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Tensor and Outer Products 

Topics in Matrix and Tensor Algebra 
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⎡⎣ ⎤⎦

Vector Tensor Product 
•  Consider the Following Two Vectors:  
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Vector Tensor Product 
•  Consider the Basis Vectors:  

Matrix Tensor Product 
•  Origin in Group Theory - Important Applications in 

Quantum Mechanics 
•  Consider the Following Two Matrices:  

    

A ⊗B =

a11B a12B … a1nB
a21B a22B … a2nB
   

am1B am2B … amnB

⎡
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⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Tensor Product Example 

Tensor Product Properties 

Kronecker Sum 
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Outer Product 
•  Special Case of the Tensor Product 
•   Product is m×n Matrix Resulting from m×1 and 1×n 

Quantum State 
Complete Description of a Quantum 

System 
•  Quantum State Represented by a Vector  
•  Quantum State Vector has a Norm of 1 in the  
     Hilbert Space 
•  Traditional Notation for Quantum State: 
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Quantum State Properties 
•  Two States are Equivalent if: 

•  Where: 

  c ∈
•  Norm (length) of State Vector: 

•  Because State Vectors are Normalized: 

Quantum State Properties 

•  State Vectors are Normalized, thus 
Direction not Length Define State 

•  Quantum State is Really a ray in Hilbert 
Space 

•  Ray is an Element of Direction Only 
•  Traditional to Utilize Normalized State 

Vectors to Represent State 
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Quantum State Properties 
•  Consider the Following Phase Factor: 

•  Consider the Following Quantum State 
Vectors: 

•  These Vectors Describe the Same 
Quantum State 

•  γ  Represents the Relative Phase 

Inner Products of State Vectors 
•  Inner Product Represents Generalized 

Angle Between States: 

– Orthogonal States: 

– Equivalent States: 

•  Inner Product is a Complex Number 
•  Measure of Relative Orthogonality: 

  | 〈ψ a |ψ b 〉 |
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State Vector Bases 
•  Can Represent Quantum State Vector as 

Linear Combination of Unit Vectors: 

•  EXAMPLE: 

  |ψ a 〉 = α0 | 0〉 +α1 |1〉

  〈ψ a | = α0
*〈0 | +α1

*〈1|

  H2

Alternative Bases 
•  EXAMPLE: 

  
|ψ a 〉 = σ x | x〉 +σ y | y〉

  |ψ a 〉 = α0 | 0〉 +α1 |1〉

Find         in Terms of    

Compute this on paper 
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Alternative Bases 
•  EXAMPLE: 

  
|ψ a 〉 = σ x | x〉 +σ y | y〉

  H2
  |ψ a 〉 = α0 | 0〉 +α1 |1〉

Find         in Terms of    

Quantum Observables/Operators 
•  Observable is an Attribute of 

Physical System 
•  In Principle, an Observable can be 

Measured 
•  In QM, Observable is Associated 

with a Hermitian (self-adjoint) 
Operator 

•  Measured Value is Eigenvalue of 
Operator Matrix 
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Hilbert Space Operators 
•  Operator U in Hilbert Space      is: 

•  Operator Maps State Vectors to Different 
States, Mathematically Modeled as: 

•  Note that: 

  Hn

   

Hermitian (self - adjoint) if U = U†

Unitary                              if UU† = U†U = I
Normal                               if  UU† − U†U = 0

   |ψ b 〉 = U |ψ a 〉

   U(a |ψ a 〉 + b |ψ b 〉) = aU |ψ a 〉 + bU |ψ b 〉

Hilbert Space Operators 
•  αi are the State Amplitudes of the State 

Vector: 

•  αi can be calculated as: 

•  Note that: 

  |ψ a 〉 = α0 | 0〉 +α1 |1〉...+α i | i〉...+α n−1 | n −1〉

  
α j = 〈 j |ψ a 〉,∀j = 0,1,...,n −1

   |ψ b 〉 = U |ψ a 〉

   〈 j |ψ b 〉 = 〈 j | U |ψ a 〉
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Projection Operator Construction 
•  Consider Hilbert Space      with Basis: 

•  Determine Operator U to Interchange 
Projection between Basis Vectors: 

•  U is Defined as: 

  H2

  α0 | 0〉 +α1 |1〉α1 | 0〉 +α0 |1〉

Projection Operator Example 
•  Consider the Quantum State: 

•  We know that: 
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Proj. Operator Example (cont.) 

Video: The Qubit 
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Projection Operators - Projectors 
•  Outer Product of State Vector with Itself 

Yields a Projection Operator: 

•  Property: 

•  Orthogonality Definition: 

•  Often Written as: 

Rotation Operator 
•  Produces new Quantum State that is a 

Coordinate Rotation of Current State 
•   Spin 1/2 about Z-axis Rotations 
•  Fermions (e-, protons) 
•  Basis States: 
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Rotation Operator 
•  Produces new Quantum State that is a 

Coordinate Rotation of Current State 
•  Integer Spin about Z-axis Rotation 
•  Bosons (photons) 
•  Basis States: 

Rotation Operator 
•  Produces new Quantum State that is a 

Coordinate Rotation of Current State 
•  RHC/LHC Polarization of photon 
•  Basis States: 
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Spectral Decomposition 
•  Spectral Decomposition of an Operator 

is Representation of Operator as Linear 
Combination of Projectors 

•  Eigenvalues of Operator are 
Coefficients of Projectors in Linear 
Combination 

•  Recall Eigenvalue: 

Spectral Decomposition 
•  Let the Following be Orthonormal Basis 

in n-dim Hilbert Space: 

•  Let U be a normal operator and: 
  {| e0 〉,| e1〉,...,| ei 〉,...,| en−1〉}

non-trivial Soln iff: 
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Observable 
•  Observable is any Hermitian Operator 

whose Eigenvectors form a Basis: 
•  Facts about Measurement Operators: 
1.  Eigenvalues of Hermitians are Real 
2.  Eigenvectors corresponding to different 

Eigenvalues are Orthogonal 
3.  If 2 Hermitians Commute-common basis of 

orthonormal Eignvectors an Eigenbasis 
4.  Complete Set of  commuting Observables 

Defined as Minimal Set of Hermitians with 
Unique Common Eigenbasis 

Hermitian Eigenvalue 

 

Let |φ〉 be a unit eigenvector (eigenket) of the 
hermitian matrix  U

U |φ〉 = λ |φ〉

 Take the adjoint of both sides of this equation

U |φ〉( )† = λ |φ〉( )†
〈φ |U† = λ*〈φ |

 Since U is hermitian :

U† = U
〈φ |U = λ*〈φ |
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Hermitian Eigenvalue (cont) 

 Multiply both sides of equation by eigenket |φ〉
〈φ |U = λ*〈φ |

〈φ |U |φ〉 = λ*〈φ |φ〉

Inner product of 
eigenket with  
itself is “1” 

Definition of 
eigenket U |φ〉 = λ |φ〉

〈φ | λ |φ〉 = λ*

λ〈φ |φ〉 = λ*
λ = λ*

 Thus, λ must be a real value

Normal Operator 
•  Recall that a Normal Operator is one that: 

•  Every Normal Operator has Complete set of 
Orthonormal Eigenvectors 

•  Every State Vector can be Expressed Using 
the Basis formed by the n Eigenvectors of a 
Normal Operator N 
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Normal Operator (cont) 
•  Normality of N Implies: 

•  Thus, 

•  Outer Product of State Vector with itself is 
Projection Operator: 

Normal Operator (cont) 
•  Constructing Projection Operator using 

Eigenvectors of N: 

•  Applying this Projection to a State Vector: 

•  Kronecker Delta function Occurs: 
SIFTING 

PROPERTY 
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Normal Operator (cont) 
•  Substituting this in Earlier Result: 

•  Leading to the Interesting Result: 

•  Spectral Decomposition of N is Independent 
of Basis 

Spectral Decomposition Example 
•  Consider a Normal Operator,N, in      with 

eigenvalues λa and λb 

•  Corresponding Orthonormal Eigenstates 
Characterized by Eigenvectors: 

•  Corresponding Projection Operators: 

  H2
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Spectral Decomposition Example 
•  Corresponding Projection Operators: 

•  We can use the Spectral Decomposition to 
Write the Operator as: 

Measurement of Observables 
•  Numerical Outcome of Measurement is an 

Eigenvalue of the Operator 
•  Immediately after Measurement, Quantum 

State is Eigenstate (an eigenvector of the 
Operator) 

•  Spectral Decomposition of Operator specifies 
Exhaustive Measurement in Sense that all 
Possible Outcomes (the eigenvalues) are 
Specified 

•  Result is (pp.70-71 Marinescu): 

   Prob(λx |ψ a 〉) = 〈ψ a | Px |ψ a 〉 =|α x |2
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Observable Summary 
•  Observable thought of as specific question 

posed to a quantum system (eg. What is the 
position of a photon after passing through a 
beam splitter?) 

•  Mathematical analog is corrspondence of a 
hermitian operator 

•  Eigenvalues of hermitian operator are real 
–  eigenvalues are only possible values observable can 

take as a result of measuring it on any given state 
–  eigenkets of observable form a basis for the 

quantum state 

Observable Summary (cont.) 
•  Observable thought of as specific question 

posed to a quantum system (eg. What is the 
position of a photon after passing through a 
beam splitter?) 

•  Observable is a question 
•  Question has a SET of possible answers 
•  The set of possible answers are the 

eigenvalues of the observable 
•  If the expected value of an extemely large set 

of observables (either over time OR over all 
instances in the multiverse – ergodicity) is an 
eigenvalue, then observable is “SHARP” 
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Observable Example (cont) 
•  Consider a QCA cell with a single electron and 

four Quantum dots 
•  Assume the probability of tunneling is very high 

since the electron has a lot of energy 

•  Assume tunneling probability is equal among all 
quantum dots (tunnels denoted by red lines) 

•  Let measurement of interest be which of the 
quantum wells contains the electron 

Observable Example 
•  Let each Q-dot represent a basis state denoted 

as: 

•  Quantum State of electron is: 

| x0 〉 =

1
0
0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

| x2 〉 =

0
0
1
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

| x1〉 =

0
1
0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

| x3〉 =

0
0
0
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

|ψ 〉 = α0 | x0 〉 +α1 | x1〉 +α2 | x2 〉 +α 3 | x3〉
Prob[|ψ 〉 =| xi 〉] =|α i |

2
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Observable Example 
•  Let observable be denoted as: 

•  Now Construct the Observable Hermitian: 

P |ψ 〉( ) = P α i | xi 〉
i=0

3

∑⎛⎝⎜
⎞
⎠⎟

P = α i | xi 〉〈xi |α i
*

i=0

3

∑ = α iα i
* | xi 〉〈xi |

i=0

3

∑

P = |α i |
2 | xi 〉〈xi |

i=0

3

∑

Observable Example 
P = |α i |

2 | xi 〉〈xi |
i=0

3

∑
P =|α0 |

2 | x0 〉〈x0 | + |α1 |
2 | x1〉〈x1 | + |α2 |

2 | x2 〉〈x2 | + |α 3 |
2 | x3〉〈x3 |

P =|α0 |
2

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+ |α1 |
2

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+ |α2 |
2

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+ |α 3 |
2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

This is the 
spectral 
decompo- 
sition of the  
observable P 

A linear  
combination 
of Normal  
Projectors 
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Observable Example 

P =

|α0 |
2 0 0 0

0 |α1 |
2 0 0

0 0 |α2 |
2 0

0 0 0 |α 3 |
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

•  The eigenvalues of this observable are: 

•  Measurement using this observable forces the 
quantum state to evolve into an eigenket: 

λ0 =|α0 |
2 ,λ1 =|α1 |

2 ,λ2 =|α2 |
2 ,λ3 =|α 3 |

2

| xi 〉

Observable Example 

P =

|α0 |
2 0 0 0

0 |α1 |
2 0 0

0 0 |α2 |
2 0

0 0 0 |α 3 |
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

•  The expectation that a particular eigenket is 
observed after applying the observable is: 

•  This is because the tunneling probablities are 
all equal and very high among the four Q-dots 

•  These are also the eigenvalues of the 
observable – it is NOT sharp 

|α i |
2=
1
4


