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Hadamard Matrices/Operators
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Hadamard Matrices
• Square Matrices with Mutually Orthonormal 

Rows/Columns
• All Matrix Elements are Either +1 or -1
• In Signal Processing, Known as the “Walsh 

Transform”
• Walsh Transform is Fourier Transform with Square 

Waves (Walsh Functions) as Basis Functions
– Fourier Transform on Two-Element Additive Group 
ℤ2 :({-1,+1},+2)

• Different Row Orderings Yield Variations of the 
Walsh Matrix
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Hadamard Matrices
• Natural Row Ordering Defined by 

Outer/Tensor (Kronecker Product)
• Rademacher-Walsh Ordering Defined by 

XOR Operations among Adjacent Rows
• Transform can be Implemented Using 
nlogn Operations (“Fast” Transform)
– Can factor as sparse direct product factors

• Certain Forms can be Used Directly as 
Error Correcting Codes

• One Form is Known as the Reed-Muller 
Codes/Transform
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Hadamard Matrix with Natural Ordering
+1 is Square Root of 1
-1 is Square Root of 1

Unit Circle in
Complex Plane       

𝑒!
"# $
" = −1

i

σ
𝑒!
"# %
" = +1

• This Form uses Square Roots of Unity Shown as Points 
on the Unit Circle in the Complex Plane

• Transform is a Discrete Fourier Transform over GF(2)
• Can Think of this as a Discrete Fourier Transform with 

Discretized Orthogonal Square Wave Functions as the 
Basis Set
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Fast Hadamard Transform
• So-called "fast" transforms and Butterfly 

Diagrams (Signal Flow Graphs)
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Fast Hadamard Transform
• So-called "fast" transforms due to Sparse 

Factors
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Hadamard Matrix Rademacher-Walsh Ordering

+1 Maps to Integer 0
-1 Maps to Integer 1

Unit Circle in
Complex Plane       
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• This Form uses Boolean Logic Values Instead of 
Mappings to the Unit Circle in the Complex Plane

• Transform Yield a Form of ESOP in Classical Logic
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Rademacher-Walsh Transform
• Same as the Naturally-ordered Hadamard Transform with 

Rows/Columns Permuted
• Other Orderings Possible
• Referred to as "Walsh Transforms" in the Signal Processing 

Community

• Sometimes the Scale Factor ⁄1 2
&
	is Not Used in Signal 

Processing Applications
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Map 0 to +1 
Map 1 to -1
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Reed-Muller Matrix with Natural Ordering

+1 Maps to Integer 0
-1 Maps to Integer 1

Unit Circle in
Complex Plane       
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• This Form uses Boolean Logic Values Instead of 
Mappings to the Unit Circle in the Complex Plane

• Transform Yield a Form of ESOP in Classical Logic
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Reed-Muller Form of Hadamard Matrix

+1 Maps to Boolean 0
-1 Maps to Boolean 1

Use 𝔹= 0,1  Instead of ℤ2 

• This Form Uses the Boolean Logic Values Instead of 
   Mappings to the Unit Circle in the Complex Plane
• Transform Yields a Form of ESOP in Classical Logic
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Reed-Muller Form of Hadamard Matrix

For More Details of Classical
Logic Synthesis of ESOPs:
CSE 8387 Switching Theory
Class
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Naturally Ordered Hadamard 
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Hadamard & Superposition
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Naturally Ordered Hadamard 
• Alternative Notation (using symbolic logic)

– Conjunctive Logic Operation (Binary AND function): ⋀

• i and j are row and column numbers
• Can Rewrite Hadamard Matrix as:
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column numbers

row numbers
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Naturally Ordered Hadamard 
!⨂" = 1

√2

0 														1
((−1)

#∧# (−1)#∧%
(−1)%∧# (−1)%∧%,

0
1⨂

1
√2

0 														1
((−1)

#∧# (−1)#∧%
(−1)%∧# (−1)%∧%,

0
1

 

• Multiply (-1)x by (-1)y = (-1)x+y:
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Naturally Ordered Hadamard 
• Multiplying (-1)x by (-1)y = (-1)x+y: Yields (-1)(2n) or (-1 )(2n)+1 
• Where n is an Integer n∈ℤ, ℤ={0, 1, 2, ...}   
• Exponentiating -1 to a non-negative Integer Results in:

• Therefore,

• We Only Need to Consider if Exponent is Even or Odd
- When: 𝑖 ∧ 𝑗 + 𝑘 ∧𝑚 = 2𝑛⟶ −1 !∧( ) *∧+ = +1 
- When: 𝑖 ∧ 𝑗 + 𝑘 ∧𝑚 = 2𝑛 + 1⟶ −1 !∧( ) *∧+ = −1

• This is Modulo-2 Addition, can Replace with Exclusive-OR 

−1 "& = +1 −1 "&)$ = −1

−1 !∧( ) *∧+ = −1 "& = +1

−1 !∧( ) *∧+ = −1 "&)$ = −1
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Naturally Ordered Hadamard 
• We Only Need to Consider if Exponent is Even or Odd

- When: 𝑖 ∧ 𝑗 + 𝑘 ∧𝑚 = 2𝑛⟶ −1 !∧( ) *∧+ = +1 
- When: 𝑖 ∧ 𝑗 + 𝑘 ∧𝑚 = 2𝑛 + 1⟶ −1 !∧( ) *∧+ = −1

• This is Modulo-2 Addition, can Replace with Exclusive-OR 
- When: 𝑖 ∧ 𝑗 + 𝑘 ∧𝑚 = 2𝑛⟶ 𝑖 ∧ 𝑗 ⊕ 𝑘 ∧𝑚 = 0 
- When: 𝑖 ∧ 𝑗 + 𝑘 ∧𝑚 = 2𝑛 + 1⟶ 𝑖 ∧ 𝑗 ⊕ 𝑘 ∧𝑚 = 1

• Can Express H⊗2 Hadamard Matrix as:
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Notation
• Using this Form for Naturally Ordered Hadamard

– Following Function Notation is Helpful
– DO NOT Confuse with BraKet EXPECTED VALUE!!!!
– The COMMA is Important (this is NOT 𝐀  or Ψ|𝐀|Ψ )

– Inner Product Function over Strings,  𝔹2n = 0,1 2n→ 𝔹
EXAMPLE: Two n-bit Strings

– Note, We Use Bit-wise Exclusive-OR (a string):

– The "Inner Product" Notation is a Single Value:

	, : 0,1 &× 0,1 & → 0,1

𝐱 = 𝑥&-$𝑥&-$⋯𝑥"𝑥$𝑥% 𝐲 = 𝑦&-$𝑦&-$⋯𝑦"𝑦$𝑦%

	𝐱, 𝐲 = 𝑥#$% ∧ 𝑦#$% ⊕ 𝑥#$% ∧ 𝑦#$%  ⊕⋯⊕ 𝑥% ∧ 𝑦%  ⊕ 𝑥& ∧ 𝑦&

𝐱 ⊕ 𝐲 = 𝑥#$% ⊕ 𝑦#$% , 𝑥#$% ⊕ 𝑦#$%  , ⋯ , 𝑥% ⊕ 𝑦%  , 𝑥& ⊕ 𝑦&
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Bit-String Inner Product Properties
	, : 0,1 !× 0,1 ! → 0,1

〈"⨁"$, &〉 = 〈", &〉⨁〈"$, &〉 〈", $⨁$&〉 = 〈", $〉⨁〈", $&〉 

〈"⋀$, &〉 = 〈0!, &〉 = 0 〈", $⋀&〉 = 〈", 0!〉 = 0 
〈"⋀$, &〉 = 〈1!⋀$, &〉 = 〈$, &〉 〈", $⋀&〉 = 〈", 1!⋀&〉 = 〈", &〉 

〈", $〉 = '!"#⨁'!"$⨁⋯⨁'#⨁'% 〈", $〉 = '!"#⨁'!"$⨁⋯⨁'#⨁'% 
〈", $〉 = " 〈", $〉 = $ 

〈"⨁"$, &〉 = 〈), &〉 〈", $⨁$&〉 = 〈", )〉 

19

!⊗" =
1
√2"

00 						01 							10 						11

⎣
⎢
⎢
⎡(−1)

#

(−1)#
(−1)#
(−1)#

(−1)#
(−1)$
(−1)#
(−1)$

(−1)#
(−1)#
(−1)$
(−1)$

(−1)#
(−1)$
(−1)$
(−1)#⎦

⎥
⎥
⎤00
01
10
11

= 1
√2"

1
1
1
1
1

			1
−1
			1
−1

			1
			1
−1
−1

			1
−1
−1
			1
2 

Hadamard with New Notation 
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Naturally Ordered Hadamard 
• Now Can Write General Formula for:

• i and j are row and column numbers 
written as binary strings

• Quantum State Vector (example):

Red strings are row
numbers written as
binary strings – NOT
part of equation

!⊗"(#, %) = 1
√2"

(−1)〈$,&〉 

|"⟩ = |000⋯00⟩ =

⎣
⎢
⎢
⎢
⎢
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⎥
⎥
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⋮

111⋯10
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Naturally Ordered Hadamard 
• Multiplying a Quantum State Vector by 𝐇⊗!  

• For Arbitrary Quantum State  

- Denotes “don’t care” or All Possible Rows from 0 to n-1

Leftmost Column
of Hadamard
Matrix

!⊗"|#⟩ = !⊗"[−, #] = 1
√2"
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⎢
⎢
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⎥
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√2" 6 |7⟩
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$∈{*,+}!
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