
ar
X

iv
:q

ua
nt

-p
h/

02
01

06
7v

1
 1

6
Ja

n
20

02

RC 19642 (07/12/94)
Mathematics

IBM Research Report

An Approximate Fourier Transform Useful in Quan-

tum Factoring

D. Coppersmith

IBM Research Division
T.J. Watson Research Center
Yorktown Heights, New York

LIMITED DISTRIBUTION NOTICE

All rights reserved.

IBM Research Division

Almaden · T.J. Watson · Tokyo · Zurich

http://arxiv.org/abs/quant-ph/0201067v1

An Approximate Fourier Transform Useful in

Quantum Factoring

Don Coppersmith

June, 1994

Abstract. We define an approximate version of the Fourier transform on 2L

elements, which is computationally attractive in a certain setting, and which may
find application to the problem of factoring integers with a quantum computer as is
currently under investigation by Peter Shor. [SHO]

Fourier Transform

Notation: Let L be a positive integer. Let a, c be L-bit integers. The binary
representations of a, c are

a = ΣL−1
i=0 ai2

i, c = ΣL−1
i=0 ci2

i.

Define the L-bit integer b as the reversal of c,

b = Σbi2
i = ΣcL−1−i2

i,

so that bi = cL−1−i. Let X, Y be arrays of size 2L indexed by a or c. Let ω = ω(2L) =

exp
(

2πi/2L
)

be the standard 2L root of unity.
The ordinary Fourier transform is defined as

Yc =
1√
2L

ΣaXaω
ac =

1√
2L

ΣaXa exp
(

2πi

2L
ac
)

In terms of the binary representations,

Yc =
1√
2L

ΣaXa exp
(

2πi

2L
ΣL−1

j,k=0ajck2
j+k

)

Whenever j + k ≥ L, we have ω(2j+k) = 1, so that we can drop those terms from
consideration:

(FFT) Yc =
1√
2L

ΣaXa exp
(

2πi

2L
Σ0≤j,k≤L−1,j+k≤L−1ajck2

j+k

)

Notice that all computations are in the field Q(ω(2L)).
Hadamard Transform

The Hadamard transform looks like a Fourier transform defined over ZL
2 . It suits

my purposes, pedagogically, to reverse the indexing on the output of the Hadamard
transform, and get the transform

Yc =
1√
2L

ΣaXa(−1)(ΣjajcL−1−j)

(Normally the exponent would be Σjajcj, but we reverse the indexing to bring out
the similarity with the ordinary FFT.) Rewrite this as

Yc =
1√
2L

ΣaXa exp
(

2πi

2L
ΣL−1

j=0 ajcL−1−j2
L−1

)

=
1√
2L

ΣaXa exp
(

2πi

2L
Σ0≤j,k≤L−1;j+k=L−1ajck2

L−1
)

,

noting that exp(2πi2L−1/2L) = −1. Since the sum is restricted to those values of j, k
satisfying j + k = L − 1, we can replace 2L−1 by 2j+k and obtain

(HT) Yc =
1√
2L

ΣaXa exp
(

2πi

2L
Σ0≤j,k≤L−1;j+k=L−1ajck2

j+k

)

Approximate Fourier Transform

Comparing the two formulas (FFT) and (HT), we find that the only difference is
in the limits on j + k : in (FFT) the range is 0 ≤ j + k ≤ L − 1, while in (HT) the
range is L − 1 ≤ j + k ≤ L − 1.

This leads us to define an Approximate Fourier Transform (AFFT), parameterized
by an integer m :

(AFFTm) Yc =
1√
2L

ΣaXa exp
(

2πi

2L
Σ0≤j,k≤L−1;L−m≤j+k≤L−1ajck2

j+k

)

When m = 1 this is the Hadamard transform (suitably indexed); when m = L it
becomes the ordinary Fourier transform.

Since j + k ≥ L − m, the argument of “exp” is some multiple of 2πi2L−m/2L =
2πi/2m, so that AFFT is defined over Q(ω(2m)).

The argument of “exp” in AFFT differs from that of FFT by

2πi

2L
Σj+k<L−majck2

j+k.

2

The magnitude of this difference is bounded by

2π

2L
L2L−m = 2πL2−m.

If L = 500 and m = 20, this bound is about 3/1000. So the matrix entries of AFFT
differ from those of FFT by a multiplicative factor of exp(iǫ) where |ǫ| ≤ 2πL2−m =
3/1000. Thus if AFFT is used in place of FFT in Shor’s factoring work [SHO], it leads
to an overall error of a fraction of a degree in each phase angle, and less than one
percent decrease in the magnitude of the probability of each desirable final state.

Calculating the AFFT

Start with the description of the Fast Fourier Transform as taken from [KNU, page
291, section 4.3.3]. I have replaced A, t, s, k by X, a, b, L, respectively, and numbered
the passes from L − 1 down to 0, to correspond to the bit being manipulated.

* Initialization. Let X [L](aL−1, ..., a0) = Xa, where a = (aL−1...a0)2 (the binary
representation).

* Pass J, J = L − 1, L − 2, ..., 1, 0. (Numbered downwards!) Set
* X [J](bL−1, bL−2, ..., bJ , aJ−1, ..., a0) :=

X [J+1](bL−1, ..., bJ+1, 0, aJ−1, ..., a0)+
ω(bJbJ+1...bL−10...0)2 × X [J+1](bL−1, ..., bJ+1, 1, aJ−1, ..., a0)

We wish to compute the FFT quantum mechanically. At the outset, X [L](aL−1, ..., a0)
represents the amplitude of the state where L electrons have spins aL−1, ..., a0, respec-
tively, with “1” representing “up” and “0” representing “down”. Each succeeding
X [J](bL−1, ..., a0) represents the amplitude of the state of these same L electrons. The
transform is performed by a sequence of two-electron interactions.

On Pass J, multiply the amplitudes X [J+1](bL−1, ..., bJ+1, 1, aJ−1, ..., a0) (with a 1 in
position J) by the phase shift ω(0bJ+1...bL−10...0)2. This correspond to the following two-
bit operations. For each K, J + 1 ≤ K ≤ L− 1, use an interaction between electrons
J and K to multiply the amplitude of those states with a 1 in both positions J and
K by the factor

ω(2L−1−K+J).

Call this transformation QJK .
Then apply the unitary transformation

1√
2

(

1 1
1 −1

)

3

to the electron J . Call this transformation PJ . So for L = 3, J = 1, the only value of
K is K = 2, and we have

1√
2































1 0 ω0 0 0 0 0 0
0 1 0 ω0 0 0 0 0
1 0 ω4 0 0 0 0 0
0 1 0 ω4 0 0 0 0
0 0 0 0 1 0 ω2 0
0 0 0 0 0 1 0 ω2

0 0 0 0 1 0 ω6 0
0 0 0 0 0 1 0 ω6































= P1Q12 =

=
1√
2































1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1































×































1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 ω2 0
0 0 0 0 0 0 0 ω2































In general one would have L − 1 − J of the two-bit interactions QJK on pass J ,
corresponding to different values of K. The entire 3-spin FFT is depicted in the
Appendix.

So the FFT matrix is expressed as a product of unitary matrices. For example
FFT on 4 electrons is

P0Q01Q02Q03P1Q12Q13P2Q23P3.

If there are L electrons then there are L matrices PJ and L(L − 1)/2 matrices QJK .
For our approximate AFFT, we simply delete those matrices QJK with K ≥

J + m. So the AFFT is again unitary, and easily computed with one-bit and two-bit
operators. It requires about Lm two-bit operations.

Quantum computation

Shor [SHO, page 12] suggests first developing a state

1√
q
Σq−1

a=0|a >

where q ≈ 5n2 is a product of small prime powers, which will enable him to do a
mixed-radix FFT later. By contrast, we suggest setting q = 2L ≈ 5n2. Second, he

4

computes xa(mod n), where x, n are integers computed classically, so that the state
becomes

1√
q
Σq−1

a=0|a, xa >

Then he does the Fourier transform, sending a to c with amplitude 1√
q
exp(2πiac/q).

This leaves the machine in state

1

q
Σq−1

a,c=0 exp(2πiac/q)|c, xa > .

We see that the radix-2L Fourier transform is directly implementable as L2 2-spin
interactions, as opposed to the L3 operations required by Shor.

We can improve still further, by doing our approximate Fourier transform instead
of the Fourier transform. Notice that on Pass J of AFFT computation, we use
interactions between bits J and K, J < K < J + m. So bit K of the output index,
bK , does not participate in any interaction after pass J = K −m. (Remember we are
numbering backwards, so pass K − m is m passes later than pass K.) Similarly, bit
K of the input index, aK , does not enter into the computation until pass J = K.

So we propose rearranging the computation in the following way.
* Start with y = 1 in an L-bit quantum register

where you will compute xa.
* For each J = L − 1, L − 2, ..., 2, 1, 0 :

* Place the electron J in state

1√
2
(|0 > +|1 >)

corresponding to the two possible values of aJ .
* Compute

y := y(x2J

)(aJ)(mod n)

reversibly, in the register allocated for y.
* For K = J + 1, J + 2, ..., min(J + m − 1, L − 1), apply operation QJK .
* Apply operation PJ .
* If J ≤ L − m, measure bit bJ+m−1 = cL−J−m from the output

of pass J of the AFFT computation.
(It will not enter any more interactions.)

* End (For each J = L − 1, L− 2, ..., 2, 1, 0).
* Measure the remaining bits bm−2, ..., b0.

5

* End algorithm
A possible advantage of this arrangement is that the electron in position K need

only maintain coherence for m passes of the computation, although the rest of the
system still has to maintain coherence for a longer time, so this advantage might be
less than it appears at first blush.

A definite advantage is in the computational complexity. Shor’s proposal, using
a mixed-radix Fourier Transform with q ≈ 5n2 the product of small prime powers,
appears to require about (log n)3 elementary operations (spin-spin interactions). The
radix-2L FFT requires only (log n)2 elementary operations. The AFFT requires only
(log n)(log log n + log 1/ǫ) operations, where a final precision of ǫ is required. So the
Fourier transform is no longer the bottleneck of the computation.

Parallel implementation

Several steps of the AFFT can be parallelized in the quantum implementation;
this might further speed up the computation time, and increase the likelihood of the
state remaining coherent until the computation is done.

We use, for an example, the FFT on 5 electrons, with operations proceeding right
to left:

FFT = P0Q01Q02Q03Q04P1Q12Q13Q14P2Q23Q24P3Q34P4

We can interchange the order of any two operations which do not involve any of the
same electrons; alternatively, we can do such operations in parallel. At time step
K = 8, 7, ..., 1, 0, let us perform PI if I + I = K, and QIJ if I + J = K. Steps that
are performed in parallel are displayed within square brackets, vertically aligned, and
again proceeding right to left:

FFT = P0Q01

[

P1

Q02

] [

Q12

Q03

]







P2

Q13

Q04







[

Q23

Q14

] [

P3

Q24

]

Q34P4

We used 9 time steps here; for an L-electron system we will use 2L−1 time steps.
This parallel implementation looks a lot like “systolic arrays,” [MC, chapter 8,

section 8.3], and suggests directions for physical implementation.
References

[KNU] Donald E. Knuth, volume 2. The Art of Computer Programming, Volume
2: Seminumerical Algorithms. (Addison-Wesley, Reading, MA, 2nd ed., 1981)

[MC] Carver Mead and Lynn Conway, Introduction to VLSI Systems. (Addison-
Wesley, Reading, MA, 1980)

6

[SHO] Peter W. Shor, “Algorithms for Quantum Computation: Discrete Log and
Factoring,” manuscript, 1994. Proceedings of FOCS 1994.

Appendix

We write out in full the FFT on 3 electrons. Note that the rows are numbered in
bit-reversed order (04261537), corresponding to the index of b rather than c.

FFT = P0Q01Q02P1Q12P2 =

=
1√
2



































1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 −1

P0



































×



































1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 ω2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 ω2

Q01



































×

×



































1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 ω 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 ω

Q02



































× 1√
2



































1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1

P1



































×

×



































1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 ω2 0
0 0 0 0 0 0 0 ω2

Q12



































× 1√
2



































1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1

P2



































7

=
1√
8































ω0 ω0 ω0 ω0 ω0 ω0 ω0 ω0

ω0 ω4 ω0 ω4 ω0 ω4 ω0 ω4

ω0 ω2 ω4 ω6 ω0 ω2 ω4 ω6

ω0 ω6 ω4 ω2 ω0 ω6 ω4 ω2

ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7

ω0 ω5 ω2 ω7 ω4 ω1 ω6 ω3

ω0 ω3 ω6 ω1 ω4 ω7 ω2 ω5

ω0 ω7 ω6 ω5 ω4 ω3 ω2 ω1































8

