

Group

 A Group is an Algebraic Structure Composed of a Set of elements with an Associated Binary Operator usually called Multiplication or the Group Product Operator

$$(G,*)$$
 $*: G \times G \rightarrow G$

- · A Group Must Satisfy Three Conditions:
- 1. Associativity:

$$\forall (a,b,c) \in G \qquad a*(b*c) = (a*b)*c$$

2. Identity Element Exists:

$$\exists e \in G$$
 $a * e = e * a = a$ $\forall a \in G$

3. Inverse Elements Exist:

$$\forall a \in G, \exists a^{-1} \in G \qquad a * a^{-1} = a^{-1} * a = e$$

Abelian Groups

· A Group that Also Obeys the Property of Commutativity is a Commutative or Abelian Group:

(G,*)

 $*: G \times G \rightarrow G$

4. Commutativity:

 $\forall (a,b) \in G$

a * b = b * a

· If Commutativity is not Obeyed, the Group is said to be non-Abelian or non-Commutative

Group Examples

• The Integers Under the Group Product Operation of Addition

$$(\mathbb{Z},+)$$

$$(\mathbb{Z},+)$$
 $\mathbb{Z} = \{...,-2,-1,0,1,2,...\}$

- Identity Element?
- Inverse Elements?
- Abelian?
- Positive Real Numbers Under Multiplication

$$(\mathbb{R},ullet)$$

$$\mathbb{R} = \{r \mid r > 0\}$$

- Identity Element?
- Inverse Elements?
- Abelian?

Group Examples

• The Integers Under the Group Product Operation of Addition

$$(\mathbb{Z},+)$$
 $\mathbb{Z} = \{...,-2,-1,0,1,2,...\}$

- $\begin{array}{ll} \text{ Identity Element? } 0 & \forall z_i \in \mathbb{Z}, z_i^{-1} = -z_i \\ \text{ Inverse Elements?} & z_i + -z_i = -z_i + z_i = 0 \\ \text{ Abelian?} & \text{YES} & z_i + z_j = z_j + z_i & \forall (z_i, z_j) \in \mathbb{Z} \end{array}$
- Positive Real Numbers Under Multiplication

$$(\mathbb{R}, \bullet) \qquad \qquad \mathbb{R} = \{r \mid r > 0\}$$

- $\begin{array}{ll} \text{ Identity Element? 1} & \forall r_i \in \mathbb{R}, r_i^{-1} = 1 \, / \, r_i \\ \text{ Inverse Elements?} & r_i \bullet (1 \, / \, r_i) = (1 \, / \, r_i) \bullet r_i = 1 \\ \text{ Abelian?} & \text{YES} & r_i \bullet r_j = r_j \bullet r_i & \forall (r_i, r_j) \in \mathbb{R} \end{array}$

More Group Examples

- The Set of Complex Numbers (excluding 0) under Multiplication are a Commutative Group
- Real/Complex Matrices under Matrix Multiplication are a Non-Abelian Group (matrix Multiplication is non-commutative)
- Rotation matrices (under multiplication) form a Group
 - in 2-D an Abelian Group
 - in higher dimensions non-Abelian Group
- The Symmetry Group: S_3

Symmetry Group Example

- Consider Elements as Strings of Unique Objects
- Example: Group (S₃, o)
- \mathbb{S}_3 =(abc, bca, cab, bac, cba, acb)
- o Represents the Permutation Operator
- 6 Objects in S₃Correspond to the Following Permutations

$$\begin{pmatrix} a & b & c \\ a & b & c \end{pmatrix} \equiv 0 \qquad \begin{pmatrix} a & b & c \\ a & c & b \end{pmatrix} \equiv 1 \qquad \begin{pmatrix} a & b & c \\ b & a & c \end{pmatrix} \equiv 2$$

$$\begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix} \equiv 3 \qquad \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix} \equiv 4 \qquad \begin{pmatrix} a & b & c \\ c & b & a \end{pmatrix} \equiv 5$$

Symmetry Group Example

Represents the Permutation Operator

$$2 \circ 5 = \begin{pmatrix} a & b & c \\ b & a & c \end{pmatrix} \circ \begin{pmatrix} a & b & c \\ c & b & a \end{pmatrix} = \begin{pmatrix} a & b & c \\ b & a & c \end{pmatrix} \circ \begin{pmatrix} b & a & c \\ b & c & a \end{pmatrix} = \begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix} = 3$$

$$5 \circ 2 = \begin{pmatrix} a & b & c \\ c & b & a \end{pmatrix} \circ \begin{pmatrix} a & b & c \\ b & a & c \end{pmatrix} = \begin{pmatrix} a & b & c \\ c & b & a \end{pmatrix} \circ \begin{pmatrix} c & b & a \\ c & a & b \end{pmatrix} = \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix} = 4$$

$$5 \circ 2 \neq 2 \circ 5$$

• Non-commutative - thus Non-Abelian

Symmetry Group Example

• Represents the Permutation Operator

$$3 \circ 4 = ??????$$

$$4 \circ 3 = ?????$$

Compute This on Paper

Symmetry Group Example

• Represents the Permutation Operator

$$3 \circ 4 = \begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix} \circ \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix} = \begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix} \circ \begin{pmatrix} b & c & a \\ a & b & c \end{pmatrix} = \begin{pmatrix} a & b & c \\ a & b & c \end{pmatrix} = 0$$

$$4 \circ 3 = \begin{pmatrix} a b c \\ c a b \end{pmatrix} \circ \begin{pmatrix} a b c \\ b c a \end{pmatrix} = \begin{pmatrix} a b c \\ c a b \end{pmatrix} \circ \begin{pmatrix} c a b \\ a b c \end{pmatrix} = \begin{pmatrix} a b c \\ a b c \end{pmatrix} = 0$$

$$3 \circ 4 = 4 \circ 3$$

• Still Non-commutative - in General

Field

- A Field F is set with two associated binary operators usually referred to as addition and multiplication
- A Field also Obeys the following Three Properties:
 - 1. Under Addition, F is an Abelian Group with Identity Element 0 Such That: $0 + a = a, \forall a \in F$
 - 2. Under Multiplication, the non-zero elements of *F* form an Abelian Group with Identity Element 1 Such That:

$$1 \bullet a = a, \forall a \in F$$
 $0 \bullet a = 0, \forall a \in F$

3. Distributivity Holds:

$$a \bullet (b+c) = a \bullet b + a \bullet c$$

Vector Space

- Vector Space Assumes the Existence of Three Objects:
 - 1. An Abelian Group (V,+) whose Elements are Called Vectors and whose Product Operator is called Addition
 - 2. A Field F (usually $\mathbb R$ the real numbers, or $\mathbb C$ the complex numbers) whose Elements are called Scalars
 - 3. An Operation Called <u>Multiplication with Scalars</u> Denoted by which associates to any scalar $c \in F$ and Vector $\alpha \in V$ another Vector $c \cdot \alpha \in V$ and has the following properties: $c \bullet (\alpha + \beta) = c \bullet \alpha + c \bullet \beta$

$$(c+c') \bullet \alpha = c \bullet \alpha + c' \bullet \alpha$$

 $(c \bullet c') \bullet \alpha = c \bullet (c' \bullet \alpha)$
 $1 \bullet \alpha = \alpha$

Linear Independence

Given:

$$\{c_1, c_2, \dots, c_n\} \in \mathbb{R}$$
 $\{\alpha_1, \alpha_2, \dots, \alpha_n\} \in \mathbb{R}^n$

 The set of n Vectors are <u>Linearly</u> <u>Independent</u> if:

$$c_1\alpha_1 + c_2\alpha_2 + ... + c_n\alpha_n = 0 \Rightarrow c_i = 0 \forall i$$

No Solution for c_i Other Than all Equal 0

- Otherwise, the set of Vectors are Said to be <u>Linearly Dependent</u>
- Linear Independence is a Property of a Specific Subset of Vectors

Linear Independence Example

$$\alpha_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \alpha_{2} = \begin{bmatrix} 0 \\ 2 \\ -2 \end{bmatrix} \qquad \alpha_{3} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \qquad \alpha_{4} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix}$$

 Is the Following set of Vectors Linearly Dependent?:

$$\{\alpha_1,\alpha_2,\alpha_3\}$$

Compute This on Paper

Linear Independence Example

$$\alpha_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \alpha_{2} = \begin{bmatrix} 0 \\ 2 \\ -2 \end{bmatrix} \qquad \alpha_{3} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \qquad \alpha_{4} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix}$$

- Is the Following set of Vectors Linearly Dependent?: $\{\alpha_1, \alpha_2, \alpha_3\}$
- Check solution for: $c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 = 0$

Linear Independence Example

$$\alpha_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \alpha_{2} = \begin{bmatrix} 0 \\ 2 \\ -2 \end{bmatrix} \qquad \alpha_{3} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \qquad \alpha_{4} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix}$$

• Check solution for: $c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 = 0$

$$0c_1 + 0c_2 + 1c_3 = 0$$

$$0c_1 + 2c_2 - 2c_3 = 0$$

$$1c_1 - 2c_2 + 1c_3 = 0$$

- Only Solution is: $c_1 = c_2 = c_3 = 0$
- Not Dependent (they are linearly Independent)

Linear Independence Example

$$\alpha_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \alpha_{2} = \begin{bmatrix} 0 \\ 2 \\ -2 \end{bmatrix} \qquad \alpha_{3} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \qquad \alpha_{4} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix}$$

 Are the Following set of Vectors Linearly Dependent?:

$$\{\alpha_2,\alpha_3,\alpha_4\}$$

Compute This on Paper

Linear Independence Example

$$0c_{2} + 1c_{3} + 4c_{4} = 0 2c_{2} - 2c_{3} + 2c_{4} = 0 -2c_{2} + 1c_{3} + 3c_{4} = 0$$

$$c_{3} = -4c_{4} 2c_{2} - 2(-4c_{4}) + 2c_{4} = 0$$

$$c_{2} = -5c_{4}$$

$$-2(-5c_{4}) - 4c_{4} + 3c_{4} = 0$$

$$c_{4} = 0$$

$$c_{2} = c_{3} = c_{4} = 0$$

• Not Dependent (they are linearly Independent)

Linear Independence Example

$$\alpha_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \alpha_{2} = \begin{bmatrix} 0 \\ 2 \\ -2 \end{bmatrix} \qquad \alpha_{3} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \qquad \alpha_{4} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix}$$

· The following sets are Linearly Independent:

$$\{\alpha_1, \alpha_2, \alpha_3\} \qquad \alpha_4 = 9\alpha_1 + 5\alpha_2 + 4\alpha_3$$

$$\{\alpha_2, \alpha_3, \alpha_4\} \quad \alpha_1 = \left(-\frac{5}{9}\right)\alpha_2 + \left(-\frac{4}{9}\right)\alpha_3 + \left(\frac{1}{9}\right)\alpha_4$$

The following set is Linearly Dependent:

$$\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}$$

Real Vector Spaces

- Consider an *n*-dimensional Vector Space:
- If, for all pairs of vectors α and β, an associated real number exists (α, β) such that the Following conditions are satisfied:

$$(\alpha,\beta) = (\beta,\alpha)$$

$$(c\alpha,\beta) = c(\alpha,\beta) \text{ if } c \in \mathbb{R}$$

$$(\alpha+\gamma,\beta) = (\alpha,\beta) + (\gamma,\beta) \quad \forall \gamma \in \mathbb{R}^n$$

$$(\alpha,\alpha) \ge 0 \text{ such that } (\alpha,\alpha) = 0 \text{ if and only if } \alpha = 0$$

- Then, we have an n-dimensional Euclidean Vector Space
- (α, β) is the <u>Inner Product</u> of Vectors α and β

Euclidean Vectors

· Length of a Euclidean Vector:

$$|\alpha| = \sqrt{(\alpha, \alpha)}$$

• Angle between the two vectors α and β :

$$\theta = \cos^{-1} \frac{(\alpha, \beta)}{|\alpha||\beta|}$$
 $\cos(\theta) = \frac{(\alpha, \beta)}{|\alpha||\beta|}$

• If $(\alpha, \beta)=0$, then α and β are orthogonal and:

$$\theta = \pi / 2 = 90^{\circ}$$

Orthogonal Basis Sets

• Consider a set of *n* Vectors:

$$\mathfrak{E} = \{e_1, e_2, ..., e_n\}$$

 This set forms an <u>Orthogonal Basis</u> of the *n*-Dimensional Vector Space if:

$$(e_i, e_j) = 0, \forall i \neq j$$

 This set forms an <u>Orthonormal Basis</u> of the *n*-Dimensional Vector Space if:

$$(e_i, e_j) = \delta_{i,j} = \begin{cases} 0 \text{ if } i \neq j \\ 1 \text{ if } i = j \end{cases}$$

Euclidean Space Basis

All Vectors in a Euclidean Space may be Represented as a Linear Combination of the Orthonormal Basis Vectors:

$$\alpha = a_1 e_1 + a_2 e_2 + \dots + a_n e_n$$
$$\beta = b_1 e_1 + b_2 e_2 + \dots + b_n e_n$$

• Since: $(e_i, e_j) = \delta_{i,j}$

• Then: $(\alpha, e_i) = a_i$ • Thus: $(\alpha, \beta) = \sum_{i=1}^n a_i b_i$

This form of the inner product sometimes called the dot product

Matrices

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

- A maps Vectors from Vector Space of Dimension n to Vector Space of Dimension m
- When A is a Square Matrix it Represents a Linear Mapping to Itself
- Each Row of A is a Row Vector and Each Column is a Column Vector
- Row/Column Vectors Span the Domain/Range Vector **Spaces**

Elementary Row Operations

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

- 1. Any row may be interchanged with any other
- 2. Any row may be replaced by itself multiplied by a constant
- 3. Any row may be replaced by the column-wise sum of itself and a multiple of another row

Two Matrices are Row-Equivalent if one is Obtained from the Other by a Finite Sequence of Row Operations

Identity Matrix

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

- Identity Matrix is $n \times n$ Square Matrix whose Row-Vectors and Column Vectors Form an Orthonormal Basis for the n-dimensional Euclidean Vector Space
- Permutation Matrix is an Identity Matrix that has Undergone an Arbitrary Series of Row Interchanges

Matrix Determinant

· Determinant of a Matrix is Denoted as:

$$|\mathbf{A}|$$
 $\det(\mathbf{A})$

Examples of Determinant Computation:

$$\mathbf{A}_{1} = \begin{bmatrix} a_{11} \end{bmatrix} \quad \mathbf{A}_{2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \mathbf{A}_{3} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$|\mathbf{A}_{1}| = a_{11}$$
 $|\mathbf{A}_{2}| = a_{11}a_{22} - a_{12}a_{21}$

$$|\mathbf{A}_{1}| = a_{11} \qquad |\mathbf{A}_{2}| = a_{11}a_{22} - a_{12}a_{21}$$

$$|\mathbf{A}_{3}| = a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Matrix Operations

Transpose of a matrix, reflection about the diagonal:

$$\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix} \qquad \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} a_{ji} \end{bmatrix}$$

- Determinant of A is Equal to Determinant of A^T
- If Two or More Rows (or columns) of A are Equivalent then $|\mathbf{A}|=0$
- A Square $n \times n$ Matrix is Triangular When:

$$\forall i > j, a_{ij} = 0$$
 (upper triangular)
 $\forall i < j, a_{ii} = 0$ (lower triangular)

• Determinant of Triangular Matrix \mathbf{A}_{tri}

$$\det(\mathbf{A}_{\text{tri}}) = \mid \mathbf{A}_{\text{tri}} \mid = a_{11} \bullet a_{22} \bullet \dots \bullet a_{nn}$$

Rank of a Matrix

- Rank of a Matrix is an Integer that is Equal to Number of Linearly Independent Row (Column) Vectors of a Square Matrix
- All Full Rank Matrices may be Converted into Triangular Matrices through Elementary Row Operations
- A Full Rank Matrix Must have a non-zero Determinant
- A non-Square Matrix Cannot Have a Rank Larger than min(m,n)

Characteristic Equation

• Characteristic Equation of a Matrix A is:

$$c(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = |\mathbf{A} - \lambda \mathbf{I}|$$

 Roots of the Characteristic Equation yield the characteristic values, or eigenvalues of A:

$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$

- Eigenvalues of A are Scalar Multiples of Eigenvectors of A:
- Eigenvectors of A are Those Vectors, when Transformed by A are Equivalent to Themselves by a Scale Factor λ

Trace of a Matrix

• Trace of a Matrix A is:

$$\operatorname{Tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

Given two matrices A and B:

$$Tr(\mathbf{A}\mathbf{B}) = Tr(\mathbf{B}\mathbf{A})$$

$$Tr(\mathbf{A} + \mathbf{B}) = Tr(\mathbf{A}) + Tr(\mathbf{B})$$

$$Tr(c\mathbf{A}) = cTr(\mathbf{A})$$

$$Tr(\mathbf{S}\mathbf{A}\mathbf{S}^{\dagger}) = Tr(\mathbf{S}^{\dagger}\mathbf{S}\mathbf{A}) = Tr(\mathbf{A})$$

Similarity Transform

Why all this vector stuff?

- Vectors used to Describe the State of a Quantum System
- A Quantum System is a Collection of Qubits
- Quantum Systems Evolve over Time
- Evolution means the quantum state of the qubits change
- Evolution can be Modeled with Transformation Matrices
- Quantum State vectors Exist in the Complex Vector Space

Complex Numbers

• Complex Numbers have a REAL and IMAGINARY Component and Exist in the Complex Field $\mathbb C$

$$c \in \mathbb{C}$$
 $c = a + ib$ $i^2 = -1$

$$\operatorname{Re}(c) = a \in \mathbb{R}$$
 $\operatorname{Im}(c) = b \in \mathbb{R}$

- Recall Euler's Identity: $Ke^{i\theta} = K\cos\theta + iK\sin\theta$
- Phasor Notation: $K \angle \theta$ $a = K \cos \theta$ $b = K \sin \theta$
- Complex Conjugate: $c^* \in \mathbb{C}$

$$c = a \pm ib \Rightarrow c^* = a \mp ib$$

Note:

$$c \bullet c^* = c^* \bullet c = a^2 + b^2$$

$$|c| = \sqrt{c \cdot c^*} = \sqrt{c^* \cdot c} = \sqrt{a^2 + b^2}$$

Inner Products in Complex Fields

• Satisfy Three Conditions:

$$(\alpha, \beta) = (\beta, \alpha)^*$$

$$(\alpha,\alpha) \ge 0$$

$$(\alpha, \alpha) = 0 \Rightarrow \alpha = 0$$

Inner Products Induce Concept of a <u>Norm</u>

$$\|lpha\|$$

- Norm is a Measure of Vector Length or Magnitude
- Previous Example with Inner Product Defined the Euclidean Norm
- Norms can Exist when Inner Products do Not
- Finite Dimensional Vector Spaces with Norms are Banach Spaces

Vector Norms in Complex Fields

Satisfy Three Conditions:

$$\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$$
$$\|c \bullet \alpha\| = |c| \|\alpha\|$$
$$\|\alpha\| = 0 \Rightarrow \alpha = 0$$

- Other types of Norms:
 - Manhattan Norm

$$\|\alpha\| = \sum_{i=1}^{n} |a_i|$$

p-Norm

$$\|\alpha\| = \sum_{i=1}^{n} |a_i|$$

$$\|\alpha\|_p = \left(\sum_{i=1}^{n} |a_i|^p\right)^{\frac{1}{p}}$$

Infinity-Norm $\|\alpha\|_{\infty} = \max(|a_1|,...,|a_n|)$

What happens when p=1,2?

Adjoint Operator

- Denoted by Superscript "dagger" Symbol †
- Applicable to Vectors and Matrices

- Vector
$$\alpha^{\dagger} = (\alpha^*)^{\mathrm{T}}$$

– Matrix
$$\mathbf{A}^{\dagger} = (\mathbf{A}^*)^{\mathrm{T}}$$

EXAMPLE

$$\mathbf{A} = \left[\begin{array}{cc} 1 - 5i & 1 + i \\ 1 + 3i & 7i \end{array} \right]$$

Find:
$$A^{\dagger} = ?$$

Compute This on Paper

Adjoint Operator

- Denoted by Superscript "dagger" Symbol †
- Applicable to Vectors and Matrices
 - Vector $\alpha^{\dagger} = (\alpha^*)^{\mathrm{T}}$
 - Matrix $\mathbf{A}^{\dagger} = (\mathbf{A}^*)^{\mathrm{T}}$

EXAMPLE

$$\mathbf{A} = \begin{bmatrix} 1 - 5i & 1 + i \\ 1 + 3i & 7i \end{bmatrix}$$

$$\mathbf{A}^{\dagger} = \begin{bmatrix} 1 - 5i & 1 + i \\ 1 + 3i & 7i \end{bmatrix}^{\dagger} = \begin{bmatrix} 1 - 5i & 1 + i \\ 1 + 3i & 7i \end{bmatrix}^{*}$$

$$\mathbf{A}^{\dagger} = \begin{bmatrix} 1 + 5i & 1 - i \\ 1 - 3i & -7i \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 + 5i & 1 - 3i \\ 1 - i & -7i \end{bmatrix}$$

Adjoint Properties

- Adjoints of Identity Matrices are Themselves
- Adjoints of Real-Valued Matrices are Equivalent to the Transpose
- An Operator Defined by a Transformation Matrix
 A is <u>Normal</u> if AA[†]= A[†]A
- A Matrix A is said to be <u>Hermitian</u> is it is <u>Self-adjoint</u> Meaning:

$$\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix} \qquad \mathbf{A}^{\dagger} = \begin{bmatrix} a_{ji}^* \end{bmatrix}$$
$$a_{ij} = a_{ii}^*$$

Unitary Matrices

A Square Matrix is Unitary if:

$$\mathbf{U}^{\dagger}\mathbf{U} = \mathbf{U}\mathbf{U}^{\dagger} = \mathbf{I}_{n}$$

Unitary Matrix Properties:

$$(\mathbf{U}\alpha,\mathbf{U}\beta) = (\alpha,\beta)$$

$$\mathbf{U}^{-1} = \mathbf{U}^{\dagger}$$

$$Rank(\mathbf{U}) = n$$

Row (Column) Vectors Form an Orthonormal Basis for \mathbb{C}^n

$$\left|\lambda_{i}\right|=1$$

$$\left| \det(\mathbf{U}) \right| = 1$$

Complex Vector Spaces

- Hilbert Space is infinite-dimensional vector space with inner product and associated norm
- Quantum Computing Literature Traditionally Refers to n-dimensional Complex Euclidean Vector Space as a Hilbert Space (technically correct)
- FOR OUR PURPOSES: Hilbert Space: ndimensional vector space over the field of complex numbers with an inner product and associated norm

Dirac Notation

- Traditional Notation for Representing Vectors in Quantum Mechanics is due to Paul Dirac
- Basis Vectors for n-Dimensional Hilbert Vector Space \mathbb{H}^n as kets and bras:

$$\{ |0\rangle, |1\rangle, ..., |i\rangle, ..., |n-1\rangle \}$$

 $\{\langle 0|, \langle 1|, ..., \langle i|, ..., \langle n-1| \}$

$$|0\rangle = \begin{bmatrix} 1\\0\\\vdots\\0\\\vdots\\0 \end{bmatrix} |1\rangle = \begin{bmatrix} 0\\1\\\vdots\\0\\\vdots\\0 \end{bmatrix}, \dots, |i\rangle = \begin{bmatrix} 0\\0\\\vdots\\1\\\vdots\\0 \end{bmatrix} \dots, |n-1\rangle = \begin{bmatrix} 0\\0\\\vdots\\0\\\vdots\\1 \end{bmatrix}$$

Dirac Notation

• Basis vectors as Bras are Row Vectors that Span \mathbb{H}^n

$$\langle 0| = \begin{bmatrix} 1 & 0 & \dots & 0 & \dots & 0 \end{bmatrix}$$

 $\langle 1| = \begin{bmatrix} 0 & 1 & \dots & 0 & \dots & 0 \end{bmatrix}$
 \vdots
 $\langle i| = \begin{bmatrix} 0 & 0 & \dots & 1 & \dots & 0 \end{bmatrix}$
 \vdots
 $\langle n-1| = \begin{bmatrix} 0 & 0 & \dots & 0 & \dots & 1 \end{bmatrix}$

Dirac Notation of Vectors

$$|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle + \dots + \alpha_i |i\rangle + \dots + \alpha_{n-1} |n-1\rangle$$
complex values

Each ket Vector has a Dual bra Vector related by Hermitian Conjugation

$$|\psi\rangle = (\langle\psi|)^{\dagger} \qquad \langle\psi| = (|\psi\rangle)^{\dagger}$$

$$\langle \psi \models \alpha_0^* \langle 0 \mid + \alpha_1^* \langle 1 \mid + \dots + \alpha_i^* \langle i \mid + \dots + \alpha_{n-1}^* \langle n-1 \mid$$

Dirac Notation of Vectors

$$|\psi\rangle = \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_i \\ \vdots \\ \alpha_{n-1} \end{bmatrix} \qquad |\psi\rangle = (\langle \psi \mid)^{\dagger} \qquad \langle \psi \models (|\psi\rangle)^{\dagger}$$

$$\langle \psi \models [\alpha_0^* \alpha_1^* \dots \alpha_i^* \dots \alpha_{n-1}^*]$$

Inner Product in Hilbert Space

- Inner Product of Two Vectors: $|\psi_a\rangle, |\psi_b\rangle \in \mathbb{H}^n$
- Denoted as: $\langle \psi_a | \psi_b \rangle$
- · Properties:
 - 1. Inner Product with Same Vector: $\langle \psi | \psi \rangle \in \mathbb{R}^n$
 - 2. Linearity $|\psi_{a}\rangle, |\psi_{b}\rangle, |\psi_{c}\rangle \in \mathbb{H}^{n}$ $a,b,c \in \mathbb{C}$ $\langle \psi_{a} | (c | \psi_{b}\rangle) = c \langle \psi_{a} | \psi_{b}\rangle$ $(a \langle \psi_{a} | + b \langle \psi_{b} |) | \psi_{c}\rangle = a \langle \psi_{a} | \psi_{c}\rangle + b \langle \psi_{b} | \psi_{c}\rangle$ $\langle \psi_{c} | (a | \psi_{a}\rangle + b | \psi_{b}\rangle) = a \langle \psi_{c} | \psi_{a}\rangle + b \langle \psi_{c} | \psi_{b}\rangle$
 - 3. Skew Symmetry $\langle \psi_{_a} \, | \, \psi_{_b} \rangle = \langle \psi_{_b} \, | \, \psi_{_a} \rangle \, {}^*$

Inner Product Example

• Inner Product of Two Vectors: $|\psi_a\rangle, |\psi_b\rangle \in \mathbb{H}^4$

$$|\psi_a\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle + \alpha_2 |2\rangle + \alpha_3 |3\rangle$$

$$|\psi_b\rangle = \beta_0 |0\rangle + \beta_1 |1\rangle + \beta_2 |2\rangle + \beta_3 |3\rangle$$

$$\langle \boldsymbol{\psi}_{a} \mid \boldsymbol{\psi}_{b} \rangle = \begin{bmatrix} \alpha_{0}^{*} & \alpha_{1}^{*} & \alpha_{2}^{*} & \alpha_{3}^{*} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \beta_{3} \end{bmatrix} = \alpha_{0}^{*} \beta_{0} + \alpha_{1}^{*} \beta_{1} + \alpha_{2}^{*} \beta_{2} + \alpha_{3}^{*} \beta_{3}$$

Inner Product Example

• Inner Product of Two Vectors: $|\psi_a\rangle, |\psi_b\rangle \in \mathbb{H}^2$

$$|\psi_{a}\rangle = (1+i)|0\rangle + (2-3i)|1\rangle$$

$$|\psi_b\rangle = (1-2i)|0\rangle + (3+2i)|1\rangle$$

Compute this on paper

Inner Product Example

• Inner Product of Two Vectors: $|\psi_a\rangle, |\psi_b\rangle \in \mathbb{H}^2$

$$|\psi_{\alpha}\rangle = (1+i)|0\rangle + (2-3i)|1\rangle$$

$$|\psi_b\rangle = (1-2i)|0\rangle + (3+2i)|1\rangle$$

$$\langle \psi_a | \psi_b \rangle = (1+i)*(1-2i)+(2-3i)*(3+2i)$$

$$\langle \psi_a | \psi_b \rangle = (1-i)(1-2i) + (2+3i)(3+2i)$$

$$\langle \psi_a | \psi_b \rangle = (1 - 3i - 2) + (6 + 13i - 6)$$

$$\langle \psi_a | \psi_b \rangle = (-1 - 3i) + (0 + 13i)$$

$$\langle \psi_a | \psi_b \rangle = -1 + 10i$$

$$\langle \psi_b | \psi_a \rangle = \langle \psi_a | \psi_b \rangle^* = -1 - 10i$$

Inner Product Example

• Inner Product of Vector with itself: $|\psi_a\rangle \in \mathbb{H}^4$

$$|\psi_a\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle + \alpha_2 |2\rangle + \alpha_3 |3\rangle$$

$$\langle \psi_a | \psi_a \rangle = \begin{bmatrix} \alpha_0^* & \alpha_1^* & \alpha_2^* & \alpha_3^* \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \alpha_0^* \alpha_0 + \alpha_1^* \alpha_1 + \alpha_2^* \alpha_2 + \alpha_3^* \alpha_3$$

$$\langle \psi_a | \psi_a \rangle = |\alpha_0|^2 + |\alpha_1|^2 + |\alpha_2|^2 + |\alpha_3|^2$$

Inner Product Example

• Inner Product of Vector with itself: $|\psi_a\rangle \in \mathbb{H}^2$

$$|\psi_{a}\rangle = (1+2i)|0\rangle + (4-3i)|1\rangle$$

$$\langle \psi_{a}|\psi_{a}\rangle = (1+2i)*(1+2i) + (4-3i)*(4-3i)$$

$$\langle \psi_{a}|\psi_{a}\rangle = (1-2i)(1+2i) + (4+3i)(4-3i)$$

$$\langle \psi_{a}|\psi_{a}\rangle = (1+4) + (16+9) = 5+25 = 30$$

$$\alpha_{0} = (1+2i) \qquad \alpha_{1} = (4-3i)$$

$$|\alpha_{0}| = \sqrt{1^{2}+2^{2}} = \sqrt{5} \qquad |\alpha_{1}| = \sqrt{4^{2}+3^{2}} = \sqrt{25} = 5$$

$$\langle \psi_{a} | \psi_{a} \rangle = |\alpha_{0}|^{2} + |\alpha_{1}|^{2} = (\sqrt{5})^{2} + (5)^{2} = 30$$

Inner Product Example

Orthogonality:

$$\begin{split} |\psi_{a}\rangle \perp |\psi_{b}\rangle &\Rightarrow \langle \psi_{a} |\psi_{b}\rangle = 0 \\ |\psi_{a}\rangle \perp |\psi_{b}\rangle &\Rightarrow |\psi_{b}\rangle \perp |\psi_{a}\rangle \end{split}$$

• Normal *Unitary* Basis of *n*-dimensional basis:

$$\{|\psi_{1}\rangle, |\psi_{2}\rangle, ..., |\psi_{i}\rangle, ..., |\psi_{n}\rangle\}$$
$$\||\psi_{i}\rangle\| = 1$$
$$\langle \psi_{i} |\psi_{j}\rangle = 0 \forall i \neq j$$