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ECE/CS 5/7384
Introduction to Quantum Computing

GOAL: Introduction to the Ideas of 
Reversible and Quantum Logic and 

Computing
https://s2.smu.edu/~mitch/class/5384/index.html

Instructor: Mitch Thornton
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Class Grades
• Homework/Labs (25%) –Assigned periodically 

during the semester
• Examination 1 (25%)- Test of the basic concepts 

between beginning of class and Mid-term
• Examination 2 (25%)- Test of new concepts 

discussed in class to date of exam
• Examination 3 (25%) – Final Exam

2

https://s2.smu.edu/~mitch/class/5384/index.html
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Desired Student Background
• Math – linear algebra, discrete mathematics, 

elementary probability theory
• Physics – basic Physics courses required for 

undergraduate in the sciences/engineering, an 
introduction to quantum mechanical principles is 
desirable

• CS/ECE – computer architecture fundamentals, 
digital design fundamentals, exposure to 
algorithms and theory is desirable

Anyone with credit in the ECE 5/7383 Intro. to Quantum
Informatics Automatically Satisfies the Desired Background
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Textbook

This is a comprehensive reference.  We will not cover 
everything in this book.
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Other Material
• Main Textbook contains (most of) the 

general overview of the course material
• Selected Material from:

– References
– Historical Readings
– Archived Papers
– Other Web Resources

• Will ATTEMPT to place all notes online, 
BUT,
– YOU SHOULD TAKE NOTES ALSO
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General Topic Outline
• Linear and selected topics from Tensor 

Algebra (review sessions online) 
• Computation and the Laws of Physics 

(very brief)
• Relevant Concepts in Quantum 

Mechanics
• Hilbert Vector Spaces and the Notation of 

Dirac
• Quantum States and Measurement
• The Concept of the Qubit
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General Topic Outline (cont)
• The Bloch Sphere and Superposition
• Entanglement
• Reversible Logic
• Quantum Logic Gates
• No-Cloning Theorem
• Quantum Algorithms/Circuit Structure
• Survey of Known Algorithms
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Quantum Computing Overview

• New computing paradigm
• Certain algorithms show tremendous 

speedup
– Overcomes limitations of Turing model

• Computes Fourier transform in 
  O(log n)2 rather than O(n log n)
• Database search in O(n1/2) rather than O(n)  

[Grover]
• Factorization in O(log n) rather than O(n1/2) 

[Shor]
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Quantum Characteristics 
Exploited

• Quantum Superposition 
• Entanglement
• Projective Measurement
• Information Teleportation
• Pure and mixed states
• No cloning theorem
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Quantum Bit (qubit)

• Superposition of basis (1 and 0) states:
 
  
      where:

• Collapses into a basis state upon 
observation:

|ψ 〉 = α | 0〉 + β | 1〉

|α |2 + | β |2= 1

Prob(0) =|α |2 Prob(1) =| β |2

| 0〉 = 1
0

⎡

⎣
⎢

⎤

⎦
⎥

| 1〉 = 0
1

⎡

⎣
⎢

⎤

⎦
⎥
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Quantum Register/Computer*

• Each cell contains a qubit 
• Number of BASIS states is 2n

• Gate Model of Computation (Deutsch’85):
1. Initialize Qubits to known States (usually 0 basis 

state)
2. Apply a sequence of Operations (called 
“gates”)

3. Read/Observe the final State of the Register

1 2 3 ….. n

*This is the Discrete Variable or "Gate-based" Model
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Some Single Qubit Quantum Gates
Hadamard       Pauli-X       Pauli-Y        Pauli-Z

H = 1
2

1 1
1 −1

⎡

⎣
⎢

⎤

⎦
⎥ X = 0 1

1 0
⎡

⎣
⎢

⎤

⎦
⎥ Y = 0 −i

i 0
⎡

⎣
⎢

⎤

⎦
⎥ Z = 1 0

0 −1
⎡

⎣
⎢

⎤

⎦
⎥

Qubit Basis States

| 0〉 = 1
0

⎡

⎣
⎢

⎤

⎦
⎥ | 1〉 = 0

1
⎡

⎣
⎢

⎤

⎦
⎥
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Single Qubit Gates

𝐕 =
1
2
1 + 𝑖 1 − 𝑖
1 − 𝑖 1 + 𝑖

Square-root of X

V

𝐕! =
1
2
1 − 𝑖 1 + 𝑖
1 + 𝑖 1 − 𝑖

Square-root of X†

V †
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Examples of Single Qubit Gates

Electronic "NOT" Gate

"Wires" are
Conductors

X is Quantum "NOT" Gate

−1 = 𝑒!"

Quantum
Superposion:
Both ⟩|0  and ⟩|1  Quantum Circuit "Wires" 

are a qubit:

They Indicate Passage
of Time from Left to Right
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Example Computation

H | 0〉 = 1
2

1
1

⎡

⎣
⎢

⎤

⎦
⎥ =

0 + 1
2

H |1〉 = 1
2

1
−1

⎡

⎣
⎢

⎤

⎦
⎥ =

0 − 1
2

H

|ϕ〉 = H |ψ 〉 = 1
2

1 1
1 −1

⎡

⎣
⎢

⎤

⎦
⎥

α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

2
α + β
α − β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

|ψ 〉 |ϕ〉

|ψ 〉 =
α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=α 0 + β 1
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Another Example Computation

X | 0〉 = 0
1

⎡

⎣
⎢

⎤

⎦
⎥ = 1 X |1〉 = 1

0
⎡

⎣
⎢

⎤

⎦
⎥ = 0

X

|ψ 〉 =
α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=α 0 + β 1

|ϕ〉 = X |ψ 〉 = 0 1
1 0

⎡

⎣
⎢

⎤

⎦
⎥

α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

β
α

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= β 0 +α 1

|ψ 〉 |ϕ〉
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Controlled Gates

• Allows State of one qubit to Control 
Transformation of Another

• Analogous to a “Control or Enable” 
Input on a Classical Electronic 
Logic Gate
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Controlled-X Gate

|ψ 〉

|ϕ〉 |ϕ〉

|ϕ〉⊕ |ψ 〉

CX =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Also, a “controlled-NOT” operator
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Two-qubit Gates
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Three-qubit Gates
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Other Quantum "Circuit" Symbols
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Quantum "Circuits"

The term "Quantum Circuit," "Quantum Gates," and 
"Quantum Wires" can be Misleading!

These are Actually Quantum Algorithms!
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Quantum Fourier Transform 
Circuit

6 gates suffice to compute an 8 component 
Discrete Fourier transform that would require 
24 operations in FFT and 64 in straight DFT
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Shor’s Algorithm
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Challenges in Quantum 
Computing

• Decoherence
• Error-correction
• Realizability of gates
• Initialization of the register
• Quantum Memory
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Current State of Quantum Computing
DWave - February 13, 2007
Is this Really a Quantum Processor?

source: http://www.dwavesys.com/
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D-Wave Technology Approach
• Based on Niobium metal loops with Josephson 

junctions
– two superconductors separated by an insulator

• Tiny Loop currents exhibit quantum 
properties
– direction of current flow represent “states” of 

qubit
– eg. cw is “1”, ccw is “0”, both ways is 

superposition of “1” and “0”
• Based on theory of Adiabatic Computation 

rather than the gate model
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D-Wave 16-qubit Chip

source: http://www.dwavesys.com/
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Josephson Junctions
• Based on Current Flow across two weakly 

coupled superconductors
– two superconductors separated by an insulator

• Current Crossing Insulator is “Josephson 
current”

• Quantum Mechanical effect known as 
“tunneling”

• Superconductors must be close to absolute 
zero degrees temperature
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D-Wave Cooling System

source: http://www.dwavesys.com/
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Early IBM QPU (5-qubit Yorktown)

Josephson
Junction

qubit Circuit Model
"transmon"
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IEEE Spectrum January 2010
• Annual “Winners and Losers” Issue

– Loser: D-Wave Does not Quantum Compute

• Experts Skeptical that D-Wave Computer is 
really a quantum computer
– claims that “entanglement” has not been 

achieved

• D-Wave claims “making good progress”
– currently testing three 128-qubit systems

• Consensus is that D-Wave has more work to 
do to demonstrate feasibility of approach
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IEEE Spectrum December 2012
• Quantum Computing “Proof of Concept”
• Implementation of Waveguides with Injected 

Bosons (Photons)
• Not Programmable – Hardware Solves One 

Proof of Concept Problem
• Conventional Machines can Compute 

Solution (for small number of bosons)
– validation

• Uses Existing State-of-the-art Hardware
– single photon generators, etc.
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Scientific American Dec./2014
• “Quest for Quantum Computers Heats Up”
• Google Hires Prof. Martinis Team

– Univ. Santa Barbara Research Team
– Extended Avg. Decoherence Time to minutes
– Working with DWave
– hiring “Quantum Engineers”

• IBM, Microsoft Active in Area
• Dutch QuTech Center using Quantum Dots

– claim that there are “no more roadblocks”
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http://www.scientificamerican.com/article/quest-for-quantum-computers-heats-up/
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Where is the Technology Now?
• Two Main Competing Qubit Architectures

– Ion Traps (IonQ, Quantinuum)
– Josephson Junctions (Supercooled 

Semiconductors, IBM, Google, Rigetti)
– Photons are Room-temp, but not as much 

Traction in the Technology Race

• The Race is on for:
– More Qubits per QPU Chip
– Logical (fault tolerant) Qubits to Prevent 

Decoherence
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Where is the Technology Now?
• IBM Condor (1,121 qubits)
• Atom Computing's system (1,180 qubits)
• D-Wave Advantage 2 (4,400 qubits)
• RIKEN & Fujitsu (256 qubits)
• NVidia ABCI-Q integrates QPU with GPU
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Cryptographically Significant Quantum 
Computer (CSQC)

• Shor's Algorithm Threatens PKI
– quickly factors Semiprime Numbers that are 

Basis of Public-key Encryption Security

• Experts Believe tens to hundreds of 
thousand "physical qubits" Required and will 
be Available in the range of 5 to 30 years
– NIST Standardized PQC Cryptographic Methods 

with First 3 (FIPS 203/204/205) Released in 
December 2024

• HNDL – "Harvest Now Decrypt Later" is 
Happening Right Now!
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