Tensor and Outer Products
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Topics in Matrix and Tensor Algebra

Vector Tensor Product

» Consider the Following Two Vectors:
al — bl
“ [aj p= {bj

a®p=| "




Vector Tensor Product

» Consider the Basis Vectors:

0=, n=[7]

D10)1)=/101)= 1>®|0>®|1>:M®[1}®[°}=[0}® =I5)

0

SO = O O O O O

Matrix Tensor Product

 Origin in Group Theory - Important Applications in
Quantum Mechanics

« Consider the Following Two Matrices:
A:[al.]] of order (mxn) B:[by] of order (r><s)

aHB alzB alnB

AQB = ale azzB aan

a BaB..aB
_ml m2 mn

A ® B is of order (mr X ns)




Tensor Product Example

A= a, 4, B = bn b12
a, d b21 bzz

allbll allbIZ alell a12b12
A@B: allB alZB — a11b21 alleZ a12b21 a12b22
a. B a B a.b a b. a.b. a.b

21711 21712 22711 22712

a b a b, a.b. . a.b

L 21721 21722 22721 22722 ]

21 22

Tensor Product Properties

A®B=[aB]

A®(aB)=0(A®B)
(A+B)®C=A®C+B®C
A®MB+C)=A®B+A®C
A®B®C)=(A®B)®C
(A®B)(C®D)=AC®BD

(A®B)'=A"®B"'
|A®B|=|A|"[B]" for A (nxn)and B (mxm)
A®B=U (B®A)U, where U,, U, are permutation matrices
Tr(A ®B) =Tr(A)Tr(B)
A®B=A®I +1 ®B where A is (nX n) and B is (m X m)

Kronecker Sum




Outer Product

» Special Case of the Tensor Product
Product is mxn Matrix Resulting from mx1 and 1xn

o, — 161
|‘//a>={a} v, ng

2

|Wg><l//b |:|:Zl:|®|:ﬁl* ﬁ;:|:|:a1ﬁ1* a1ﬁ;:|

2 aZﬂl* aZﬁ;

Quantum State

Complete Description of a Quantum
System

* Quantum State Represented by a Vector

* Quantum State Vector has a Norm of 1 in the
Hilbert Space

* Traditional Notation for Quantum State:

v )=o,|0)+a ). +a i) +a _|n-1)




Quantum State Properties

» Two States are Equivalent if:
Y )=cly,)
* Where:
ceC lc|=1
* Norm (length) of State Vector:

J, lw,)

» Because State Vectors are Normalized:

Jw, )=y, |y,)= ilai =1

Quantum State Properties

State Vectors are Normalized, thus
Direction not Length Define State

Quantum State is Really a ray in Hilbert
Space

Ray is an Element of Direction Only

Traditional to Utilize Normalized State
Vectors to Represent State

(v, |y )=1




Quantum State Properties
» Consider the Following Phase Factor:

e” =cosy+isiny

e |= \/cos2 y+sin’y =1

» Consider the Following Quantum State
Vectors: v ) e’ |y )

 These Vectors Describe the Same
Quantum State

» v Represents the Relative Phase

Inner Products of State Vectors

* Inner Product Represents Generalized
Angle Between States:
(v, lv,)
— Orthogonal States:
(v, ly,)=0
— Equivalent States:
(v, ly,)=1
* Inner Product is a Complex Number

* Measure of Relative Orthogonality:
v, lv,)|




State Vector Bases

» Can Represent Quantum State Vector as
Linear Combination of Unit Vectors:

{0),11),...,| 0, = 1)}
- EXAMPLE: H’

v )=0o,|0)+a |1)
(W |=0,0]+or (1]

Alternative Bases
« EXAMPLE: H*> |y )=0o,|0)+«a, 1)
Yy )=0.1x)+0 |y
1 1
_ 1 =— (0|1
| x) &(|o>+\1>) |3 \/E(I —11))
Find 0,,0 in Terms of .

Compute this on paper




Alternative Bases

« EXAMPLE: I* |y ,)=0,|0)+0, |1
Yy y=0, x)+0 |

~~—

Find 0,.0in Terms of o,

O'XZ%(OCO+O{1) O'y:%(ao—al)

|wa>=%<ao+al>\x>+%<ao—al>|y>

Quantum Observables/Operators

» Observable is an Attribute of
Physical System

* In Principle, an Observable can be
Measured

* In QM, Observable is Associated
with a Hermitian (self-adjoint)
Operator

 Measured Value is Eigenvalue of
Operator Matrix




Hilbert Space Operators

Operator U in Hilbert Space H" is:
Hermitian (self - adjoint) if U = U'
Unitary ifuuU" =UU=1
Normal if UUT-UU=0

Operator Maps State Vectors to Different
States, Mathematically Modeled as:

lv,)=Uly )
Note that:
Ualy )+bly,))=aUly )+bU|y,)

Hilbert Space Operators

a; are the State Amplitudes of the State
Vector:

v )y=a,|0)+a ). +o |i)..+a  [n-1)
* o, can be calculated as:

o, ={jly,Vj=01..n-1
¢ Note that:

lv,)=Uly )
Glw,)y= Uy )




Projection Operator Construction

» Consider Hilbert Space H* with Basis:
{10),| 1)}

» Determine Operator U to Interchange
Projection between Basis Vectors:

a,|0)+o [ o |0)+a [ 1)

e U is Defined as:
U =[0X1|+]1X0]

o= oo 3+ [o]err a1-[3 1]+ [0 o]0 1]

Projection Operator Example

e Consider the Quantum State:
v )=0,10)+a 1)
lv,)=Uly,)
Uy )=(0X1]+[1X0 )¢, [0)+c, [1))
= a,[(JOXT[+]1XO0[)[0]
+or [(|OXT]+]1XO0 ) [1)]
 We know that:
0[1)=(110)=0 010)=A1]1)=1

10



Proj. Operator Example (cont.)
Uly,) =0, [(OX1[+[1X0[)|0)]
+ 04 [(JOXT[+[1XO0]) | )]

Uly,)=0o,(|0X1]0+]1)01]0))
+ 0, (| OXT[ T+ [1X0 1))

Uly,)=a, [1X0]0)+o [OXT[1)

Uly,)=a,|D)+e[0)

Video: The Qubit
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Projection Operators - Projectors

» Outer Product of State Vector with ltself
Yields a Projection Operator:

v Xv, =P,
» Property:
(P, ) =y Xy, v Xy, |=ly Xy, =P,
* Orthogonality Definition:
PP |y )=0

* Often Written as:
PI.PJ. =0

Rotation Operator

Produces new Quantum State that is a
Coordinate Rotation of Current State

Spin 1/2 about Z-axis Rotations
Fermions (e, protons)

Basis States:
|+) "spin up" spin numberiss=+1/2

| =) "spin down" spin numberiss=—1/2

(+1

12



Rotation Operator

* Produces new Quantum State that is a
Coordinate Rotation of Current State

* Integer Spin about Z-axis Rotation
» Bosons (photons)

« Basis States:
|+) spin number is s = +1

|0) spin numberiss=0

[+ 10) |-
O] (+]

e 0 0
T R@®=0 10
- 0 0e

| —) spin number is s = —1

Rotation Operator

* Produces new Quantum State that is a
Coordinate Rotation of Current State

« RHC/LHC Polarization of photon

e Basis States:
|R)= L(| x)+i|y)) m=+1 (RHC polarized)

V2

1
V2

R) |L
(R— {i | Oj

R@)=
(Ll——L " ¢

|L)y=—(x)—1i|y)) m=-1 (LHC polarized)

13



Spectral Decomposition

» Spectral Decomposition of an Operator
is Representation of Operator as Linear
Combination of Projectors

» Eigenvalues of Operator are
Coefficients of Projectors in Linear
Combination

* Recall Eigenvalue: Uly)=A1]y)
Ly)=1|y)

Uly)=Aly)
(U-AD[y)=0

Spectral Decomposition

Let the Following be Orthonormal Basis
in n-dim Hilbert Space:

{le,)le),....le)....le )}
Let U be a normal operator and:

n—1 n=1
W)=Y 7le) (U-ADD7,]le)=0
i=0 i=0

U=[u] 1=[5 ]

ij i
non-trivial Soln iff:

n—1
2(% —A6,)y,=0 —> det(U—-AI)=0
i=0

14



Observable

* Observable is any Hermitian Operator
whose Eigenvectors form a Basis:

* Facts about Measurement Operators:
1. Eigenvalues of Hermitians are Real

2. Eigenvectors corresponding to different
Eigenvalues are Orthogonal

3. If 2 Hermitians Commute-common basis of
orthonormal Eignvectors an Eigenbasis

4. Complete Set of commuting Observables
Defined as Minimal Set of Hermitians with
Unique Common Eigenbasis

Hermitian Eigenvalue

Let 1¢) be aunit eigenvector (eigenket) of the
hermitian matrix U

Ulg)=211¢)
Take the adjoint of both sides of this equation
(U19)) =(219))
(P10 =2(g]

Since U is hermitian :
U'=U
G R(Y

15



Hermitian Eigenvalue (cont)

(PI1U=1{ol
Multiply both sides of equation by eigenket | ¢)

01U16)=1"(419)
Definition of/ \ \Inner product of

eigenket Ul (P) =Al ¢> eigenket with
itself is “1”
@121¢)=2"
Molgy=2
A=A

Thus, A must be a real value

Normal Operator

» Recall that a Normal Operator is one that:
N'N =NN'
» Every Normal Operator has Complete set of
Orthonormal Eigenvectors
N|n)=21|n)
Every State Vector can be Expressed Using

the Basis formed by the n Eigenvectors of a
Normal Operator N

n—1
W y=>a|n)
i=0

16



Normal Operator (cont)

Normality of N Implies:

n—1

Yl f=1

i=0

Thus,
n-l n—1 n—1

N | wa> = Nzai | ni> :ZO‘,N | ni> = zaili | ni>
i=0 i=0 i=0

Outer Product of State Vector with itself is
Projection Operator:

v Xv, =P,

Normal Operator (cont)

Constructing Projection Operator using
Eigenvectors of N:
P, =|nXn, |

Applying this Projection to a State Vector:
n—1 n—1

Py y=lnXn|Y a |n)y=> 0 |n)(n|n))
j=0 j=0

Kronecker Delta function Occ/uw/
SIFTING

(nln)=9a.
Y Y PROPERTY

Ply)=aln)

17



Normal Operator (cont)

«  Substituting this in Earlier Result:
Ply)=a,ln)

n—1 n—1
N | l//a> = Zai)’i | ni> = zliPi | l//a>
i=0 i=0

« Leading to the Interesting Result:

N=Y AP

i=0

« Spectral Decomposition of N is Independent
of Basis

Spectral Decomposition Example

. Consider a Normal Operator,N, in H’ with
eigenvalues /,and 4,

« Corresponding Orthonormal Eigenstates
Characterized by Eigenvectors:

(la)y=0, |0+, |1)  |by=L10)+[ 1)
» Corresponding Projection Operators:

o, [ oy 1B,F BB
—l aXal= ol Fo =|pXb|=|'"0! FoFi
P =[aXa| { J P, = b)b| {ﬂlﬁo |ﬂ1|2}

10|1
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Spectral Decomposition Example

» Corresponding Projection Operators:

o, [ ao |B,1" BB
P =a)a|=|'% %% | p opxp|=|Pol PPy
raal=| ool @ oo -| AT A

» We can use the Spectral Decomposition to
Write the Operator as:

o, aa*} {/3 ; ﬁﬁ*}
N:l 0* 0771 +/1 0* 0r-'1
a|:a1a0 |a1 |2 ’ ﬁlﬁo |ﬁ1 |2

Measurement of Observables

* Numerical Outcome of Measurement is an
Eigenvalue of the Operator

* Immediately after Measurement, Quantum
State is Eigenstate (an eigenvector of the
Operator)

« Spectral Decomposition of Operator specifies
Exhaustive Measurement in Sense that all
Possible Outcomes (the eigenvalues) are
Specified

* Resultis (pp.70-71 Marinescu):

Prob(A |y ) =y, |P |y )=l [

19



Observable Summary

« Observable thought of as specific question
posed to a quantum system (eg. What is the
position of a photon after passing through a
beam splitter?)

« Mathematical analog is corrspondence of a
hermitian operator
« Eigenvalues of hermitian operator are real

— eigenvalues are only possible values observable can
take as a result of measuring it on any given state

— eigenkets of observable form a basis for the
quantum state

Observable Summary (cont.)

« Observable thought of as specific question
posed to a quantum system (eg. What is the
position of a photon after passing through a
beam splitter?)

« Observable is a question
* Question has a SET of possible answers

» The set of possible answers are the
eigenvalues of the observable

« If the expected value of an extemely large set
of observables (either over time OR over all
instances in the multiverse — ergodicity) is an
eigenvalue, then observable is “SHARP”

20



Observable Example (cont)

Consider a QCA cell with a single electron and
four Quantum dots

Assume the probability of tunneling is very high
since the electron has a lot of energy

ORO)
OR0

Assume tunneling probability is equal among all
quantum dots (tunnels denoted by red lines)

Let measurement of interest be which of the
quantum wells contains the electron

Observable Example

Let each Q-dot represent a basis state denoted

A
e @

Quantum State of electron is:
lw)y=a,lx,)+o, 1 x)+a,lx,)+o,1x;)

Prob[l w) =l x,)] =l e, I’

|x0>=

T 1
oo o~

1

T 1
oo~ o

L 1

lx;)=

r 1
_ o O O
L 1

lx,)=

r 1
oS = O O
L

21



Observable Example

« Let observable be denoted as:

P(ly))= (Zalx))

ORO,
@@

« Now Construct the Observable Hermitian:

3 3
P=>Ya, lxXx o =Y oo |xXx, |
i=0 i=0

3
P=>la, PlxXx|
i=0

Observable Example
P:ilai Pl x, Xx, |

ORO,
@@

P =lor, Pl Xx, [+ 1o Pl Yo T+ T Pl Yoo 1T+ Tog Pl X, |

_ 2
P=lq, |

+la, P

oS O O~

0 0O 0 0 0O
0 0O +la, P 01 00
0 0O 0 0 0O
0 0O 0 0 0O
0 0 0O 0 0 0O
0 0 0O tla, P 0 0 0O
0 010 0 0 O
0 0 0O 0 0 0 1

This is the
spectral
decompo-
sition of the
observable P

A linear
combination
of Normal
Projectors

22



lat,
0
0
0

0
lo, 1P
0
0

0
0
lox,
0

|2

Observable Example

0
0
0

lo,

ORO,
@@

|2

The eiéenvalues of this observable are:

_ 2 9 _ 2 _ 2 _ 2
Ao =logy P A =la, P4, =la, P4, =l a, |

Measurement using this observable forces the
quantum state to evolve into an eigenket:

%)

lat,
0
0
0

0
lo, 1P
0
0

0
0
lox,
0

|2

Observable Example

0
0
0

lo,

ORO,
@@

|2

The ex_pectation that a particular éigenket is
observed after applying the observabile is:

log, P=—
' 4

This is because the tunneling probablities are

all equal and very high among the four Q-dots

These are also the eigenvalues of the
observable — it is NOT sharp
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