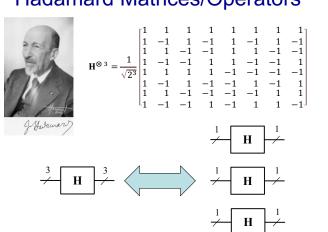
Hadamard Matrices/Operators



1

Hadamard Matrices

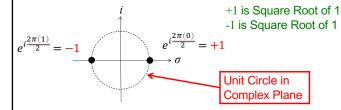
- Square Matrices with Mutually Orthonormal Rows/Columns
- All Matrix Elements are Either +1 or -1
- In Signal Processing, Known as the "Walsh Transform"
- Walsh Transform is Fourier Transform with Square Waves (Walsh Functions) as Basis Functions
 - Fourier Transform on Two-Element Additive Group \mathbb{Z}_2 :($\{-1,+1\},+_2\}$
- Different Row Orderings Yield Variations of the Walsh Matrix

Hadamard Matrices

- Natural Row Ordering Defined by Outer/Tensor (Kronecker Product)
- Rademacher-Walsh Ordering Defined by XOR Operations among Adjacent Rows
- Transform can be Implemented Using *n*logn Operations ("Fast" Transform)
 - Can factor as sparse direct product factors
- Certain Forms can be Used Directly as Error Correcting Codes
- One Form is Known as the Reed-Muller Codes/Transform

3

Hadamard Matrix with Natural Ordering



- This Form uses Square Roots of Unity Shown as Points on the Unit Circle in the Complex Plane
- Transform is a Discrete Fourier Transform over *GF*(2)
- Can Think of this as a Discrete Fourier Transform with Discretized Orthogonal Square Wave Functions as the Basis Set

Fast Hadamard Transform

 So-called "fast" transforms and Butterfly Diagrams (Signal Flow Graphs)

$$\mathbf{H} \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= \begin{bmatrix} x+y \\ x-y \end{bmatrix}$$

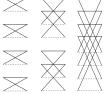
$$x \xrightarrow{1} x+y$$

$$y \xrightarrow{1} x-y$$

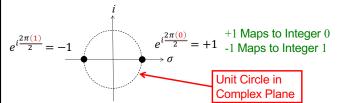
5

Fast Hadamard Transform

 So-called "fast" transforms due to Sparse Factors



Hadamard Matrix Rademacher-Walsh Ordering



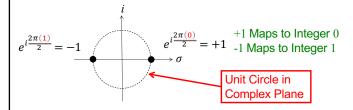
- This Form uses Boolean Logic Values Instead of Mappings to the Unit Circle in the Complex Plane
- Transform Yield a Form of ESOP in Classical Logic

7

Rademacher-Walsh Transform

- Same as the Naturally-ordered Hadamard Transform with Rows/Columns Permuted
- · Other Orderings Possible
- Referred to as "Walsh Transforms" in the Signal Processing Community
- Sometimes the Scale Factor $\left(1/\sqrt{2}\right)^n$ is Not Used in Signal Processing Applications

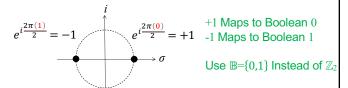
Reed-Muller Matrix with Natural Ordering



- This Form uses Boolean Logic Values Instead of Mappings to the Unit Circle in the Complex Plane
- · Transform Yield a Form of ESOP in Classical Logic

9

Reed-Muller Form of Hadamard Matrix



- This Form Uses the Boolean Logic Values Instead of Mappings to the Unit Circle in the Complex Plane
- Transform Yields a Form of ESOP in Classical Logic

$$\mathbf{R}^{\otimes 3} = \mathbf{R}_3 = \mathbf{R}_1 \otimes \mathbf{R}_1 \otimes \mathbf{R}_1 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

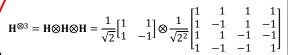
Reed-Muller Form of Hadamard Matrix

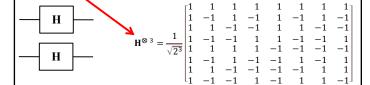
$$\begin{split} \mathbf{R}^{\otimes 3} &= \mathbf{R}_{1} \otimes \mathbf{R}_{1} \otimes \mathbf{R}_{1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \\ \mathbf{R}^{\otimes 3} &= \bigotimes_{\tilde{t}=1}^{3} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \end{split}$$

$$\mathbf{R}^{\otimes 3} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0$$

11

Naturally Ordered Hadamard $\mathbf{H}^{\otimes 3} = \mathbf{H} \otimes \mathbf{H} \otimes \mathbf{H} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$





12

H

Hadamard & Superposition

$$\mathbf{H}^{\otimes 3}|000\rangle = \frac{1}{\sqrt{2^3}}(|000\rangle + |001\rangle \dots + |111\rangle)$$

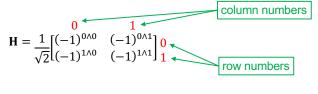
13

Naturally Ordered Hadamard

- · Alternative Notation (using symbolic logic)
 - Conjunctive Logic Operation (Binary AND function): ∧

$$\mathbf{H} = \left[h_{ij} \right] = \frac{1}{\sqrt{2}} (-1)^{i \wedge j}$$

- i and j are row and column numbers
- · Can Rewrite Hadamard Matrix as:



Naturally Ordered Hadamard

$$\begin{split} \mathbf{H}^{\otimes 2} &= \frac{1}{\sqrt{2}} \begin{bmatrix} (-1)^{0 \wedge 0} & (-1)^{0 \wedge 1} \\ (-1)^{1 \wedge 0} & (-1)^{1 \wedge 1} \end{bmatrix} \underbrace{0}_{1} \underbrace{0}_{1} \underbrace{0}_{1} \underbrace{(-1)^{0 \wedge 0} & (-1)^{0 \wedge 1} \\ (-1)^{1 \wedge 0} & (-1)^{1 \wedge 1}} \underbrace{1}_{1} \underbrace{0}_{1} \underbrace{0}$$

15

Naturally Ordered Hadamard

- Multiplying $(-1)^x$ by $(-1)^y = (-1)^{x+y}$: Yields $(-1)^{(2n)}$ or $(-1)^{(2n)+1}$
- Where *n* is an Integer $n \in \mathbb{Z}$, $\mathbb{Z} = \{0, 1, 2, ...\}$
- Exponentiating -1 to a non-negative Integer Results in:

$$(-1)^{2n} = +1$$
 $(-1)^{2n+1} = -1$

• Therefore,

$$(-1)^{(i \wedge j) + (k \wedge m)} = (-1)^{2n} = +1$$
$$(-1)^{(i \wedge j) + (k \wedge m)} = (-1)^{2n+1} = -1$$

- · We Only Need to Consider if Exponent is Even or Odd
 - When: $(i \land j) + (k \land m) = 2n \longrightarrow (-1)^{(i \land j) + (k \land m)} = +1$
 - When: $(i \wedge j) + (k \wedge m) = 2n + 1 \longrightarrow (-1)^{(i \wedge j) + (k \wedge m)} = -1$
- This is Modulo-2 Addition, can Replace with Exclusive-OR

Naturally Ordered Hadamard

- We Only Need to Consider if Exponent is Even or Odd
 - When: $(i \wedge j) + (k \wedge m) = 2n \rightarrow (-1)^{(i \wedge j) + (k \wedge m)} = +1$
 - When: $(i \land j) + (k \land m) = 2n + 1 \rightarrow (-1)^{(i \land j) + (k \land m)} = -1$
- This is Modulo-2 Addition, can Replace with Exclusive-OR
 - When: $(i \wedge j) + (k \wedge m) = 2n \rightarrow (i \wedge j) \oplus (k \wedge m) = 0$
 - When: $(i \land j) + (k \land m) = 2n + 1 \longrightarrow (i \land j) \oplus (k \land m) = 1$
- Can Express H^{⊗2} Hadamard Matrix as:

$$\begin{split} \mathbf{H}^{\otimes 2} = & \begin{pmatrix} \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \end{pmatrix} \begin{bmatrix} -1)^{0.00 \oplus 0.00} & \frac{01}{(-1)^{0.00 \oplus 0.00}} & \frac{10}{(-1)^{0.01 \oplus 0.00}} & \frac{11}{(-1)^{0.01 \oplus 0.00}} \\ -1)^{0.00 \oplus 1.00} & (-1)^{0.00 \oplus 1.00} & (-1)^{0.00 \oplus 1.01} & (-1)^{0.01 \oplus 1.00} & (-1)^{0.01 \oplus 1.00} \\ -1)^{1.00 \oplus 0.00} & (-1)^{1.00 \oplus 0.01} & (-1)^{1.01 \oplus 0.00} & (-1)^{1.01 \oplus 0.01} & \frac{11}{(-1)^{1.01 \oplus 1.00}} \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ &$$

17

Notation

- · Using this Form for Naturally Ordered Hadamard
 - Following Function Notation is Helpful
 - DO NOT Confuse with BraKet EXPECTED VALUE!!!!
 - − The COMMA is Important (this is NOT $\langle A \rangle$ or $\langle \Psi | A | \Psi \rangle$) \langle , \rangle : $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$
 - Inner Product Function over Strings, $\mathbb{B}^{2n} = \{0,1\}^{2n} \to \mathbb{B}$

EXAMPLE: Two *n*-bit Strings

$$\mathbf{x} = x_{n-1}x_{n-1} \cdots x_2 x_1 x_0$$
 $\mathbf{y} = y_{n-1}y_{n-1} \cdots y_2 y_1 y_0$

- Note, We Use Bit-wise Exclusive-OR (a string):
 - $\mathbf{x}\oplus\mathbf{y}=(x_{n-1}\oplus y_{n-1}),(x_{n-1}\oplus y_{n-1})\ ,\cdots\ ,(x_1\oplus y_1)\ ,(x_0\oplus y_0)$
- The "Inner Product" Notation is a Single Value:

$$\langle \, \mathbf{x}, \mathbf{y} \rangle = (x_{n-1} \wedge y_{n-1}) \oplus (x_{n-1} \wedge y_{n-1}) \oplus \cdots \oplus (x_1 \wedge y_1) \oplus (x_0 \wedge y_0)$$

Bit-String Inner Product Properties

$$\langle , \rangle : \{0,1\}^{n} \times \{0,1\}^{n} \to \{0,1\}$$

$$\langle \mathbf{x}, \mathbf{0} \rangle = \mathbf{0} \qquad \langle \mathbf{0}, \mathbf{y} \rangle = \mathbf{0}$$

$$\langle \mathbf{x}, \mathbf{1} \rangle = x_{n-1} \oplus x_{n-2} \oplus \cdots \oplus x_{1} \oplus x_{0} \qquad \langle \mathbf{1}, \mathbf{y} \rangle = y_{n-1} \oplus y_{n-2} \oplus \cdots \oplus y_{1} \oplus y_{0}$$

$$\langle \mathbf{x} \oplus \overline{\mathbf{x}}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle \oplus \langle \overline{\mathbf{x}}, \mathbf{y} \rangle \qquad \langle \mathbf{x}, \mathbf{y} \oplus \overline{\mathbf{y}} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle \oplus \langle \mathbf{x}, \overline{\mathbf{y}} \rangle$$

$$\langle \mathbf{x} \oplus \overline{\mathbf{x}}, \mathbf{y} \rangle = \langle \mathbf{1}, \mathbf{y} \rangle \qquad \langle \mathbf{x}, \mathbf{y} \oplus \overline{\mathbf{y}} \rangle = \langle \mathbf{x}, \mathbf{1} \rangle$$

$$\langle \mathbf{0} \wedge \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{0}^{n}, \mathbf{y} \rangle = \mathbf{0} \qquad \langle \mathbf{x}, \mathbf{0} \wedge \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{0}^{n} \rangle = \mathbf{0}$$

$$\langle \mathbf{1} \wedge \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{1}^{n} \wedge \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle \qquad \langle \mathbf{x}, \mathbf{1} \wedge \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{1}^{n} \wedge \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$$

19

Hadamard with New Notation

Naturally Ordered Hadamard

Now Can Write General Formula for:

$$\mathbf{H}^{\otimes n}(\mathbf{i},\mathbf{j}) = \frac{1}{\sqrt{2^n}} (-1)^{\langle \mathbf{i},\mathbf{j} \rangle}$$

- i and j are row and column numbers written as binary strings
- · Quantum State Vector (example):

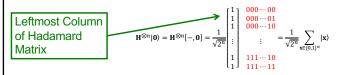
$$|\mathbf{0}\rangle = |000 \cdots 00\rangle = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 000 \cdots 01 \\ \vdots \\ 0 \\ 111 \cdots 10 \\ 0 \\ 111 \cdots 10 \\ 0 \end{bmatrix}$$

Red strings are row numbers written as binary strings - NOT part of equation

21

Naturally Ordered Hadamard

Multiplying a Quantum State Vector by H^{⊗n}



• For Arbitrary Quantum State
$$|y\rangle$$

$$\mathbf{H}^{\otimes n}|y\rangle = \mathbf{H}^{\otimes n}[-,y] = \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \{0,1\}^n} (-1)^{\langle \mathbf{x}, \mathbf{y} \rangle} |\mathbf{x}\rangle$$

- Denotes "don't care" or All Possible Rows from 0 to n-1