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Computing throughout History
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May 7, 1981

Simulating Physics with Computers
Richard P. Feynman
Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

1. INTRODUCTION

On the program it says this is a keynote speech—and I don’t know
what a keynote speech is. I do not intend in any way to suggest what should
be in this meeting as a keynote of the subjects or anything like that. I have
my own things to say and to talk about and there’s no implication that
anybody needs to talk about the same thing or anything like it. So what I
want to talk about is what Mike Dertouzos suggested that nobody would
talk about. I want to talk about the problem of simulating physics with
computers and I mean that in a specific way which I am going to explain.

he reasan for doino this s ino that T learned ahout from Fd

The first branch, one you might call a side-remark, is, Can you do it
with a new kind of computer—a quantum computer? (I'll come back to the
other branch in a moment.) Now it turns out, as far as I can tell, that you
can simulate this with a quantum system, with quantum computer elements.
It’s not a Turing machine, but a machine of a different kind. If we disregard
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July 13, 1984

Quantum theory, the Church-Turing principle and the universal
quantum computer

DAVID DEUTSCH*

Appeared in Proceedings of the Royal Society of London A 400, pp. 97-117 (1985)"

(Communicated by R. Penrose, FR.S. — Received 13 July 1984)

Abstract

Tt is argued that underlying the Church-Turing hypothesis there is an implicit
physical assertion. Here, this assertion s presented explicitly as a physical prin-
ciple: “every finitely realizable physical system can be perfectly simulated by a
universal model computing machine operating by finite means’. Classical physics
and the universal Turing machine, because the former is continuous and the latter
discrete, do not obey the principle, at least in the strong form above. A class of

model commnting machines that i the gnantim

ion of the class of Tur.
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quantum computer’ are compatible with the principle. Computing machines re-
sembling the universal quantum computer could, in principle, be built and would
have many remarkable properties not reproducible by any Turing machine. These
do not include the computation of non-recursive functions, but they do include
‘quantum parallelism’, a method by which certain probabilistic tasks can be per-
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How is quantum parallelism possible?

1
Bit (electronic)
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How is quantum parallelism possible?

Part 0 and Part 1!
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Bit (electronic) Qubit (quantum) Qubit (example)

Parallelism in Information Representation
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What happened between 1984 and now?

Better Components (Improvements in precision and performance):

Semiconductor Feature Size 1000 nm 14 nm
Single Photon Source Efficiency 9% 70%
90%

Single Photon Detector Efficiency 20%
Better Infrastructure (Access to that performance):

* Design SW,
* Foundries for Electronics ... now photonics

Quantum Informatics is moving from Physics to Engineering
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Bell State Oscillator

* First Quantum
Oscillator

- “Bell State Oscillator”

* First incidence of
feedback in a
quantum system
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Why Oscillators?

 Clock

» Synchronization
» Counters

* Memory

* Sensors
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* Random number generators
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Engineering Doctrine — QIS Design

Architecture/Algorithm

Elegance

Realization

Messy — Impairments, detailed physics of devices
Therefore, theory of Realization may not match that of original Architecture

Software Development Device Development
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The Basic Search Problem

L' EXAMPLE PROBLEM
WA Input: Shuffled Deck of 52 Cards
Output: Search for 5 of Diamonds

Worst Case: Examine all 52 Cards
Average Case: Examine 26 Cards
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Amazingly Fast Searching

1" EXAMPLE PROBLEM
WA Input: Shuffled Deck of 52 Cards
Output: Search for 5 of Diamonds

Worst Case: Examine all 52 Cards
Average Case: Examine 26 Cards

Search Program on Quantum Computer:
8 Operations !l (~Square Root of 52)
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Amazingly Fast Searching — Basic Technique

L' EXAMPLE PROBLEM
WA Input: Shuffled Deck of 52 Cards
Output: Search for 5 of Diamonds

Worst Case: Examine all 52 Cards
Average Case: Examine 26 Cards
Search Program on Quantum Computer:

8 Operations !l (~Square Root of 52)

o(v7')
—_——H
Grover’s Search
Target qubits |0>+'H®" H*™
] G| |G Ll Method
Oraclcqubitll} m
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Fast Searching — Quantum AI/ML

1" EXAMPLE PROBLEM
WA Input: Shuffled Deck of 52 Cards
Output: Search for 5 of Diamonds

Worst Case: Examine all 52 Cards
Average Case: Examine 26 Cards

Search Program on Quantum Computer:
8 Operations !l (~Square Root of 52)

o(v7")
ebitslo . ; Grover’s Search
i 1 P e g Method
Oraclcqubilll} 7
Quantum Machine Learning
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Drug Discovery - Pharmaceutical

EXAMPLE PROBLEM
MU= Input: List of Candidate Compounds|
" Output: New Drug

e -ﬁ}x\\b T Worst Case: Create/Test Each
D = ) Compound in the Laboratory
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Drug Discovery - Pharmaceutical

EXAMPLE PROBLEM
Input: List of Candidate Compounds
W= Output: New Drug

‘T Worst Case: Create/Test Each
) Compound in the Laboratory

Richard Feynman’s 1981 Paper

Original Motivation was to Simulate
"4 Atomic Structures at Particle Level

Quantum Chemistry Simulation
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Entanglement: Another QM Phenomenon

A 2 | =
| v
observed affected
“here” “over there”

* from Google images
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Entanglement: Generation

4 2 | =
I v
observed affected
“here” “over there”
GENERATE ENTANGLEMENT -

1) Initialize and process 2 Particles
2) Transmit 1 particle and “keep” the second
3) When second particle is measured ( 9_

— First particle is “forced” to change into a Corresponding State

* from Google images
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Action at a Distance

*
4 ? |
I v
observed affected
“here” “over there”

* from Google images
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Action at a Distance

*
A 2 | —H
| v
observed affected
“here” “over there”

* from Google images
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Action at a Distance

4 ? | —H
I v
observed affected
“here” “over there”

GENERATE ENTANGLEMENT
1) Initialize and process 2 Particles
2) Transmit 1 particle and “keep” the second
3) When second particle is measured
— First particle is “forced” to change into
a Corresponding State

* from Google images
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Entanglement Generation
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