
How to select a
microcontroller
Word length, input/output requirement, and the economics
of on- and off-chip memory are among the factors to be weighed

To most of the world, the microcontroller is an un-
seen workhorse embedded in automobiles, micro-
wave ovens, guided missiles, talking dolls, and a
myriad of other applications. Unlike micropro-
cessors, which are designed for a broad range of ap-
plications, microcontrollers are generally designed
with a specific application in mind.

For the designer of an embedded system, howev-
er, the choice of a microcontroller is the earliest and
probably the most important to be made. Deliver-
ing the final product on schedule, within budget, and to specifi-
cation will depend heavily on making the right decision.

But how best to decide? This set of guidelines is for the neo-
phyte designer to use as a checklist for evaluating candidate
devices. And even experienced designers may discover in it selec-
tion criteria they have overlooked.

A microcontroller is generally dedicated to a single applica-
tion and embedded in it. Unlike a microprocessor, it tends to in-
clude all of the peripheral features needed to implement the com-
puter portion of an embedded application. Because their
application constraints are known at the time of design, the
designer is able to select the lowest-cost controller that can do
the job. (By contrast, microprocessors usually wind up in general-
purpose computers whose final use is not known in advance to
their designers.)

Bounding the problem
The first decision to make is the level of performance required,

that, on the word size of the controller. Those available can be
grouped broadly as 4-, 8-, 16- and 32-bit products.

Standard benchmarks of the type used to describe micropro-
cessors are inappropriate for this evaluation. They must be
replaced by critical real-time calculations and physical constraints
peculiar to the system being designed. Critical calculations are
those that, if not completed within a specified period of time,
cause the system to lose synchronization, create a dangerous sit-
uation, or generate wrong results. For instance, if a simple timer
is to generate a square wave of a given frequency, the central
processing unit (CPU) must be fast enough to calculate the time
at which each edge should occur and to program the timer ap-
propriately.

Physical constraints imposed by the system, such as precision
and dynamic range, determine CPU class. For instance, a numer-
ically controlled machine might require a relative accuracy of 1
degree within a single revolution of an axis. For this accuracy,
an 8-bit data value, which can resolve no more than 1 part in 256,
is inadequate, whereas a 16-bit data value will represent 1 part
in 65 536, or about 20 seconds of arc.

Dynamic range further constrains the system. If the same ma-
chine must also be able to provide an absolute accuracy of l de-
gree over 1000 revolutions of a lead screw, even 16 bits cannot

John J. Vadica and Peter S. Gilmour Motorola Inc.

represent the full range. In such a case, the designer
could choose a 32-bit solution or, if extremely wide
dynamic range is necessary, resort to a floating-point
number system.

The designer is cautioned, however, that choos-
ing a CPU on the basis of a single calculation could
be a mistake. If the application generally requires
lower-resolution calculations, it may be better to se-
lect a processor that matches just the predominant
operations, while performing the higher-resolution

calculations in subroutines. In most applications, for example,
a good floating-point math package is superior to floating-point
hardware.

The second step-the most often overlooked-is to identify
the quantity, frequency, and type (analog, digital, serial, and so
on) of all input/output (I/O) signals, as well as any other special
requirements, including those imposed by mechanical aspects of
the system. Key to this part of the selection process is a complete
top-level block diagram of the overall system. Although it is not
important to assign microcontroller peripheral functions at this
stage, a preliminary partitioning might be helpful in identifying
system requirements.

The third consideration is the application’s memory require-
ments, which should be further broken down into program mem-
ory and data memory. Microcontroller memory may be catego-
rized broadly as volatile and nonvolatile. Volatile random-access
memory (RAM) retains data only while power is applied; it is
generally used for data memory. Nonvolatile read-only memory
(ROM) retains its contents permanently; it typically contains the

Defining terms
Benchmark: a standardized test or suite of tests for compar-
ing computer performance; also, the act of determining a
benchmark.
Dynamic range: t h e ratio of t he largest to the smallest values
of a range, often expressed in decibels.
Embedded system: a system into which one or more comput-
ing devices (which may be microprocessors or microcon-
trollers) are incorporated in such a way that the embedded
device or devices are not directly accessible to the user of
the system.
Floating point: the representation of numbers in scientific no-
tation, with the exponent and mantissa given separately, so
a s to be able to accommodate a very wide dynamic range.
Mask-programmed: said of a semiconductor device, most
often a read-only memory, that is permanently programmed
as a s tep in its manufacture. In contrast, “field-programmed”
applies to memory devices that are programmed after
manufacture.
NMOS: n-channel metal-oxide-semiconductor, a type of MOS
field-effect transistor.
RFI: Radio-frequency interference. (Usually) unintentionally
radiated electromagnetic energy that may interfere with the
operation of, or even damage, electronic equipment.

106 OO18-9235/90/11OO-OO106$1.OO 01990 IEEE IEEE SPECTRUM NOVEMBER 1990

Characterize system I10 requirements
(block diagram; number, type, and frequency of signals,

unusual requirements)

Single chip
(small program memory,

minimal data RAM,
standard peripherals)

Determine program memory requirements
(first pass flowchart pseudocode examples,

past experience)

Expanded system
(large program memory,

large data structures,
nonstandard peripherals)

Estimate RAM requirements
(variables, stack, data buffers, scratchpad)

.c
Map I/O needs to peripheral subsystems

(document critical needs, list alternatives)

I
NMOS or CMOS

technology adequate 1 1 CMOS is preferred
technology I

Apply criteria to each
candidate device

Remove lrom list
Retain for further

analysis - I

application program of the embedded system.
Nonvolatile memory comes in four variants: electrically

programmable ROM (EPROM); electrically erasable/program-
mable ROM (EEPROM); one-time-programmable EPROM; and
mask-programmed ROM, which is programmed permanently at
the time of manufacture. EPROM and EEPROM devices, being
erasable, are intended primady for development purposes. They
are also the most expensive variants because of package cost, pro-
cess complexity, and die size . (An EPROM is erased using strong
ultraviolet light and therefore requires a package with a quartz
window.)

One-time-programmable memories are standard EPROM
parts packaged in low-cost plastic packages without quartz win-
dows. Because they can be programmed by the user, they elimi-
nate the cycle time required to produce mask-programmed ROMs.
They are therefore ideal for pilot production runs. Once the pro-
gram code is verified and the application has achieved high vol-
ume, mask-programmed ROM offers lower overall cost.

An emerging memory technology is flash EEPROM, which
offers denser storage than conventional EEPROM. What it gives
up is the ability to erase selected bytes of data. Instead, like an
EPROM, it allows the user to erase everything and start over. Few
of today’s microprocessors use this new technology, but it
promises to be popular in the future.

EEPROM is a microcontroller feature that has yet to reach its
full potential. Many designers think of it merely in terms of pro-

1 , Repartiion system

V I

Application-specific
IC (ASIC) solution

Benchmark I central processing unit
and I/O performance I

ASIC solution
(high volume,

Evaluate development tools
(in-circuit emulator,
assembler, compiler,

debugger, bus state analyzer)

I

(microcontroller growth path,
second source)

Make final selection
from remaining candidates

Vaglica and Gilmour-How to select a microcontroller 107

gram storage, not as a strategic peripheral. However, it can do
much more. For example, in an application developed in the com-
puter peripheral industry, mechanical and electrical adjustments
traditionally implemented with set screws and potentiometers
were replaced with parameters stored in EEPROM.

Additional locations in the EEPROM store the date of
manufacture, model and serial numbers, and other data describ-
ing the product. Warranty service can make use of the informa-
tion stored in the product during manufacture, as well as addi-
tional data gathered during field operation.

Estimating the amount of memory to allocate for program stor-
age will be one of the tougher parts of the selection process. There
is no magical rule of thumb. Past experience coupled with a first-
pass flowchart and pseudocode examples are likely to be the most
appropriate available tools. Simple applications, such as electron-
ic thermostats, may require as few as 2K bytes, while complex
applications, such as engine controls, may require 64K or more.

Sufficient RAM must be allocated in the system to store vari-
ables, the system stack frame, a scratchpad for intermediate cal-
culations, and any data arrays or buffers. These values will be
affected by the programming language used to develop the ap-
plication (system stack), the selected partitioning of the prob-
lem (variables), and even the hardware configuration (data
buffers). Preliminary estimates for variable stack and scratch-
pad storage are often done by taking a percentage of the ROM
estimate. The rule of thumb used by the authors is a ROM to
RAM ratio in the range of 12-20:]. Applications written in as-
sembly language will tend toward the lower number, while com-
piled code will require the higher amounts. Large data buffers
should be added to this estimate.

Mapping 1/0 to peripherals
Peripheral functions commonly integrated on microcontrollers

include timers, serial and parallel communications ports, and
analog-to-digital (A/D) converters. Timers range from simple
counters to complex subsystems with dedicated microengines in-
corporating reduced-instruction-set computer (RISC) architec-
ture. Timer systems are commonly called upon to generate peri-
odic interrupts, capture the time an input event occurs, or generate
output events at specified times. The more complex timers can
produce the pulse trains required of multiphase stepper motors
or even of sequencing the fuel injectors in an automobile engine
without CPU intervention. The frequencies of the input and out-
put signals generally dictate how timer complexity should be trad-
ed off against the CPU overhead required for servicing the
peripheral.

External peripherals added to provide functions not usually
found on microcontrollers may be interfaced through either a par-
allel (address, data and control) bus or a serial port. The paral-
lel bus is conceptually simple, but fraught with many practical
problems because of its rapid switching of many data lines. It
generates a lot of radio frequency interference (RFI), and it con-
sumes a lot of power.

For applications that would be handled by a single chip ex-
cept for a single special function, it is best to add the peripheral
via a serial bus. Only two or three pins are required, RFI is gener-
ated only during serial transmissions, and power consumption
rises only slightly. A variety of chips that perform peripheral func-
tions are marketed with serial interfaces. Among them are A/D
converters, phase-locked loop (PLL) building blocks, real-time
clocks, display drivers, and EEPROMs.

Parallel 1/0 can be found on virtually all microcontrollers, but
the ports are not all equivalent. The more versatile permit pins
to be defined as input or output on a per-bit basis. That can be
important if system parameters are subject to change before the
design is complete (as is usually the case). Other, less flexible de-
signs offer fixed direction, input-only, or output-only pins. Be-
ware also of manufacturers’ claims for large numbers of I/O pins,
which in reality are available only if all the other on-chip peripher-
als are disabled.

A/D converters are found on many microcontrollers. Convert-
ers with 8- or 10-bit ranges are most common, but not all manu-
facturers offer the same resolution for a given range. The specs-
manship issues that apply to stand-alone A/D converters are an
even bigger problem with converter ICs. If the intended purpose
is much more demanding than checking battery voltage, care must
be taken to examine all the specifications of this subsystem.

An application that seems to require a unique peripheral may
not after all, for it is often possible to minimize cost by using
available peripherals in innovative ways. Digital-to-analog (D/A)
converters, for example, are seldom integrated into microcon-
trollers. When one is needed, however, the resourceful engineer
will provide one economically by integrating a pulse-width-
modulated waveform generated by an on-chip timer. The integra-
tor can be as simple as a passive RC low-pass filter.

Peripherals requiring frequent interrupt service consume valu-
able CPU bandwidth. Several methods employed by microcon-
troller designers reduce interrupt overhead. Unique vectors for
each interrupt source, multiple priority levels, and hardware pri-
ority resolution circuits eliminate sdftware polling of interrupt
sources. Interrupt-driven direct-memory-access (DMA) peripher-
als transfer data with minimal CPU service overhead, although
they still require considerable bus bandwidth. Other designs get
rid of service requirements altogether by distributing enough in-
telligence to the peripheral to eliminate CPU servicing completely
during normal operation.

Bus bandwidth is affected by two components: bus width and
transfer rate. Boosting either causes a corresponding increase in
bandwidth. Unfortunately, this bandwidth increase normally im-
plies a cost increase as well. Microcontroller architects have
designed features into high-end products that minimize the ef-
fect of greater bandwidth on system cost. Seldom will all mem-
ory and peripherals in a system need to be accessed at the highest
possible rate. Infrequently accessed devices can be replaced with
lower-cost, slower devices if wait state capabilities have been
designed into the bus structure.

Microcontrollers with dynamically sized buses permit memo-
ries of different widths to coexist on the same bus. Resources re-
quiring high bandwidth, such as the stack RAM, can occupy the
full bus width. Locations accessed less often, such as the boot
ROM, can be configured for the width of a single memory part.
Reducing the number of devices by means of dynamic sizing
minimizes use of printed-circuit board area, increases reliabili-
ty, and decreases RFI.

Cost, packaging, operating environment, and other physical
conditions further constrain the designer: These constraints must
be spelled out clearly early on, for they bear directly on the
microcontroller selected. Power consumption and temperature
range dictate the processing technology(ies) suitable for the ap-
plication. If the product is battery powered or will operate over
an extended temperature range, a CMOS version would be the
better choice. For an application in which these criteria are less
important, an NMOS processor could offer a cost advantage.

Single-chip or expanded?
Microcontrollers often support multiple modes of operation

for a better match to the application at hand. The two most com-
mon modes are single-chip and expanded. In the first of these,
all aspects of the computer are contained on the microcontroller
chip. The address, data, and control buses required for memory
or peripheral expansion are not brought out to pins. In the ex-
panded mode, these buses are made available. Microcontrollers
capable of both single-chip and expanded modes fit well in ap-
plications where future upgrades or cost reductions are likely and
a consequent complete rewrite of the application software un-
desirable.

Choosing between a single- and multi-chip solution depends
heavily on memory size. Technology currently limits on-chip
memories to 32K bytes for program (nonvolatile) storage and 1-
2K bytes for data RAM. Otherwise, an expanded system using

108 IEEE SPECTRUM NOVEMBER 1990

I Keyboard
4-, 8-bit central pro- Radio
cessing unit (CPU) I I Microwave oven

Parallel 1/0

I I svstem I Audio I Disk drive I Antilock brake

Dashboard lamp Videocassette Status lights on
driver recorder front panel keyboard

switches

I Intelligent disk con- I - I troller
I Engine control I 32-bit

Television channel Modem configura-
programmable ROM 1 programminq I tion parameters
Electrically erasable Odometer

I I Fuel injection timing Camera shutter Mouse optical shaft I Timer I speed I encoder
I Asvnchronous serial I Communication I Alarm svstem kev- I RS232 link for I I throughout car 1 pad communicatl'on I modem
I Svnchronous serial I Vacuum fluorescent I Audio interchassis I Real-time clock I I driver interface I communication I interface on PC

Analoa/diaital con- I Manifold air I Temoerature sensor I Battery voltaae for

" I I verte; - I pressure (engine I for air-conditioning 1 portable PC
control) thermostat

external memory ICs will be needed.
The distribution of on-chip versus external memory can af-

fect total IC cost significantly. Since memories are only availa-
ble in a limited range of sizes and on-chip memories are more
expensive (on a per-bit basis) than external memory, it may be
advantageous to move all program and/or data memory off chip
in exchange for a less expensive microcontroller chip. Several
manufacturers offer microcontrollers with little or no on-chip
memory for this very reason.

In addition to memory size, other obvious factors that affect
the single-chip vs. multi-chip decision are power consumption,
peripheral mix, and cost. But there are also less obvious factors.
For instance, microcontroller-generated RFI is a major concern
in RF communication applications. High-speed digital outputs
contribute significant energy to the radio spectrum. Confining
these signals on chip, where capacitive loads and signal line
lengths are reduced up to 100 times, significantly reduces emis-
sion levels. Realizing the problems that high-frequency signals
cause, some microcontroller designers have gone so far as to pro-
vide software-programmable disables on potentially unused high-
speed outputs.

The selection process
During the initial search, an absolute match between require-

ments and features is not necessary. Minor alterations to the re-
quirements or the addition of a peripheral chip could create the
most cost-effective solution from a less-than-perfect pairing.

The feature evaluation process should begin with a ranking of
the requirements in order of descending priority, as determined
by the application. If any requirements were not mapped to
peripheral functions during the partitioning for the block dia-
gram, they should be mapped at this point. This mapping will
not restrict the selection to a particular device or manufacturer,
but will identify the microcontroller features sufficiently for the
selection process to progress. The designer is cautioned that
devices may surface during the selection process that would be
a perfect fit if only the system had been partitioned differently.
An open mind will permit these possibilities to emerge.

The procedure at this stage is to compare each candidate
microcontroller with the peripheral mapping and other require-
ments, retaining for further study any devices that match most
of the requirements. If none is appropriate, the questions to ask
are: Which criteria caused the most problems in finding a match?
Could the offending requirements be altered? If not, would a
repartitioning of the problem alleviate them? Several iterations

may be necessary at this stage before a suitable chip
or chips are found.

The first lists are sifted by applying more stringent
criteria at each stage. For instance, after the field has
been narrowed to a handful of candidates, actual ap-
plication code sequences will be written and used to
benchmark CPU performance. If undertaken before
the list was narrowed, this step would drag out the
evaluation inordinately.

An established growth path could be an important
evaluation point if a family of products is planned.
Many vendors offer microcontroller families built
around a common CPU core where different family
members feature different I/O and memory mixes.
CPU performance improvements are made through
clock frequency increases and upgrades to the core.

The final selection criteria are nontechnical. Poten-
tial vendors should be qualified after considering the
following criteria: product line breadth, manufactur-
ing excellence, financial status, second-sourcing strate-
gy, and delivery performance. Development tools must
also be taken into account. If inadequate, they could
place the entire project in jeopardy; therefore, it is ad-
visable to spend some time understanding what is
available for the microcontroller chosen. The entry

cost of development tools can be high.
Microcontroller selection is an arduous task entailing an in-

ordinate number of decisions. There is no universal checklist that
the designer can follow, only suggestions and guidelines. Ex-
perience, in fact, is the second most useful tool the designer can
possess; the most useful is a well-defined set of system require-
ments. Without a list, an already difficult task becomes almost
impossible.

To probe further
A good basic book is Design with Microcontrollers, by John

B. Peatman (McGraw-Hill, 1988). It begins with an overview of
microcontroller applications and goes on to explore the variety
of available on-chip resources. Real-time control, the main use,
is developed in depth.

Real-Time Microcomputer System Design: An Introduction,
by Peter D. Lawrence and Konrad Mauch (McGraw-Hill, 1987),
should be useful to practicing engineers and scientists working
in the physical, biological, and applied sciences. It presents a
methodology for the design of real-time microcomputer systems.

ZEEE Micro magazine regularly publishes articles on new
microcontroller and microprocessor products. The articles are
generally written by the product designers and can provide in-
formation not generally available.

Embedded Systems Programming magazine is dedicated pri-
marily to the software-related aspects of embedded-system design.

About the authors
John J. Vaglica (M) is a microcontroller designer with 10 years

of experience. He is currently employed by the Motorola
Microprocessor Group, Austin, Texas, where he works in the Ad-
vanced Microcontroller Systems Design Group. He was the sys-
tems project leader for the MC68332 CPU and has worked on
M68HCll microcontrollers and their accompanying port replace-
ment units. He has a BSEE and an MSEE, both from Texas A&M
University in College Station.

Peter S. Gilmour is a senior systems analyst with over 16 years
experience. He is currently employed by the Motorola Micropro-
cessor Group on the Motorola Development Systems Group
Jewelbox line of real-time emulators. He has a B.S. from Case
Institute of Technology (now Case Western Reserve University,
Cleveland, Ohio) and an M.S. from Arizona State University in
Tempe.

Both authors can be reached at 6501 William Cannon Dr. W.,
Austin, Texas 78735-8598. +

Vaglica and Gilmour-How to select a microcontroller 109

