Linear Algebra

Vector Spaces and Operations

Group

* A Group is an Algebraic Structure Composed of a Set of
elements with an Associated Binary Operator usually
called Multiplication or the Group Product Operator

(G,*) *GxG—->G
* A Group Must Satisfy Three Conditions:

1. Associativity:
V(a,b,c)eG a*(b*c)=(a*b)*c
2. ldentity Element EXxists:
Jdee G a*e=e*a=a VYaeG

3. Inverse Elements Exist:
_ -1 -1
VaeG3a'eG a*a =a *a=e




Abelian Groups

» A Group that Also Obeys the Property of
Commutativity is a Commutative or Abelian

Group:

(G,*) *GxG—>G
4. Commutativity:

V(a,b)e G a*b=b*a

« |If Commutativity is not Obeyed, the Group is said
to be non-Abelian or non-Commutative

Group Examples
» The Integers Under the Group Product Operation
of Addition
(Z,+) 7=A..,-2,-1,0,1,2,...}
— Identity Element?
— Inverse Elements?
— Abelian?
» Positive Real Numbers Under Multiplication
(R,e) R={r|r>0}
— Identity Element?

— Inverse Elements?
— Abelian?




Group Examples

» The Integers Under the Group Product Operation

of Addition
(Z+)  Z={..,-2,-1,0,1,2,..}

- i ?
Identity Element? 0 VzeZzl=—z
— Inverse Elements? . L . . L. —
— Abelian? YES z +z =z +z V(Z[,Z/,) e
» Positive Real Numbers Under Multiplication
(R,®) R={r|r>0}
- i ?
|dentity Element? 1 Vr e R,rlfl =1/r
— Inverse Elements? ;o (A/r)=1/r)er =1
— Abelian?  YES rer =rer V(r.r)eR

More Group Examples

» The Set of Complex Numbers (excluding 0) under
Multiplication are a Commutative Group

» Real/Complex Matrices under Matrix
Multiplication are a Non-Abelian Group (matrix
Multiplication is non-commutative)

» Rotation matrices (under multiplication) form a
Group
— in 2-D an Abelian Group
— in higher dimensions non-Abelian Group

 The Symmetry Group: S,




Symmetry Group Example

Consider Elements as Strings of Unique Objects
Example: Group (S,,°)
S.=(abc, bca, cab, bac, cba, acbh)

o Represents the Permutation Operator

6 Objects in S Correspond to the Following
Permutations

abec abec abec
=0 =1 =2
abc ach bac
abec abc abec
=3 =4 =5
bca cab cba

Symmetry Group Example

o Represents the Permutation Operator
abc abc abc bac abc

2 [©) 5 = (@) = o = — 3
bac cbhba bac bca bca
abc abc abc cbha abc

5 o 2 = o = o = = 4
cba bac cbha cab cab

502#2 05
 Non-commutative - thus Non-Abelian




Symmetry Group Example

o Represents the Permutation Operator

Compute This on Paper

Symmetry Group Example

o Represents the Permutation Operator
304 = abc . abc _ abc . bca _ abc

bca cab bca abce abce
4o3= abc . abc _ abc . cab _ abc

cab bca cab abce abce

304=4 03
» Still Non-commutative — in General




Field

* A Field Fis set with two associated binary
operators usually referred to as addition and
multiplication

* A Field also Obeys the following Three Properties:

1. Under Addition, F'is an Abelian Group with Identity
Element 0 Such That: 0+a=a,VaeF

2. Under Multiplication, the non-zero elements of F form
an Abelian Group with Identity Element 1 Such That:
lea=a,YaeF Oea=0,VacF

3. Distributivity Holds:
ae(b+c)=aeb+aec

Vector Space

» Vector Space Assumes the Existence of Three
Objects:
1. An Abelian Group (¥,+) whose Elements are Called
Vectors and whose Product Operator is called Addition

2. AField F (usually R the real numbers, or Cthe complex
numbers) whose Elements are called Scalars

3. An Operation Called Multiplication with Scalars
Denoted by  which associates to any scalar ce F and
Vector ae V' another Vector c-ae V' and has the following

properties: ce (x+ B)=coox+ce 3
(c+c)ea=cea+cer
(cecYoea=ce(c'e)

lea=0o




Linear Independence
Given:

{c,c,r.ne fER {o,00,....00 }eR”

The set of n Vectors are Linearly
Independent if:

co, teo, +..tea =0=c =0Vi

No Solution for ¢; Other Than all Equal 0
Otherwise, the set of Vectors are Said to

be Linearly Dependent

Linear Independence is a Property of a
Specific Subset of Vectors

Linear Independence Example

{4

* |s the Following set of Vectors Linearly
Dependent?:

(OST \OJ SN

{a17a2)a3}

Compute This on Paper




Linear Independence Example

]

* |s the Following set of Vectors Linearly
Dependent?: {o,,,,c,}

(OSSR SN

« Check solution for: ¢, +ca, +c,a, =0

Linear Independence Example

]

« Check solution for: ¢, +¢c,a, +c,a, =0
Oc1 + 002 + lc3 =0
Oc1 + 2c2 - 2c3 =0
lcl — 2c2 + lc3 =0
* Only Solutionis: ¢, =c,=¢,=0

(OST \OJ SN

* Not Dependent (they are linearly Independent)




Linear Independence Example

]

 Are the Following set of Vectors Linearly

Dependent?:
{a,,a,,a,}

(OSSR SN

Compute This on Paper

Linear Independence Example

Ocz+1c3+4c4:0 202—203+204=0 —202+lc3+3c4 =0

J J
c,= —504

—2(=5¢,)—4c, +3¢, =0
y
c,=0
y

%=Q=Q=0

* Not Dependent (they are linearly Independent)




Linear Independence Example

]

« The following sets are Linearly Independent:

(OSSR SN

{a,a,,0,} o, =% +50, + 4o,

5 4 1
{az,a3,a4} o, = (——jaz +(——ja3 +(—}a4
9 9 9

» The following set is Linearly Dependent:

{a19a29a3)a4}

Real Vector Spaces

Consider an n-dimensional Vector Space:

« If, for all pairs of vectors « and $, an associated real number

exists (a, f) such that the Following conditions are satisfied:
(a.p)=(B.c)
(ca,B)=c(a,B) ifceR

(+7,0)=(a.p)+(7,p) VyeR"
(a,a) 20 such that (a,)=0ifand only if ¢ =0

* Then, we have an n-dimensional Euclidean Vector Space

(a, B) is the Inner Product of Vectors « and

10



Euclidean Vectors
» Length of a Euclidean Vector:

[ = (o, )

Angle between the two vectors o and g:
|| B | B

If (a, £)=0, then a and g are orthogonal and:
6=m/2=90°

Orthogonal Basis Sets
Consider a set of n Vectors:
¢={e.e,,....e }
This set forms an Orthogonal Basis of the n-
Dimensional Vector Space if:
(el.,ej) =0,Vi#j

This set forms an Orthonormal Basis of the n-
Dimensional Vector Space if:

0ifij
,e)=0 =
(el,e]) i,] {1 1fl=]

11



Euclidean Space Basis

« All Vectors in a Euclidean Space may be Represented as a
Linear Combination of the Orthonormal Basis Vectors:

a=ae, + a,e, +...+ ae,
B=be +be +..+the

* Since: (epe]~)=5l-,j
* Then: (a,e)=a,

- Thus: (a.f)=Yab
i=1

This form of the inner product sometimes called the dot product

] Matrices ]
Cl11 Cl12 Clln
a a .. a

A = 21 Y2 2n

a a .o a

ml m2 mn

* A maps Vectors from Vector Space of Dimension »n to
Vector Space of Dimension m

* When A is a Square Matrix it Represents a Linear Mapping
to Itself

» Each Row of A is a Row Vector and Each Column is a
Column Vector

* Row/Column Vectors Span the Domain/Range Vector
Spaces

12



Elementary Row Operations

all Cll2 Clln

A=| G Gp - 4,

a a .o a

ml m?2 mn

1. Any row may be interchanged with any other

2. Any row may be replaced by itself multiplied by a
constant

3. Any row may be replaced by the column-wise sum of
itself and a multiple of another row

Two Matrices are Row-Equivalent if one is Obtained from
the Other by a Finite Sequence of Row Operations

|dentity Matrix

10..0
SEERS
00 .1

« |dentity Matrix is nxn Square Matrix whose Row-
Vectors and Column Vectors Form an Orthonormal
Basis for the n-dimensional Euclidean Vector
Space

* Permutation Matrix is an Identity Matrix that has
Undergone an Arbitrary Series of Row
Interchanges

13



Matrix Determinant
» Determinant of a Matrix is Denoted as:
A det(A)
» Examples of Determinant Computation:

a, 4, 4dj
A=la] A=A =la a a
1 11 2 3 21 2 23
da a
21 Y22 a. d. a
31 32 Y33
‘ Al ‘: a, | Az |: a,,d,, —a,,4a,
a a a a a a
_ 2 23| 21 23 21 Y22
|A3 |_ all alz a +a13 a
32 733 31 733 31 732

Matrix Operations

» Transpose of a matrix, reflection about the
diagonal:

A=laq| A"=|q,]

» Determinant of A is Equal to Determinant of AT

* |f Two or More Rows (or columns) of A are
Equivalent then |A|=0

« A Square nxn Matrix is Triangular When:
Vi> j,a, =0 (upper triangular)
Vi< j,a, =0 (lower triangular)

+ Determinant of Triangular Matrix A,

det(A ) =|A_ Fa, %a,®..%a

14



Rank of a Matrix

« Rank of a Matrix is an Integer that is Equal to
Number of Linearly Independent Row (Column)
Vectors of a Square Matrix

 All Full Rank Matrices may be Converted into
Triangular Matrices through Elementary Row
Operations

* A Full Rank Matrix Must have a non-zero
Determinant

» A non-Square Matrix Cannot Have a Rank Larger
than min(m,n)

Characteristic Equation

» Characteristic Equation of a Matrix A is:
c(A)=det(A-Al)=|A—AI|

* Roots of the Characteristic Equation yield the
characteristic values, or eigenvalues of A:
|A—AL|=0
» Eigenvalues of A are Scalar Multiples of
Eigenvectors of A :

 Eigenvectors of A are Those Vectors, when
Transformed by A are Equivalent to Themselves by
a Scale Factor 1

15



Trace of a Matrix
« Trace of a Matrix A is:
Tr(A) = zn:aﬁ
+ Given two matrices A ancﬁ;:
Tr(AB) =Tr(BA)
Tr(A+B)=Tr(A)+ Tr(B)
Tr(cA)=cTr(A)
Tr(SAS™) = Tr(S'SA) = Tr(A)

Similarity Transform

Why all this vector stuff?

» Vectors used to Describe the State of a Quantum
System

* A Quantum System is a Collection of Qubits
* Quantum Systems Evolve over Time

» Evolution means the quantum state of the qubits
change

« Evolution can be Modeled with Transformation
Matrices

* Quantum State vectors Exist in the Complex
Vector Space

16



Complex Numbers

Complex Numbers have a REAL and IMAGINARY
Component and Exist in the Complex Field C

ceC c=a+ib i =—1
Re(c)=aeR Im(c)=beR
- Recall Euler’s Identity: Ke” = K cos6+iK sinf
. Phasor Notation: KZ0 a=KcosO b= Ksin@

+  Complex Conjugate: ¢*€C
c=axib=c*=aFib

*  Note: .
cec*=c*ec=q"+b

|c|=\/coc*=\/c*oc=\/a2+b2

Inner Products in Complex Fields
«  Satisfy Three Conditions:
(a.p)=(B.0)*
(o, x) =20
(a,)=0=a=0
* Inner Products Induce Concept of a Norm
|
* Norm is a Measure of Vector Length or Magnitude

*  Previous Example with Inner Product Defined the
Euclidean Norm

. Norms can Exist when Inner Products do Not

*  Finite Dimensional Vector Spaces with Norms are
Banach Spaces

17



Vector Norms in Complex Fields
Satisfy Three Conditions:

Joc+ ] < ] + A
e o] = e[l

||a||=0:>a=0

Other types of Norms:

—  Manhattan Norm ”0‘”:§|az‘|
o e, | Sl
—  Infinity-N = max(|a, .,
nfnty-Norm o =max(fa...Ja,) What happens when
p=1,27
Adjoint Operator

« Denoted by Superscript “dagger” Symbol T

« Applicable to Vectors and Matrices
— Vector of =(a*)"
— Matrix Af=(A%)"

EXAMPLE A| 1-50 1+i
1431 7i

Find: A'=?

Compute This on Paper
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Adjoint Operator
» Denoted by Superscript “dagger” Symbol T

« Applicable to Vectors and Matrices
— Vector of =(a*)"
— Matrix Af=(A®)"

EXAMPLE Al 1-50 1+i
1+3i 7i

t “\'
Afz{l—Si 1+i} _ [1—5:‘ 1+i}
1+3i 7i 1+3i 7i

T
AT:|: 1+5i 1—1'} :[ 1+5i 1—31}
1-3i ~7i 1—i —7i

Adjoint Properties
» Adjoints of Identity Matrices are Themselves

« Adjoints of Real-Valued Matrices are Equivalent
to the Transpose

* An Operator Defined by a Transformation Matrix
A is Normal if AAT= ATA

« A Matrix A is said to be Hermitian is it is Self-
adjoint Meaning:

a<f]  a=[4]

19



Unitary Matrices

A Square Matrix is Unitary if:
v'u=uu'=1

Unitary Matrix Properties:
(Uer, UB) = (e, B)
Uu'=U"
Rank(U)=n

Row (Column) Vectors Form an Orthonormal Basis for C”

|)“i|:1

|det(U)| =1

Complex Vector Spaces

 Hilbert Space is infinite-dimensional vector
space with inner product and associated
norm

* Quantum Computing Literature Traditionally
Refers to n-dimensional Complex Euclidean
Vector Space as a Hilbert Space (technically
correct)

« FOR OUR PURPOSES: Hilbert Space: n-
dimensional vector space over the field of
complex numbers with an inner product and
associated norm

20



Dirac Notation

 Traditional Notation for Representing Vectors
in Quantum Mechanics is due to Paul Dirac

» Basis Vectors for n-Dimensional Hilbert
Vector Space H" as kets and bras:

{0),11),...,] 1), = 1)}
{0 [,{L,ees (i |yeers{m—11]}

1 0 0
0 ! 0 0
0: : 1: : .: : —1: :
0} 0 1) 0 i) | o |n-1) 0
o] Lo L0 1

Dirac Notation

» Basis vectors as Bras are Row Vectors that
Span H”"

©=[10..0..0]
aj=[01..0..0]

d=[00..1..0]

i-1=[00 .0 .. 1]

21



Dirac Notation of Vectors

)= |0y +o | )+ .. +al)+..+o  |n-1)

—~/

complex values

Each ket Vector has a Dual bra Vector related by
Hermitian Conjugation

)=y ) WE(wy)

(W = o 0]+ o (1] + ...+ 0 (i | +...+ 0, (n-1]

v) =

Dirac Notation of Vectors

aO
% v=CwD" Wy
o'a-
0‘;_1 (y \=[ o o .. O O ]

22



Inner Product in Hilbert Space

Inner Product of Two Vectors: ¥, ).|y,) e H"
Denoted as: (v, |vy,)

Properties:

1. Inner Product with Same Vector: (V' [¥)€R’

2. Linearity ¥ )lv,)lw )yeH" ab,ceC
(v, l(clyN=cw, |v,)

(ay  |+y, ) v )y =aly, |y )+ Ny, |y )

. [(alyy+blyN=aly, v )+ Ny, |y,)

3. Skew Symmetry
v, lv)={y,ly)*

Inner Product Example

Inner Product of Two Vectors: |V ).|y,) e H*

ly )=o,|0)+o [h+a,|2)+o,|3)

(W, =B, 100+ B, ID+B,12)+B,13)

(=1

w,lv)=[ o o o o |

[

= ™ o ™

w

:a0ﬁ0+alﬂ1+a2ﬁ2+a3ﬁ3




Inner Product Example

Inner Product of Two Vectors: |V ).|y,) e H?
ly )=1+0)[0)+(2-3i)|1)
ly,)=(1-2i)|0)+(3+2i)[1)

Compute this on paper

Inner Product Example
Inner Product of Two Vectors: |¥,).|v,) e H’
) =1+D)]0)+(2-3) 1)
[y, )=(1-20)[0)+(3+2)[1)
W v,y =(1+0)* (1= 2i)+(2 = 3) * (3+ 2i)
W, v,y =(1—i)(1-2i)+(2+3i)(3+2i)
(W, |ly,)=(1-3i-2)+(6+13i-06)
(W, |y,)=(=1-3i)+(0+13i)
(W |y,)=-1+10i
W, lw,) =, |y, y=-1-10i

24



Inner Product Example

Inner Product of Vector with itself: |v,) < H*

lw )=o, |0)+o, [ D+a, |2)+o,|3)
aO
_ * * * * al _ * * * *
<‘//a|‘//a>—[0‘o a, o, aJ o |7 %% T o oy, + o
2
o

3

W, lv)=lo, [ +lo [ +le, [ +loyf

Inner Product Example

Inner Product of Vector with itself: v, )< H*

v, )=(1+2i)[0)+(4-3i) 1)
W [w,)=(1+20)* (1+20) + (4 = 3i) * (4 - 3)

(l//a |l//a>=(1—2i)(1+2i)+(4+3i)(4—3i)
W, |y )=(1+4)+(16+9)=5+25=30
o, =(1+2i) o =(4-3i)
o, =V +27 =5 o =V42+3 =25 =5
w, 1wy =le, P +laF=(5) +(57 =30

25



Inner Product Example

Orthogonality:
v Ly =<y, ly,)=0

v Ly, =lv,) Lw,)

Normal Unitary Basis of n-dimensional basis:

WDV s W sl W0
flv]=1

(v, |y, )=0Vizj
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