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Quantum Information

1

Information Encoding
• Information may be Represented in Continuous 

or Discrete from
• Information can be Represented Directly, 

Indirectly, or Generatively
1) Directly is explicit representation.   A set of observed 

symbols (discrete).  There is not direct 
representation of continuous information because it 
cannot be explicitly represented.

2) Indirectly is like a pointer to a data object. A lossless 
encoding with a known decoding algorithm.

3) Generatively is based on a generating function that 
generates a particular sequence of symbols, or a set 
of continuous functions that can be evaluated at any 
point to yield the data.  Generative continuous data 
is also usually (always?) indirect.
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Information Encoding Examples
EXAMPLE:  Define a message that conveys the speed of an object in a 
plane from time t0 to t1.
1. Continuous/Direct: A graph drawn on a Cartesian coordinate 

system, with x-axis labeled in time units from t0 to t1and y-axis 
labeled in distance/time for speed values.

2. Continuous/Indirect: position of object where x-axis is in units of 
time and y-axis is in units of distance.  Indirect since a 
transformation must be applied to (in this case first-order time 
derivative operator is applied) to retrieve the direct information.

3. Continuous/Generative: A Mathematical function defined over the 
interval t0 to t1for the speed. Can be either direct (like here) or 
indirect.

4. Discrete versions of above are sampled versions of the continuous 
information.

5. Some information may be inherently discrete since it is undefined 
over some intervals.
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Quantum Information Theory
• BIG Subject – can be Focus of Entire Class
• Covers these Topics

1) Transmission of Classical (Shannon) Information over a 
Quantum Channel
a) noiseless channels

b) channels with noise

2) Transmission of Quantum (von Neumann) Information 
over a Quantum Channel

3) Tradeoff between Acquisition of Information about a 
Quantum State and Disturbing the State

4) Quantifying Quantum Entanglement 
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Von Neumann Information
• Comparison to Shannon Information:
– Shannon Message: Finite Set of n Symbols chosen from a 

Finite Set of Symbols

– Von Neumann Message: Finite Set of n Quantum States 
chosen from an Ensemble of Quantum States

• Alphabet (the ensemble of quantum states) is 
represented by a density matrix*, ρ, comprised of 
each possible quantum state ρx (in density matrix 
form) and its associated probability, pi.

*Density matrices are self-adjoint (Hermitian), positive semi-definite, and of trace 1.
  Density matrices are diagonalizable, that is, they have a spectral decomposition.

ρ = piρi
i=1

n

∑

5

Von Neumann Entropy
• Entropy is the Expected Value of the Information 

Content in a Message
• Comparison to Shannon Entropy:
– Shannon Message: A set of n symbols {xi}

– Von Neumann Message: A set of quantum states, ρi 
or |Ψi〉

• Von Neumann entropy requires evaluating the 
logarithm of the density matrix.

– if Alphabet is comprised of orthogonal pure states, |Ψi〉 :
ρ = pi Ψ i

i=1

n

∑ Ψ i

H X( ) = E I X( ){ } = − P xi⎡⎣ ⎤⎦
i=1

n

∑ logb P xi⎡⎣ ⎤⎦( )

S ρ( ) = −Tr ρ ln ρ( )

ρ = piρi
i=1

n

∑
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Matrix Logarithm
• General case, given,

• Then, A is the (natural) logarithm of B
• Our matrices of interest have complex components 

and the exponential of a complex value is not one-to-
one, example:

• Thus, some matrices have more than one logarithm
• Power Series Expansions:

• Complex matrices logarithms if, and only if, they are 
invertible

eA = B

e
iπ
2 = e

i5π
2 = e

i9π
2

eA = An

n!n=0

∞

∑ ln B( ) = −1( )k+1 B − I( )k
kn=0

∞

∑
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Matrix Logarithm Properties
• A Hermitian matrix, A, is positive-definite if, for every 

non-zero column vector of A, |ai〉,	the following 
scalar is strictly positive (note these scalars are all 
real since A is Hermitian).

• If A and B are both positive-definite,

Tr ln AB( )⎡⎣ ⎤⎦ = Tr ln A( )⎡⎣ ⎤⎦ + Tr ln B( )⎡⎣ ⎤⎦
ln AB( ) = ln A( )+ ln B( )
ln A−1( ) = − ln A( )

ai A ai > 0
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Von Neumann Entropy
• Based on the properties of the Density Matrix and 

the logarithm of a matrix, Von Neumann Entropy can 
be shown to be:

• The Von Neumann Entropy of a single pure state is 
zero.  Let:

S ρ( ) = −Tr ρ log ρ( ) = − λ
i
log λ

i( )
i=1

n

∑

ρ = p
i
Ψ
i

i=1

1

∑ Ψ
i
= 1( ) Ψ1 Ψ

1
= Ψ

1
Ψ
1
= α

β
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α * β *⎡
⎣⎢

⎤
⎦⎥
=

αα * αβ *

α *β ββ *
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ψ1 =α 0 + β 1

c λ( ) = ρ − λI =
αα * − λ αβ *

α *β ββ * − λ
= αα * − λ( ) ββ * − λ( )− αβ *( ) α *β( )

c λ( ) = αα * − λ( ) ββ * − λ( )− αβ *( ) α *β( ) =αα *ββ * − λαα * − λββ * −αα *ββ * + λ 2

= λ 2 − λ αα * + ββ *( ) = λ 2 − λ α
2
+ β

2( ) = λ 2 − λ 1( ) = λ λ −1( ) = 0
λ1,λ2{ } = 0,1{ }
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Von Neumann Entropy (cont.)

• The Von Neumann Entropy of a single pure state is 
zero.  Let:

S ρ( ) = −Tr ρ log ρ( ) = − λ
i
log λ

i( )
i=1

n

∑

ρ =
αα * αβ *

α *β ββ *
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥Ψ1 =α 0 + β 1 λ1,λ2{ } = 0,1{ }

S ρ( ) = −Tr ρ log ρ( ) = − λ
i
log λ

i( )
i=1

n

∑ = − 0( ) ln 0( ) − 1( ) ln 1( ) = 0 nats

10



8/3/24

6

Von Neumann & Shannon Entropy
• Definition of Von Neumann entropy:
• Because the Density matrix is Hermitian, it is 

Diagonalizable (can be expressed as a spectral 
decomposition) for some orthonormal basis 
set {|ai〉}.

• Consider the ensemble as the alphabet, A:
• Then, the Von Neumann entropy reduces to the 

Shannon entropy:
• Thus, if the alphabet consists of a set of orthogonal 

pure states with probability, pi, A={pi, |Ψi〉}then the 
Von Neumann and Shannon entropy are identical 
(pi=λi):

S ρ( ) = −Tr ρ ln ρ( )

ρ = λi ai
i=1

n

∑ ai
A = λi , ai{ }

S ρ( ) = −Tr ρ log ρ( ) = − λ
i
log λ

i( )
i=1

n

∑ = H A( )

S ρ( ) = −Tr ρ log ρ( ) = − p
i
log p

i( )
i=1

n

∑ = H A( )
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Von Neumann & Shannon Entropy
• Shannon and Von Neumann entropy provide the 

incompressible information content of a message 
consisting of a set of symbols from an alphabet

• When the Von Neumann alphabet consists of a set of 
pure and orthonormal states, the two entropy values 
are identical and we can quantify information 
content in “bits” not “qubits”!

• Quantum Information Theory is concerned with the 
interpretation and use of Von Neumann entropy

• Case where alphabet contains quantum states, ρi, 
that are not orthogonal is interesting and opens a 
new area not covered by classical Shannon 
Information theory

12
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Von Neumann Entropy Properties
• Purity: Von Neumann entropy of a single pure state is 

zero (previously proven).
• Invariance: Entropy is unchanged when the density 

matrix undergoes a unitary change of basis defined by U.

Since S(ρ) depends only on its eigenvalues, this is 
obvious.

• Maximum: When ρ has non-vanishing eigenvalues, the 
diagonal matrix D in its spectral decomposition obeys:

thus, information content or entropy can be shown to be 
maximized when all non-zero eigenvalues are equal, 
which means each quantum state in a message is chosen 
randomly (equally likely, uniformly distributed).

S ρ( ) = S UρU−1( )

S ρ( ) ≤ log D( )

13

Von Neumann Entropy Properties (cont.)
• Concavity: Consider the non-zero eigenvalues of ρ,

then,

This means that the message entropy is LARGER if 
less is known about how the state was prepared!  
This is due to the convexity of the logarithm function.

λ1,λ2 ,!,λn ≥ 0, λ1 + λ2 +!+ λn =1

S λ1ρ1 + λ2ρ2 +!+ λnρn( ) ≥ λ1S ρ1( )+ λ2S ρ2( )+!+ λnS ρn( )

Several other interesting and useful theoretical 
properties, but let us turn to an application in Quantum 
Information Theory, that of Data Compression.
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Classical Data Compression

15

Classical and Quantum Messages
• Consider a finite alphabet of N distinct and discrete 

symbols with probability, pi:
• A message, M, of length n is a specific sequence n 

symbols chosen from the alphabet
• Shannon Information content of a n-length message is:

• The average or expected amount of information over all 
messages of length n is the entropy

• Entropy differs depending on how the symbols are 
physically represented, or encoded
– Classical encoding: Shannon entropy, H(M)
– Quantum encoding: Von Neumann entropy, S(ρM)

I M( ) = 1

log P s
i

⎡⎣ ⎤⎦( )i=1

k

∑ = − log P s
i

⎡⎣ ⎤⎦( )
i=1

k

∑

AC = xi , pi( ) | i =1,N{ }
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Classical Message Encoding
• Information is content is a sequence of symbols Each 

symbol encodes a fixed amount of classical information in 
units such as nats or bits

• Each message is a Sequence of Symbols
– when symbols represent groups of bits, a Symbol is often called 

a “baud” in honor of Emile’ Baudot (early telegraphy engineer)
– the rate of information transfer is Symbols per second, or  

“baud” rate when in units of bits per second*

• Symbols are represented, or encoded, by an observable 
of a physical quantity that is unique for each symbol
– measurement is modeled as a bijective function
– example physical quantity is a voltage sine wave with some 

specific amplitude and relative phase such as 8-valued 
Quadrature Amplitude Modulation (8QAM)

*Bits per second is often (somewhat erroneously) reported in Hertz and called the 
 “Bandwidth.”  More precisely it should be referred to as the “data rate.”

17

8QAM Example Waveform

Quadrature Waveform

Quadrature = Sine Wave + Cosine Wave 
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Other 8QAM Encodings

Circular Spacing Star 2 Spacing

Star 1 Spacing
19

8QAM Example Encoder
8QAM Modulator (transmitter frontend)

Quadrature = Sine Wave + Cosine Wave 
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8QAM Example Decoder
8QAM Demodulator (receiver frontend)
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Classical Compression
• Objective of Data Compression is to represent 

Information with as few symbols from the alphabet 
as possible

• Shannon entropy is Maximized when Symbols in a 
message are Equally likely
– a purely random stream contains the most information 

since the probability of occurrence for symbol is as small 
as possible (i.e., a uniform distribution)

• For an n-symbol, classical message, we can calculate 
the maximum possible information content, IMAX, as:

IMAX n( ) = max 1
log P x1⎡⎣ ⎤⎦( ) +

1
log P x2⎡⎣ ⎤⎦( ) +!+ 1

log P xn⎡⎣ ⎤⎦( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= 1
log min P x1⎡⎣ ⎤⎦{ }( ) +

1
log min P x1⎡⎣ ⎤⎦{ }( ) +!+ 1

log min P x1⎡⎣ ⎤⎦{ }( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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Efficiency
• This means the maximum possible information in a 

message* of length n is when it is composed of 
equally likely symbols (pi=1/N) that are independent 
and identically distributed (uniform distribution)

• Figure of merit, M, for source encoding efficiency is 
the actual amount of information represented in a 
message of length n divided by the theoretical 
maximum amount of information in a message of 
length n

M =
H
MSG
X( )

H
RAND

X( ) × 100%

*Shannon Information is maximized in a symbol string that appears to be purely random
 since such strings are comprised of symbols with minimum probability of occurrence.

23

8QAM Message Information
• Assume the alphabet is a collection of N pairs comprising a unique 

symbol and its probability of occurrence:

• Assume symbols are equally likely to be used:

• Assume n=7, 8QAM alphabet (N=8), and Message* is Y=2344250
• Message Symbol Distribution (histogram of symbols):

NUMBER OF OCCURRENCES:   1   0   2   1   2   1   0   0
              SYMBOL:   0   1   2   3   4   5   6   7

• Message Symbol Percentages:

• Message Entropy, assuming that each message of length n is 
independent of past or future messages:

*www.random.org/integers was used to generate the example message string

p̂i =
ni
n
×100

1
7
, 0
7
, 2
7
, 1
7
, 2
7
, 1
7
, 0
7
, 0
7

⎧
⎨
⎩

⎫
⎬
⎭

HMSG Y( ) = HMSG Xi → xi( )
i=1

7

∑ = − p̂i
i=1

7

∑ log2 p̂i( ) = − 3 1
7

⎛
⎝⎜

⎞
⎠⎟
log2

1
7

⎛
⎝⎜

⎞
⎠⎟
+ 2 2

7
⎛
⎝⎜

⎞
⎠⎟
log2

2
7

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

=1.2032+ 0.5164 =1.7196 bits

AC = xi , pi( ) | i =1,N{ }
p
i
= 1
N
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8QAM Message Information (cont.)
• Assume n=7, 8QAM alphabet, and Message* is Y=23442508

• Theoretical Maximum Information:

• Message Information Efficiency:

• Efficiency indicates that the Message has redundancy and that 
lossless data compression may be possible.

• If an Ideal Lossless Compression Method could be found, the same 
amount of information should theoretically be possible to 
represent in ncomp Symbols:

*www.random.org/integers

HMSG Y( ) = HMSG Xi → xi( )
i=1

7

∑ = − p̂i log2 p̂i( )
i=1

7

∑ =1.7196 bits

HRAND X( ) = − P X = xi⎡⎣ ⎤⎦ log2 P X = xi⎡⎣ ⎤⎦( )
i=1

7

∑ = − 1
8

⎛
⎝⎜

⎞
⎠⎟
log2

1
8

⎛
⎝⎜

⎞
⎠⎟i=1

7

∑ = −7 1
8

⎛
⎝⎜

⎞
⎠⎟
log2

1
8

⎛
⎝⎜

⎞
⎠⎟
= 2.625 bits

M =
HMSG X( )
HRAND X( ) ×100% =

HMSG X( )
HRAND X( ) ×100% = 1.7196

2.625
×100% = 66%

ncomp = ⎡M × n⎤ = ⎡ 0.66( ) 7( )⎤ = 5
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