ECE/CS 5/7384

Introduction to Quantum Computing

Instructor: Mitch Thornton

GOAL: Introduction to the Ideas of Reversible and Quantum Logic and Computing

https://s2.smu.edu/~mitch/class/5384/index.html

1

Class Grades

- Homework/Labs (25%) –Assigned periodically during the semester
- Examination 1 (25%)- Test of the basic concepts between beginning of class and Mid-term
- Examination 2 (25%)- Test of new concepts discussed in class to date of exam
- Examination 3 (25%) Final Exam

Desired Student Background

- Math linear algebra, discrete mathematics, elementary probability theory
- Physics basic Physics courses required for undergraduate in the sciences/engineering, an introduction to quantum mechanical principles is desirable
- CS/ECE computer architecture fundamentals, digital design fundamentals, exposure to algorithms and theory is desirable

Anyone with credit in the ECE 5/7383 Intro. to Quantum Informatics Automatically Satisfies the Desired Background

3

Textbook

This is a comprehensive reference. We will not cover everything in this book.

Other Material

- Main Textbook contains (most of) the general overview of the course material
- Selected Material from:
 - References
 - Historical Readings
 - Archived Papers
 - Other Web Resources
- Will ATTEMPT to place all notes online, BUT,
 - YOU SHOULD TAKE NOTES ALSO

5

General Topic Outline

- Linear and selected topics from Tensor Algebra (review sessions online)
- Computation and the Laws of Physics (very brief)
- Relevant Concepts in Quantum Mechanics
- Hilbert Vector Spaces and the Notation of Dirac
- Quantum States and Measurement
- The Concept of the Qubit

General Topic Outline (cont)

- The Bloch Sphere and Superposition
- Entanglement
- Reversible Logic
- Quantum Logic Gates
- No-Cloning Theorem
- Quantum Algorithms/Circuit Structure
- Survey of Known Algorithms

7

Quantum Computing Overview

- New computing paradigm
- Certain algorithms show tremendous speedup
 - Overcomes limitations of Turing model
- Computes Fourier transform in $O(\log n)^2$ rather than $O(n \log n)$
- Database search in O(n^{1/2}) rather than O(n)
 [Grover]
- Factorization in $O(\log n)$ rather than $O(n^{1/2})$ [Shor]

Quantum Characteristics Exploited

- Quantum Superposition
- Entanglement
- Projective Measurement
- Information Teleportation
- · Pure and mixed states
- No cloning theorem

9

Quantum Bit (qubit)

• Superposition of basis (1 and 0) states:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
 $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

where:

$$|\alpha|^2 + |\beta|^2 = 1$$

 Collapses into a basis state upon observation:

$$Prob(0) = |\alpha|^2$$
 $Prob(1) = |\beta|^2$

Quantum Register/Computer*

- · Each cell contains a qubit
- Number of BASIS states is 2ⁿ
- Gate Model of Computation (Deutsch'85):
 - 1. Initialize Qubits to known States (usually 0 basis state)
 - 2. Apply a sequence of Operations (called "gates")
 - 3. Read/Observe the final State of the Register

*This is the Discrete Variable or "Gate-based" Model

11

Qubit Basis States

$$| 0 \rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Some Single Qubit Quantum Gates

Hadamard Pauli-X Pauli-Y Pauli-Z

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{Y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \mathbf{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Single Qubit Gates

Hadamard
$$-H$$
 $-\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

Pauli- X $-X$ $-X$ $-\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Pauli- Y $-Y$ $-\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$

Pauli- Z $-Z$ $-\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Phase $-\begin{bmatrix} S \end{bmatrix}$ $-\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
 $\pi/8$ $-\begin{bmatrix} T \end{bmatrix}$ $-\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$

Square-root of X

$$\mathbf{V} = \frac{1}{2} \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix}$$

Square-root of X[†]

$$\begin{array}{ccc}
 & S & & & \\
 & S & & \\$$

13

Example Computation

$$|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha |0\rangle + \beta |1\rangle$$

$$|\psi\rangle$$
 — $|\phi\rangle$

$$|\varphi\rangle = \mathbf{H} |\psi\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} \alpha + \beta \\ \alpha - \beta \end{bmatrix}$$

$$\mathbf{H} \mid 0 \rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{\mid 0 \rangle + \mid 1 \rangle}{\sqrt{2}}$$

$$\mathbf{H} \mid 0 \rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{\mid 0 \rangle + \mid 1 \rangle}{\sqrt{2}} \qquad \qquad \mathbf{H} \mid 1 \rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \frac{\mid 0 \rangle - \mid 1 \rangle}{\sqrt{2}}$$

15

Another Example Computation

$$|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha |0\rangle + \beta |1\rangle$$

$$|\psi\rangle$$
 — $|\phi\rangle$

$$|\varphi\rangle = \mathbf{X} |\psi\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \beta \\ \alpha \end{bmatrix} = \beta |0\rangle + \alpha |1\rangle$$

$$\mathbf{X} \mid 0 \rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1 \rangle \qquad \qquad \mathbf{X} \mid 1 \rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0 \rangle$$

Controlled Gates

- Allows State of one qubit to Control Transformation of Another
- Analogous to a "Control or Enable" Input on a Classical Electronic Logic Gate

17

Controlled-X Gate

$$|\varphi\rangle$$
 $|\varphi\rangle$ $|\varphi\rangle$ $|\psi\rangle$

$$\mathbf{C_x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Also, a "controlled-NOT" operator

Other Quantum "Circuit" Symbols

21

Quantum "Circuits"

- Accomplished with "Quantum Circuit" or with "Quantum Language"
- Quantum Circuits: Graphical Representations of Quantum Algorithms
 - Horizontal Lines are Qubit Instances that Evolve over Time
 - Operator Symbols Indicate a Transformation Applied at a Specific Time

The term "Quantum Circuit," "Quantum Gates," and "Quantum Wires" can be Misleading!

These are Actually Quantum Algorithms!

Quantum Fourier Transform Circuit

6 gates suffice to compute an 8 component Discrete Fourier transform that would require 24 operations in FFT and 64 in straight DFT

23

Challenges in Quantum Computing

- Decoherence
- Error-correction
- Realizability of gates
- Initialization of the register
- Quantum Memory

25

Current State of Quantum Computing DWave - February 13, 2007

Is this Really a Quantum Processor?

source: http://www.dwavesys.com/

D-Wave Technology Approach

- Based on Niobium metal loops with Josephson junctions
 - two superconductors separated by an insulator
- Tiny Loop currents exhibit quantum properties
 - direction of current flow represent "states" of qubit
 - eg. cw is "1", ccw is "0", both ways is superposition of "1" and "0"
- Based on theory of Adiabatic Computation rather than the gate model

27

D-Wave 16-qubit Chip

source: http://www.dwavesys.com/

Josephson Junctions

- Based on Current Flow across two weakly coupled superconductors
 - two superconductors separated by an insulator
- Current Crossing Insulator is "Josephson current"
- Quantum Mechanical effect known as "tunneling"
- Superconductors must be close to absolute zero degrees temperature

29

D-Wave Cooling System

source: http://www.dwavesys.com/

31

IEEE Spectrum January 2010

- Annual "Winners and Losers" Issue
 - Loser: D-Wave Does not Quantum Compute
- Experts Skeptical that D-Wave Computer is really a quantum computer
 - claims that "entanglement" has not been achieved
- D-Wave claims "making good progress"
 - currently testing three 128-qubit systems
- Consensus is that D-Wave has more work to do to demonstrate feasibility of approach

IEEE Spectrum December 2012

- Quantum Computing "Proof of Concept"
- Implementation of Waveguides with Injected Bosons (Photons)
- Not Programmable Hardware Solves One Proof of Concept Problem
- Conventional Machines can Compute Solution (for small number of bosons)
 - validation
- Uses Existing State-of-the-art Hardware
 - single photon generators, etc.

33

Scientific American Dec./2014

- "Quest for Quantum Computers Heats Up"
- Google Hires Prof. Martinis Team
 - Univ. Santa Barbara Research Team
 - Extended Avg. Decoherence Time to minutes
 - Working with DWave
 - hiring "Quantum Engineers"
- IBM, Microsoft Active in Area
- Dutch QuTech Center using Quantum Dots
 - claim that there are "no more roadblocks"

Where is the Technology Now?

- Two Main Competing Qubit Architectures
 - Ion Traps (IonQ, Quantinuum)
 - Josephson Junctions (Supercooled Semiconductors, IBM, Google, Rigetti)
 - Photons are Room-temp, but not as much Traction in the Technology Race
- The Race is on for:
 - More Qubits per QPU Chip
 - Logical (fault tolerant) Qubits to Prevent Decoherence

35

Where is the Technology Now?

- IBM Condor (1,121 qubits)
- Atom Computing's system (1,180 qubits)
- D-Wave Advantage 2 (4,400 qubits)
- RIKEN & Fujitsu (256 qubits)
- NVidia ABCI-Q integrates QPU with GPU

Cryptographically Significant Quantum Computer (CSQC)

- Shor's Algorithm Threatens PKI
 - quickly factors Semiprime Numbers that are Basis of Public-key Encryption Security
- Experts Believe tens to hundreds of thousand "physical qubits" Required and will be Available in the range of 5 to 30 years
 - NIST Standardized PQC Cryptographic Methods with First 3 (FIPS 203/204/205) Released in December 2024
- HNDL "Harvest Now Decrypt Later" is Happening Right Now!