

Information Encoding Examples

EXAMPLE: Define a message that conveys the speed of an object in a plane from time t_0 to t_1 .

- 1. Continuous/Direct: A graph drawn on a Cartesian coordinate system, with *x*-axis labeled in time units from t_0 to t_1 and y -axis labeled in distance/time for speed values.
- 2. Continuous/Indirect: position of object where *x*-axis is in units of time and *y*-axis is in units of distance. Indirect since a transformation must be applied to (in this case first-order time derivative operator is applied) to retrieve the direct information.
- 3. Continuous/Generative: A Mathematical function defined over the interval t_0 to t_1 for the speed. Can be either direct (like here) or indirect.
- 4. Discrete versions of above are sampled versions of the continuous information.
- 5. Some information may be inherently discrete since it is undefined over some intervals.

Von Neumann Information

- Comparison to Shannon Information:
	- Shannon Message: Finite Set of *n* Symbols chosen from a Finite Set of Symbols
	- Von Neumann Message: Finite Set of *n* Quantum States chosen from an Ensemble of Quantum States
- Alphabet (the ensemble of quantum states) is represented by a density matrix*, *ρ*, comprised of each possible quantum state ρ_x (in density matrix form) and its associated probability, p_i .

$$
\boldsymbol{\rho} = \sum_{i=1}^n p_i \boldsymbol{\rho}_i
$$

*Density matrices are self-adjoint (Hermitian), positive semi-definite, and of trace 1. Density matrices are diagonalizable, that is, they have a spectral decomposition.

Matrix Logarithm Properties • A Hermitian matrix, **A**, is positive-definite if, for every non-zero column vector of \mathbf{A} , $|a_i\rangle$, the following scalar is strictly positive (note these scalars are all real since **A** is Hermitian). • If **A** and **B** are both positive-definite, $Tr\left\lfloor \ln(A\mathbf{B}) \right\rfloor = Tr\left\lfloor \ln(A) \right\rfloor + Tr\left\lfloor \ln(B) \right\rfloor$ $\ln(A\mathbf{B}) = \ln(A) + \ln(B)$ $\ln(\mathbf{A}^{-1}) = -\ln(\mathbf{A})$ $\langle a_i | \mathbf{A} | a_i \rangle > 0$

Von Neumann & Shannon Entropy • Shannon and Von Neumann entropy provide the incompressible information content of a message consisting of a set of symbols from an alphabet • When the Von Neumann alphabet consists of a set of pure and orthonormal states, the two entropy values are identical and we can quantify information content in "bits" not "qubits"! • Quantum Information Theory is concerned with the interpretation and use of Von Neumann entropy • Case where alphabet contains quantum states, *ρⁱ* , that are not orthogonal is interesting and opens a new area not covered by classical Shannon Information theory

8QAM Example Encoder *8QAM Modulator (transmitter frontend)* $I(t)$ $cos(2\pi f_c t)$ **Modulated signal** Data signal Level Oscillator Generator $-sin(2\pi f_c t)$ $\overline{2}$ $\pi/2$ $Q(t)$ *Quadrature = Sine Wave + Cosine Wave*

Efficiency

- This means the *maximum possible information* in a message* of length *n* is when it is composed of $\overline{equally}$ *likely* symbols $(p_i=1/N)$ that are independent and identically distributed (uniform distribution)
- Figure of merit, *M*, for *source encoding efficiency* is the actual amount of information represented in a message of length *n* divided by the theoretical maximum amount of information in a message of length *n*

$$
M = \frac{H_{_{MSG}}(X)}{H_{_{RAND}}(X)} \times 100\%
$$

*Shannon Information is maximized in a symbol string that appears to be purely random since such strings are comprised of symbols with minimum probability of occurrence.

\n- \n**8QAM Message Information**\nAssume the alphabet is a collection of *N* pairs comprising a unique symbol and its probability of occurrence:

\n\n
$$
A_c = \{(x_i, p_i) | i = 1, N\}
$$
\n

\nAssume symbols are equally likely to be used:
$$
p_i = \frac{1}{N}
$$
\n

\nAssume *n*=7, *8QAM* alphabet (*N*=8), and Message* is *Y*=2344250

\n• Message Symbol Distribution (histogram of symbols):

\n
	\n- NUMBER OF OCCURRENCES: 1 0 2 1 2 1 0 0
	\n- SYMBOL: 0 1 2 3 4 5 6 7
	\n\n• Message Symbol Percentages:
$$
\hat{p}_i = \frac{n_i}{n} \times 100 \quad \{\frac{1}{7}, \frac{0}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7}\}
$$
\n

\n• Message Entropy, assuming that each message of length *n* is independent of past or future messages:

\n
	\n- $$
	H_{\text{MSC}}(Y) = \sum_{i=1}^{7} H_{\text{MSC}}(X_i \rightarrow x_i) = -\sum_{i=1}^{7} \hat{p}_i \log_2(\hat{p}_i) = -\left[3\left(\frac{1}{7}\right) \log_2\left(\frac{1}{7}\right) + 2\left(\frac{2}{7}\right) \log_2\left(\frac{2}{7}\right)\right]
	$$
	\n
	\n- = 1.2032 + 0.5164 = 1.7196 bits
	\n\n*www.random.org/integers was used to generate the example message string

\n
\n

*www.random.org/integers