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Linear Algebra 

Vector Spaces and Operations 

Group 
•  A Group is an Algebraic Structure Composed of a Set of 

elements with an Associated Binary Operator usually 
called Multiplication or the Group Product Operator 

•  A Group Must Satisfy Three Conditions: 

1.  Associativity: 

2.  Identity Element Exists: 

3.  Inverse Elements Exist: 
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Abelian Groups 
•  A Group that Also Obeys the Property of 

Commutativity is a Commutative or Abelian 
Group: 

4.  Commutativity: 

•  If Commutativity is not Obeyed, the Group is said 
to be non-Abelian or non-Commutative 

Group Examples 
•  The Integers Under the Group Product Operation 

of Addition 

–  Identity Element? 
–  Inverse Elements? 
–  Abelian? 

•  Positive Real Numbers Under Multiplication 

–  Identity Element? 
–  Inverse Elements? 
–  Abelian? 

  (,+)
   = {...,−2,−1,0,1,2,...}

  (,•)
    = {r | r > 0}
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Group Examples 
•  The Integers Under the Group Product Operation 

of Addition 

–  Identity Element? 
–  Inverse Elements? 
–  Abelian? 

•  Positive Real Numbers Under Multiplication 

–  Identity Element? 
–  Inverse Elements? 
–  Abelian? 

  (,+)
   = {...,−2,−1,0,1,2,...}

  (,•)
    = {r | r > 0}

   ∀zi ∈, zi
−1 = −zi

   
YES   zi + z j = z j + zi      ∀(zi , z j ) ∈

   ∀ri ∈,ri
−1 = 1 / ri

   
YES   ri • rj = rj • ri      ∀(ri ,rj ) ∈

More Group Examples 
•  The Set of Complex Numbers (excluding 0) under 

Multiplication are a Commutative Group 
•  Real/Complex Matrices under Matrix 

Multiplication are a Non-Abelian Group (matrix 
Multiplication is non-commutative) 

•  Rotation matrices (under multiplication) form a 
Group 
–  in 2-D an Abelian Group 
–  in higher dimensions non-Abelian Group 

•  The Symmetry Group:   S3



4 

•  Consider Elements as Strings of Unique Objects 
•  Example: Group 
•     =(abc, bca, cab, bac, cba, acb) 
•    
•  6 Objects in    Correspond to the Following 

Permutations 

Symmetry Group Example 

  S3

     Represents the Permutation Operator

   (S3,)
  S3

Symmetry Group Example 

•  Non-commutative - thus Non-Abelian
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Symmetry Group Example 

  3 4 = ??????

 Compute This on Paper


  4 3 = ?????

Symmetry Group Example 

   
3 4 = a b c

b c a
⎛

⎝⎜
⎞

⎠⎟


a b c
c a b

⎛

⎝⎜
⎞

⎠⎟
= a b c

b c a
⎛

⎝⎜
⎞

⎠⎟


b c a
a b c

⎛

⎝⎜
⎞

⎠⎟
= a b c

a b c
⎛

⎝⎜
⎞

⎠⎟
= 0

  3   4 = 4   3

•  Still Non-commutative – in General


   
4 3 = a b c

c a b
⎛

⎝⎜
⎞

⎠⎟


a b c
b c a

⎛

⎝⎜
⎞

⎠⎟
= a b c

c a b
⎛

⎝⎜
⎞

⎠⎟


c a b
a b c

⎛

⎝⎜
⎞

⎠⎟
= a b c

a b c
⎛

⎝⎜
⎞

⎠⎟
= 0
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Field 
•  A Field F is set with two associated binary 

operators usually referred to as addition and 
multiplication 

•  A Field also Obeys the following Three Properties: 
1.  Under Addition, F is an Abelian Group with Identity 

Element 0 Such That: 
2.  Under Multiplication, the non-zero elements of F form 

an Abelian Group with Identity Element 1 Such That: 

3.  Distributivity Holds: 

•  Vector Space Assumes the Existence of Three 
Objects: 

1.  An Abelian Group (V,+) whose Elements are Called 
Vectors and whose Product Operator is called Addition 

2.  A Field F (usually     the real numbers, or     the complex 
numbers) whose Elements are called Scalars 

3.  An Operation Called Multiplication with Scalars 
Denoted by • which associates to any scalar c∈F and 
Vector α∈V another Vector c·α∈V and has the following 
properties: 

Vector Space 
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Linear Independence 
•  Given: 

   {c1,c2 ,...,cn}∈

  c1α1 + c2α2 + ...+ cnα n = 0 ⇒ ci = 0∀i

   {α1,α2 ,...,α n}∈
n

•  The set of n Vectors are Linearly 
Independent if: 

•  Otherwise, the set of Vectors are Said to 
be Linearly Dependent 

•  Linear Independence is a Property of a 
Specific Subset of Vectors 

No Solution for ci Other Than all Equal 0 

Linear Independence Example 

•  Is the Following set of Vectors Linearly 
Dependent?: 

 Compute This on Paper
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Linear Independence Example 

•  Is the Following set of Vectors Linearly 
Dependent?: 

•  Check solution for:   c1α1 + c2α2 + c3α3 = 0

Linear Independence Example 

•  Check solution for: 

•  Only Solution is: 

•  Not Dependent  (they are linearly Independent) 

  c1α1 + c2α2 + c3α3 = 0

  0c1 + 0c2 +1c3 = 0

  0c1 + 2c2 − 2c3 = 0

  1c1 − 2c2 +1c3 = 0

  c1 = c2 = c3 = 0



9 

Linear Independence Example 

•  Are the Following set of Vectors Linearly 
Dependent?: 

 Compute This on Paper


Linear Independence Example 

•  Not Dependent  (they are linearly Independent) 

  0c2 +1c3 + 4c4 = 0   2c2 − 2c3 + 2c4 = 0   −2c2 +1c3 + 3c4 = 0

  c3 = −4c4   2c2 − 2(−4c4 ) + 2c4 = 0

  c2 = −5c4

  −2(−5c4 ) − 4c4 + 3c4 = 0

  c4 = 0

  c2 = c3 = c4 = 0
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Linear Independence Example 

•  The following sets are Linearly Independent: 

•  The following set is Linearly Dependent: 

 {α1,α2 ,α3,α4}

Real Vector Spaces 
•  Consider an n-dimensional Vector Space: 
•  If, for all pairs of vectors α and β, an associated real number 

exists (α, β) such that the Following conditions are satisfied: 

   (cα ,β) = c(α ,β) if c ∈

   (α + γ ,β) = (α ,β) + (γ ,β)  ∀γ ∈n

•  Then, we have an n-dimensional Euclidean Vector Space 
•   (α, β) is the Inner Product of Vectors α and β 



11 

Euclidean Vectors 
•  Length of a Euclidean Vector: 

•  Angle between the two vectors α and β: 

•  If (α, β)=0, then α and β are orthogonal and: 

Orthogonal Basis Sets 
•  Consider a set of n Vectors: 

•  This set forms an Orthogonal Basis of the  n-
Dimensional Vector Space if: 

•  This set forms an Orthonormal Basis of the  n-
Dimensional Vector Space if: 
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Euclidean Space Basis 
•  All Vectors in a Euclidean Space may be Represented as a 

Linear Combination of the Orthonormal Basis Vectors: 

•  Since: 

•  Then: 

•  Thus: 

This form of the inner product sometimes called the dot product 

Matrices 

    

A =

a11 a12 ... a1n

a21 a22 ... a2n

   

am1 am2 ... amn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

•  A maps Vectors from Vector Space of Dimension n to 
Vector Space of Dimension m 

•  When A is a Square Matrix it Represents a Linear Mapping 
to Itself 

•  Each Row of A is a Row Vector and Each Column is a 
Column Vector 

•  Row/Column Vectors Span the Domain/Range Vector 
Spaces 
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Elementary Row Operations 

    

A =

a11 a12 ... a1n

a21 a22 ... a2n

   

am1 am2 ... amn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1.  Any row may be interchanged with any other 
2.  Any row may be replaced by itself multiplied by a 

constant 
3.  Any row may be replaced by the column-wise sum of 

itself and a multiple of another row 

Two Matrices are Row-Equivalent if one is Obtained from 
the Other by a Finite Sequence of Row Operations 

Identity Matrix 

   

I =
1 0 ... 0
0 1 ... 0
   

0 0 ... 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

•  Identity Matrix is n×n Square Matrix whose Row-
Vectors and Column Vectors Form an Orthonormal 
Basis for the n-dimensional Euclidean Vector 
Space 

•  Permutation Matrix is an Identity Matrix that has 
Undergone an Arbitrary Series of Row 
Interchanges 
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Matrix Determinant 
•  Determinant of a Matrix is Denoted as: 

•  Examples of Determinant Computation: 

Matrix Operations 
•  Transpose of a matrix, reflection about the 

diagonal: 

•  Determinant of A is Equal to Determinant of AT 
•  If Two or More Rows (or columns) of A are 

Equivalent then |A|=0 
•  A Square n×n Matrix is Triangular When: 

•  Determinant of Triangular Matrix Atri 



15 

Rank of a Matrix 
•  Rank of a Matrix is an Integer that is Equal to 

Number of Linearly Independent Row (Column) 
Vectors of a Square Matrix 

•  All Full Rank Matrices may be Converted into 
Triangular Matrices through Elementary Row 
Operations 

•  A Full Rank Matrix Must have a non-zero 
Determinant 

•  A non-Square Matrix Cannot Have a Rank Larger 
than min(m,n) 

Characteristic Equation 
•  Characteristic Equation of a Matrix A is: 

•  Roots of the Characteristic Equation yield the 
characteristic values, or eigenvalues of A: 

•  Eigenvalues of A are Scalar Multiples of 
Eigenvectors of A : 

•  Eigenvectors of A are Those Vectors, when 
Transformed by A are Equivalent to Themselves by 
a Scale Factor λ 
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Trace of a Matrix 
•  Trace of a Matrix A is: 

•  Given two matrices A and B: 

  Tr(SAS† ) = Tr(S†SA) = Tr(A)

Similarity Transform 

Why all this vector stuff? 
•  Vectors used to Describe the State of a Quantum 

System 
•  A Quantum System is a Collection of Qubits 
•  Quantum Systems Evolve over Time 
•  Evolution means the quantum state of the qubits 

change 
•  Evolution can be Modeled with Transformation 

Matrices 
•  Quantum State vectors Exist in the Complex 

Vector Space 
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Complex Numbers 
•  Complex Numbers have a REAL and IMAGINARY 

Component and Exist in the Complex Field 

  c ∈

   Re(c) = a ∈
   Im(c) = b∈

•  Recall Euler’s Identity: 

•  Phasor Notation: 

•  Complex Conjugate:    c*∈

   c = a ± ib⇒ c* = a  ib
•  Note: 

  
c = c • c * = c *•c = a2 + b2

Inner Products in Complex Fields 
•  Satisfy Three Conditions: 

•  Inner Products Induce Concept of a Norm 

•  Norm is a Measure of Vector Length or Magnitude 
•  Previous Example with Inner Product Defined the 

Euclidean Norm 
•  Norms can Exist when Inner Products do Not 
•  Finite Dimensional Vector Spaces with Norms are 

Banach Spaces 
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Vector Norms in Complex Fields 
•  Satisfy Three Conditions: 

•  Other types of Norms: 
–  Manhattan Norm 

–  p-Norm 

–  Infinity-Norm 
What happens when 
p=1,2? 

Adjoint Operator 
•  Denoted by Superscript “dagger” Symbol † 
•  Applicable to Vectors and Matrices 

–  Vector 
–  Matrix 

 α
† = (α*)T

  A
† = (A*)T

EXAMPLE 

   
A = 1− 5i 1+ i

1+ 3i 7i
⎡
⎣⎢

⎤
⎦⎥

   Find :     A† = ?

 Compute This on Paper
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Adjoint Operator 
•  Denoted by Superscript “dagger” Symbol † 
•  Applicable to Vectors and Matrices 

–  Vector 
–  Matrix 

 α
† = (α*)T

  A
† = (A*)T

EXAMPLE 

   
A = 1− 5i 1+ i

1+ 3i 7i
⎡
⎣⎢

⎤
⎦⎥

   
A† = 1− 5i 1+ i

1+ 3i 7i
⎡
⎣⎢

⎤
⎦⎥

†

= 1− 5i 1+ i
1+ 3i 7i

⎡
⎣⎢

⎤
⎦⎥

*⎛

⎝
⎜

⎞

⎠
⎟

T

   
A† = 1+ 5i 1− i

1− 3i −7i
⎡
⎣⎢

⎤
⎦⎥

T

= 1+ 5i 1− 3i
1− i −7i

⎡
⎣⎢

⎤
⎦⎥

Adjoint Properties 
•  Adjoints of Identity Matrices are Themselves 
•  Adjoints of Real-Valued Matrices are Equivalent 

to the Transpose 
•  An Operator Defined by a Transformation Matrix 

A is Normal if AA†= A†A 
•  A Matrix A is said to be Hermitian is it is Self-

adjoint Meaning: 

  
aij = aji

*

  
A = aij

⎡⎣ ⎤⎦    
A† = aji

*⎡⎣ ⎤⎦
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Unitary Matrices 
•  A Square Matrix is Unitary if: 

   U
†U = UU† = In

•  Unitary Matrix Properties: 

  (Uα ,Uβ) = (α ,β)

  U
−1 = U†

   Rank(U) = n

Row (Column) Vectors Form an Orthonormal Basis for   n

  
λi = 1

  
det(U) = 1

Complex Vector Spaces 
•  Hilbert Space is infinite-dimensional vector 

space with inner product and associated 
norm 

•  Quantum Computing Literature Traditionally 
Refers to n-dimensional Complex Euclidean 
Vector Space as a Hilbert Space (technically 
correct) 

•  FOR OUR PURPOSES: Hilbert Space: n-
dimensional vector space over the field of 
complex numbers with an inner product and 
associated norm 
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Dirac Notation 
•  Traditional Notation for Representing Vectors 

in Quantum Mechanics is due to Paul Dirac 
•  Basis Vectors for n-Dimensional Hilbert 

Vector Space       as kets and bras:    Hn

  

|0〉 =

1
0


0


0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
  

|1〉 =

0
1


0


0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

   

|i〉 =

0
0


1


0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

   

|n-1〉 =

0
0


0


1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

, ,..., , ... , 

Dirac Notation 
•  Basis vectors as Bras are Row Vectors that 

Span   Hn

  〈0| = 1 0 … 0 … 0⎡⎣ ⎤⎦

  〈1| = 0 1 … 0 … 0⎡⎣ ⎤⎦

   〈i| = 0 0 … 1 … 0⎡⎣ ⎤⎦

   〈n −1| = 0 0 … 0 … 1⎡⎣ ⎤⎦

. 

. 

. 

. 

. 

. 
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Dirac Notation of Vectors 

complex values 
Each ket Vector has a Dual bra Vector related by  
   Hermitian Conjugation 

 |ψ 〉 = (〈ψ |)†
 〈ψ |= (|ψ 〉)†

  〈ψ |= α0
*〈0|+α1

*〈1|+ ...+α i
*〈i | +...+α n−1

* 〈n-1|

Dirac Notation of Vectors 

   

|ψ 〉 =

α0

α1



α i



α n−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 |ψ 〉 = (〈ψ |)†
 〈ψ |= (|ψ 〉)†

  
〈ψ |= α0

* α1
* ... α i

* ... α n−1
*⎡

⎣
⎤
⎦



23 

Inner Product in Hilbert Space 
•   Inner Product of Two Vectors: 

•   Denoted as: 

•   Properties: 

1.  Inner Product with Same Vector: 

2.  Linearity 

3.  Skew Symmetry 

   |ψ a 〉,|ψ b 〉 ∈Hn

  〈ψ a |ψ b 〉

   〈ψ |ψ 〉 ∈n

   |ψ a 〉,|ψ b 〉,|ψ c 〉 ∈Hn
   a,b,c ∈

  (a〈ψ a | +b〈ψ b |) |ψ c 〉 = a〈ψ a |ψ c 〉 + b〈ψ b |ψ c 〉

  〈ψ c | (a |ψ a 〉 + b |ψ b 〉) = a〈ψ c |ψ a 〉 + b〈ψ c |ψ b 〉

  〈ψ a |ψ b 〉 = 〈ψ b |ψ a 〉 *

Inner Product Example 
•   Inner Product of Two Vectors:    |ψ a 〉,|ψ b 〉 ∈H4

  |ψ a 〉 = α0 | 0〉 +α1 |1〉 +α2 | 2〉 +α3 | 3〉

  |ψ b 〉 = β0 | 0〉 + β1 |1〉 + β2 | 2〉 + β3 | 3〉

  

〈ψ a |ψ b 〉 = α0
* α1

* α2
* α3

*⎡
⎣

⎤
⎦

β0

β1

β2

β3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= α0
*β0 +α1

*β1 +α2
*β2 +α3

*β3
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Inner Product Example 
•   Inner Product of Two Vectors:    |ψ a 〉,|ψ b 〉 ∈H2

Compute this on paper 

Inner Product Example 
•   Inner Product of Two Vectors:    |ψ a 〉,|ψ b 〉 ∈H2
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Inner Product Example 
•   Inner Product of Vector with itself:    |ψ a 〉 ∈H4

Inner Product Example 
•   Inner Product of Vector with itself:    |ψ a 〉 ∈H2
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Inner Product Example 
•   Orthogonality: 

  |ψ a 〉 ⊥|ψ b 〉 ⇒ 〈ψ a |ψ b 〉 = 0

  |ψ a 〉 ⊥|ψ b 〉 ⇒|ψ b 〉 ⊥|ψ a 〉

•   Normal Unitary Basis of n-dimensional basis: 

  {|ψ 1〉,|ψ 2 〉,...,|ψ i 〉,...,|ψ n 〉}

  
|ψ i 〉 = 1

  
〈ψ i |ψ j 〉 = 0∀i ≠ j


