermitian H are Real
* Eigenvector Definition:
Hx = Ax
* Multiply both sides by adjoint of eigenvector:
xTHx = xTAx
* Scaling property:
xTHx = A(XTX)

43

Eigenvalues of Hermitian H are Real
* Eigenvector Definition:
Hx = Ax
* Multiply both sides by adjoint of eigenvector:
xTHx = xTAx
* Scaling property:
xTHx = A(xTx)
* Recognizing the dot product yields norm:

xTHx = A||x]|

44
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Eigenvalues of Hermitian H are Real

* Recognizing the dot product yields norm:
xTHx = A||x||

» Take adjoint of both sides of this equation:

(xtHx)" = (x|t

45

Eigenvalues of Hermitian H are Real

* Recognizing the dot product yields norm:
xTHx = 1||x]|

* Take adjoint of both sides of this equation:

(xtHx)" = @xIDt

T (xH) = 2 )x|*

46
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Eigenvalues of Hermitian H are Real

* Recognizing the dot product yields norm:
xTHx = A||x||

» Take adjoint of both sides of this equation:

(xtHx)" = (x|t
®THT(x)" = A7|Ix|I*

e Norm is real since xTx € R:

T (xN = 1))

47

Eigenvalues of Hermitian H are Real
« Norm is real since xTx € R:
@ HH(x")" = 2)x]
* Since H is Hermitian, HT = H:
cotH(x) = 27 |x|

48
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Eigenvalues of Hermitian H are Real
* Norm is real since xTx € R:
@ (x")" = 2°x|
« Since H is Hermitian, HT = H:
(X)TH(XT) = A"|Ix]|
xTHx = 2*|x|| (1)

49

Eigenvalues of Hermitian H are Real
« Norm is real since x'x € R:
@ (x")" = 2x|
e Since H is Hermitian, HT = H:
eotH(xH) " = A7 x|
xTHx = 2*||x]| (1)
* Recognize Definition of Eigenvector in LHS:
xT(Hx) = xT(Ax) = IxTx = A||x|| (2)

50
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Eigenvalues of Hermitian H are Real
* Norm is real since xTx € R:
@ (x")" = 2°x|
« Since H is Hermitian, HT = H:
(X)TH(XT) = A"|Ix]|
xTHx = 2*||x]| (1)
* Recognize Definition of Eigenvector in LHS:
xT(Hx) = xT(Ax) = A=xTx = A||x|| (2)
* Equating Equations (1) and (2):

xTHx = 2*||x|| = Allx|

51

Eigenvalues of Hermitian H are Real
e Equating Equations (1) and (2):
xTHx = 2*||x|| = A[Ix||

* For non-trivial case, [|x|| > 0. Divide both
sides of 1*||x|| = A[|x]| by ||x]|:

52
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Eigenvalues of Hermitian H are Real
* Equating Equations (1) and (2):
xTHx = 2*Ix|| = Allx||

* For non-trivial case, ||x|| > 0. Divide both
sides of A*||x|| = A||x]| by ||x]|:

AF=2

53

Eigenvalues of Hermitian H are Real
e Equating Equations (1) and (2):
xTHx = 2*||x|| = A[Ix||

* For non-trivial case, [|x|| > 0. Divide both
sides of 1*||x|| = A[|x]| by ||x]|:

A=A
* This can only hold if the eigenvalues are real.

54
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Unitary Matrices

* Consider matrix, U, that is Unitary

— Unitary means that the conjugate transpose of U is its
own inverse (U is may or may not be Hermitian)

U'=U"'
— Thus, unitaries are normal matrices
uu'=Uu'U=1
— Property giving the name “unitary:”
det(U)=|U|=1
— Colum/Row vectors are Orthonormal i

— Matrix exponential of a Hermitian matrix, H is
unitary: H
Y U=¢

Ut = it — o—if
uut = (eiﬁ)(e_iﬁ) =1

55

Unitary Matrices

* Consider matrix, U, that is Unitary
U'=U" UU'=UU=I det(U)=|U|=1

— Colum/Row vectors are Orthonormal

* Aunitary, U, can be formed as the matrix
exponential of a Hermitian matrix, H:

U — elH

* U may also be Hermitian when the matrix
exponent of a Hermitian matrix is also a
Hermitian matrix

— Eigenvalues lie on unit circle, eigenvalue magnitudes
are 1; n roots of Unity in complex plane

56
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Matrix Exponentiation Identities

* In general, a power series for an nxn
real/complex matrix:

<
e =) —A"
2

* Special case when A is Hermitian/Unitary and
AA=A’=I and B is a real number:

eﬁA:i(ﬂ)k Af e :cosh(,B)I+sinh(ﬁ)A

i k!

eiﬁAzg(if!) R e = cos(B)I+isin(B) A

57

Matrix Exponentiation: with Real Scalar
* In general, a power series for an nxn
real/complex matrix: eﬂA:i%Ak

* Special case when A is Hermitian and
AA=A’=I and S is a real number

* Expanding according to power series:

o k 2 3
e =Z—(ﬁ) A* =I+,BA+ﬁ—I+ﬁ—A+--
= k! 2! 3!
2 4 3 5
=(1+'B—+ﬁ—+---jl+[,B+—+—+---jA
2! 4! 315!

58
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Matrix Exponentiation: with Real Scalar (cont.)

2 3
( ) _I+ﬁA+ﬂ—I+ﬁ—A+---
ko k! 21 3!

:{1+ﬁ—+ﬁ—+-J (ﬁ+ﬁ ﬂ ]A
21 41 3 s

Power Series for an Exponential of Real Scalar, £:

s_NB _ . B B B B’

=3 =1+ g P
=) TR TR n!

s o(-B BB B " B’
o= S S S ()

Definition hyperbolic cosine of Real Scalar, f:
cosh(B)= e’ 2(l+’6+’6—2+’6—3+ +€”+ ~]+l(l—ﬁ+ﬂ—2—ﬂ—3+ +(- 1)’8—+J

2 o2t 3! 2 o2t 3! n!

B B 2 4
dre’ (BB
2 21 4
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Matrix Exponentiation: with Real Scalar (cont.)
_w(B) . g B
P :EWA :I+ﬁA+2—!I+§A+---

:(1+ﬁ—2+ﬁ JI+[ﬁ+ﬂ3+ﬂ—5+ ]A
2! 31 5!

Definition hyperbolic cosine of Real Scalar, f:

Pre? BB B, B I, B. B P "B
cosh(ﬁ) — = 2[ 1' 2' 3' +E+~--J+5[1—1—!+2—!—?!+m+(—1) ?+J
eﬂ+eﬂ:[1+ﬁ2+ﬂ4+...)

2 21 4

Definition hyperbolic sine of Real Scalar, f:

i h(ﬁ):M 1+ﬂ+ﬂ ﬂ3 +£+... — 1_£+ﬂ_2_ﬂ_3+...+(_1)n£+...
. 2 12! 3' n! no2r 3 n!

[ﬁ BB, ]

1! 3' 5'

2
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Matrix Exponentiation: with Real Scalar (cont.)

2 3
( ) A‘_1+/3A+ﬁ I+ﬁ—A+~~

:[1+ﬁ—+ﬁ ]I+[ﬁ+ﬁ ﬁ ]A
2! 41 3! 5|

Definition hyperbolic cosine of Real Scalar, f:

C()Sh(ﬂ) M__ 1+E ﬂ_2+ﬂ_3 +£+... +l l_ﬁ ﬂ_z_ﬂ_3 +(_1)”£+...
2 2 n 2t 3 n! 2 n 2t 3 n!

B B 2 4
i 1+ﬂ_+ﬂ_+
2 21 41

Definition hyperbolic sine of Real Scalar, f:

PP 2 3 n 2 3 . B
sinh(B)= > _[l+ﬁ+%+% +%+~--j—[l—§ %—%+---+(—1) %+j

M{Lﬁ_ﬁﬂ_ﬁnj
2 I3 5!
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Matrix Exponentiation: with Real Scalar (cont.)

k
Pt :E%Ak:1+ﬁA+g—jl+§—:A+m

k=0

=(1+ﬁ—2+ﬁ—4+---JI+[ﬁ+ﬁ—3+ﬁ—5+---JA
21 4 315

Substituting hyperbolic cosine, sine of f into above:

e’ =cosh(B)I+sinh(B)A (aED)
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(review)
Euler’s Identity and Series Definitions

https://www.youtube.com/watch?v=sKtloBAuP74 (14:30)

63

Matrix Exponentiation: complex scalar
oPA _i(iﬂAk
* Previous result: w0 k!
ePr = cosh(,B)I+sinh(/3)A
* Changing argument from real, £, to complex, if

smh(zﬂ) ( P e ﬁ) cosh(iﬁ)=%(e’ﬁ+eiﬁ)
e? —cos(ﬁ)ﬂsm(ﬁ) ~F =cos(/3)—isin(/3)
smh(zﬂ) [cos(ﬂ)+isin(ﬂ)— +zsm(ﬂ J:zsm

cosh(zﬂ) [cos(ﬂ)+isin(ﬂ)+co 1n(ﬂ] cos
P —cosh(zﬁ)l+sinh(z‘ﬂ)A:cos( )I+ls1n(ﬂ)A (QED)
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https://www.youtube.com/watch?v=sKtloBAuP74
https://www.youtube.com/watch?v=sKtloBAuP74

Eigenvalues of a Unitary Matrix have unity magnitude

* Let a, represent an eigenvector and 4, represent the

corresponding eigenvalue of U
Ua =Aa,

65

Eigenvalues of a Unitary Matrix have unity magnitude

* Let a, represent an eigenvector and 4, represent the

corresponding eigenvalue of U
Ua =Aa,

* Taking the adjoint of bqth sides:
(Uaz‘)T =(’1zai)T
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Eigenvalues of a Unitary Matrix have unity magnitude

* Let a, represent an eigenvector and 4, represent the

corresponding eigenvalue of U
Ua =Aa,

* Taking the adjoint of both sides:
(Uai)T =('liai)T
alU'=2a

67

Eigenvalues of a Unitary Matrix have unity magnitude

* Let a, represent an eigenvector and 4, represent the

corresponding eigenvalue of U
Ua =Aa,

* Taking the adjoint of bqth sides:
(Uaz‘)T =("tz‘ai)T

a’lU'=27a’

* Multiply each side of previous equation with each

side of top equation:
(ajUT)(Uai)= (}t:aj)(}tiai)

68
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Eigenvalues of a Unitary Matrix have unity magnitude

* Let a, represent an eigenvector and 4, represent the

corresponding eigenvalue of U
Ua =Aa,

* Taking the adjoint of both sides:

(Uai)T - ('liai)T

alU'=2a

* Multiply each side of previous equation with each
side of top equation:

( TUT)( ) (/1 a' )(}{ai)

(UTU)a =AAa'a

69

Eigenvalues of a Unitary Matrix have unity magnitude

* Let a, represent an eigenvector and /; represent the
corresponding eigenvalue of U
Ua =Aa,

* Taking the adjoint of both sides:

(Ua) =(2a)

TUT la

* Multiply each side of previous equation with each
side of top equation:
(310" )(Un )= (42 )(4n
(UTU)a =AAa'a
( )a =AAa’a

1 i i
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Eigenvalues of a Unitary Matrix have unity magnitude

* Let a, represent an eigenvector and 4, represent the

corresponding eigenvalue of U
Ua =Aa,

* Taking the adjoint of both sides:
(Uai)T =('liai)T
alU'=2a

* Multiply each side of previous equation with each

side of top equation:
(0)(vm )= () 20

aj(UTU)ai =AAa'a

1 11 1

al (I)a[ =A'la'a

1 1 1

a'a =(ﬂ,;ﬂ,_)ajai

1

71
Eigenvalues of a Unitary Matrix have unity magnitude (cont.)
* Because:
ala = (/li*/li)ajai
(/'L:li)aiai—aiai =0
72
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Eigenvalues of a Unitary Matrix have unity magnitude (cont.)

* Because:

ala = (li*/'Li)ajai
(/ll.*li)ajai —ala =0

(l:ﬂ.i - l)ajai =0

73
Eigenvalues of a Unitary Matrix have unity magnitude (cont.)
* Because:
ala = (/lj/li)ajai
(/'L:li)ajai —ala =0
(/l:/ll. —l)ajai =0
* We know that the inner product of an eigenvector
with itself (square of its norm) cannot be 0, since U is
full rank, thus
(44)=1
74

8/3/24

37



Eigenvalues of a Unitary Matrix have unity magnitude (cont.)
* Because:

A2 —l)ajai =0
* We know that the inner product of an eigenvector

with itself (square of its norm) cannot be 0, since U is

full rank, thus
(44)=1

* Taking the magnitude of each side:
AAl=1

75
Eigenvalues of a Unitary Matrix have unity magnitude (cont.)
* Because:
ala = (}L;/li)ajai
(/'L:li)ajai —ala =0
(/ll.*/ll. —l)ajai =0
* We know that the inner product of an eigenvector
with itself (square of its norm) cannot be 0, since U is
full rank, thus
(44)=1
* Taking the magnitude of each side:
AAl=1
AllA]=1
76

8/3/24

38



Eigenvalues of a Unitary Matrix have unity magnitude (cont.)
* Because:
ala = (li*/'Li)ajai
(/ll.*li)ajai —ala =0
(l:ﬂ.i —l)ajai =0
* We know that the inner product of an eigenvector

with itself (square of its norm) cannot be 0, since U is

full rank, thus
(44)=1

* Taking the magnitude of each side:
AAl=1
A4 =1
o
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Eigenvalues of a Real-valued Unitary Matrix are Real

* Let a; represent an eigenvector and 4,
represent the corresponding eigenvalue of U

Ua =Aa

78
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Eigenvalues of a Real-valued Unitary Matrix are Real

* Let a, represent an eigenvector and 4,
represent the corresponding eigenvalue of U

Ua =Aa
* Taking the adjoint of both sides:
(Uai)T - ()“z‘az')T

79

Eigenvalues of a Real-valued Unitary Matrix are Real

* Let a; represent an eigenvector and 4,
represent the corresponding eigenvalue of U

Ua =Aa
* Taking the adjoint of both sides:
(Uai)T - (ﬂ’iai)T

a'U =1'a'

80
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Eigenvalues of a Real-valued Unitary Matrix are Real

* Let a, represent an eigenvector and 4,
represent the corresponding eigenvalue of U

Ua =Aa
* Taking the adjoint of both sides:
(Uai)T - (ﬂ“iaz')T
a'lU'=Aa
* Multiply both sides by a;:

aTUTai = ll.*ajai

i

81

Eigenvalues of a Real-valued Unitary Matrix are Real

* Let a; represent an eigenvector and 4,
represent the corresponding eigenvalue of U

Ua =Aa
* Taking the adjoint of both sides:
(Uai)T - (ﬂ’iai)T
a'U =1'a'
* Multiply both sides by a;:
a'U'a =Aa'a

a' (UTai) =2 (ai . al.)
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Eigenvalues of a Real-valued Unitary Matrix are Real (cont.)

aj(UTai)z l:(al. -al.)
* Inner (dot) product of eigenvectors of unitary
matrix, U, must be unity valued:

83

Eigenvalues of a Real-valued Unitary Matrix are Real (cont.)

aj(UTai): A (al. -al.)
* Inner (dot) product of eigenvectors of unitary
matrix, U, must be unity valued:

a' (UTaI.) =1 (1) =1
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Eigenvalues of a Real-valued Unitary Matrix are Real (cont.)
T(UT ) l ( )
* Inner (dot) product of elgenvectors of unitary
matrix, U, must be unity valued:

a' (UTai) =1 (1) =2

* When U is a real-valued unitary matrix:

85

Eigenvalues of a Real-valued Unitary Matrix are Real (cont.)

a'(U'a )=4 (a ea )
* Inner (dot) product of elgenvectors of unitary
matrix, U, must be unity valued:

al UTa\.)zf(l =1

« When U is aYeal-valued unitary matrix:

u=U' aj(Uai):ll,*
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Eigenvalues of a Real-valued Unitary Matrix are Real (cont.)

aj(UTai)z lj(al. -al.)
* Inner (dot) product of eigenvectors of unitary
matrix, U, must be unity valued:

aj(UTai) = )u:(l) =2
* When U is a real-valued unitary matrix:
U=U' aj(Uai)zli*
* Quantity in parentheses is definition of
eigenvector:

87

Eigenvalues of a Real-valued Unitary Matrix are Real (cont.)

aj(UTai): A (al. -al.)
* Inner (dot) product of eigenvectors of unitary
matrix, U, must be unity valued:

aj(UTai) = l;(l) =1
* When U is a real-valued unitary matrix:
U=U" aj(Uai)zll.
* Quantity in parentheses is definition of
eigenvector: aT(l.a.):l.*
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Eigenvalues of a Real-valued Unitary Matrix are Real (cont.)
T (UT ) l ( )
* Inner (dot) product of elgenvectors of unitary
matrix, U, must be unity valued:

aj(UTai) = )u:(l) =2
* When U is a real-valued unitary matrix:
U=U' aj(Ual.)zl:
* Quantity in parentheses is definition of
eigenvector: ,('131) l

A(f )_;tj

i

89
Eigenvalues of a Real-valued Unitary Matrix are Real (cont.)
al (UTai) =1 (al. . al.)
* Inner (dot) product of eigenvectors of unitary
matrix, U, must be unity valued:
a' (UTai) =1 (1) =1
* When U is a real-valued unitary matrix:
U=U" aj(Uai)zﬂ,l.
* Quantity in parentheses is definition of
eigenvector: al(ia,)=2,
Zl( j l)_ 2(l*
A (D)=
90
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Eigenvalues of a Real-valued Unitary Matrix are Real (cont.)

T(UT )—l (a -a)
* Inner (dot) product of eigenvectors of unitary
matrix, U, must be unity valued:

al UTa\.l)z )u.*(l =1

e When U is a real-Valued unitary matrix:
U=U' aj(Uai):ll.*

* Quantity in parentheses is definition of

eigenvector: aT(/’L_a )=l.*

91

Eigenvalues of a Real-valued Unitary Matrix are Real (cont.)

f(U'a 2 l (a oa )
* Inner (dot) pro uct o e|genvectors of unitary
matrix, U, must be unity valued:

o
* WhenUisd r(egl va)ue(ﬁ'ar(ltlry matrix:

B 5 Brenthesess el
* Quantity in parentheses |é efidition of
eigenvector: f(;ta ) A

A (af

~ real-valued unitary matrlx eigenvalues are real
(QED)
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Eigensystem Facts for Unitary matrix, U

* All Unitary matrices are also normal
— May or may not be Hermitian

* All unitary matrices are full rank and thus have n
distinct nontrivial eigenvectors that are
orthogonal

* All eigenvalues are “roots of unity” meaning they
lie on the unit circle in the complex plane
— eigenvalue magnitude is unity
— for real-valued U, eigenvalues are =1

93

Spectral Decomposition of Matrix

* Also known as the Eigendecomposition

e Recall that the Spectrum of an nxn Matrix, A ,
is its set of eigenvalues, {4|i=1,n}

* The Spectral Decomposition holds for and
Normal matrix, AAT=ATA, (includes all
Hermitian and Unitary matrices are normal)

« Let A be nxn Square Matrix with  Linearly
Independent Eigenvectors, 4;

* Spectral Decomposition allows us to

Analyze/Represent Operators based on their
Eigensystem

94
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The Spectral Theorem
The Spectral Theorem states:

A =ADA™
A is nxn Matrix with ith Column Vector
equivalent to the ith Eigenvector, 4;

D is a Diagonal Matrix with Corresponding
Eigenvalues /; to Eigenvectors 4;

Alternatively:

A=Y 4(a,®a')=4|a)q|
i=1 i=1

— where @ denotes the “outer” or “tensor” or
“Kronecker” operation

95

Spectral Theorem Example
* Consider an operator, X, (known as the Pauli-
X operator in QM): 01
|14

O] e H
1 1o |1 0 0 1 0] 0 1
e Computing the Eigensystem of X and Applying

the Spectral Theorem yields the
decomposition: X = ADA™'

oo HE A2

st sk
|
sk sk

sk ok
sk o
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Spectral Theorem Example (cont.)
» Spectral Decomposition of X: X = ADA™

X{oﬁ: {1 o}{ﬁ &

10 + 0 -1 + —%

* In QIS, A and Al are “Hadamard” operators, H, and
D is the Pauli-Z operator, Z (for X only)

L __L
V2

S B 6 B
SHIEHE B B

X = ADA'=HZH
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Matrix Operators

98
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Matrix Operator

e Square Matrices can Represent a Transformation of an
Element in a Vector Space to Another Element in that
same Space

e When there is a Relationship between the two Vector
Elements, Matrices can formed that perform Mapping
in Accordance with that Relationship

e |f the Relationship is a Mathematical “operation” then
such Matrices are called “Operators”

e sometimes denoted with a “hat” to emphasize they are operators

¢ Rich set of mathematics in Operator Theory

99

Matrix Operator Example

e Example: Relationship is to increment each component
of a 2D vector, x yielding vector x,.

x+1=Ax

1

1 =

.Z'1+1 _i T A~ T,
x2+1 T, l 1

e Numerical check: Letx™=[3 5] - }

XH:AX
[ L
SEBINE
L Ll
3 3

100
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Linear Differential Equation System

e Consider a system of first-order differential equations of

the f : u, (¢ w1
erorm dd—t()=_”1(t)+2”2(t) dd_t()=ul(t)—2uz(t)

e System can be expressed as a matrix equation:

oy -2} o1 2]
au 1)

o {17210

dt

e Dis a Differential Matrix Operator

101

Linear Differential Equation System

General solution of this equation: du(t)

dt
Assuming that the u,(¢) functions are in a linear form:

A

= Du(t)

u(l‘) =
Thus, finding the operator is equivalent to solving the
differential equation.

¢ |n this case
’ du (1 du, (1
# =—u, (t) +2u, (t) % =u, (t) —2u, (t)
e Thus, . . L2y
D:{ _1 z } u(t)zethe{ 1_2}

102
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Linear Differential Equation System

e Find eigensystem of the operator:
c(A)=A+32=2(A+3), 4, =0,4,=-3
e The solution has the form:
z@@):cpkh+gew

A

Dx =0 [ 2 ~ 1
~ X = X =
Dx, = -3x : 1 E -1

2
¢ Given initial conditions, we can now solve for the

constants in the solution.

a0

* We have the eigenvalues, find eigenvectors that satisfy:

103

Linear Differential Equation System

e With this eigensystem, the solution is of the form:

A=04=-3 x=|? XQ{ 1}
1 -1

¢ The solution has the form:

0 L]l e

104
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Linear Differential Equation System

e Differential equation system and solution:

du—(t)zf)u(t) 15{_1 2} u(r)=e™

dt 1 -2
e The solution has the form:

u(t):é[ : H[ E } ()=

e Eigenvalues of operator indicate:

W= W[

1) Stability, negative eigenvalues, need:

u(t) —0,eM — O,Re[/ll.] < 0Vi
2) Steady State, Elﬂ,l. =0, and Re[lj] < OV(j # i)
3) Instability if, ElRe[ﬂ.] >0

1

105

Another Example

Consider the set of scalar functions:
X, = cos’t T, = sin® ¢ T, = sin 2t

Let the vectors x and y be defined as follows:

X Y
N v=| v _dx,
2 2 yi dt

x3 y3

This system can be described with a differential
operator matrix as: y=Dx

A~

Let us determine the operator matrix, D

106
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Finding the Operator

e First, we need to determine if we can express the y; as
LINEAR combinations of the x;.

— This would allow us to express the solution to the

differential equations as linear functiAons:
y =Dx y(t) =e”
* Recall the chain rule:
42
dt dg )\ dt
* Then:

dx

y, = d_tl = —2costsint = —sin(2t)

107

Finding the Operator (cont.)

* Then:

d
v, = % =—2costsint = —sin(2t)

X . .
y, = 7; =2costsint = sin(2%)

V= % =2cos(2t)=cos’ t —sin’ ¢
* Note that:
z, =cos’t x, =sin’¢ x, =sin2¢
¥, =—2costsint = —sin(2t) = —x,
v, =2sintcost =sin(2¢) = x,

V= 2cos(2t> =cos’f—sin’r=x, —x,

108
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Finding the Operator (cont.)

This means that there is the LINEAR relationship we
are looking for since:

z, =cos’t x, =sin’¢ x, =sin2¢

V=% Yy =X V=X X,
Finding these relationships allows to construct the
operator as a matrix of constant values:

By

0
0
1
0 0 -1 cos’ ¢ —sin(Zt)
yzﬁxz 0 0 sint  |= sin(2t)
1 -1

cos’t —sin’¢

SESNEN

109

Finding the Operator (cont.)

We know that the solution of the differential equations
is of the form of an exponential of the operator matrix
inli i . 0 0 -1
multlpljed by time: . o
y:DX y(t)ze L -1 0
Lets analyze the operator. By inspection, we see that
the rankis 2.

=i
o
|
—_ O O
>|—AOO
|
S = =
—_ O O
»I—AOO
|
O = =
Il
|
S = =
|
O = =
|
N OO

D° =

o

-1 1 offo 0 -1 0 0 2 R
1 -1 ofjo 0 11=1 0 -2|=(-2)D
0 —

0 =211 -1 O 2 2 0
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Finding the Solution
* The solution of this system is of the form:
v, (t) = cle'l" + cze;”?t + c3e%t

* Find the eigensystem of the operator.

A =04 =iV2,4, =—i2
* Thus, we see this system has a steady state since:

JA =0, and Re[/lj] < O‘V’(j # z')
 The imaginary values indicate that the exponentials

associated just revolve around the complex unit circle.

* Eigenvectors are: | i2 _i2
vi=| 1 Ly, = —i\/E ,V, = i\/g
0 2 2

111

Finding the Solution (cont.)

* The eigensystem is of the form:

Y At Ay | i2 -i2
Yi (t> =¢e + 6, + G vi=[ 1 |v,=| =iV2 |v,= iN2
A =0,4,=iN2,4, =i ° ? ?

* We can find an explicit solution given initial conditions.

* Assume: .
y(t=0)=| 1
1
1 1 -iv2| 2|
Y(O) = 1 = C1 1 e(o)t_l_cz l\/i e_l\/it‘l‘c?) —l\/i el\/it
1 0 2 2
112
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Finding the Solution (cont.)

Solve for constants ¢4, ¢,, c3 by solving this set o linear
equations:

V2
y(0) —[ ]—cl[ ]e(o)t+C2 —i\/§t+c3 _Li\/i‘ei\/ft
2
—iv2 LVF
H_Cl\ D +e | vz e +ey
1 0 2

113

Finding the Solution (cont.)
These are my solutions for ¢4, ¢, c3 (they should be
double-checked and simplified):

i@ + (1 + i2v2)e V2t — (\ZeV2t — 4
3v2

2-+l———

C1:1+

14 i2/2 — 2etv2t
3\/—

2+

Cr =

1 — i\/Ze"iV2t
3«/—

C3 =
241
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Finding the Solution (cont.)

* Final Solution for initial conditions of y” = [1 1 1]
is:
}’(t) = Cle;llt + Cze;lzt + C3€l13t Al = O;AZ = lﬁll = —l\/z

V(1) = 1% + eV 4 eV = ¢ 4,0 V2 4 oy IV

i\/2—§+ (14 i2v2)e V2t — (\2e1V2t — 4

y@® =1+
> 3\/—
] — DeliV2t _ —iv2t
1+ i2v2 — 2¢! oIVt | 1 L\/—e ¢ VIt
2+Li— 2+Li

Solution contains Oscillating Functions, Sine and Cosine Functions with Imaginary Components!
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