Tensor and Outer Products

$$|\psi_a\rangle\langle\psi_b|=\left[egin{array}{c} lpha_0 \ lpha_1 \ dots \ lpha_i \ dots \ lpha_n \end{array}
ight]\otimes\left[egin{array}{c} eta_0 \ eta_1 \ \cdots \ eta_i \ \cdots \ eta_n \end{array}
ight]$$

Topics in Matrix and Tensor Algebra

Vector Tensor Product

· Consider the Following Two Vectors:

$$\alpha = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \qquad \beta = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$\alpha \otimes \beta = \begin{bmatrix} a_1 b_1 \\ a_1 b_2 \\ a_2 b_1 \\ a_2 b_2 \end{bmatrix}$$

Vector Tensor Product

· Consider the Basis Vectors:

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|1\rangle |0\rangle |1\rangle = |101\rangle = |1\rangle \otimes |0\rangle \otimes |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = |5\rangle$$

Matrix Tensor Product

- Origin in Group Theory Important Applications in Quantum Mechanics
- Consider the Following Two Matrices:

$$\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix} \text{ of order } (m \times n) \qquad \mathbf{B} = \begin{bmatrix} b_{ij} \end{bmatrix} \text{ of order } (r \times s)$$

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \dots & a_{1n}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \dots & a_{2n}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}\mathbf{B} & a_{m2}\mathbf{B} & \dots & a_{mn}\mathbf{B} \end{bmatrix}$$

$$\mathbf{A} \otimes \mathbf{B}$$
 is of order $(mr \times ns)$

Tensor Product Example

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{bmatrix}$$

Tensor Product Properties

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{ij} \mathbf{B} \end{bmatrix}$$

$$\mathbf{A} \otimes (\alpha \mathbf{B}) = \alpha (\mathbf{A} \otimes \mathbf{B})$$

$$(\mathbf{A} + \mathbf{B}) \otimes \mathbf{C} = \mathbf{A} \otimes \mathbf{C} + \mathbf{B} \otimes \mathbf{C}$$

$$\mathbf{A} \otimes (\mathbf{B} + \mathbf{C}) = \mathbf{A} \otimes \mathbf{B} + \mathbf{A} \otimes \mathbf{C}$$

$$\mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C}) = (\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C}$$

$$(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = \mathbf{A}\mathbf{C} \otimes \mathbf{B}\mathbf{D}$$

$$(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$$

$$\begin{vmatrix} \mathbf{A} \otimes \mathbf{B} \end{vmatrix} = \begin{vmatrix} \mathbf{A} \end{vmatrix}^m \begin{vmatrix} \mathbf{B} \end{vmatrix}^n \text{ for } \mathbf{A} \ (n \times n) \text{ and } \mathbf{B} \ (m \times m)$$

$$\mathbf{A} \otimes \mathbf{B} = \mathbf{U}_1(\mathbf{B} \otimes \mathbf{A})\mathbf{U}_2 \text{ where } \mathbf{U}_1, \mathbf{U}_2 \text{ are permutation matrices}$$

$$\mathrm{Tr}(\mathbf{A} \otimes \mathbf{B}) = \mathrm{Tr}(\mathbf{A})\mathrm{Tr}(\mathbf{B})$$

$$\mathbf{A} \oplus \mathbf{B} = \mathbf{A} \otimes \mathbf{I}_m + \mathbf{I}_n \otimes \mathbf{B} \text{ where } \mathbf{A} \text{ is } (n \times n) \text{ and } \mathbf{B} \text{ is } (m \times m)$$

Kronecker Sum

Outer Product

- · Special Case of the Tensor Product
- Product is $m \times n$ Matrix Resulting from $m \times 1$ and $1 \times n$

$$|\psi_a\rangle = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} \qquad |\psi_b\rangle = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$

$$|\psi_{a}\rangle\langle\psi_{b}| = \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} \otimes \begin{bmatrix} \beta_{1}^{*} & \beta_{2}^{*} \end{bmatrix} = \begin{bmatrix} \alpha_{1}\beta_{1}^{*} & \alpha_{1}\beta_{2}^{*} \\ \alpha_{2}\beta_{1}^{*} & \alpha_{2}\beta_{2}^{*} \end{bmatrix}$$

Quantum State

Complete Description of a Quantum System

- Quantum State Represented by a Vector
- Quantum State Vector has a Norm of 1 in the Hilbert Space
- Traditional Notation for Quantum State:

$$|\psi_{\alpha}\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle ... + \alpha_i |i\rangle ... + \alpha_{n-1} |n-1\rangle$$

Quantum State Properties

• Two States are Equivalent if:

$$|\psi_{a}\rangle = c |\psi_{a'}\rangle$$

• Where:

$$c \in \mathbb{C}$$
 $|c| = 1$

• Norm (length) of State Vector:

$$\sqrt{\langle \psi_a \,|\, \psi_a \rangle}$$

• Because State Vectors are Normalized:

$$\sqrt{\langle \psi_a | \psi_a \rangle} = \langle \psi_a | \psi_a \rangle = \sum_{i=0}^{n-1} |\alpha_i|^2 = 1$$

Quantum State Properties

- State Vectors are Normalized, thus Direction not Length Define State
- Quantum State is Really a ray in Hilbert Space
- · Ray is an Element of Direction Only
- Traditional to Utilize Normalized State Vectors to Represent State

$$\langle \psi_a | \psi_a \rangle = 1$$

Quantum State Properties

• Consider the Following Phase Factor:

$$e^{i\gamma} = \cos \gamma + i \sin \gamma$$
$$|e^{i\gamma}| = \sqrt{\cos^2 \gamma + \sin^2 \gamma} = 1$$

- Consider the Following Quantum State **Vectors**: $|\psi_{a}\rangle$ $e^{i\gamma}|\psi_{a}\rangle$
- These Vectors Describe the Same Quantum State
- γ Represents the Relative Phase

Inner Products of State Vectors

• Inner Product Represents Generalized **Angle** Between States:

$$\langle \psi_a | \psi_b \rangle$$

– Orthogonal States:

$$\langle \boldsymbol{\psi}_a \mid \boldsymbol{\psi}_b \rangle = 0$$

– Equivalent States: $\langle \psi_a \, | \, \psi_b \rangle = 1$

$$\langle \psi_a | \psi_b \rangle = 1$$

- Inner Product is a Complex Number
- Measure of Relative Orthogonality:

$$|\langle \psi_a | \psi_b \rangle|$$

State Vector Bases

 Can Represent Quantum State Vector as Linear Combination of Unit Vectors:

$$\{|0\rangle, |1\rangle, ..., |i\rangle, ..., |n-1\rangle\}$$

• EXAMPLE: \mathbb{H}^2

$$|\psi_a\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$$

$$\langle \psi_a | = \alpha_0^* \langle 0 | + \alpha_1^* \langle 1 |$$

Alternative Bases

• EXAMPLE: $H^2 \qquad |\psi_a\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$

$$|\psi_a\rangle = \sigma_x |x\rangle + \sigma_y |y\rangle$$

$$|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
 $|y\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

Find σ_x , σ_y in Terms of α_0 , α_1

Compute this on paper

Alternative Bases

• EXAMPLE: \mathbb{H}^2 $|\psi_a\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$ $|\psi_a\rangle = \sigma_x |x\rangle + \sigma_y |y\rangle$

Find σ_x , σ_v in Terms of α_0 , α_1

$$\sigma_x = \frac{1}{\sqrt{2}}(\alpha_0 + \alpha_1)$$
 $\sigma_y = \frac{1}{\sqrt{2}}(\alpha_0 - \alpha_1)$

$$|\psi_a\rangle = \frac{1}{\sqrt{2}}(\alpha_0 + \alpha_1)|x\rangle + \frac{1}{\sqrt{2}}(\alpha_0 - \alpha_1)|y\rangle$$

Quantum Observables/Operators

- Observable is an Attribute of Physical System
- In Principle, an Observable can be Measured
- In QM, Observable is Associated with a <u>Hermitian (self-adjoint)</u> <u>Operator</u>
- Measured Value is <u>Eigenvalue</u> of Operator Matrix

Hilbert Space Operators

• Operator U in Hilbert Space \mathbb{H}^n is:

Hermitian (self - adjoint) if
$$\mathbf{U} = \mathbf{U}^{\dagger}$$

Unitary if $\mathbf{U}\mathbf{U}^{\dagger} = \mathbf{U}^{\dagger}\mathbf{U} = \mathbf{I}$
Normal if $\mathbf{U}\mathbf{U}^{\dagger} - \mathbf{U}^{\dagger}\mathbf{U} = 0$

 Operator Maps State Vectors to Different States, Mathematically Modeled as:

$$|\psi_{b}\rangle = \mathbf{U} |\psi_{a}\rangle$$

Note that:

$$\mathbf{U}(a \mid \boldsymbol{\psi}_{a}\rangle + b \mid \boldsymbol{\psi}_{b}\rangle) = a\mathbf{U} \mid \boldsymbol{\psi}_{a}\rangle + b\mathbf{U} \mid \boldsymbol{\psi}_{b}\rangle$$

Hilbert Space Operators

• α_i are the State Amplitudes of the State Vector:

$$|\psi_{\alpha}\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle ... + \alpha_i |i\rangle ... + \alpha_{n-1} |n-1\rangle$$

α_i can be calculated as:

$$\alpha_{j} = \langle j | \psi_{a} \rangle, \forall j = 0, 1, ..., n-1$$

· Note that:

$$|\psi_{b}\rangle = \mathbf{U} |\psi_{a}\rangle$$

$$\langle j | \psi_b \rangle = \langle j | \mathbf{U} | \psi_a \rangle$$

Projection Operator Construction

• Consider Hilbert Space \mathbb{H}^2 with Basis:

$$\{|0\rangle,|1\rangle\}$$

 Determine Operator U to Interchange Projection between Basis Vectors:

$$\alpha_0 | 0 \rangle + \alpha_1 | 1 \rangle \mapsto \alpha_1 | 0 \rangle + \alpha_0 | 1 \rangle$$

• U is Defined as:

$$\mathbf{U} = |0\rangle\langle 1| + |1\rangle\langle 0|$$

$$\mathbf{U} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Projection Operator Example

• Consider the Quantum State:

$$|\psi_a\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$$

 $|\psi_b\rangle = \mathbf{U} |\psi_a\rangle$

$$\mathbf{U} \mid \psi_{a} \rangle = (\mid 0)\langle 1 \mid + \mid 1)\langle 0 \mid)(\alpha_{0} \mid 0\rangle + \alpha_{1} \mid 1\rangle)$$

$$= \alpha_{0}[(\mid 0)\langle 1 \mid + \mid 1)\langle 0 \mid) \mid 0\rangle]$$

$$+ \alpha_{1}[(\mid 0)\langle 1 \mid + \mid 1)\langle 0 \mid) \mid 1\rangle]$$

· We know that:

$$\langle 0 | 1 \rangle = \langle 1 | 0 \rangle = 0$$
 $\langle 0 | 0 \rangle = \langle 1 | 1 \rangle = 1$

Proj. Operator Example (cont.)

$$\mathbf{U} \mid \boldsymbol{\psi}_{a} \rangle = \boldsymbol{\alpha}_{0} [(\mid 0) \langle 1\mid + \mid 1) \langle 0\mid) \mid 0 \rangle] \\ + \boldsymbol{\alpha}_{1} [(\mid 0) \langle 1\mid + \mid 1) \langle 0\mid) \mid 1 \rangle] \\ \mathbf{U} \mid \boldsymbol{\psi}_{a} \rangle = \boldsymbol{\alpha}_{0} (\mid 0) \langle 1\mid 0 \rangle + \mid 1 \rangle \langle 0\mid 0 \rangle) \\ + \boldsymbol{\alpha}_{1} (\mid 0) \langle 1\mid 1 \rangle + \mid 1 \rangle \langle 0\mid 1 \rangle) \\ \mathbf{U} \mid \boldsymbol{\psi}_{a} \rangle = \boldsymbol{\alpha}_{0} \mid 1 \rangle \langle 0\mid 0 \rangle + \boldsymbol{\alpha}_{1} \mid 0 \rangle \langle 1\mid 1 \rangle$$

 $\mathbf{U} \mid \psi_a \rangle = \alpha_0 \mid 1 \rangle + \alpha_1 \mid 0 \rangle$

Video: The Qubit

Projection Operators - Projectors

 Outer Product of State Vector with Itself Yields a Projection Operator:

$$|\psi_a\rangle\langle\psi_a|=\mathbf{P}_{\psi_a}$$

Property:

$$(\mathbf{P}_{\psi_a})^2 = |\psi_a\rangle\langle\psi_a|\psi_a\rangle\langle\psi_a| = |\psi_a\rangle\langle\psi_a| = \mathbf{P}_{\psi_a}$$

Orthogonality Definition:

$$\mathbf{P}_{i}\mathbf{P}_{j} \mid \boldsymbol{\psi}_{a} \rangle = 0$$

· Often Written as:

$$\mathbf{P}_i \mathbf{P}_j = 0$$

Rotation Operator

- Produces new Quantum State that is a Coordinate Rotation of Current State
- Spin 1/2 about Z-axis Rotations
- Fermions (e-, protons)
- · Basis States:
 - $|+\rangle$ "spin up" spin number is s = +1/2
 - $|-\rangle$ "spin down" spin number is s = -1/2

$$\langle + | \longrightarrow \mathbf{R}_{z}(\phi) = \begin{bmatrix} e^{+i\frac{\phi}{2}} & 0 \\ 0 & e^{-i\frac{\phi}{2}} \end{bmatrix}$$

Rotation Operator

- Produces new Quantum State that is a Coordinate Rotation of Current State
- Integer Spin about Z-axis Rotation
- Bosons (photons)
- Basis States:
- $|+\rangle$ spin number is s=+1 $|-\rangle$ spin number is s=-1 $|0\rangle$ spin number is s=0

$$\langle 0 | \xrightarrow{\langle + | \longrightarrow \mathbf{R}_{z}(\phi) =} \begin{bmatrix} e^{+i\phi} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\phi} \end{bmatrix}$$

Rotation Operator

- Produces new Quantum State that is a Coordinate Rotation of Current State
- RHC/LHC Polarization of photon
- · Basis States:

$$|R\rangle = \frac{1}{\sqrt{2}}(|x\rangle + i|y\rangle) \quad m = +1 \text{ (RHC polarized)}$$

$$|L\rangle = \frac{1}{\sqrt{2}}(|x\rangle - i|y\rangle) \quad m = -1 \text{ (LHC polarized)}$$

$$\langle R | \qquad \qquad |R\rangle |L\rangle$$

$$\langle L | \qquad \qquad |R\rangle |L\rangle$$

$$\langle L | \qquad \qquad |R\rangle |L\rangle$$

$$\langle L | \qquad \qquad |R\rangle |L\rangle$$

Spectral Decomposition

- Spectral Decomposition of an Operator is Representation of Operator as Linear Combination of Projectors
- Eigenvalues of Operator are Coefficients of Projectors in Linear Combination
- Recall Eigenvalue: $\mathbf{U} \mid \psi \rangle = \lambda \mid \psi \rangle$ $\mathbf{I} \mid \psi \rangle = 1 \mid \psi \rangle$ $\mathbf{U} \mid \psi \rangle = \lambda \mathbf{I} \mid \psi \rangle$ $(\mathbf{U} \lambda \mathbf{I}) \mid \psi \rangle = 0$

Spectral Decomposition

• Let the Following be Orthonormal Basis in *n*-dim Hilbert Space:

$$\{|e_0\rangle, |e_1\rangle, ..., |e_i\rangle, ..., |e_{n-1}\rangle\}$$

Let U be a normal operator and:

$$|\psi\rangle = \sum_{i=0}^{n-1} \gamma_i |e_i\rangle \qquad (\mathbf{U} - \lambda \mathbf{I}) \sum_{i=0}^{n-1} \gamma_i |e_i\rangle = 0$$

$$\mathbf{U} = [u_{ij}] \qquad \mathbf{I} = [\delta_{ij}]$$

$$\text{non-trivial Soln iff:}$$

$$\sum_{i=0}^{n-1} (u_{ij} - \lambda \delta_{ij}) \gamma_i = 0 \longrightarrow \det(\mathbf{U} - \lambda \mathbf{I}) = 0$$

Observable

- Observable is any Hermitian Operator whose Eigenvectors form a Basis:
- Facts about Measurement Operators:
- 1. Eigenvalues of Hermitians are Real
- 2. Eigenvectors corresponding to different Eigenvalues are Orthogonal
- 3. If 2 Hermitians Commute-common basis of orthonormal Eignvectors an Eigenbasis
- 4. Complete Set of commuting Observables
 Defined as Minimal Set of Hermitians with
 Unique Common Eigenbasis

Hermitian Eigenvalue

Let $|\phi\rangle$ be a unit eigenvector (eigenket) of the hermitian matrix ${\bf U}$

$$\mathbf{U} \mid \phi \rangle = \lambda \mid \phi \rangle$$

Take the adjoint of both sides of this equation

$$(\mathbf{U} \mid \phi \rangle)^{\dagger} = (\lambda \mid \phi \rangle)^{\dagger}$$
$$\langle \phi \mid \mathbf{U}^{\dagger} = \lambda^{*} \langle \phi \mid$$

Since U is hermitian:

$$\mathbf{U}^{\dagger} = \mathbf{U}$$
$$\langle \phi \mid \mathbf{U} = \lambda^* \langle \phi \mid$$

Hermitian Eigenvalue (cont)

$$\langle \phi \mid \mathbf{U} = \lambda^* \langle \phi \mid$$

Multiply both sides of equation by eigenket $| \phi \rangle$

Definition of eigenket
$$\begin{array}{c} \langle \phi \mid \mathbf{U} \mid \phi \rangle = \lambda^* \langle \phi \mid \phi \rangle \\ \mathbf{U} \mid \phi \rangle = \lambda \mid \phi \rangle & \text{Inner product of eigenket with itself is "1"} \\ \langle \phi \mid \lambda \mid \phi \rangle = \lambda^* \\ \lambda \langle \phi \mid \phi \rangle = \lambda^* \\ \lambda = \lambda^* \end{array}$$

Thus, λ must be a real value

Normal Operator

Recall that a Normal Operator is one that:

$$N^{\dagger}N = NN^{\dagger}$$

 Every Normal Operator has Complete set of Orthonormal Eigenvectors

$$\mathbf{N} \mid n_{i} \rangle = \lambda_{i} \mid n_{i} \rangle$$

 Every State Vector can be Expressed Using the Basis formed by the n Eigenvectors of a Normal Operator N

$$|\psi_a\rangle = \sum_{i=0}^{n-1} \alpha_i |n_i\rangle$$

Normal Operator (cont)

Normality of N Implies:

$$\sum_{i=0}^{n-1} |\alpha_i|^2 = 1$$

Thus,

$$\mathbf{N} \mid \psi_{a} \rangle = \mathbf{N} \sum_{i=0}^{n-1} \alpha_{i} \mid n_{i} \rangle = \sum_{i=0}^{n-1} \alpha_{i} \mathbf{N} \mid n_{i} \rangle = \sum_{i=0}^{n-1} \alpha_{i} \lambda_{i} \mid n_{i} \rangle$$

 Outer Product of State Vector with itself is Projection Operator:

$$|\psi_a\rangle\langle\psi_a|=\mathbf{P}_{\psi_a}$$

Normal Operator (cont)

 Constructing Projection Operator using Eigenvectors of N:

$$\mathbf{P}_{i} = \mid n_{i} \rangle \langle n_{i} \mid$$

Applying this Projection to a State Vector:

$$\mathbf{P}_{i} \mid \psi_{a} \rangle = \mid n_{i} \rangle \langle n_{i} \mid \sum_{j=0}^{n-1} \alpha_{j} \mid n_{j} \rangle = \sum_{j=0}^{n-1} \alpha_{j} \mid n_{i} \rangle (\langle n_{i} \mid n_{j} \rangle)$$

Kronecker Delta function Occurs.

$$\langle n_i | n_j \rangle = \delta_{ij}$$
 SIFTING PROPERTY

$$\mathbf{P}_{i} \mid \psi_{a} \rangle = \alpha_{i} \mid n_{i} \rangle$$

Normal Operator (cont)

Substituting this in Earlier Result:

$$\mathbf{P}_{i} | \psi_{a} \rangle = \alpha_{i} | n_{i} \rangle$$

$$\mathbf{N} | \boldsymbol{\psi}_{a} \rangle = \sum_{i=0}^{n-1} \alpha_{i} \lambda_{i} | n_{i} \rangle = \sum_{i=0}^{n-1} \lambda_{i} \mathbf{P}_{i} | \boldsymbol{\psi}_{a} \rangle$$

Leading to the Interesting Result:

$$\mathbf{N} = \sum_{i=0}^{n-1} \lambda_i \mathbf{P}_i$$

Spectral Decomposition of N is Independent of Basis

Spectral Decomposition Example

- Consider a Normal Operator, \mathbf{N} , in \mathbb{H}^2 with eigenvalues λ_a and λ_b
- Corresponding Orthonormal Eigenstates Characterized by Eigenvectors:

$$|a\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$$
 $|b\rangle = \beta_0 |0\rangle + \beta_1 |1\rangle$

Corresponding Projection Operators:

$$\mathbf{P}_{a} = |a\rangle\langle a| = \begin{bmatrix} |\alpha_{0}|^{2} & \alpha_{0}\alpha_{1}^{*} \\ \alpha_{1}\alpha_{0}^{*} & |\alpha_{1}|^{2} \end{bmatrix} \quad \mathbf{P}_{b} = |b\rangle\langle b| = \begin{bmatrix} |\beta_{0}|^{2} & \beta_{0}\beta_{1}^{*} \\ \beta_{1}\beta_{0}^{*} & |\beta_{1}|^{2} \end{bmatrix}$$

Spectral Decomposition Example

Corresponding Projection Operators:

$$\mathbf{P}_{a} = |a\rangle\langle a| = \begin{bmatrix} |\alpha_{0}|^{2} & \alpha_{0}\alpha_{1}^{*} \\ \alpha_{1}\alpha_{0}^{*} & |\alpha_{1}|^{2} \end{bmatrix} \quad \mathbf{P}_{b} = |b\rangle\langle b| = \begin{bmatrix} |\beta_{0}|^{2} & \beta_{0}\beta_{1}^{*} \\ \beta_{1}\beta_{0}^{*} & |\beta_{1}|^{2} \end{bmatrix}$$

 We can use the Spectral Decomposition to Write the Operator as:

$$\mathbf{N} = \lambda_a \begin{bmatrix} |\alpha_0|^2 & \alpha_0 \alpha_1^* \\ \alpha_1 \alpha_0^* & |\alpha_1|^2 \end{bmatrix} + \lambda_b \begin{bmatrix} |\beta_0|^2 & \beta_0 \beta_1^* \\ \beta_1 \beta_0^* & |\beta_1|^2 \end{bmatrix}$$

Measurement of Observables

- Numerical Outcome of Measurement is an Eigenvalue of the Operator
- Immediately after Measurement, Quantum State is Eigenstate (an eigenvector of the Operator)
- Spectral Decomposition of Operator specifies Exhaustive Measurement in Sense that all Possible Outcomes (the eigenvalues) are Specified
- Result is (pp.70-71 Marinescu):

$$\operatorname{Prob}(\lambda_{x} \mid \psi_{a}\rangle) = \langle \psi_{a} \mid \mathbf{P}_{x} \mid \psi_{a}\rangle = |\alpha_{x}|^{2}$$

Observable Summary

- Observable thought of as specific question posed to a quantum system (eg. What is the position of a photon after passing through a beam splitter?)
- Mathematical analog is correspondence of a hermitian operator
- Eigenvalues of hermitian operator are real
 - eigenvalues are only possible values observable can take as a result of measuring it on any given state
 - eigenkets of observable form a basis for the quantum state

Observable Summary (cont.)

- Observable thought of as specific question posed to a quantum system (eg. What is the position of a photon after passing through a beam splitter?)
- Observable is a question
- Question has a SET of possible answers
- The set of possible answers are the eigenvalues of the observable
- If the expected value of an externely large set of observables (either over time OR over all instances in the multiverse – ergodicity) is an eigenvalue, then observable is "SHARP"

Observable Example (cont)

- Consider a QCA cell with a single electron and four Quantum dots
- Assume the probability of tunneling is very high since the electron has a lot of energy

- Assume tunneling probability is equal among all quantum dots (tunnels denoted by red lines)
- Let measurement of interest be which of the quantum wells contains the electron

Observable Example

Let each Q-dot represent a basis state denoted as:

Quantum State of electron is:

$$|\psi\rangle = \alpha_0 |x_0\rangle + \alpha_1 |x_1\rangle + \alpha_2 |x_2\rangle + \alpha_3 |x_3\rangle$$

$$\operatorname{Prob}[|\psi\rangle = |x_i\rangle] = |\alpha_i|^2$$

Observable Example

$$P(|\psi\rangle) = P\left(\sum_{i=0}^{3} \alpha_{i} |x_{i}\rangle\right)$$

Now Construct the Observable Hermitian:

$$\mathbf{P} = \sum_{i=0}^{3} \alpha_{i} \mid x_{i} \rangle \langle x_{i} \mid \alpha_{i}^{*} = \sum_{i=0}^{3} \alpha_{i} \alpha_{i}^{*} \mid x_{i} \rangle \langle x_{i} \mid$$

$$\mathbf{P} = \sum_{i=0}^{3} |\alpha_i|^2 |x_i\rangle\langle x_i|$$

Observable Example

$$\mathbf{P} = \sum_{i=0}^{3} |\alpha_i|^2 |x_i\rangle\langle x_i|$$

$$\mathbf{P} = |\alpha_0|^2 |x_0\rangle \langle x_0| + |\alpha_1|^2 |x_1\rangle \langle x_1| + |\alpha_2|^2 |x_2\rangle \langle x_2| + |\alpha_3|^2 |x_3\rangle \langle x_3|$$

Projectors

Observable Example

$$\mathbf{P} = \begin{bmatrix} |\alpha_0|^2 & 0 & 0 & 0 \\ 0 & |\alpha_1|^2 & 0 & 0 \\ 0 & 0 & |\alpha_2|^2 & 0 \\ 0 & 0 & 0 & |\alpha_3|^2 \end{bmatrix}$$

• The eigenvalues of this observable are:

$$\lambda_0 = |\alpha_0|^2, \lambda_1 = |\alpha_1|^2, \lambda_2 = |\alpha_2|^2, \lambda_3 = |\alpha_3|^2$$

 Measurement using this observable forces the quantum state to evolve into an eigenket:

$$|x_i\rangle$$

Observable Example

$$\mathbf{P} = \begin{bmatrix} |\alpha_0|^2 & 0 & 0 & 0 \\ 0 & |\alpha_1|^2 & 0 & 0 \\ 0 & 0 & |\alpha_2|^2 & 0 \\ 0 & 0 & 0 & |\alpha_3|^2 \end{bmatrix}$$

• The expectation that a particular eigenket is observed after applying the observable is:

$$|\alpha_i|^2 = \frac{1}{4}$$

- This is because the tunneling probablities are all equal and very high among the four Q-dots
- These are also the eigenvalues of the observable – it is NOT sharp