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Mixed Quantum States

1

Pure versus Mixed States
• We let a quantum state vector represent a qubit (n=2) or qudit 

(n>2)
• We have learned about quantum superposition and Born’s rule
• The projective measurement of a quantum state with respect to 

a measurement basis leads to a subjective probability
• These are Pure States
• However, it is possible that we have missing information 

regarding the quantum state of a system is comprised of an 
ensemble of different pure states: a Mixed State

• This is an objective probability and is thus a probability in the 
classical sense

• Mixed State observation yields one of the state vectors in the 
ensemble with a “Classical Probability” and NOT a quantum 
probability

• Indistinguishable (experimentally) from observation of a pure 
state
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Mixed Quantum State
• The collection (ensemble) of pure states is truly a random 

selection of different pure states
– each of which can be in a state of superposition

• Name comes from “Quantum Statistical Mechanics”
– quantum system comprised of two quantum subsystems that 

could be in different pure states
– could be a quantum system that was initialized at an unknown 

state, thus the set of evolved states a later time could be one of 
several with a distinct (objective) probability

• Mixed states are properties of the system and NOT the 
result of the QM postulates

• Since energy is conserved, the norm of each vector in the 
ensemble comprising a mixed state is LESS THAN UNITY
– Bloch Sphere: they are “inside” the Bloch sphere

3

Density Operator Definition
• Mixed State is Described by Density Operator, ρ
– describes a statistical ensemble of systems, or in 

QIS, a statistical ensemble of possible quantum 
states of a system

• Could use Density Operators in place of 
quantum state kets (vectors)
– practice is to use them only for mixed states

• Quantum state density operator is computed 
for a system of n states as: 

ρ = pi Ψ i
i=1

n

∑ Ψ i
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Quantum Density Operator
• The pi values are non-negative real values that are the 

probability the system is pure state i 

• Consider QS in a single Pure State:

• Compute the density matrix:

• Observe the trace of the density matrix:

ρ = pi Ψ i
i=1

n

∑ Ψ i

pi = Prob QS-state = Ψ i
⎡⎣ ⎤⎦

Ψ =α 0 + β 1

ρ = 1( ) Ψ Ψ
i=1

1

∑ = Ψ Ψ = α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α * β *⎡
⎣⎢

⎤
⎦⎥
=

αα * αβ *

α *β ββ *
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Tr ρ⎡⎣ ⎤⎦ = Tr
αα * αβ *

α *β ββ *
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=αα * + ββ * =1

n = 1, p
1
= 1

Born’s Rule!!!
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Quantum Density Operator
• Consider QS in a one of two States:

• Compute the density matrix:

• Observe the trace of the density matrix:

Ψ1 =α 0 + β 1 Ψ2 = δ 0 + γ 1

ρ = p
i
Ψ
i

Ψ
i

i=1

2

∑ = Ψ
1

Ψ
1
= p

1

α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α * β *⎡
⎣⎢

⎤
⎦⎥
+ p

2

δ
γ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

δ * γ *⎡
⎣⎢

⎤
⎦⎥

= p
1

αα * αβ *

α *β ββ *
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ p

2

δδ * δγ *

δ *γ γγ *
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
p
1
αα * p

1
αβ *

p
1
α *β p

1
ββ *

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
+
p
2
δδ * p

2
δγ *

p
2
δ *γ p

2
γγ *

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
p
1
αα * + p

2
δδ *( ) p

1
αβ * + p

2
δγ *( )

p
1
α *β + p

2
δ *γ( ) p

1
ββ * + p

2
γγ *( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

n = 2, p1, p2( )

Tr ρ⎡⎣ ⎤⎦ = Tr
p1αα

* + p2δδ
*( ) p1αβ

* + p2δγ
*( )

p1α
*β + p2δ

*γ( ) p1ββ
* + p2γγ

*( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= p1αα

* + p2δδ
* + p1ββ

* + p2γγ
*

= p1 αα
* + ββ *( )+ p2 δδ * + γγ *( ) = p1 1( )+ p2 1( ) = p1 + p2 =1
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Quantum Density Operator
• Consider QS in one of an ensemble of n states:

• Compute the density matrix:

• Observe the trace of the density matrix:

Ψ i =α i 0 + βi 1

ρ = pi Ψ i Ψ i
i=1

n

∑ = pi
α i

βi

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α i
* βi

*⎡
⎣⎢

⎤
⎦⎥i=1

n

∑ =
piα iα i

*

i=1

n

∑ piα iβi
*

i=1

n

∑

piα i
*βi

i=1

n

∑ piβiβi
*

i=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

n, p1, p2 ,!, pn( )

Tr
piα iα i

*

i=1

n

∑ piα iβi
*

i=1

n

∑

piα i
*βi

i=1

n

∑ piβiβi
*

i=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= piα iα i
*

i=1

n

∑ + piβiβi
*

i=1

n

∑ = piα iα i
* + piβiβi

*( )
i=1

n

∑

= pi α iα i
* + βiβi

*( )
i=1

n

∑ = pi 1( )
i=1

n

∑ = pi =1
i=1

n

∑

7

Example using Photon 
Polarization
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Photon Polarization:
Pure and Mixed States

https://www.youtube.com/watch?v=bP-bBVfmzEw   (9:09)

9

Light Polarization Example
• Consider a System where incoherent light is filtered to 

provide only vertically polarized light
• The light is generated by an incoherent source like the 

sun or an incandescent light bulb (is there such a thing 
anymore?)

Allows only vertical
light to pass through
and reflects the rest
backward

100% of all light at this
point is vertically 
polarized

10

https://www.youtube.com/watch?v=bP-bBVfmzEw
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Selectable-Pol. Detector
• Assume the Energy detector is equipped with its own 

polarizing filter that can be set to one or more of:
H , V , + , −{ } = ! , ! ,! ,!{ }

PH = 1 0
0 0

⎡

⎣
⎢

⎤

⎦
⎥

P0 = 0 0 = 1
0

⎡
⎣⎢

⎤
⎦⎥
1 0⎡⎣ ⎤⎦ =

1 0
0 0

⎡
⎣⎢

⎤
⎦⎥

P! = 1
2
1 1
1 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ψ
H

PV = 0 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥ P! = 1

2
−1 1
1 −1

⎡

⎣
⎢

⎤

⎦
⎥

Selectable
Projectors

11

Selectable-Pol. Detector
• Assume selectable polarizer is set to +45○ only with an incident 

EM Horizontally-polarized wave being incident (classical):

PH = 1 0
0 0

⎡

⎣
⎢

⎤

⎦
⎥

P0 = 0 0 = 1
0

⎡
⎣⎢

⎤
⎦⎥
1 0⎡⎣ ⎤⎦ =

1 0
0 0

⎡
⎣⎢

⎤
⎦⎥

P! = 1
2
1 1
1 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

PV = 0 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥ P! = 1

2
−1 1
1 −1

⎡

⎣
⎢

⎤

⎦
⎥

+45○

selected

12
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Classic Detection
• Classically, the output of the detector will output a 

measurement that is proportional to a smaller amount of 
amplitude of the incident horizontally polarized light

• How much smaller?

• What happens to the rest of the energy in the incident 
horizontally polarized wave?

P! = 1
2
1 1
1 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥PH = 1 0

0 0
⎡

⎣
⎢

⎤

⎦
⎥

13

Classic Detection
• Classically, the output of the detector will output a 

measurement that is proportional to a smaller amount of 
amplitude of the incident horizontally polarized light

• How much smaller? 
Amplitude at output of sel. polarizer is decreased by factor of 
cos(45○).

• What happens to the rest of the energy in the incident 
horizontally polarized wave?

P! = 1
2
1 1
1 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥PH = 1 0

0 0
⎡

⎣
⎢

⎤

⎦
⎥

14
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Classic Detection
• Classically, the output of the detector will output a 

measurement that is proportional to a smaller amount of 
amplitude of the incident horz. polarized light

• How much smaller? 
Amplitude at output of sel. polarizer is decreased by factor of 
cos(45○).

• What happens to the rest of the energy in the incident 
horizontally polarized wave? Absorbed/converted to heat 
(resistive current dissipation)

P! = 1
2
1 1
1 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥PH = 1 0

0 0
⎡

⎣
⎢

⎤

⎦
⎥

15

Projected Polarization Energy
• Some Energy from the Horizontally Polarized Wave WILL Pass 

through the +45○ Slant Polarizer
• Some Energy will be Absorbed and converted to heat

– illustrated on unit circle with axes representing polarization

• Incident wave E-field 
amplitude: 

• Measured E-field:

• Absorbed E-field: 

• Pol. Loss:

Incident energy

measured energy

absorbed energy

A
A
= A

I
cos

−π
4

⎛
⎝⎜

⎞
⎠⎟
(V/m)

PAA = AI
2 cos2 −π

4
⎛
⎝⎜

⎞
⎠⎟
(W/m2)

A
I
(V/m)

AM = AI cos
π
4

⎛
⎝⎜

⎞
⎠⎟
(V/m) PAM = AI

2 cos2 π
4

⎛
⎝⎜

⎞
⎠⎟
(W/m2)

LPOL =10log10 cos
2 −π
4

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =10log10

1
2

⎛
⎝⎜

⎞
⎠⎟
= −3 (dB)

16
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Single Photon Source
• The light is generated by a very, very weak source only emits a 

single photon at a time
• How much energy will the detector measure?

• How much smaller?

• What happens to the energy in the incident photon?

PH = 1 0
0 0

⎡

⎣
⎢

⎤

⎦
⎥

P! = 1
2
1 1
1 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ψ
H

17

Is this accurate for single photon?
• Some Energy from the Horizontally Polarized Photon WILL Pass 

through the +45○ Slant Polarizer
• Some Energy will be Absorbed and converted to heat

– illustrated on unit circle with axes representing polarization

• Incident wave E-field 
amplitude: 

• Measured E-field:

• Absorbed E-field: 

• Pol. Loss:

Incident energy

measured energy

absorbed energy

A
A
= A

I
cos

−π
4

⎛
⎝⎜

⎞
⎠⎟
(V/m)

PAA = AI
2 cos2 −π

4
⎛
⎝⎜

⎞
⎠⎟
(W/m2)

A
I
(V/m)

AM = AI cos
π
4

⎛
⎝⎜

⎞
⎠⎟
(V/m) PAM = AI

2 cos2 π
4

⎛
⎝⎜

⎞
⎠⎟
(W/m2)

LPOL =10log10 cos
2 −π
4

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =10log10

1
2

⎛
⎝⎜

⎞
⎠⎟
= −3 (dB)

18
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Is this accurate for single photon?
• NO! Impossible to divide a single quantum of energy (photon)
• We must determine the observable and use quantum 

measurement theory in this case
• Incident wave E-field 

amplitude: 
• Measured E-field:

• Absorbed E-field: 

• Pol. Loss:

Incident energy

measured energy

absorbed energy

A
A
= A

I
cos

−π
4

⎛
⎝⎜

⎞
⎠⎟
(V/m)

PAA = AI
2 cos2 −π

4
⎛
⎝⎜

⎞
⎠⎟
(W/m2)

A
I
(V/m)

AM = AI cos
π
4

⎛
⎝⎜

⎞
⎠⎟
(V/m) PAM = AI

2 cos2 π
4

⎛
⎝⎜

⎞
⎠⎟
(W/m2)

LPOL =10log10 cos
2 −π
4

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =10log10

1
2

⎛
⎝⎜

⎞
⎠⎟
= −3 (dB)
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Selectable-Pol. Detector
• Assume selectable polarizer is set to both +45○ and -45○ with 

EM Horizontally-polarized incident wave (classical):

PH = 1 0
0 0

⎡

⎣
⎢

⎤

⎦
⎥

P0 = 0 0 = 1
0

⎡
⎣⎢

⎤
⎦⎥
1 0⎡⎣ ⎤⎦ =

1 0
0 0

⎡
⎣⎢

⎤
⎦⎥

P! = 1
2
1 1
1 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

PV = 0 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥ P! = 1

2
−1 1
1 −1

⎡

⎣
⎢

⎤

⎦
⎥

+45○

selected

-45○

selected

20
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• All Energy from the Horizontally Polarized Wave WILL Pass 
through the +/-45○ Slant Polarizer (ideally)

• Even though E-field is Horizontally-polarized!
• Incident wave E-field 

amplitude: 
• Measured E-field:

• No polarization loss!!!!

Projected Polarization Energy

Incident energy

measured energy

A
I
(V/m)

AM = AI cos
π
4

⎛
⎝⎜

⎞
⎠⎟
+ AI cos

−π
4

⎛
⎝⎜

⎞
⎠⎟
(V/m)

PAM = AI
2 cos2 π

4
⎛
⎝⎜

⎞
⎠⎟
+ cos2 −π

4
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= AI
2 1

2

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= AI

2 (W/m2)

measured energy

21

Selectable-Pol. Detector
• Assume selectable polarizer is set to both +45○ and -45○ with 

single photon source (quantum):
• We must use quantum measurement theory

– construct the observable

PH = 1 0
0 0

⎡

⎣
⎢

⎤

⎦
⎥

P0 = 0 0 = 1
0

⎡
⎣⎢

⎤
⎦⎥
1 0⎡⎣ ⎤⎦ =

1 0
0 0

⎡
⎣⎢

⎤
⎦⎥

P! = 1
2
1 1
1 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

PV = 0 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥ P! = 1

2
−1 1
1 −1

⎡

⎣
⎢

⎤

⎦
⎥

+45○

selected

-45○

selected

Ψ
H

22
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Photon Polarization
• The light is generated by a very, very weak source only 

emits a single photon at a time
• The observable of interest for the photon is its slant-45 

polarization state:
• Assume the incident photon is horizontally polarized 

due to the reflective linear horizontal polarizer
• The Observable is (from our study of Measurements)
– measurement outcomes (eigenvalues), {λ�, λ�}={+1,-1}

AX = λ! ! ! + λ! ! ! = λ!
1
2

⎛
⎝⎜

⎞
⎠⎟

2

1
1

⎡
⎣⎢

⎤
⎦⎥
1 1⎡⎣ ⎤⎦ + λ!

1
2

⎛
⎝⎜

⎞
⎠⎟

2

1
−1

⎡
⎣⎢

⎤
⎦⎥
1 −1⎡⎣ ⎤⎦

= λ!
1
2
1 1
1 1

⎡
⎣⎢

⎤
⎦⎥
+ λ!

1
2

1 −1
−1 1

⎡
⎣⎢

⎤
⎦⎥
= 1( ) 12

1 1
1 1

⎡
⎣⎢

⎤
⎦⎥
+ −1( ) 12

1 −1
−1 1

⎡
⎣⎢

⎤
⎦⎥
= 0 1

1 0
⎡
⎣⎢

⎤
⎦⎥
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Photon Polarization (cont.)
• Projective measurement:

• The expected value for the horizontally-polarized photon when 
measured with the slant polarization observable is:

• The probability that the measurement outcome is λ�=+1:

• The probability that the measurement outcome is λ�=-1:

AX
λi

Pi Ψ

Ψ Pi Ψ

Ψ = α H + β V

AX = ΨH AX ΨH = 1 0⎡
⎣

⎤
⎦
0 1
1 0

⎡

⎣
⎢

⎤

⎦
⎥
1
0

⎡

⎣
⎢

⎤

⎦
⎥ = 1 0⎡

⎣
⎤
⎦
0
1

⎡

⎣
⎢

⎤

⎦
⎥ = 0

{λ�, λ�}={+1,-1}

P! ΨH

2
= 1
2
1 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥
1
0

⎡

⎣
⎢

⎤

⎦
⎥

2

= 1
2
1
1

⎡

⎣
⎢

⎤

⎦
⎥

2

= 1
2

2

+ 1
2

2

= 1
2

P! ΨH

2
= 1
2

1 −1
−1 1

⎡

⎣
⎢

⎤

⎦
⎥
1
0

⎡

⎣
⎢

⎤

⎦
⎥

2

= 1
2

1
−1

⎡

⎣
⎢

⎤

⎦
⎥

2

= 1
2

2

+ −1
2

2

= 1
2

Ψ
H

24
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Projected Polarization Energy
• All Energy from the Horizontally Polarized Wave WILL Pass 

through the +/-45○ Slant Polarizer (ideally)
• Even though Photon is Horizontally-polarized!
• Photon is an EM quantum

and cannot be divided
• Detector measures each

incident photon as either
either +45○ or -45○ 
polarized state (ideally)

• No polarization loss!!!!
• Classic case is an enormous

number of photons, thus
energy appears to be divided
since half of the photons
detected with +45○ and the
other half with -45○ polarization 

Incident energy

measured energy
(sometimes)

measured energy
(sometimes)

25

Interpretation
• The incident horizontally polarized photon, |ΨH〉	was 

Observed using the slant-45 measurement basis
• Thus, the photon while being in a basis state with 

respect to the horizontal/vertical polarization basis, is 
in a state of perfect superposition with respect to the 
slant-45 basis:

• This probabilistic behavior of being either +45○ or -45○ 
polarized is due to Born’s rule, a QM postulate

• This is a Subjective Probability

ΨH = H =
! + !

2

26
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+45○ selected
-45○ selected

• Unpolarized light source emits a collection of photons 
each with a statistical ensemble of all possible 
polarizations
– Each photon cannot be described as a single pure state

• Must be described with a Density Matrix
– true if LHC/RHC or +45○/-45○ polarizer is used as well

• Experiment below yields same outcome as if a 
polarized photon is incident, but it is NOT due to 
superposition/projection, due to statistical ensemble 
of different polarization
states

• Cannot distinguish
between the 2 cases !!!!!

Unpolarized Light

27

+45○ selected

-45○ selected

RHC selected

LHC selected

Unpolarized Light

ρ = p1 Ψ!
Ψ

!
+ p2 Ψ!

Ψ
!

= p1
1
2

⎛
⎝⎜

⎞
⎠⎟

2
1
i

⎡

⎣
⎢

⎤

⎦
⎥ 1 −i⎡
⎣

⎤
⎦

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ p2
1
2

⎛
⎝⎜

⎞
⎠⎟

2
1
−i

⎡

⎣
⎢

⎤

⎦
⎥ 1 i⎡
⎣

⎤
⎦

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= p1

1
2
1 −i
i 1

⎡

⎣
⎢

⎤

⎦
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