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Quantum Communication Topics
Principle of Entanglement

Superdense Coding
Quantum Teleportation

BB84 Secure Key Distribution Protocol
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Qubit Entanglement Summary
Qubit Interaction through the Entanglement Principle
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Bell States
• Bell States* are four canonical examples of 2-qubit bipartite 

entanglement
• A Bell State Generator circuit evolves two fiduciary states qubits into 

4 different quantum states of entanglement 
- typically: one Hadamard and one Controlled-X

• Many other circuits can generate entangled pairs
• Other types of canonical entanglement states exist

- Greenberger-Horne-Zeilinger (GHZ) states – M-qubit bipartite entanglement
- W states – M-qubit M-partite entanglement
- Higher-dimensioned (qudit) Extensions

3

Bell State Generator

𝐓 = 𝐂𝐗 𝐇⊗ 𝐈

𝐓 = 𝐂𝐗 𝐇⊗ 𝐈 =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

"
#

1 	 1
1 −1 ⊗ 1 0

0 1 = "
#

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

1 0
0 1

	 1 	 0
	 0 	 1

1 0
0 1

−1 	 0
	 0 −1

𝐓 = 𝐂𝐗 𝐇⊗ 𝐈 = "
#

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

1 0
0 1

	 1 	 0
	 0 	 1

1 0
0 1

−1 	 0
	 0 −1

= "
#

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

⟩|Ψ

⟩|Φ
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Bell State, ⟩|𝚽!

• Initialize 2 Qubits to Fiduciary State
- "ground" states of computational basis

𝐓 = 𝐂𝐗 𝐇⊗ 𝐈 =
1
2

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

⟩|𝚽$ = 𝐓 ⟩|00 = 𝐂𝐗 𝐇⊗ 𝐈 ⟩|00 =
1
2

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

1
0
0
0

=
1
2

1
0
0
1

=
⟩|00 + ⟩|11
2

⟩|ΨΦ = ⟩|00 → ⟩|𝚽1

⟩|𝚽1 =
⟩|00 + ⟩|11
2

⟩|Ψ = ⟩|0

⟩|Φ = ⟩|0
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Bell State, ⟩|𝚿!

• Initialize 2 Qubits to Fiduciary State
- "ground/excited" states of computational basis

𝐓 = 𝐂𝐗 𝐇⊗ 𝐈 =
1
2

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

⟩|𝚿$ = 𝐓 ⟩|01 = 𝐂𝐗 𝐇⊗ 𝐈 ⟩|01 =
1
2

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

0
1
0
0

=
1
2

0
1
1
0

=
⟩|01 + ⟩|10
2

⟩|ΨΦ = ⟩|01 → ⟩|𝚿1

⟩|𝚿1 =
⟩|01 + ⟩|10
2

⟩|Ψ = ⟩|0

⟩|Φ = ⟩|1
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Bell State, ⟩|𝚽"

• Initialize 2 Qubits to Fiduciary State
- "excited/ground" states of computational basis

𝐓 = 𝐂𝐗 𝐇⊗ 𝐈 =
1
2

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

⟩|𝚽% = 𝐓 ⟩|10 = 𝐂𝐗 𝐇⊗ 𝐈 ⟩|10 =
1
2

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

0
0
1
0

=
1
2

	 1
	 0
	 0
−1

=
⟩|00 − ⟩|11
2

⟩|ΨΦ = ⟩|10 → ⟩|𝚽3

⟩|𝚽3 =
⟩|00 − ⟩|11
2

⟩|Ψ = ⟩|1

⟩|Φ = ⟩|0
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Bell State, ⟩|𝚿"

• Initialize 2 Qubits to Fiduciary State
- "excited" states of computational basis

𝐓 = 𝐂𝐗 𝐇⊗ 𝐈 =
1
2

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

⟩|𝚿% = 𝐓 ⟩|11 = 𝐂𝐗 𝐇⊗ 𝐈 ⟩|11 =
1
2

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

0
0
0
1

=
1
2

	 0
	 1
−1
	 0

=
⟩|01 − ⟩|10
2

⟩|ΨΦ = ⟩|11 → ⟩|𝚿3

⟩|𝚿3 =
⟩|01 − ⟩|10
2

⟩|Ψ = ⟩|1

⟩|Φ = ⟩|1
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Four Canonical Bell States*

⟩|𝚿3 =
⟩|01 − ⟩|10
2

⟩|𝚽1 =
⟩|00 + ⟩|11
2

⟩|𝚽3 =
⟩|00 − ⟩|11
2

⟩|𝚿1 =
⟩|01 + ⟩|10
2

⟩|ΨΦ = ⟩|11 → ⟩|𝚿3

⟩|ΨΦ = ⟩|10 → ⟩|𝚽3

⟩|ΨΦ = ⟩|01 → ⟩|𝚿1

⟩|ΨΦ = ⟩|00 → ⟩|𝚽1

These are special cases of "EPR Pairs" – two entangled qubits - in reference to the 1935 paper† by Einstein, Podolsky and Rosen

*Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK. Teleporting an unknown quantum state via dual classical and 
Einstein-Podolsky-Rosen channels. Physical review letters. 1993 Mar 29;70(13):1895.

†Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete?. Physical review. 1935 
May 15;47(10):777
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Detangling Bell States

𝐓456 = 𝐇⊗ 𝐈 𝐂𝐗

𝐓&'( = 𝐇⊗ 𝐈 𝐂𝐗 =
"
#

1 	 1
1 −1 ⊗ 1 0

0 1

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

=
1 0
0 1

	 1 	 0
	 0 	 1

1 0
0 1

−1 	 0
	 0 −1

"
#

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

 

𝐓&'( = 𝐇⊗ 𝐈 𝐂𝐗 =
"
#

1 0
0 1

	 1 	 0
	 0 	 1

1 0
0 1

−1 	 0
	 0 −1

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

 = "
#

1 0
0 1

	 0 	 1
	 1 	 0

1 0
0 1

	 0 −1
−1 	 0

⟩|Ψ

⟩|Φ
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Detangling the ⟩|𝚽! 	Bell State - Example

𝐓&'( ⟩|𝚽$ = 𝐇⊗ 𝐈 𝐂𝐗 ⟩|𝚽$ =
1
2

1 0
0 1

	 0 	 1
	 1 	 0

1 0
0 1

	 0 −1
−1 	 0

⟩|00 + ⟩|11
2

=
1
2

1 0
0 1

	 0 	 1
	 1 	 0

1 0
0 1

	 0 −1
−1 	 0

1
2

1
0
0
1

𝐓&'( ⟩|𝚽$ = 𝐇⊗ 𝐈 𝐂𝐗 ⟩|𝚽$ =
1
2

1 0
0 1

	 0 	 1
	 1 	 0

1 0
0 1

	 0 −1
−1 	 0

1
0
0
1

=
1
2

2
0
0
0

=
⟩2|00

2
= ⟩|00

⟩|Ψ

⟩|Φ 𝐓456 ⟩|𝚽1 = 𝐇⊗ 𝐈 𝐂𝐗 ⟩|𝚽1

⟩|𝚽1 =
⟩|00 + ⟩|11
2

11

Greenberger-Horne-Zeilinger (GHZ) States
• GHZ states are Bipartite
• Example of a 3-qubit GHZ state and generator
• Generalized Bell State generator

• General form for M≥3 qubits:

⟩|𝐺𝐻𝑍7 =
⟩|000 + ⟩|111
2

⟩|𝐺𝐻𝑍8 =
⟩|0 ⊗8 + ⟩|1 ⊗8

2

GHZ Generator Circuit adds more qubits at
bottom of circuit with an additional
Controlled-𝐗 (CNOT or 𝐂𝐗) gate for

each additional qubit

* D. Greenberger, M. Horne and A. Zeilenger, "Going Beyond Bell's Theorem," in Bell's Theorem, Quantum Theory and Conceptions of the 
  Universe, Springer Publishers, Dordrecht, Netherlands, October 31, 1989, pp. 69-72.

12

https://arxiv.org/pdf/0712.0921
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Greenberger-Horne-Zeilinger (GHZ) States
• GHZ states are Bipartite, General Form:

• Example of a 2-qubit GHZ state

• Example of a 1-qubit GHZ state

⟩|𝐺𝐻𝑍9 =
⟩|00 + ⟩|11
2

= ⟩|𝚿1

⟩|𝐺𝐻𝑍 =
⟩|0 ⊗8 + ⟩|1 ⊗8

2

(Bell State)

⟩|𝐺𝐻𝑍: =
⟩|0 + ⟩|1
2

= ⟩𝐇|0

Setting M=2 yields the Bell state ⟩|𝚽$ .

Note that if we let M=1, we get a single qubit in 
superposition, 𝐇| ⟩0 . This would appear to suggest 
that a qubit in superposition is the same thing as a 

qubit that is entangled with itself!

13

W States
• W states are M-partite, named after Wolfgang Dür, Guifré Vidal and 

Ignacio Cirac (2002)
• Example of a 3-qubit W state and generator

⟩|𝑊7 =
⟩|001 + ⟩|010 + ⟩|100

3

𝜙) = 2cos%"
1
3

⟩|𝑊8 =
⟩|0 ⨂ 83: ⟩|1 + 𝑀 − 1 ⟩|𝑊83: ⟩|0

𝑀

⟩|𝑊9 = ⟩|𝚿1 , (Bell State)

* W. Dür, G. Vidal and I. Cirac, "Three Qubits can be Entangled in Two Inequivalent Ways," Physical Review A, vol. 62, no. 2, Nov. 14, 2000, p. 062314.

Measurement of single qubit Likely results in entangled 
𝑊!"#-state since measurement outcome is probably ⟩|0 . 
Probability entangled state results is !"#

!
. 

Probability that basis state results (measured ⟩|1 ) is #
!.

14

https://journals.aps.org/pra/pdf/10.1103/PhysRevA.62.062314
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Forms of Entanglement
• "Bipartite" means two terms in the symbolic expression, "tripartite" means three terms 

in the symbolic expression
• "Perfect" entanglement means the magnitudes of squared probability coefficients are all 

equal
• "Full" entanglement means all qubits in a quantum state are entangled with one another
• "Partial" entanglement means that some, but not all, qubits forming the quantum state 

are entangled
• "Entangling gate" refers to the two- (or more) qubit gate in a circuit that causes 

entanglement to occur
• Entanglement cannot be achieved (purposely) without the inclusion of a multi-qubit gate 

– the "entangling gate"
• The presence of a multi-qubit gate does not guarantee that entanglement will occur

15

Entanglement in Higher-Dimensional Systems
• Higher-dimensional Systems use Radices/Bases greater than two (2)

- The Quantum State is based upon a Basis Set comprising more than two basis vectors

• Survey of Higher-Dimensional Entanglement and Generators:
K.N. Smith and M.A. Thornton, "Higher Dimension Quantum Entanglement Generators," ACM 
Journal on Emerging Technologies in Computing Systems, vol. 16, no. 1, 21 pp., Oct. 2019.

16

https://s2.smu.edu/~mitch/ftp_dir/pubs/jetc19.pdf
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Superdense Coding
Communicate Classical Information by Transmitting a Smaller Number of Qubits

17

Superdense Coding for Secure Information Exchange
• An Application of Quantum Entanglement
• Allows a sender (Alice) to send two (2) classical bits to receiver (Bob) by 

transmitting only a single qubit
- assuming that Alice and Bob already share qubits from an entangled pair

• Basis is the Sharing of Entangled (EPR) Pairs
• Assumes Presence of a Quantum Communication Channel

• Typically, a Quantum channel is photonic (fiber-based)

• Can be considered as the Opposite of Quantum Teleportation (1 qubit is 
sent/received by transmitting 2 classical bits)
• This is Secure since an eavesdropper (Eve) will only have a single entangled 

qubit and she will be unable to extract Bob's two bits from it

18
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Superdense Coding Channel

• Alice Prepares an Entangled Pair ⟩|ΨΦ = ⟩|𝚽1  by Initializing the Pair to a 
Ground State, ⟩|ΨΦ = ⟩|00  , and Evolving them with a Bell State 
Generator:

quantum channel
Alice Bob

quantum channel
Bob

Alice keeps this qubit

19

Superdense Coding Channel
• After preparing the Entangled Pair and transmitting one qubit to Bob over a 

quantum Channel, she chooses to evolve her qubit through:
- no single qubit gate, transfer matrix is I
- a Pauli-X, transfer matrix is X
- a Pauli-Z, transfer matrix is Z
- a Pauli-Y, transfer matrix is Y (or, typically, Pauli gates of X followed by Z, since XZ=-iY)

• Alice then transmits her processed qubit to Bob
• Bob now has a pair of qubits and he detangles them
• The result is that Bob has one of the basis pairs ⟩|00 , ⟩|01 , ⟩|10  or ⟩|11  

- If Alice chose I, Bob has ⟩|00 , the detangled version of Bell state ⟩|𝚽)  
- If Alice chose X, Bob has ⟩|01 , the detangled version of Bell state ⟩|𝚿)  
- If Alice chose Z, Bob has ⟩|10 , the detangled version of Bell state ⟩|𝚽*  
- If Alice chose XZ, Bob has ⟩|11 , the detangled version of Bell state ⟩|𝚿*  

20
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Complete Superdense Coding Circuit
quantum channelAlice Bob

Double-pole Switch
Operated by Alice to

choose among {00,01,10,11}

I

21

Superdense Coding States Consider the State
after Alice chooses

a single-qubit  operator

𝐗| ⟩0 ⟩|0 + 𝐗| ⟩1 ⟩|1
2

=
⟩|10 + ⟩|01
2

𝐈| ⟩0 ⟩|0 + 𝐈| ⟩1 ⟩|1
2

=
⟩|00 + ⟩|11
2

𝐙| ⟩0 ⟩|0 + 𝐙| ⟩1 ⟩|1
2

=
⟩|00 − ⟩|11
2

𝐗𝐙| ⟩0 ⟩|0 + 𝐗𝐙| ⟩1 ⟩|1
2

=
⟩|10 − ⟩|01
2

Bell State
Entangler

Bell State
Detangler

22
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Superdense Disentagled States Consider the State
after disentangling

with 𝐓&'(

𝐗| ⟩0 ⟩|0 + 𝐗| ⟩1 ⟩|1
2

=
⟩|10 + ⟩|01
2

= ⟩|𝚿$

𝐈| ⟩0 ⟩|0 + 𝐈| ⟩1 ⟩|1
2

=
⟩|00 + ⟩|11
2

= ⟩|𝚽$

𝐙| ⟩0 ⟩|0 + 𝐙| ⟩1 ⟩|1
2

=
⟩|00 − ⟩|11
2

= ⟩|𝚽%

𝐗𝐙| ⟩0 ⟩|0 + 𝐗𝐙| ⟩1 ⟩|1
2

=
⟩|10 − ⟩|01
2

= ⟩|𝚿%

Bell State
Entangler

Bell State
Disentangler

𝐓&'( =
1
2

1 0
0 1

	 0 	 1
	 1 	 0

1 0
0 1

	 0 −1
−1 	 0

𝐓&'( ⟩|𝚽$ = ⟩|00

𝐓&'( ⟩|𝚿$ = ⟩|01

𝐓&'( ⟩|𝚽% = ⟩|10

𝐓&'( ⟩|𝚿% = ⟩|11

23

Quantum Teleportation
An Application of Quantum Entanglement

24
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Quantum Teleportation
• An Application of Quantum Entanglement
• "Teleports" or Transfers Quantum Information from one location to 

another
• Basis is the Sharing of Entangled (EPR) Pairs
• Assumes Presence of two Communication Channels

• Classical
• Quantum

• Can be considered as the Opposite of Superdense Coding since 
Transmitting 2 Classical Bits enable 1 qubit to be exchanged
• Secure Communication since eavesdropper Eve can only observe the 

classical bits that are used to detangle a shared EPR pair

25

Quantum Teleportation: The Scenario
• Alice wants to send Bob Quantum Information in the Form of a Qubit

• Alice does not want to Send Bob ⟩|Ω  over a Quantum Channel for Security 
Reasons 
• Impossible to use Classical Channel since it would Require an Infinite Number 
∞  of Classical Bits to Accurately Send the Probability Amplitudes, 𝛼, 𝛽

• Alice cannot Measure her Qubit to Observe the Probability Amplitudes since it 
would Collapse into a Measurement Eigenbasis vector
• Alice cannot Copy her Qubit into Another Qubit due to the "No Cloning" 

Theorem
• Assume that there Exists a Classical Communication Channel and a Quantum 

Communication Channel that Connect Alice and Bob

⟩|Ω = 𝛼 ⟩|0 + 𝛽 ⟩|1

26
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Quantum Teleportation Channels

• Alice Prepares an Entangled Pair ⟩|ΨΦ  by Initializing the Pair to a Ground 
State, ⟩|ΨΦ = ⟩|00  , and Evolving them with a Bell State Generator:

quantum channel

classical channel
Alice Bob

27

Alice's Entangled Pair

• The overall Transfer Matrix is:

𝐓 = 𝐂𝐗 𝐇⊗ 𝐈 =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

1
2

1 	 1
1 −1 ⊗ 1 0

0 1

=
1
2

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

1 0
0 1

	 1 	 0
	 0 	 1

1 0
0 1

−1 	 0
	 0 −1

=
1
2

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

𝐇 =
1
2
1 	 1
1 −1

𝐂𝐗 =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

28
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Alice's Entangled Pair

• The Entangled Pair ⟩|ΨΦ  state becomes:

𝐓 ⟩|ΨΦ = 𝐓 ⟩|00 =
1
2

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

1
0
0
0

=
1
2

1
0
0
1

=
⟩|00 + ⟩|11
2

𝐇 =
1
2
1 	 1
1 −1

𝐂𝐗 =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

29

Alice's Combined State
• Alice's Combined 3-qubit State is:

⟩|ΩΨΦ = 𝛼 ⟩|0 + 𝛽 ⟩|1
⟩|00 + ⟩|11
2

• Alice Retains ⟩|Ψ  and Sends Bob ⟩|Φ  Over the Quantum Channel
• Alice has ⟩|ΩΨ  and Bob has ⟩|Φ

quantum channel

classical channel

Alice Bob→ ⟩|Φ   → 

qubit to be "sent" to Bob

30
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Alice's Next Step
• Alice Evolves her Qubit Pair, ⟩|ΩΨ , with the Detangling Circuit:

• The Transfer Matrix for this Circuit is:

𝐓* = 𝐇⊗ 𝐈 𝐂𝐗 =
1
2

1 	 1
1 −1 ⊗ 1 0

0 1

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

=
1
2

1 0
0 1

	 1 	 0
	 0 	 1

1 0
0 1

−1 	 0
	 0 −1

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

=
1
2

1 0
0 1

	 0 	 1
	 1 	 0

1 0
0 1

	 0 −1
−1 	 0

31

Alice's Next Step (cont.)
• Alice Evolves her Qubit Pair, ⟩|ΩΨ , with the Following Circuit:
• The Transfer Matrix for this Circuit is:

𝐓* =
1
2

1 0
0 1

	 0 	 1
	 1 	 0

1 0
0 1

	 0 −1
−1 	 0

• Although Alice Possesses ⟩|ΩΨ  and Bob Possesses ⟩|Φ , when Alice Evolves 
her Pair, it Affects the State of Bob's Qubit, ⟩|Φ , since ⟩|ΨΦ  are Entangled.
• We Must Consider all Three Qubits, ⟩|ΩΨΦ  , the Joint State is given by this 

overall circuit:

32
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The 3-Qubit Joint State
• We compute the joint state of ⟩|ΩΨΦ  as:

• At time 𝑡A:
⟩|ΩΨΦ 𝑡A = 𝛼 ⟩|0 + 𝛽| ⟩1 ⟩|00

• At time 𝑡::

⟩|ΩΨΦ 𝑡: = 𝛼 ⟩|0 + 𝛽| ⟩1
⟩|0 + ⟩|1
2

⟩|0

𝑡+ 𝑡" 𝑡# 𝑡) 𝑡,

33

The 3-Qubit Joint State (cont.)
• We compute the joint state of ⟩|ΩΨΦ  as:

• At time 𝑡9:

⟩|ΩΨΦ 𝑡9 = 𝛼 ⟩|0 + 𝛽| ⟩1
⟩|00 + ⟩|11
2

𝑡+ 𝑡" 𝑡# 𝑡) 𝑡,

Entangled state

34
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The 3-Qubit Joint State (cont.)
• We compute the joint state of ⟩|ΩΨΦ  as:

• At time 𝑡7:

⟩|ΩΨΦ 𝑡7 = 𝐂𝐗⊗ 𝐈9 𝛼 ⟩|0 + 𝛽| ⟩1
⟩|00 + ⟩|11
2

𝐂𝐗⊗ 𝐈9 = ⟩|00 ⟨00| + ⟩|01 ⟨01| + ⟩|10 ⟨11| + ⟩|11 ⟨10| ⟩|0 D0| + ⟩|1 ⟨1|

𝑡+ 𝑡" 𝑡# 𝑡) 𝑡,

35

The 3-Qubit Joint State (cont.)
• At time 𝑡7:

⟩|ΩΨΦ 𝑡) = 𝐂𝐗 ⊗ 𝐈# 𝛼 ⟩|0 + 𝛽| ⟩1
⟩|00 + ⟩|11
2

𝐂𝐗 ⊗ 𝐈# = ⟩|00 ⟨00| + ⟩|01 ⟨01| + ⟩|10 ⟨11| + ⟩|11 ⟨10| ⟩|0 I0| + ⟩|1 ⟨1|

𝐂𝐗 ⊗ 𝐈# =
1 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

+
0 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

+
0 0
0 0

0 0
0 0

0 0
0 0

0 1
0 0

+
0 0
0 0

0 0
0 0

0 0
0 0

0 0
1 0

	 ⊗ 1 0
0 0 + 0 0

0 1

𝐂𝐗 ⊗ 𝐈# =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

⊗ 1 0
0 1 =

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

Using Explicit Notation:
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The 3-Qubit Joint State (cont.)
• At time 𝑡7:

⟩|ΩΨΦ 𝑡) = 𝐂𝐗 ⊗ 𝐈# 𝛼 ⟩|0 + 𝛽| ⟩1
⟩|00 + ⟩|11
2

𝐂𝐗 ⊗ 𝐈# = ⟩|00 ⟨00| + ⟩|01 ⟨01| + ⟩|10 ⟨11| + ⟩|11 ⟨10| ⟩|0 I0| + ⟩|1 ⟨1|

𝐂𝐗 ⊗ 𝐈#
= ⟩|000 ⟨000| + ⟩|010 ⟨010| + ⟩|100 ⟨110| + ⟩|110 I100|
+ ⟩|001 ⟨001| + ⟩|011 ⟨011| + ⟩|101 ⟨111| + ⟩|111 ⟨101|

Using Dirac's Notation:

• Notice how the matrices, in terms of BraKet outer products, combine in the 
above Equation
• The Kets combine as rightmost term and the Bras combine as rightmost 

term
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The 3-Qubit Joint State (cont.)
• At time 𝑡7:

⟩|ΩΨΦ 𝑡) = 𝐂𝐗 ⊗ 𝐈# 𝛼 ⟩|0 + 𝛽| ⟩1
⟩|00 + ⟩|11
2

⟩|ΩΨΦ 𝑡) =
1
2

𝐂𝐗 ⊗ 𝐈# 𝛼 ⟩|000 + 𝛼 ⟩|011 + 𝛽| ⟩100 + 𝛽| ⟩111

⟩|ΩΨΦ 𝑡)
=

1
2
J

K

⟩|000 ⟨000| + ⟩|010 ⟨010| + ⟩|100 ⟨110| + ⟩|110 I100|

+ ⟩|001 ⟨001| + ⟩|011 ⟨011| + ⟩|101 ⟨111| + ⟩|111 ⟨101| 𝛼 ⟩|000 + 𝛼 ⟩|011 + 𝛽| ⟩100 + 𝛽| ⟩111

⟩|ΩΨΦ 𝑡) =
1
2

⟩𝛼|000 ⟨000| ⟩000 + 𝛽 ⟩|110 I100| ⟩100 + 𝛼 ⟩|011 ⟨011 ⟩|011 + 𝛽 ⟩|101 ⟨111| ⟩111

⟩|ΩΨΦ 𝑡) =
1
2

⟩𝛼|000 + 𝛽 ⟩|110 + 𝛼 ⟩|011 + 𝛽 ⟩|101
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The 3-Qubit Joint State (cont.)
• At time 𝑡7:

⟩|ΩΨΦ 𝑡) =
1
2

⟩𝛼|000 + 𝛽 ⟩|110 + 𝛼 ⟩|011 + 𝛽 ⟩|101

• At time 𝑡L:
⟩|ΩΨΦ 𝑡, = 𝐇⊗ 𝐈# ⊗ 𝐈#

1
2

⟩𝛼|000 + 𝛽 ⟩|110 + 𝛼 ⟩|011 + 𝛽 ⟩|101

𝑡+ 𝑡" 𝑡# 𝑡) 𝑡,
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The 3-Qubit Joint State (cont.)
• At time 𝑡L:

⟩|ΩΨΦ 𝑡, = 𝐇⊗ 𝐈# ⊗ 𝐈#
1
2

⟩𝛼|000 + 𝛽 ⟩|110 + 𝛼 ⟩|011 + 𝛽 ⟩|101

𝐇⊗ 𝐈# ⊗ 𝐈# = 𝐇⊗ 𝐈,
=

1
2

⟩|0 ⟨0| + ⟩|0 ⟨1| + ⟩|1 ⟨0| − ⟩|1 ⟨1| ⟩|00 ⟨00| + ⟩|01 ⟨01| + ⟩|10 ⟨10| + ⟩|11 ⟨11|

𝐇⊗ 𝐈,
=

1
2
(

)

⟩|000 ⟨000| + ⟩|000 ⟨100| + ⟩|100 ⟨000| − ⟩|100 ⟨100| + ⟩|001 ⟨001| + ⟩|001 ⟨101| + ⟩|101 ⟨001|
− ⟩|101 ⟨101| + ⟩|010 ⟨010| + ⟩|010 ⟨110| + ⟩|110 ⟨010| − ⟩|110 ⟨110| + ⟩|011 ⟨011| + ⟩|011 ⟨111|
+ ⟩|111 ⟨011| − ⟩|111 ⟨111|

⟩|ΩΨΦ 𝑡,
=
1
2
(

)

⟩|000 ⟨000| + ⟩|000 ⟨100| + ⟩|100 ⟨000| − ⟩|100 ⟨100| + ⟩|001 ⟨001| + ⟩|001 ⟨101| + ⟩|101 ⟨001|
− ⟩|101 ⟨101| + ⟩|010 ⟨010| + ⟩|010 ⟨110| + ⟩|110 ⟨010| − ⟩|110 ⟨110| + ⟩|011 ⟨011| + ⟩|011 ⟨111|
+ ⟩|111 ⟨011| − ⟩|111 ⟨111| ⟩𝛼|000 + 𝛽 ⟩|110 + 𝛼 ⟩|011 + 𝛽 ⟩|101
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The 3-Qubit Joint State (cont.)
• At time 𝑡L:

⟩|ΩΨΦ 𝑡,
=
1
2
(

)

⟩|000 ⟨000| + ⟩|000 ⟨100| + ⟩|100 ⟨000| − ⟩|100 ⟨100| + ⟩|001 ⟨001| + ⟩|001 ⟨101| + ⟩|101 ⟨001|
− ⟩|101 ⟨101| + ⟩|010 ⟨010| + ⟩|010 ⟨110| + ⟩|110 ⟨010| − ⟩|110 ⟨110| + ⟩|011 ⟨011| + ⟩|011 ⟨111|
+ ⟩|111 ⟨011| − ⟩|111 ⟨111| ⟩𝛼|000 + 𝛽 ⟩|110 + 𝛼 ⟩|011 + 𝛽 ⟩|101

⟩|ΩΨΦ 𝑡,
=
1
2
(

)
⟩|000 ⟨000| ⟩𝛼|000 + ⟩|100 ⟨000| ⟩𝛼|000 + ⟩|001 ⟨101|𝛽 ⟩|101 − ⟩|101 ⟨101|𝛽 ⟩|101

+ ⟩|010 ⟨110|𝛽 ⟩|110 − ⟩|110 ⟨110|𝛽 ⟩|110 + ⟩|011 ⟨011|𝛼 ⟩|011 + ⟩|111 ⟨011|𝛼 ⟩|011

⟩|ΩΨΦ 𝑡, =
1
2
𝛼 ⟩|000 + 𝛼 ⟩|100 + ⟩𝛽|001 − 𝛽 ⟩|101 + 𝛽 ⟩|010 − 𝛽 ⟩|110 + 𝛼 ⟩|011 + 𝛼 ⟩|111
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The 3-Qubit Joint State (cont.)
• At time 𝑡L:

⟩|ΩΨΦ 𝑡, =
1
2
𝛼 ⟩|000 + 𝛼 ⟩|100 + ⟩𝛽|001 − 𝛽 ⟩|101 + 𝛽 ⟩|010 − 𝛽 ⟩|110 + 𝛼 ⟩|011 + 𝛼 ⟩|111

⟩|ΩΨΦ 𝑡, =

	
1
2

⟩|00 𝛼 ⟩|0 + ⟩𝛽|1

+
1
2

⟩|01 𝛼 ⟩|1 + 𝛽 ⟩|0

+
1
2

⟩|10 𝛼 ⟩|0 − 𝛽 ⟩|1

+
1
2

⟩|11 𝛼 ⟩|1 − 𝛽 ⟩|0
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The 3-Qubit Joint State (cont.)
• At time 𝑡L:

⟩|ΩΨΦ 𝑡, =

	
1
2

⟩|00 𝛼 ⟩|0 + ⟩𝛽|1

+
1
2

⟩|01 𝛼 ⟩|1 + 𝛽 ⟩|0

+
1
2

⟩|10 𝛼 ⟩|0 − 𝛽 ⟩|1

+
1
2

⟩|11 𝛼 ⟩|1 − 𝛽 ⟩|0

𝑡+ 𝑡" 𝑡# 𝑡) 𝑡,

Alice's
qubits

Bob's
qubit

• At time 𝑡L, Alice caused her qubits to evolve into a 
(computational) basis state
• Since Alice retained qubit ⟩|Ψ , which was entangled 

with Bob's qubit, ⟩|Φ , the rightmost 𝐂𝐗 gate served to 
entangle Alice's qubit ⟩|Ω  with Bob's qubit ⟩|Φ
• This entangling operation "teleported" the probability 

amplitudes of Alice's ⟩|Ω  to Bob's ⟩|Φ

43

Eliminating the Superposition in the Joint State
• At time 𝑡L, the three qubits are in (perfect) Superposition since the Four 

possible states each have probability amplitudes of one-fourth. 

⟩|ΩΨΦ 𝑡, =
1
2

⟩|00 𝛼 ⟩|0 + ⟩𝛽|1 +
1
2

⟩|01 𝛼 ⟩|1 + 𝛽 ⟩|0 +
1
2

⟩|10 𝛼 ⟩|0 − 𝛽 ⟩|1 +
1
2

⟩|11 𝛼 ⟩|1 − 𝛽 ⟩|0

• Alice can Measure her two qubits ⟩|ΩΨ  with respect to the computational 
basis by using the Pauli-𝐙 observable
• This measurement will force Alice's two qubits to collapse into one of the 

four basis states, ⟩|00 , ⟩|01 , ⟩|10  or ⟩|11  with equal probability
• When Alice performs her measurement, this causes Bob's qubit to collapse 

into one of the following four states:

            ⟩|Φ++ = 𝛼 ⟩|0 + ⟩𝛽|1 ,       ⟩|Φ+" = 𝛼 ⟩|1 + 𝛽 ⟩|0 ,       ⟩|Φ"+ = 𝛼 ⟩|0 − 𝛽 ⟩|1 ,       ⟩|Φ"" = 𝛼 ⟩|1 − 𝛽 ⟩|0
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Alice Measures her Two Qubits and Tells Bob the Outcome

𝑡+ 𝑡" 𝑡# 𝑡) 𝑡, 𝑡- 𝑡.

• At time 𝑡O, Alice has measured her two qubits causing them to collapse into 
one of the four (4-dimensional) basis states: ⟩|00 , ⟩|01 , ⟩|10  or ⟩|11  
• Alice's measurement "collapses" the 3-qubit joint superposition and causes 

Bob's qubit to likewise "collapse" into one of these four states (that is still in 
superposition)

 ⟩|Φ&& = 𝛼 ⟩|0 + ⟩𝛽|1 ,       ⟩|Φ&' = 𝛼 ⟩|1 + 𝛽 ⟩|0 ,       ⟩|Φ'& = 𝛼 ⟩|0 − 𝛽 ⟩|1 ,       ⟩|Φ'' = 𝛼 ⟩|1 − 𝛽 ⟩|0

• At time 𝑡P, Alice has has told Bob which of the four outcomes, 00, 01, 10 or 11, 
that resulted

45

Alice Measures her Two Qubits and Tells Bob the Outcome
• At time 𝑡P, Alice has told Bob, using the classical channel,  which of the four 

outcomes, 00, 01, 10 or 11, resulted from her measurements
• When Bob receives Alice's measurement results, (00, 01, 10 or 11), he knows 

that his qubit ⟩|Φ  has one of these forms:
     ⟩|Φ&& = 𝛼 ⟩|0 + ⟩𝛽|1 ,       ⟩|Φ&' = 𝛼 ⟩|1 + 𝛽 ⟩|0 ,       ⟩|Φ'& = 𝛼 ⟩|0 − 𝛽 ⟩|1 ,       ⟩|Φ'' = 𝛼 ⟩|1 − 𝛽 ⟩|0

• The desired result is for Bob to evolve his qubit ⟩|Φ  such that it assumes the 
form of ⟩|Ω 𝑡A = 𝛼 ⟩|0 + ⟩𝛽|1 , the original state that Alice is "teleporting" to 
Bob

𝑡+ 𝑡" 𝑡# 𝑡) 𝑡, 𝑡- 𝑡.
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How can Bob Evolve his Teleported Qubit ?
• At time 𝑡P, Bob possesses ⟩|Φ 𝑡P  that is one of these states:
    ⟩|Φ&& = 𝛼 ⟩|0 + ⟩𝛽|1 ,       ⟩|Φ&' = 𝛼 ⟩|1 + 𝛽 ⟩|0 ,       ⟩|Φ'& = 𝛼 ⟩|0 − 𝛽 ⟩|1 ,       ⟩|Φ'' = 𝛼 ⟩|1 − 𝛽 ⟩|0

• At time 𝑡P, Bob knows which state he has since Alice sent him a classical 2-bit 
value indicating which one he has:

Alice sent Bob:               Bob knows his qubit state:                  Bob wants to have:     What operator(s) does Bob need?

       00          ⟩|Φ++ = 𝛼 ⟩|0 + ⟩𝛽|1       9⟩|Φ 𝑡/ = |Ω 𝑡+ = 𝛼 ⟩|0 + ⟩𝛽|1

       01          ⟩|Φ+" = 𝛼 ⟩|1 + 𝛽 ⟩|0       9⟩|Φ 𝑡/ = |Ω 𝑡+ = 𝛼 ⟩|0 + ⟩𝛽|1

       10          ⟩|Φ"+ = 𝛼 ⟩|0 − 𝛽 ⟩|1       9⟩|Φ 𝑡/ = |Ω 𝑡+ = 𝛼 ⟩|0 + ⟩𝛽|1

       11          ⟩|Φ"" = 𝛼 ⟩|1 − 𝛽 ⟩|0      9⟩|Φ 𝑡/ = |Ω 𝑡+ = 𝛼 ⟩|0 + ⟩𝛽|1
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How can Bob Evolve his Teleported Qubit ?
• At time 𝑡P, Bob possesses ⟩|Φ 𝑡P  that is one of these states:
    ⟩|Φ&& = 𝛼 ⟩|0 + ⟩𝛽|1 ,       ⟩|Φ&' = 𝛼 ⟩|1 + 𝛽 ⟩|0 ,       ⟩|Φ'& = 𝛼 ⟩|0 − 𝛽 ⟩|1 ,       ⟩|Φ'' = 𝛼 ⟩|1 − 𝛽 ⟩|0

• At time 𝑡P, Bob knows which state he has since Alice sent him a classical 2-bit 
value indicating which one he has:

Alice sent Bob:               Bob knows his qubit state:                  Bob wants to have:     What operator(s) does Bob need?

       00          ⟩|Φ++ = 𝛼 ⟩|0 + ⟩𝛽|1       9⟩|Φ 𝑡/ = |Ω 𝑡+ = 𝛼 ⟩|0 + ⟩𝛽|1   𝐈#, (no operator)

       01          ⟩|Φ+" = 𝛼 ⟩|1 + 𝛽 ⟩|0       9⟩|Φ 𝑡/ = |Ω 𝑡+ = 𝛼 ⟩|0 + ⟩𝛽|1   𝐗, (bit-flip)

       10          ⟩|Φ"+ = 𝛼 ⟩|0 − 𝛽 ⟩|1       9⟩|Φ 𝑡/ = |Ω 𝑡+ = 𝛼 ⟩|0 + ⟩𝛽|1   𝐙, (phase-flip)

       11          ⟩|Φ"" = 𝛼 ⟩|1 − 𝛽 ⟩|0      9⟩|Φ 𝑡/ = |Ω 𝑡+ = 𝛼 ⟩|0 + ⟩𝛽|1   𝐙 & 𝐗, (phase- & bit-flip)
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Bob Evolves his Qubit to the Teleported State
• At time 𝑡;, Bob Initializes his own version of Qubits ⟩|Ω  and ⟩|Ψ  into the Basis States 

indicated by Alice's Classical Communication to Him:
• At time 𝑡<, Bob has Evolved his Qubit, ⟩|Φ 𝑡< , with the Controlled-𝐙 and Controlled-
𝐗 gates, 𝐂𝐙 and 𝐂𝐗:

• At time 𝑡=, Bob possesses the qubit ⟩|Φ 𝑡= = ⟩|Φ 𝑡> = 𝛼 ⟩|0 + ⟩𝛽|1 , and the Only 
Information Alice sent Bob was an Entangled Qubit, ⟩|Φ 𝑡? = (

)
⟩|> ) ⟩|@ , and Two 

Bits of Classical Information, 00, 01, 10, or 11.

𝑡+ 𝑡" 𝑡# 𝑡) 𝑡, 𝑡- 𝑡. 𝑡/ 𝑡0
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Bob's Circuit
• What is the transfer function of Bob's circuit?

𝑡/ 𝑡0

𝐂𝐙 =
1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

𝐂𝐗 =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0
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Bob's Circuit
• What is the transfer function of Bob's circuit?
• Must Account for the "middle" qubit in 

the 𝐂𝐙 gate
• One way to determine the 3-qubit transfer 

function is to use a permutation matrix, 𝐏
• Compare these two circuits where the leftmost is 

represented by transfer matrix, 𝐓: , and the 
rightmost (i.e., part of Bob's circuit) by 𝐓9

𝑡/ 𝑡0

𝐂𝐙 =
1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

𝐂𝐗 =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

𝐓" 𝐓#
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Bob's Circuit – Controlled-𝐙 Operator
• Transfer function of 𝐂𝐙 with no "middle" qubit is:

𝑡/ 𝑡0

𝐂𝐙 =
1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

𝐂𝐗 =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

𝐓@ = 𝐈?⊗𝐂𝐙
= ⟩|0 ⟨0| + ⟩|1 ⟨1| ⟩|00 ⟨00| + ⟩|01 ⟨01| + ⟩|10 ⟨10| − ⟩|11 ⟨11|
= ⟩|000 ⟨000| + ⟩|001 ⟨001| + ⟩|010 ⟨010| − ⟩|011 ⟨011|
+ ⟩|100 ⟨100| + ⟩|101 ⟨101| + ⟩|110 ⟨110| − ⟩|111 ⟨111|

=

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1
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Bob's Circuit – Controlled-𝐙 Operator
• Transfer function of 𝐂𝐙 with no "middle" qubit is:

• Consider the input/output relationship where the 
evolved matrix "Ket" (column vectors) are 
possible output states for a given "Bra" (row 
vector) is the un-evolved input state, when the 
input state is also a basis vector.
• We can label the Ket and Bra vectors of the 

transfer matrix

𝐓# =

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

⟩|000 	 ⟩|001 	 ⟩|010 	 ⟩	 |011 	 ⟩|100 	| ⟩101 	 ⟩|110 	 | ⟩111

⟩|000

⟩|001

⟩|010

⟩|011
⟩|100

⟩|101

⟩|110

⟩|111

• Each term in the Dirac 
form of the Transfer 
matrix is of the form:

⟩|𝑎𝑏𝑐 ⟨𝑎𝑏𝑐|
• We Permute above matrix 

with:
⟩|𝑏𝑎𝑐 ⟨𝑏𝑎𝑐|

input
state
Bras

output state Kets

53

Permuting the matrix
• We Permute above matrix with ⟩|𝑏𝑎𝑐 ⟨𝑏𝑎𝑐|

• Interchanging the 𝑎𝑏 values with 𝑏𝑎 in the 
Ket labels:
• Indicates matrix Kets 010 switched with 

100, and 011 is switched with 101
• Switching the Kets (column vectors) results 

in the lower right matrix

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

⟩|000 	 ⟩|001 	 ⟩|010 	 ⟩	 |011 	 ⟩|100 	| ⟩101 	 ⟩|110 	 | ⟩111

⟩|000

⟩|001

⟩|010

⟩|011
⟩|100

⟩|101

⟩|110

⟩|111

⟩|000 	 ⟩|001 	 ⟩|100 	 ⟩	 |101 	 ⟩|010 	| ⟩011 	 ⟩|110 	 | ⟩111 1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 	 0
0 	 0

0 	 0
0 	 0

1 	 0
0 −1

0 	 0
0 	 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

1 	 0
0 −1

⟩|000 	 ⟩|001 	 ⟩|100 	 ⟩	 |101 	 ⟩|010 	| ⟩011 	 ⟩|110 	 | ⟩111

⟩|000

⟩|001

⟩|010

⟩|011
⟩|100

⟩|101

⟩|110

⟩|111

"switched" output state Kets
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Permuting the matrix (cont.)
• We Permute above matrix with ⟩|𝑏𝑎𝑐 ⟨𝑏𝑎𝑐|

• We must likewise interchange the appropriate 
row vectors
• Finally, we relabel the Ket and Bra vectors to 

be in sequential order as shown on following 
slide 

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 	 0
0 	 0

0 	 0
0 	 0

1 	 0
0 −1

0 	 0
0 	 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

1 	 0
0 −1

⟩|000 	 ⟩|001 	 ⟩|100 	 ⟩	 |101 	 ⟩|010 	| ⟩011 	 ⟩|110 	 | ⟩111

⟩|000

⟩|001

⟩|010

⟩|011
⟩|100

⟩|101

⟩|110

⟩|111

"switched" output state Kets

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 	 0
0 −1

0 	 0
0 	 0

0 	 0
0 	 0

1 	 0
0 −1

⟩|000 	 ⟩|001 	 ⟩|100 	 ⟩	 |101 	 ⟩|010 	| ⟩011 	 ⟩|110 	 | ⟩111

⟩|000

⟩|001

⟩|100

⟩|101
⟩|010

⟩|011

⟩|110

⟩|111

"switched" output state Kets

"switched"
input
state
Bras
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Permuting the matrix (cont.)
• We Permute above matrix with ⟩|𝑏𝑎𝑐 ⟨𝑏𝑎𝑐|

• We must likewise interchange the appropriate 
row vectors
• Finally, we relabel the Ket and Bra vectors to be 

in sequential order as shown on following slide 
• This is the Transfer matrix for the 𝐂𝐙 gate with 

the "middle qubit"

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 	 0
0 −1

0 	 0
0 	 0

0 	 0
0 	 0

1 	 0
0 −1

⟩|000 	 ⟩|001 	 ⟩|100 	 ⟩	 |101 	 ⟩|010 	| ⟩011 	 ⟩|110 	 | ⟩111

⟩|000

⟩|001

⟩|100

⟩|101
⟩|010

⟩|011

⟩|110

⟩|111

"switched" output state Kets

"switched"
input
state
Bras

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 	 0
0 −1

0 	 0
0 	 0

0 	 0
0 	 0

1 	 0
0 −1

⟩|000 	 ⟩|001 	 ⟩|010 	 ⟩	 |011 	 ⟩|100 	| ⟩101 	 ⟩|110 	 | ⟩111

⟩|000

⟩|001

⟩|010

⟩|011
⟩|100

⟩|101

⟩|110

⟩|111

"relabeled" output state Kets

"relabeled"
input
state
Bras

56



9/28/25

29

Bob's Circuit – Controlled-𝐙 Operator
• Transfer function of 𝐂𝐙 with no "middle" qubit is:

• This is the same thing as multiplying 𝐓: with a 
permutation matrix, 𝐏 , that interchanges the 
appropriate Kets and Bras and with 𝐏R  that 
interchanges appropriate Bras with Kets
𝐏 = ⟩|000 ⟨000| + ⟩|001 ⟨001| + ⟩|100 ⟨010| +

⟩|101 ⟨011| + ⟩|010 ⟨100| + ⟩|011 ⟨101| +
⟩|110 ⟨110| + ⟩|111 ⟨111|

𝐓$ =

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 	 0
0 −1

0 	 0
0 	 0

0 	 0
0 	 0

1 	 0
0 −1

𝐓# =

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

𝐏 =

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1
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Verify Permutation: 𝐓4 = 𝐏𝐓5𝐏6
• Transfer function of 𝐂𝐙 with no "middle" qubit is:

𝐓$ =

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 	 0
0 −1

0 	 0
0 	 0

0 	 0
0 	 0

1 	 0
0 −1

𝐓# =

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

𝐓# = 𝐏𝐓"𝐏7 =

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1
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Verify Permutation: 𝐓4 = 𝐏𝐓5𝐏6 (cont.)

𝐓# = 𝐏𝐓"𝐏7 =

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

0 0
0 0

0 	 0
0 	 0

1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

=

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 	 0
0 	 0

0 	 0
0 	 0

1 	 0
0 −1

0 	 0
0 	 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

1 	 0
0 −1

=

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 	 0
0 −1

0 	 0
0 	 0

0 	 0
0 	 0

1 	 0
0 −1

= 𝐓#
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Bob's Circuit
• What is the transfer function of Bob's circuit?
•  Now we know that the 𝐂𝐙 with the "middle" qubit is 

represented with:
𝐓? = 𝐏𝐓@𝐏B = 𝐏 𝐈? ⊗𝐂𝐙 𝐏B

• The transfer function for Bob's circuit, shown in upper 
left, denoted by 𝐓C, is:
𝐓C = 𝐈? ⊗𝐂𝐗 𝐓? = 𝐈? ⊗𝐂𝐗 𝐏 𝐈? ⊗𝐂𝐙 𝐏B

• The explicit form of 𝐈? ⊗𝐂𝐗  is:

𝐈# ⊗𝐂𝐗 =
1 0
0 1 ⊗

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

=

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

𝑡/ 𝑡0

𝐂𝐙 =
1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

𝐂𝐗 =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0
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Bob's Circuit (cont.)
• What is the transfer function of Bob's circuit?
•  The explicit form of Bob's circuit is:

𝐓C = 𝐈? ⊗𝐂𝐗 𝐏 𝐈? ⊗𝐂𝐙 𝐏B

=

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 	 0
0 −1

0 	 0
0 	 0

0 	 0
0 	 0

1 	 0
0 −1

   

=

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 	 0
0 −1

0 	 0
0 	 0

0 	 0
0 	 0

0 −1
1 	 0

𝑡/ 𝑡0

𝐂𝐙 =
1 0
0 1

0 	 0
0 	 0

0 0
0 0

1 	 0
0 −1

𝐂𝐗 =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0
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Transfer Matrix of Entire Teleportation Circuit

• Alice's circuit from time 𝑡A to 𝑡L is represented by transfer matrix 𝐓A:
𝐓A = 𝐇⊗ 𝐈9⊗ 𝐈9 𝐂𝐗⊗ 𝐈9 𝐈9⊗𝐂𝐗 𝐈9⊗𝐇⊗ 𝐈9

=
1
2
1 	 1
1 −1 ⊗ 1 0

0 1 ⊗ 1 0
0 1

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

⊗ 1 0
0 1

1 0
0 1 ⊗

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

1 0
0 1 ⊗

1
2
1 	 1
1 −1 ⊗ 1 0

0 1

𝑡+ 𝑡" 𝑡# 𝑡) 𝑡, 𝑡- 𝑡. 𝑡/ 𝑡0
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Transfer Matrix of Entire Teleportation Circuit (cont.)

• Alice's circuit from time 𝑡A to 𝑡L is represented by transfer matrix 𝐓A:
𝐓A = 𝐇⊗ 𝐈9⊗ 𝐈9 𝐂𝐗⊗ 𝐈9 𝐈9⊗𝐂𝐗 𝐈9⊗𝐇⊗ 𝐈9

=
1
2

1 	 1
1 −1 ⊗

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

S

T

1 0
0 1

⊗
1 0
0 1

	 1 	 0
	 0 	 1

1 0
0 1

−1 	 0
	 0 −1
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Transfer Matrix of Entire Teleportation Circuit (cont.)

• Alice's circuit from time 𝑡A to 𝑡L is represented by transfer matrix 𝐓A:
𝐓A = 𝐇⊗ 𝐈9⊗ 𝐈9 𝐂𝐗⊗ 𝐈9 𝐈9⊗𝐂𝐗 𝐈9⊗𝐇⊗ 𝐈9

=
1
2

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

	 1 	 0
	 0 	 1

	 0 	 0
	 0 	 0

	 0 	 0
	 0 	 0

	 1 	 0
	 0 	 1

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

−1 	 0
	 0 −1

	 0 	 0
	 0 	 0

	 0 	 0
	 0 	 0

−1 	 0
	 0 −1

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

1 0
0 1

	 1 	 0
	 0 	 1

1 0
0 1

−1 	 0
	 0 −1

0 0
0 0

	 0 	 0
	 0 	 0

0 0
0 0

	 0 	 0
	 0 	 0

0 0
0 0

	 0 	 0
	 0 	 0

0 0
0 0

	 0 	 0
	 0 	 0

1 0
0 1

	 1 	 0
	 0 	 1

1 0
0 1

−1 	 0
	 0 −1
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Transfer Matrix of Entire Teleportation Circuit (cont.)
• Alice's circuit from time 𝑡A to 𝑡L is represented by transfer matrix 𝐓A:

𝐓A = 𝐇⊗ 𝐈9⊗ 𝐈9 𝐂𝐗⊗ 𝐈9 𝐈9⊗𝐂𝐗 𝐈9⊗𝐇⊗ 𝐈9

=
1
2

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

	 0 	 0
	 0 	 0

	 1 	 0
	 0 	 1

	 1 	 0
	 0 	 1

	 0 	 0
	 0 	 0

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

	 0 	 0
	 0 	 0

−1 	 0
	 0 −1

−1 	 0
	 0 −1

	 0 	 0
	 0 	 0

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

0 0
0 0

	 0 	 0
	 0 	 0

0 0
0 0

	 0 	 0
	 0 	 0

0 0
0 0

	 0 	 0
	 0 	 0

0 0
0 0

	 0 	 0
	 0 	 0

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

=
1
2

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

	 0 	 1
	 1 	 0

	 0 −1
−1 	 0

	 1 	 0
	 0 	 1

	 1 	 0
	 0 	 1

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

	 0 −1
−1 	 0

	 0 	 1
	 1 	 0

−1 	 0
	 0 −1

−1 	 0
	 0 −1
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Transfer Matrix of Entire Teleportation Circuit (cont.)
• Alice's circuit from time 𝑡A to 𝑡L is represented by transfer matrix 𝐓A:

𝐓+ =
1
2

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

	 0 	 1
	 1 	 0

	 0 −1
−1 	 0

	 1 	 0
	 0 	 1

	 1 	 0
	 0 	 1

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

	 0 −1
−1 	 0

	 0 	 1
	 1 	 0

−1 	 0
	 0 −1

−1 	 0
	 0 −1

• Bob's circuit from time 𝑡U to 𝑡V is represented by transfer matrix 𝐓7:

𝐓) =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 	 0
0 −1

0 	 0
0 	 0

0 	 0
0 	 0

0 −1
1 	 0

66



9/28/25

34

Transfer Matrix of Entire Teleportation Circuit

𝑡+ 𝑡" 𝑡# 𝑡) 𝑡, 𝑡- 𝑡. 𝑡/ 𝑡0

𝐓+ =
1
2

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

	 0 	 1
	 1 	 0

	 0 −1
−1 	 0

	 1 	 0
	 0 	 1

	 1 	 0
	 0 	 1

1 0
0 1

	 1 	 0
	 0 	 1

0 1
1 0

	 0 −1
−1 	 0

	 0 −1
−1 	 0

	 0 	 1
	 1 	 0

−1 	 0
	 0 −1

−1 	 0
	 0 −1

𝐓) =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 	 0
0 	 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 	 0
0 −1

0 	 0
0 	 0

0 	 0
0 	 0

0 −1
1 	 0

⟩⟶ |Φ =
⟩|0 + ⟩|1
2

	⟶

𝑏! ∈ 0,1

𝑏" ∈ 0,1
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Quantum Teleportation: Summary
• Quantum Teleportation Exploits Entanglement to (theoretically) Instantly 

Transfer Information
• information is NOT transmitted over a channel either wirelessly or over a wireline

• It does NOT instantly transfer matter or energy
• It does instantly transfer an energy state
• Requires Transmission of Matter/energy over a channel
• Successfully Demonstrated Experimentally
• Applications in Cyber Security

• EXAMPLE: Secure Encryption Key Distribution

• Does NOT violate Speed-of-Light Transmission Limits (special relativity) since 
Information is NOT transmitted, but a quantum state host and 2 Classical bits 
are transmitted
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BB84 Encryption 
Protocol

69

Symmetric Encryption
• Symmetric Encryption requires each party (Alice and Bob) 

to Share a Secret Encryption Key
• Once each Party is in possession of the Secret Key, they 

can send Encrypted messages to one another
• The sender, Alice, uses her Secret key to Encrypt the 

Plaintext into Ciphertext
• “good” ciphertext has the statistical properties of appearing to 

resemble an equally-likely, random bit stream

• The receiver, Bob, uses the secret key to Decrypt the 
Ciphertext to obtain the Plaintext.
• The vulnerable portion of this encryption scheme is the 

Distribution of the Secret Keys (i.e., “key distribution”)
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Eavesdropping MITM
• A BIG Problem in Key Distribution is a “Man-in-the-middle Eavesdropping” Attack

• In a Classical Wired or Wireless Communication Channel, Eavesdropping can occur 
during Key Exchange and defeats the entire process, special key exchange 
protocols established such as Diffie-Hellman for classical encryption
• this is how the https protocol works, for example
• based on very difficult-to-solve math problems (for Turing/classical computers)

• It is believed that Quantum Computers can defeat these methods since they are 
based on hard-to-solve Math Problems that can be much easier to solve for QC

ALICECEALICE ALICECEBOBCHANNEL

ALICECEEVE
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Bennett & Brassard, 1984
• A (more) Secure Cryptographic Key Exchange protocol for 

Classical Encryption was Devised in 1984 by Bennett and 
Brassard known as “BB84”
• Requires a Redundant Quantum Symbol, a Quantum Channel, 

as well as the Classical Channel
• Typically Implemented with Photons as “Flying Qubits” over a 

Channel comprised of Fiber Optic Cables (wired) or Free Space 
(wireless)
• Consider Photon Polarization as the Quantum Observable for a 

Symbol Set
• symbols are 2 Orthogonal qubits, |↔〉, and |↕〉 and 2 Orthogonal qubits, 

|⤢〉, and |⤡〉, known as the Rectilinear and Diagonal sets
• redundant because two (2) representations of bit zero (0) and two 

representations of bit one (1)
• {|↔〉, |⤢〉} represent bit (0) and {|↕〉, |⤡〉} represent bit (1); note that 

these are Non-orthogonal for each Bit
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Quantum Symbol Set
• Often referred to as:

• Rectilinear Set: R={|↔〉, |↕〉} Represents Classical Bits: {0, 1} 
• Diagonal Set: D={|⤢〉, |⤡〉} Represents Classical Bits: {0, 1} 

• In total, this is a (complete) Non-Orthogonal Basis Set over 
ℍ9, (aka, a Complete, Redundant, Non-orthogonal Basis) 

Polarization
Diagram
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Poincaré and Bloch Sphere
• Non-orthogonal and Redundant Symbol Set

! ⇒1

! ⇒ 0

! ⇒1

↔ ⇒ 0

Poincaré
Sphere

Bloch
Sphere

0

1

0

1

0

1

1

0
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Key Distribution Scheme
• The Encryption Key Distribution Scheme

• To Distribute the Encryption Key, Alice sends Bob a set of Quantum Symbols from 
the Non-orthogonal Quantum Alphabet, {|↔〉, |↕〉, |⤢〉, |⤡〉} 

• Alice uses a Random Number Generator (RNG) to generate a Random String of 
Classical Bits to send to Bob

• Alice also uses the RNG again to choose whether to encode each Bit using one of the 
two Orthogonal Basis sets, ℍ2,R={0⇒|↔〉, 1⇒|↕〉}, or ℍ2,D= {0⇒|⤢〉, 1⇒|⤡〉}.

ALICECEALICE ALICECEBOB
CLASSICAL CHANNEL

1,0,0,0,1,1,1,0,1

QUANTUM CHANNEL

! ,↔ ,↔ ," , # , # ,! ," , #

ALICECERNG ALICECERNG
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Key Distribution (cont.)
• The Encryption Key Distribution Scheme

• Bob doesn’t know whether Alice chose basis set ℍ2,R or basis set ℍ2,D

• Bob uses his RNG to choose one of the two Measurement Bases, ℍ2,R
 or ℍ2,D, to 

Measure each received Quantum Symbol

• If Bob chooses the Correct Observable, he Perfectly Measures Alice’s Qubit, 
otherwise he collapses Alice’s Qubit randomly into either a 0 or a 1 and, on average, 
he “guesses” the Correct Observable half of the time

ALICECEALICE ALICECEBOB
CLASSICAL CHANNEL

1,0,0,0,1,1,1,0,1

QUANTUM CHANNEL

! ,↔ ,↔ ," , # , # ,! ," , #

ALICECERNG ALICECERNG
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Key Distribution (cont.)
• The Encryption Key Distribution Scheme

• After Alice has sent a suitably long string of qubits, Bob uses the Classical Channel to tell  Alice 
which Observable he used, AZ or AX, to measure each qubit, but he DOES NOT tell Alice the 
measurement outcome

• Alice uses the classical channel to tell Bob which time he used the “correct” Observable

• Alice and Bob discard the Bits corresponding to Bob’s “incorrect” Measurements and they 
now share a set of bits that Bob correctly measured; this can serve as their secret key and 
they can use it for Encrypted Communication over the Classical Channel

ALICECEALICE ALICECEBOB
CLASSICAL CHANNEL

1,0,0,0,1,1,1,0,1

QUANTUM CHANNEL

! ,↔ ,↔ ," , # , # ,! ," , #

ALICECERNG ALICECERNG
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Alice’s Quantum Symbol Alphabet
• Recall Projective Measurements:

• Assume Alice is using ℍ2,R, if she has a perfect RNG, then pk=1/2 and the alphabet is:

• Likewise, when Alice uses ℍ2,D with a perfect RNG: 

• Thus, we see that:

ρ
A

real value
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Recall the Observables
• Projective measurements use an Observable constructed from the Measure Basis:

• Rectilinear Basis, ℍ2,R, uses Observable AZ with measurement outcomes {λ↔, λ↕}={-1,+1}:

• Diagonal Basis, ℍ2,D, uses Observable AX with measurement outcomes {𝜆⤢, 𝜆↖}={+1,-1}:

• Alice chooses the Encoding Basis, ℍ2,R
 or ℍ2,D, randomly and Bob chooses the Measurement 

Observable, AZ or AX, randomly based on their own RNG outputs.

• The total event space is comprised of four (4) different events:
1) E1: Alice chooses ℍ2,R and Bob chooses AZ; Bob correctly measures Alice’s qubit 

2) E2: Alice chooses ℍ2,R and Bob chooses AX; Bob incorrectly measures Alice’s qubit, random result 

3) E3: Alice chooses ℍ2,D and Bob chooses AZ; Bob incorrectly measures Alice’s qubit, random result 

4) E4: Alice chooses ℍ2,D and Bob chooses AX; Bob correctly measures Alice’s qubit 
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0

⎡
⎣⎢

⎤
⎦⎥
1 0⎡⎣ ⎤⎦ + −1( ) 0

1
⎡
⎣⎢

⎤
⎦⎥
0 1⎡⎣ ⎤⎦ =

1 0
0 −1

⎡
⎣⎢

⎤
⎦⎥

A = λiPi
i=1

n

∑ = λi ei ei
i=1

n

∑

AX = λ! ! ! + λ! ! ! = λ!
1
2

⎛
⎝⎜

⎞
⎠⎟

2

1
1

⎡
⎣⎢

⎤
⎦⎥
1 1⎡⎣ ⎤⎦ + λ!

1
2

⎛
⎝⎜

⎞
⎠⎟

2

1
−1

⎡
⎣⎢

⎤
⎦⎥
1 −1⎡⎣ ⎤⎦

= λ!
1
2
1 1
1 1

⎡
⎣⎢

⎤
⎦⎥
+ λ!

1
2

1 −1
−1 1

⎡
⎣⎢

⎤
⎦⎥
= 1( ) 12

1 1
1 1

⎡
⎣⎢

⎤
⎦⎥
+ −1( ) 12

1 −1
−1 1

⎡
⎣⎢

⎤
⎦⎥
= 0 1

1 0
⎡
⎣⎢

⎤
⎦⎥

79

Expected Value of Measurements
• Projective measurements use an Observable constructed from the Measure Basis:

• Rectilinear Basis, ℍ2,R, uses Observable AZ with measurement outcomes {λ↔, λ↕}={-1,+1}:

• Diagonal Basis, ℍ2,D, uses Observable AX with measurement outcomes {𝜆⤢, 𝜆⤡}={+1,-1}:

• We can compute the Expected Value of Bob’s measurements for the Four different Events

• Recall that the Expected Value of a Measurement is given by:

AZ = λ↔ ↔ ↔ + λ! ! ! = 1( ) 1
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A
ρ
= p j Ψ j

j=1

m

∑ A Ψ j = Trace ρA( )
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Expected Value of Measurements (cont.)
• When Bob chooses to use observable AZ:

• Since Bob’s measurement outcomes are {λ↔, λ↕}={-1,+1}, this means that it is expected that 
he will measure λ↔=-1 half of the time and λ↕=+1 half of the time

• Likewise, when Bob chooses to use observable AX:

• Since Bob’s measurement outcomes are {𝜆⤢, 𝜆⤡}={+1,-1}, this means that it is expected 
that he will measure 𝜆⤢ = +1	 half of the time and 𝜆⤡ = −1 half of the time

• We can now compute the probabilities for each of the four events:
1) E1: Alice chooses ℍ2,R and Bob chooses AZ; Bob correctly measures Alice’s qubit 

2) E2: Alice chooses ℍ2,R and Bob chooses AX; Bob incorrectly measures Alice’s qubit, random result 

3) E3: Alice chooses ℍ2,D and Bob chooses AZ; Bob incorrectly measures Alice’s qubit, random result 

4) E4: Alice chooses ℍ2,D and Bob chooses AX; Bob correctly measures Alice’s qubit 
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Probabilities of Each Event

• E1: Alice chooses ℍ2,R and Bob chooses AZ; Bob correctly measures Alice’s qubit. 2 cases:
1) Alice sends |↔〉 representing the classic bit “0”:

1) Alice sends |↕〉 representing the classic bit “1”: (cont. on next slide)
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Probabilities of Each Event (cont.)
• E1: Alice chooses ℍ2,R and Bob chooses AZ; Bob correctly measures Alice’s qubit. 2 cases:

2) Alice sends |↕〉 representing the classic bit “1”:
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Probabilities of Each Event (cont.)
• E2: Alice chooses ℍ2,R and Bob chooses AX; Bob incorrectly measures Alice’s qubit. 2 cases: 

1) Alice sends |↔〉 representing the classic bit “0”:

1) Alice sends |↕〉 representing the classic bit “1”:  (cont. on next slide)
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Probabilities of Each Event (cont.)
• E2: Alice chooses ℍ2,R and Bob chooses AX; Bob incorrectly measures Alice’s qubit. 2 cases: 

2) Alice sends |↕〉 representing the classic bit “1”:
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Probabilities of Each Event (cont.)
• E3: Alice chooses ℍ2,D and Bob chooses AZ; Bob incorrectly measures Alice’s qubit. 2 cases: 

1) Alice sends |⤢〉 representing the classic bit “0”:

1) Alice sends |⤡〉 representing the classic bit “1”:  (cont. on next slide)
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Probabilities of Each Event (cont.)
• E3: Alice chooses ℍ2,D and Bob chooses AZ; Bob incorrectly measures Alice’s qubit. 2 cases: 

2) Alice sends |⤡〉 representing the classic bit “1”:
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Probabilities of Each Event (cont.)
• E4: Alice chooses ℍ2,D and Bob chooses AX; Bob correctly measures Alice’s qubit. 2 cases: 

1) Alice sends |⤢〉 representing the classic bit “0”:

2) Alice sends |⤡〉 representing the classic bit “1”:  (cont. on next slide)

Prob Bob correctly measures ! ⇒ 0⎡⎣ ⎤⎦ = Prob ρBob ⇒ ! !⎡⎣ ⎤⎦ = ! ρSent !

= 1
2

⎛
⎝⎜

⎞
⎠⎟

1 1⎡
⎣

⎤
⎦

1
2

⎛
⎝⎜

⎞
⎠⎟

1 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥

1
2

⎛
⎝⎜

⎞
⎠⎟

1
1

⎡

⎣
⎢

⎤

⎦
⎥ =

1
4

1 1⎡
⎣

⎤
⎦

2
2

⎡

⎣
⎢

⎤

⎦
⎥ =1

Prob Bob incorrectly measures ! ⇒1⎡⎣ ⎤⎦ = Prob ρBob ⇒ ! !⎡⎣ ⎤⎦ = ! ρSent !

= 1
2

⎛
⎝⎜

⎞
⎠⎟

1 −1⎡
⎣

⎤
⎦

1
2

⎛
⎝⎜

⎞
⎠⎟

1 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥

1
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⎛
⎝⎜

⎞
⎠⎟

1
−1

⎡

⎣
⎢

⎤

⎦
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1
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1 −1⎡
⎣

⎤
⎦

0
0

⎡

⎣
⎢

⎤

⎦
⎥ = 0

ρSent = pk ! !
k=0

0

∑ = p0 ! ! = 1( ) 1
2

⎛
⎝⎜

⎞
⎠⎟

2
1
1

⎡

⎣
⎢

⎤

⎦
⎥ 1 1⎡
⎣

⎤
⎦ =
1
2
1 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥
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Probabilities of Each Event (cont.)
• E4: Alice chooses ℍ2,D and Bob chooses AX; Bob correctly measures Alice’s qubit. 2 cases: 

2) Alice sends |⤡〉 representing the classic bit “1”: 

Prob Bob incorrectly measures ! ⇒ 0⎡⎣ ⎤⎦ = Prob ρBob ⇒ ! !⎡⎣ ⎤⎦ = ! ρSent !

= 1
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⎢
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⎢
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Prob Bob correctly measures ! ⇒1⎡⎣ ⎤⎦ = Prob ρBob ⇒ ! !⎡⎣ ⎤⎦ = ! ρSent !
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⎠⎟

1 −1
−1 1

⎡

⎣
⎢
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⎝⎜

⎞
⎠⎟

1
−1

⎡

⎣
⎢

⎤

⎦
⎥ =

1
4

1 −1⎡
⎣
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⎥
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Summary of Different Events
• Summary of Events:

• We can compute the the overall probability that Bob obtains 
the classical bit (after randomly choosing one of the two 
Measurement bases) that Alice intended to send

Alice Sends: Bob Measures 
with Observable:

Probability that 
Bob Receives the 

Correct “Bit”

Sending/Measure
ment Bases Match 

?
1 YES

½ NO

1 YES

½ NO

½ NO

1 YES

½ NO

1 YES

↔ ⇒ 0

↔ ⇒ 0

! ⇒1
! ⇒1

! ⇒ 0

! ⇒1
! ⇒ 0

! ⇒1

AZ

AZ

AZ

AZ

AX

AX

AX

AX

E1

E2

E3

E4
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Probability Bob Receives “Correct” Bit
• Assume that Alice and Bob Possess Independent and Very 

High Quality RNGs
• this means that each RNG bit is equally likely to be 0 or 1

• Probability Bob obtains the “correct” bit:

• Probability Bob obtains 0-valued Bit:

• Probability Bob obtains 1-valued Bit:

• Born’s Rule (subjective probability):

Pr Bob obtains correct bit⎡⎣ ⎤⎦ = Pr Alice sends 0⎡⎣ ⎤⎦Pr Bob obtains 0⎡⎣ ⎤⎦ + Pr Alice sends 1⎡⎣ ⎤⎦Pr Bob obtains 1⎡⎣ ⎤⎦

Pr Bob obtains 1⎡⎣ ⎤⎦ = Pr Bob uses "correct" observable⎡⎣ ⎤⎦
+ Pr Bob uses "incorrect" observable⎡⎣ ⎤⎦Pr Bob measures "correct" bit with wrong observable⎡⎣ ⎤⎦

Pr Bob measures "correct" bit with wrong observable⎡⎣ ⎤⎦ =
1
2

Pr Bob obtains 0⎡⎣ ⎤⎦ = Pr Bob uses "correct" observable⎡⎣ ⎤⎦
+ Pr Bob uses "incorrect" observable⎡⎣ ⎤⎦Pr Bob measures "correct" bit with wrong observable⎡⎣ ⎤⎦
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Probability Bob Receives “Correct” Bit (cont.)
• From Bob’s RNG:

• Probability Bob obtains 0-valued Bit:

• Probability Bob obtains 1-valued Bit:

• From Alice’s RNG:

Pr Bob uses "correct" observable⎡⎣ ⎤⎦ =
1
2

Pr Bob uses "incorrect" observable⎡⎣ ⎤⎦ =
1
2

Pr Bob obtains 0⎡⎣ ⎤⎦ = Pr Bob uses "correct" observable⎡⎣ ⎤⎦
+ Pr Bob uses "incorrect" observable⎡⎣ ⎤⎦Pr Bob measures "correct" bit with wrong observable⎡⎣ ⎤⎦

= 1
2
+ 1

2
⎛
⎝⎜

⎞
⎠⎟

1
2

⎛
⎝⎜

⎞
⎠⎟
= 3

4

Pr Bob obtains 1⎡⎣ ⎤⎦ = Pr Bob uses "correct" observable⎡⎣ ⎤⎦
+ Pr Bob uses "incorrect" observable⎡⎣ ⎤⎦Pr Bob measures "correct" bit with wrong observable⎡⎣ ⎤⎦

= 1
2
+ 1

2

⎛
⎝⎜

⎞
⎠⎟

1
2

⎛
⎝⎜

⎞
⎠⎟
= 3

4

Pr Alice sends 0⎡⎣ ⎤⎦ =
1
2

Pr Alice sends 1⎡⎣ ⎤⎦ =
1
2
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Probability Bob Receives “Correct” Bit (cont.)
• Overall probability Bob obtains the correct bit is:

• Thus, Bob will possess 75% of the True-valued Bits that Alice 
intended to Send

• Alice will then send Bob a Bit-string over the Classical Channel 
that Indicates if she used the ℍ2,R

 or ℍ2,D Basis

• Bob can discard those Bits he Measured with the Incorrect 
Measurement Basis

Pr Alice sends 0⎡⎣ ⎤⎦ =
1
2

Pr Alice sends 1⎡⎣ ⎤⎦ =
1
2

Pr Bob obtains correct bit⎡⎣ ⎤⎦ = Pr Alice sends 0⎡⎣ ⎤⎦Pr Bob obtains 0⎡⎣ ⎤⎦ + Pr Alice sends 1⎡⎣ ⎤⎦Pr Bob obtains 1⎡⎣ ⎤⎦

Pr Bob obtains 0⎡⎣ ⎤⎦ =
3
4

Pr Bob obtains 1⎡⎣ ⎤⎦ =
3
4

Pr Bob obtains correct bit⎡⎣ ⎤⎦ = Pr Alice sends 0⎡⎣ ⎤⎦Pr Bob obtains 0⎡⎣ ⎤⎦ + Pr Alice sends 1⎡⎣ ⎤⎦Pr Bob obtains 1⎡⎣ ⎤⎦

= 1
2

⎛
⎝⎜

⎞
⎠⎟

3
4

⎛
⎝⎜

⎞
⎠⎟
+ 1

2
⎛
⎝⎜

⎞
⎠⎟

3
4

⎛
⎝⎜

⎞
⎠⎟
= 3

8
+ 3

8
= 3

4
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Bob’s Bits
• On Average, Bob will have Chosen the Correct Measurement Basis 

50% of the time

• He Discards the Following Events:

• Bob now possesses half (on average) of the bits Alice sent, but they 
are all 100% accurate

Alice Sends: Bob Measures 
with Observable:

Probability that 
Bob Receives the 

Correct “Bit”

Sending/Measure
ment Bases Match 

?
1 YES

½ NO

1 YES

½ NO

½ NO

1 YES

½ NO

1 YES

↔ ⇒ 0

↔ ⇒ 0

! ⇒1
! ⇒1

! ⇒ 0

! ⇒1
! ⇒ 0

! ⇒1

AZ

AZ

AZ

AZ

AX

AX

AX

AX

E1

E2

E3

E4
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Alice’s Bits
• Next, Bob sends Alice a bit-string over the classical channel indicating 

which bits he Incorrectly Measured

• Alice discards the Bits that Bob Measured Incorrectly

• Alice and Bob now both possess about 50% of the bits that Alice 
Randomly Generated (with her RNG)

• They can now use their bitstrings as a Secret Encryption Key and can 
send Ciphertext traffic over the Classical Channel

• Key Distribution has thus been Accomplished

• An Eavesdropper, Eve, on the Quantum Channel is Forced to make 
Random Choices of Measurement Bases and thus would make 
Measurement choices Independent of Bob’s measurement basis 
choices

• Even when Eve can also “snoop” the Classical channel, she could only 
determine which bits were correctly exchanged between Bob and 
Alice, but she could NOT determine what the bit-values are
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MITM Eavesdropper
• Consider this Scenario

• After the exchange, Alice and
Bob share 50% of the Bits
Alice originally sent

• Eve will only possess Half of 
those or 25% AND she will NOT KNOW which half are correct !!!!!

ALICECEALICE ALICECEBOB
CLASSICAL CHANNEL

1,0,0,0,1,1,1,0,1

ALICECEEVE

QUANTUM CHANNEL

! ,↔ ,↔ ," , # , # ,! ," , #

ALICECERNG ALICECERNG

ALICECERNG

High-Quality RNGs are
very Important for Secure

Communications!!!!!
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BB84 Illustrated
https://youtu.be/LaLzshIosDk (1:56)
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BB84 Explained
https://www.youtube.com/watch?v=uiia

AJ3c6dM (5:57)
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https://youtu.be/LaLzshIosDk
https://www.youtube.com/watch?v=uiiaAJ3c6dM
https://www.youtube.com/watch?v=uiiaAJ3c6dM

