
ar
X

iv
:q

ua
nt

-p
h/

04
07

21
5

v1

27
 J

ul
 2

00
4

QC Paulinesia

Robert R. Tucci

P.O. Box 226
Bedford, MA 01730

tucci@ar-tiste.com

August 24, 2006

An archipelago of identities, formed from the lava of Pauli Matrices, by the volcanic
activity of Quantum Computing.

Figure 1: Aerial view of Bora Bora

1

2

Contents

1 Introduction 3

2 Notation 4

3 Pauli Matrices 8

4 Hadamard Matrices 11

5 CNOTs 12

6 CNOT Generalizations 17

7 Exchanger 22

8 Bell States 24

9 GHZ 28

10 One and Two Qubit Projective Measurements 29

11 Two Qubit Exchange Scattering 33

12 Teleportation 37

13 Dense Coding 39

14 Quantum Fourier Transform 40

15 References 44

1 Introduction

This document is not a full course in Quantum Computing. My goal in producing
it was to create a collection of qubit circuit identities that are used in Quantum
Computing. Mathematicians and Physicists may consider it as being analogous to
a Table of Integrals or a Mathematical Handbook such as Gradshteyn & Ryzhik or
Abramowitz & Stegun. Computer Programmers may think of it as a scrapbook of
code snippets that are elegant, instructive, well documented, and useful. Electronics
experts may view it as a compendium of circuits for performing a large assortment
of tasks.

3

The vast majority of the circuit identities collected in this work were not
discovered for the first time by me, and I take no credit for discovering them. In
producing this document, I am acting as a collector, not as a discoverer.

I plan to continue adding qubit circuit identities to this collection, and to re-
lease future versions of this document containing the new specimens. For example,
there are some nice identities involving quantum error correction and quantum com-
piling that I have not included yet, but which I plan to include in future versions.
Suggestions and comments are welcomed and appreciated.

This document benefitted greatly from the wonderful LaTeX macros: QCircuit
(by B. Eastin, S. T. Flammia) and XYPic (by K.H. Rose and R.R. Moore), on which
QCircuit is based.

2 Notation

Let Bool = {0, 1}. For integers a and b such that a ≤ b, let Za,b = {a, a+1, a+2, . . . b}.
δ(x, y) and δx

y will both denote the Kronecker delta function. It equals one
when x = y and zero otherwise.

For any statement S, we define the truth function θ(S) to equal 1 if S is true
and 0 if S is false. For example, θ(x > 0) represents the unit step function and
δ(x, y) = θ(x = y) the Kronecker delta function.

⊕ will denote addition mod 2. Hence, for any a, b ∈ Bool, a⊕ b = a+ b− 2ab
and (−1)a⊕b = (−1)a+b. When speaking of bits with states 0 and 1, we will often use
an overline to represent the opposite state: 0̄ = 1, 1̄ = 0. Note that if x, k ∈ Bool,
then

∑

k(−1)kx = 1 + (−1)x = 2δ(x, 0). For x ∈ Bool, δ(x, 1) = x.
We will often use NS = 2NB , where NB stands for number of bits and NS for

number of states. We will use lower case Latin letters a, b, c . . . ∈ Bool to represent
bit values and lower case Greek letters α, β, γ, . . . ∈ Z0,NB−1 to represent bit positions.

Given a binary vector ~x ∈ BoolNB , if its components are labelled as follows:
~x = (xNB−1, xNB−2, . . . , x1, x0), then we will say that the components of ~x are labelled
naturally. For some applications, it is very convenient to use natural labelling. For
other applications, it doesn’t much matter whether we use natural labelling or not.
In cases where it doesn’t matter, we may use other common labellings such as ~x =
(x1, x2, . . . , xNB

).
Let ~ν = (NB − 1, NB − 2, . . . , 1, 0), and 2~ν = (2NB−1, 2NB−2, . . . , 21, 20).
Given any x ∈ Z0,NS−1, we can write x =

∑NB−1
i=0 2ixi. If we define the

naturally labelled binary vector ~x = (xNB−1, . . . , x1, x0), then x = 2~ν · ~x. We call
~x = (xNB−1, . . . , x1, x0) the binary representation of x and denote it by bin(x).

Given any naturally labelled binary vector ~x = (xNB−1, . . . , x1, x0), we can
write x = 2~ν · ~x. We call x ∈ Z0,NS−1 the decimal representation of ~x and denote it
by dec(~x).

If ~x, ~y ∈ BoolNB , we will use ~x ·~y =
∑NB−1

i=0 xiyi, where the addition is normal,
not mod 2.

4

We define the single-qubit states |0〉 and |1〉 by

|0〉 =

[
1
0

]

, |1〉 =

[
0
1

]

. (1)

Given any ~x = (x1, x2, . . . , xNB
) ∈ BoolNB , and given a vector of distinct qubit labels

~β = (β1, β2, . . . , βNB
), we define the NB-qubit state |~x〉 as the following tensor product

|~x〉 = |~x〉~β = |x1〉β1
|x2〉β2

. . . |xNB
〉βNB

= |x1〉 ⊗ |x2〉 . . .⊗ |xNB
〉 . (2)

For example,

|01〉 =

[
1
0

]

⊗
[

0
1

]

=







0
1
0
0






. (3)

With natural labelling, we would use ~x = (xNB−1, . . . , x1, x0), ~β = ~ν and x =
∑NB−1

i=0 2ixi. Instead of Eq.(2), we would have

|x〉 = |~x〉 = |~x〉~ν = |xNB−1〉NB−1 . . . |x1〉1 |x0〉0 = |xNB−1〉 ⊗ . . .⊗ |x1〉 ⊗ |x0〉 . (4)

Of course, any NB qubit state can be obtained as a linear combination of the
states |~x〉 for all ~x ∈ BoolNB .

Ir will represent the r dimensional unit matrix, for any integer r ≥ 1.
Suppose ~β = (β1, β2, . . . , βNB

) is a vector of bit labels, (M1,M2, . . . ,MNB
) is

a vector of 2× 2 complex matrices, and (φ1, φ2, . . . , φNB
) is a vector of 2-dimensional

complex column vectors. For i ∈ Z1,NB
, we define Mi(βi) by

Mi(βi) = I2 ⊗ · · · ⊗ I2 ⊗Mi ⊗ I2 ⊗ · · · ⊗ I2 , (5)

where the matrix Mi on the right hand side is located at bit position i (counting from
left to right, starting at 1) in the tensor product of NB 2 × 2 matrices. We often

define a product operator M(~β) by

M(~β) =

NB∏

i=1

Mi(βi) = M1(β1)⊗M2(β2)⊗ . . .MNB
(βNB

) , (6)

and a product state |φ〉~β

|φ〉~β =

NB∏

i=1

|φi〉βi
= |φ1〉 ⊗ |φ2〉 ⊗ . . . |φNB

〉 . (7)

5

For example, we might find it useful to define an operator M(~β) and a state |φ〉~β by

M(~β) =

NB∏

i=1

σX(βi) = σX ⊗ σX ⊗ . . .⊗ σX , (8)

|φ〉~β = |0〉~β =

NB∏

i=1

|0〉βi
=

(
1
0

)

⊗
(

1
0

)

⊗ · · · ⊗
(

1
0

)

= [1, 0, 0, . . . , 0]T . (9)

With natural labelling, we use ~β = ~ν. Let (MNB−1, . . . ,M1,M0) be a vector
of 2 × 2 complex matrices, and let (φNB−1, . . . , φ1, φ0) be a vector of 2-dimensional
complex column vectors. With natural labelling, for i ∈ Z0,NB−1, we define Mi(i) by

Mi(i) = I2 ⊗ · · · ⊗ I2 ⊗Mi ⊗ I2 ⊗ · · · ⊗ I2 , (10)

where the matrix Mi on the right hand side is located at bit position i (counting from
right to left, starting at 0) in the tensor product of NB 2 × 2 matrices. We often
define a product operator M(~ν) by

M(~ν) =

NB−1∏

i=0

Mi(i) = MNB−1(NB − 1)⊗ . . .⊗M1(1)⊗M0(0) , (11)

and a product state |φ〉~ν

|φ〉~ν =

NB−1∏

i=0

|φi〉i = |φNB−1〉 ⊗ . . .⊗ |φ1〉 ⊗ |φ0〉 . (12)

Next we explain our circuit diagram notation. In our qubit circuit diagrams,
each horizontal wire represents a single qubit (except when stated explicitly that the
wire represents several qubits). Different wires represent different qubits. We label
single qubit wires by Greek letters or by integers as follows:

α
β
γ
δ

...

,

0
1
2
3

...

. (13)

Thus, the first (topmost) wire is labelled either α or 0, the second wire is labelled
either β or 1, and so forth. For some special applications, we label qubits differently
from Eq.(13). For example, we might label the first two wires α1, α2, and the next two
wires β1, β2, or we might want to label the first wire (α1, α2), and make it represent

6

two qubits. In cases where bit labelling is different from Eq.(13), this will be stated
explicitly. Bras are represented by

|ψ1〉α |ψ2〉β =
|ψ1〉

|ψ2〉
, |ψ〉αβ = |ψ〉 , (14)

and kets by

〈χ1|α 〈χ2|β =
〈χ1|

〈χ2|
, 〈χ|αβ = 〈χ| . (15)

Operators are represented by

T1(α)T2(β) =
T1

T2

, T (α, β) = T . (16)

Matrix elements are represented by combining the above rules for bras, kets, and
operators. For example,

〈χ|αβ T (α, β) |ψ〉αβ = 〈χ| T |ψ〉 . (17)

Note that in our circuit diagrams, time flows from the right to the left of the diagram.

Careful: Many workers in Quantum Computing draw their diagrams so that time
flows from left to right. We eschew their convention because it forces one to reverse
the order of the operators every time one wishes to convert between a circuit diagram
and its algebraic equivalent in Dirac Notation.

Next, we will introduce a slight enhancement to the standard Dirac Notation.
Given a ket |ψ〉, if we can find an operator Ω such that |ψ〉 is a unique (up to a
scalar factor) eigenvector of Ω with eigenvalue λ, then we will sometimes denote |ψ〉
by |Ω = λ〉. Sometimes, in order to specify |ψ〉 uniquely, one needs to find a complete
set of commuting operators {Ωi : i ∈ Z1,N} such that Ωi |ψ〉 = λi |ψ〉 for all i, and

then we can denote |ψ〉 by
∣
∣
∣~Ω = ~λ

〉

. Note that if U is a unitary operator that acts

on the same Hilbert space as an operator Ω, then
∣
∣UΩU † = λ

〉
= U |Ω = λ〉. If

operator Ω has an eigenspace with eigenvalue λ, then we denote the projector onto
that eigenspace by π(Ω = λ). If the eigenspace is one dimensional, then π(Ω =
λ) = |Ω = λ〉 〈Ω = λ|. If the eigenspace has dimension greater than one, then we
can always find an orthonormal basis {|ψi

λ〉 : i ∈ S} for the eigenspace, and then
π(Ω = λ) =

∑

i∈S |ψi
λ〉 〈ψi

λ|. Note that if U is a unitary operator that acts on the
same Hilbert space as operator Ω, then Uπ(Ω = λ)U † = π(UΩU † = λ).

The Pauli matrices are defined by:

σX =

(
0 1
1 0

)

, σY =

(
0 −i
i 0

)

, σZ =

(
1 0
0 −1

)

. (18)

7

More information about the Pauli matrices may be found in the section entitled Pauli
Matrices.

We will often abbreviate n−fold tensor products of Pauli matrices as follows.
If w1, w2, . . . , wn ∈ {X, Y, Z}, and b1, b2, . . . , bn ∈ Bool, then let

σb1,b2,...,bn

w1,w2,...,wn
= σb1

w1
⊗ σb2

w2
⊗ . . .⊗ σbn

wn
. (19)

For example, σ1,0,1
XY Y = σX

1 ⊗ σY
0 ⊗ σY

1. Equivalently, for n bits ~α = (α1, α2, . . . αn),

σb1,b2,...,bn

w1,w2,...,wn
(~α) =

n∏

i=1

σbi
wi

(αi) . (20)

Also let

σw1,w2,...,wn
= σ1,1,...,1

w1,w2,...,wn
= σw1 ⊗ σw2 ⊗ . . .⊗ σwn

. (21)

For example, σXY Y = σ1,1,1
XY Y = σX ⊗ σY ⊗ σY .

It is sometimes convenient to define the following operator for any x, z ∈ Bool
and any qubit α:

Λx,z(α) = σX
x(α)σZ

z(α) . (22)

Note that Λx,z† = (−1)xzΛx,z, and Λ00 = 1, Λ10 = σX , Λ11 = (−i)σY , Λ00 = σZ . Λx,z

arises, for example, when dealing with Bell states.
For any j ∈ Bool and w1, w2 ∈ {X, Y, Z}, let Πj

w1,w2
be the projection operator

that projects the 2 qubit Hilbert space onto the eigenspace of σw1,w2 with eigenvalue
(−1)j . Thus,

Πj
w1,w2

= π[σw1,w2 = (−1)j] . (23)

Note that

σZZ = σZ ⊗ σZ =

(
1 0
0 −1

)

⊗
(

1 0
0 −1

)

= diag(1,−1,−1, 1) . (24)

From Eq.(24), it is clear that for any j, a, b ∈ Bool,

Πj
ZZ |a, b〉 = δj

a⊕b |a, b〉 . (25)

3 Pauli Matrices

The Pauli matrices are defined by:

σX =

(
0 1
1 0

)

, σY =

(
0 −i
i 0

)

, σZ =

(
1 0
0 −1

)

. (26)

8

Sometimes one refers to σX , σY , σZ as σ1, σ2, σ3, respectively. One can then use σ0

to denote the 2× 2 identity matrix. It is often convenient to use the vector of Pauli
matrices ~σ = (σX , σY , σZ).

All 3 Pauli matrices are their own inverses:

σX
2 = σY

2 = σZ
2 = 1 . (27)

Distinct Pauli matrices anticommute. For example,

σXσX = −σY σX . (28)

It is easy to check that

σXσY = iσZ , σY σZ = iσX , σZσX = iσY . (29)

Note that Eqs.(27), (28) and (29) specify a 3× 3 multiplication table for the 3 Pauli
matrices with each other.

For w ∈ {X, Y, Z}, if |+w〉 and |−w〉 represent the eigenvectors of σw with
eigenvalues +1 and −1, respectively, then

|+X〉 =
1√
2

(
1
1

)

, |−X〉 =
1√
2

(
1
−1

)

, (30)

|+Y 〉 =
1√
2

(
1
i

)

, |−Y 〉 =
1√
2

(
1
−i

)

, (31)

|+Z〉 =

(
1
0

)

, |−Z〉 =

(
0
1

)

. (32)

We define

|0〉 = |+Z〉 , (33)

and

|1〉 = |−Z〉 . (34)

We will use n to denote the “number operator”. Thus,

n =

(
0 0
0 1

)

= |−Z〉 〈−Z | =
1− σZ

2
, (35)

and

n = 1− n =

(
1 0
0 0

)

= |+Z〉 〈+Z | =
1 + σZ

2
. (36)

9

Since n and σZ are diagonal, it is easy to see that

σZ = (−1)n = 1− 2n . (37)

Most of the definitions and results stated so far for σZ have counterparts for
σZ and σY . The counterpart results can be easily proven by applying a rotation that
interchanges the coordinate axes. Let w ∈ {X, Y, Z}. If |+w〉 and |−w〉 represent the
eigenvectors of σw with eigenvalues +1 and −1, respectively, then we define

|0w〉 = |+w〉 , (38)

and

|1w〉 = |−w〉 . (39)

Let

nw = |−w〉 〈−w| =
1− σw

2
, (40)

nw = 1− nw = |+w〉 〈+w| =
1 + σw

2
. (41)

As when w = Z, one has

σw = (−1)nw = 1− 2nw . (42)

Note that whenever we use |0〉, |1〉 or n , without an X, Y or Z subscript, the
subscript Z should be inferred.

The one bit Hadamard matrix is defined by:

H =
1√
2

(
1 1
1 −1

)

=
1√
2
(σX + σZ) . (43)

It is easy to check that

H2 = 1 , (44)

HσXH = σZ , HσZH = σX , (45)

|0X〉 =
|0〉+ |1〉√

2
= H |0〉 , (46)

|1X〉 =
|0〉 − |1〉√

2
= H |1〉 . (47)

10

The matrix in is defined by

in =

(
1 0
0 i

)

. (48)

It is easy to check that

(in)2 = σZ , (49)

inσXi
−n = σY , i−nσXi

n = −σY . (50)

Note that for a, b ∈ Bool,

σX
b |a〉 = |a⊕ b〉 , (51)

σZ
b |a〉 = (−1)ab |a〉 , (52)

〈a|H |b〉 =
(−1)ab

√
2

. (53)

A general qubit rotation is defined by ei~θ·~σ, where ~θ is a 3 dimensional real
vector. For any real number θ,

eiθσZ = cos θ + iσZ sin θ . (54)

Eq.(54) can be proven by expressing both sides of it as a power series. Applying a
rotation to Eq.(54), it becomes

ei~θ·~σ = cos θ + i~σ · θ̂ sin θ , (55)

where ~θ is a 3 dimensional real vector, θ is its magnitude, and θ̂ = ~θ/θ.

4 Hadamard Matrices

The 1 bit Hadamard matrix is defined by

H1 =
1√
2

0 1

0 1 1
1 1 -1

. (56)

The NB-bit Hadamard matrix is defined as the NB-fold tensor product of H1:

HNB
= H1 ⊗H1 ⊗ . . .⊗H1

︸ ︷︷ ︸

NB factors

. (57)

11

For example, for NB = 2,

H2 =
1

2

00 01 10 11

00 1 1 1 1
01 1 -1 1 -1
10 1 1 -1 -1
11 1 -1 -1 1

, (58)

where we have labelled the rows and columns with binary numbers in increasing
dictionary order. Equivalently, for bits ~α = (α1, α1, . . . , αNB

),

HNB
(~α) =

NB∏

i=1

H1(αi) . (59)

We will often use a plain H to represent H1. Since (H1)b,b′ = (−1)bb′

√
2

for b, b′ ∈ Bool,
it follows that

(HNB
)~b,~b′ =

(−1)
~b·~b′

√
2NB

(60)

for ~b, ~b′ ∈ BoolNB . Since H2
1 = 1 and HT

1 = H1, where T=transpose, it follows that

H2
NB

= 1 , (61)

and

HT
NB

= HNB
. (62)

5 CNOTs

We define a CNOT (C = controlled, NOT = σX) by:

CNOT (α→ β) = CNOT (β ← α) = σX(β)n(α) = (−1)n(α)nX (β) = •
×

. (63)

α is called the control qubit and β is called the target qubit. The CNOT can be
easily generalized to have more than one control qubit:

σ
n(α)n(β)
X (γ) = (−1)n(α)n(β)nX (γ) =

•
•
×

. (64)

Other operators related to CNOT are

σX(β)n(α) = (−1)n(α)nX (β) =
��
��	
�

×
, (65)

and

12

σZ
n(α)(β) = σZ

n(β)(α) = (−1)n(α)n(β) = •
•

. (66)

For any a, b, c ∈ Bool,
σX(β)n(α) |a, b〉αβ = |a, b⊕ a〉 , (67)

σ
n(α)n(β)
X (γ) |a, b, c〉αβγ = |a, b, c⊕ ab〉 , (68)

σX(β)n(α) |a, b〉αβ = |a, b⊕ a〉 , (69)

(−1)n(α)n(β) |a, b〉αβ = (−1)ab |a, b〉 . (70)

Some workers represent a CNOT by
•
��������

instead of •
×

. The
•
��������

notation reminds us of the ⊕ in Eq.(67), whereas the •
×

notation reminds us of

the X in σX(β)n(α).

Claim:

σX(α)n(β) = σX(α)n(β) + n(β) . (71)

proof:

Check that both sides agree when n(β) equals zero and one.
QED

Claim:

σX(α)n(β) =
1

2

∑

(x,z)∈Bool2

σX
x(α)σZ

z(β)(−1)xz . (72)

proof:

σX(α)n(β) = (−1)nX(α)nZ (β) (73)

= 1− 2nX(α)nZ(β) (74)

= 1− 2

(
1− σX(α)

2

) (
1− σZ(β)

2

)

(75)

=
1

2
[1 + σX(α) + σZ(β)− σXZ(α, β)] . (76)

QED

13

Claim: (Permuting 2 CNOTs in a chain)

×
• ×
•

=
× ×
× •
• •

(77)

=
××
× •
• •

. (78)

proof:

Let LHS and RHS stand for the left and right hand sides of Eq.(77). For a, b, c ∈ Bool,

LHS |a, b, c〉αβγ = σX(α)n(β)σX(β)n(γ) |a, b, c〉 (79)

= σX(α)n(β) |a, b⊕ c, c〉 (80)

= |a⊕ b⊕ c, b⊕ c, c〉 . (81)

RHS |a, b, c〉αβγ = σX(α)n(γ)σX(β)n(γ)σX(α)n(β) |a, b, c〉 (82)

= σX(α)n(γ)σX(β)n(γ) |a⊕ b, b, c〉 (83)

= σX(α)n(γ) |a⊕ b, b⊕ c, c〉 (84)

= |a⊕ b⊕ c, b⊕ c, c〉 . (85)

Finally, note that CNOT (γ → α) and CNOT (γ → β)CNOT (β → α) com-
mute.
QED

A mnemonic for remembering Eq.(77): On the left hand side of Eq.(77), we
have a “chain” CNOT(α ← β) CNOT(β ← γ) of CNOTs. When CNOT(α ← β)
is moved to the right (or to the left), over CNOT(β ← γ), it leaves behind as a
“wake” the CNOT within the dotted box. The wake CNOT(α← γ) points from the
beginning to the end of the original chain CNOT(α ← β) CNOT(β ← γ).

Throughout QC Paulinesia, we will refer to equations, like Eq.(77), wherein
two operators are permuted and a wake is produced, as “wake identities”. Eq.(77) is
the first of many wake identities we will present.

Claim: (Permuting 2 CNOTs in a chain, when first and last qubit of chain are the
same)

× •
• ×

= • × • ×
× • × • . (86)

14

proof:

Eq.(86) is the same as

1 = × • × • × •
• × • × • ×

, (87)

which is just the fact that E2 = 1, where E is the exchange operator.
QED

A mnemonic for remembering Eq.(86): On the left hand side of Eq.(86), we
have a “loop chain” CNOT(α← β) CNOT(β ← α) of CNOTs. When CNOT(α← β)
is moved over CNOT(β ← α), it leaves behind as a “wake” the two CNOTs within
the dotted box. The wake and the non-wake parts are identical.

Claim:

•

× σZ

=
σZ •

σZ ×
. (88)

(Dotted box encloses wake.)
proof:

Let LHS and RHS stand for the left and right hand sides of Eq.(88). For a, b ∈ Bool,

LHS |a, b〉αβ = σX(β)n(α)σZ(β) |a, b〉 (89)

= (−1)b |a, b⊕ a〉 . (90)

RHS |a, b〉αβ = σZ(α)σZ(β)σX(β)n(α) |a, b〉 (91)

= σZ(α)σZ(β) |a, b⊕ a〉 (92)

= (−1)b |a, b⊕ a〉 . (93)

QED

alternative proof:

σX(β)n(α)σZ(β)σX(β)n(α) = [σX(β)n(α) + n(α)]σZ(β)[σX(β)n(α) + n(α)] (94)

= σZ(β)[−σX(β)n(α) + n(α)][σX(β)n(α) + n(α)](95)

= σZ(β)[−n(α) + n(α)] (96)

= σZ(β)σZ(α) . (97)

15

QED

Claim:

• •
× • ×
×

=
•
•

××
. (98)

proof:

Apply Eq.(77) once to left hand side of Eq.(98).
QED

Note that in Eq.(98), the left hand side contains only nearest neighbor CNOTs,
whereas the right hand side contains only commuting CNOTs.

Claim:

• •
× • • ×
× • ×
×

=
•
•
•

×××
. (99)

proof:

Apply Eq.(77) twice to left hand side of Eq.(99).
QED

Claim:

• •
× • × •
× ×

=
•

×
. (100)

proof:

This follows immediately from Eq.(98).
QED

Claim:

• •
× • • × • •
× • × × • ×
× ×

=
•

×
. (101)

proof:

The product of left hand sides of Eqs.(98) and (99), equals the product of their right
hand sides.
QED

16

Eqs.(100) and (101) suggest a way of converting a non-nearest neighbor CNOT
into a sequence of nearest neighbor ones.

6 CNOT Generalizations

In this section, ~α, ~β and ~γ will denote disjoint sets of distinct qubits. That is, any
two different components of the same vector, or two components of different vectors
represent different qubits.

Suppose U is a unitary matrix. Furthermore, for j = 1, 2, suppose πj is a
projection operator (i.e., π2

j = πj, the eigenvalues of πj are all 0 or 1). Some examples
of projection operators πj that are of interest to us: 1, n(α), n(α)n(β), n(α)n(β),
n(α)n(β)n(γ), etc. It is convenient to generalize CNOT diagrammatic notation as
follows. Let

/. -,() *+π1 ~α

/. -,() *+π2 ~β
= (−1)π1(~α)π2(~β) , (102)

and
/. -,() *+π1 ~α

U ~β
= U(~β)

π1(~α)
. (103)

We will refer to an operator of the form Eq.(103) as a projector controlled unitary

operator, or simply as a controlled U, in analogy to a controlled NOT, for which
U = σX = the NOT operator. The set of operators of the form Eq.(102) is a subset
of the set of operators of the form Eq.(103). Indeed, given any projection operator

π2(~β), one can always define the unitary operator U(~β) = (−1)π2(~β) = 1 − 2π2(~β).
Hence,

/. -,() *+π1

(−1)π2

=

/. -,() *+π1

/. -,() *+π2

. (104)

Special cases of Eqs.(102) and (103) are:

(−1)n(α)n(β) = •
•

=
'& %$! "#n

'& %$! "#n
=

'& %$! "#n

σZ

, (105)

σX(β)n(α) = •
×

=

'& %$! "#n

/. -,() *+nX

=

'& %$! "#n

σX

, (106)

17

and, for any 2× 2 unitary matrix U :

U(β)n(α) =
•

U
=

'& %$! "#n

U
, (107)

U(γ)n(α)n(β) =

•
•
U

=

'& %$! "#n

'& %$! "#n

U

. (108)

We will refer to the operator of Eq.(107) as an n1 controlled U, and to the operator
of Eq.(108) as an n2 controlled U.

Suppose U is any 2 × 2 unitary matrix. It can always be diagonalized as
follows:

U = V diag(eiθ1 , eiθ2)V † , (109)

where θ1, θ2 are reals numbers and V is a unitary matrix. If we set

∆ =
θ1 − θ2

2
, (110)

and

θ =
θ1 + θ2

2
, (111)

then

U = eiθV ei∆σZV † . (112)

Claim:

For any 2× 2 unitary matrix U(β) given by Eq.(112), and projection operator
π1(~α),

/. -,() *+π1

U
=

eiθπ1
/. -,() *+π1 /. -,() *+π1 ~α

V ei∆
2

σZ × e−i∆
2

σZ × V † β
. (113)

proof:

Check that both sides agree when π1 equals 0 and 1.
QED

alternative proof:

U(β)n(α) = eiθn(α)V (β)ei∆σZ (β)n(α)V (β)† . (114)

18

ei∆σZ(β)n(α) = ei∆σZ (β) 1
2
[1−σZ (α)] (115)

= ei∆
2

σZ (β)e−i∆
2

σZ (β)σZ (α) (116)

= ei∆
2

σZ (β)σX(β)n(α)e−i∆
2

σZ (β)σX(β)n(α) . (117)

This proof still holds if we replace n(α) by π1(~α) and σZ(α) by (−1)π1(~α).
QED

Examples of Eq.(113) are:

•
U

=
eiθ̄n • •

V ei∆
2

σZ × e−i∆
2

σZ × V †
, (118)

and

•
•
U

=

• • •

eiθ̄n • •

V ei∆
2

σZ × e−i∆
2

σZ × V †

. (119)

Eqs.(118) and (119) suggest a way of converting any nr controlled U , for an integer
r ≥ 1, into a sequence of gates containing no controlled U ’s but containing ns con-
trolled NOTs, where s ≤ r.

Claim: (Permuting two projector controlled U ’s)
Suppose π1(~α), π2(~α) are commuting ([π1, π2] = 0) projection operators and

U1(~β), U2(~β) are unitary operators. Then

/. -,() *+π1 /. -,() *+π2

U1 U2

=

/. -,() *+π1π2 /. -,() *+π2 /. -,() *+π1 ~α

U1U2U
†
1U

†
2 U2 U1 ~β

. (120)

(Dotted box encloses wake.) Algebraically,

U1(~β)π1(~α)U2(~β)π2(~α) = (U1U2U
†
1U

†
2)π1π2Uπ2

2 Uπ1
1 . (121)

proof:

Check that both sides of Eq.(120) agree when (π1, π2) equals each element of Bool2.
QED

Claim:

For any projection operator π1(~α) and unitary matrix U(~γ),

19

/. -,() *+π1

× •
U

=

/. -,() *+π1 /. -,() *+π1 /. -,() *+π1 ~α

• • × β

U−2 U U ~γ

. (122)

(Dotted box encloses wake.)
proof:

Consider Eq.(120) with the following replacements: U1 → σX(β), U2 → U(~γ)n(β),
π2 → 1. Thus,

U1U2U
†
1U

†
2 → σX(β)U(~γ)n(β)σX(β)U(~γ)−n(β) = U(~γ)n(β)−n(β) = U(~γ)1−2n(β) . (123)

QED

Claim:

For any projection operator π1(~α) and unitary matrix U(~γ),

/. -,() *+π1

•
U

=

/. -,() *+π1 /. -,() *+π1 /. -,() *+π1 ~α

× • × • β

U
1
2 U

−1
2 U

1
2 ~γ

. (124)

proof:

Apply Eq.(122) to the right hand side of Eq.(124) to permute σX(β)π1(~α) and U(~γ)
−1
2

n(β).
QED

Examples of Eq.(124) are

•
•
U

=

• • •

× • × •

U
1
2 U

−1
2 U

1
2

, (125)

and

•
•
•
U

=

• • •

• • •

× • × •

U
1
2 U

−1
2 U

1
2

. (126)

20

Eqs.(125) and (126) suggest a way of converting an nr controlled U , for an
integer r ≥ 2, into a sequence of gates that contains no controlled U ’s except n1

controlled U ’s.

Claim:

Suppose π1(~α) and π2(~α) are commuting projection operators. Then

/. -,() *+π1 /. -,() *+π2

× •
=

(−1)π1π2 /. -,() *+π2 /. -,() *+π1 ~α

• × β

. (127)

(Dotted box encloses wake.)
proof:

Consider Eq.(120) with the following replacements: U1 → σX(β), U2 → σZ(β). Thus,

U1U2U
†
1U

†
2 → σXσZσXσZ = −1 . (128)

QED

Eq.(127) can be used to transform sequences of nr controlled NOTs. For
example, the following identity can be easily proven by applying Eq.(127):

• •
• •
• •
× • × •
× ×

=

•
•
•

×

. (129)

Note that Eq.(129) reduces an n3 controlled NOT into a sequence of n2 controlled
NOTs.

Claim:

For any real number θ,

/. -,() *+π1

× eiθσZ

=

π1 π1 ~α

e−2iθσZ eiθσZ × β
. (130)

(Dotted box encloses wake.)
proof:

Consider Eq.(120) with the following replacements: U1 → σX(β), U2 → eiθσZ (β),
π2 → 1. Thus,

U1U2U
†
1U

†
2 → σX(β)eiθσZ(β)σX(β)e−iθσZ(β) = e−2iθσZ (β) . (131)

QED

21

7 Exchanger

We define the Exchanger (a.k.a. Swapper or Exchange Operator or Bit Transposition)
by

E(α, β) |a, b〉αβ = |b, a〉αβ , (132)

for all a, b ∈ Bool. Therefore

E(α, β) = E(β, α) , (133)

and

E(α, β)2 = 1 . (134)

Throughout QC Paulinesia, we will represent Exchanger by

E(α, β) = ∧
∨

. (135)

Claim:

E(α, β) = σX(α)n(β)σX(β)n(α)σX(α)n(β) = × • ×
• × •

. (136)

proof:

σX(α)n(β)σX(β)n(α)σX(α)n(β) |a, b〉αβ = σX(α)n(β)σX(β)n(α) |a⊕ b, b〉 (137)

= σX(α)n(β) |a⊕ b, a〉 (138)

= |b, a〉 . (139)

QED

Claim: If U and V are 2× 2 unitary matrices, then

U ∧ V †

V ∨ U †
= ∧

∨
. (140)

proof:

Obvious.
QED

Claim:

× • ×
• × •

=
× ��
��	
� ×
��
��	
� × ��
��	
�

=
��
��	
� × ��
��	
�

× ��
��	
� ×
= • × •

× • ×
. (141)

22

proof:

By virtue of Eq.(140),

× • ×
• × •

=
σX × • × σX

σX • × • σX

=
× ��
��	
� ×
��
��	
� × ��
��	
�

. (142)

Likewise,

× • ×
• × •

=
H × • × H

H • × • H
= • × •

× • ×
. (143)

QED

Claim:

E(α, β) = [n(α)n(β) + n(α)n(β)] + σX(α)σX(β)[n(α)n(β) + n(α)n(β)] . (144)

proof:

Let RHS be the right hand side of Eq.(144). For any a, b ∈ Bool, if a = b,
RHS |a, b〉 = |a, b〉, whereas when a 6= b, RHS |a, b〉 =

∣
∣a, b

〉
.

QED

For any x, z ∈ Bool and bit α, let Λx,z(α) = σX
x(α)σZ

z(α). Note that [Λx,z]† =
(−1)xzΛx,z and that Λ00 = 1, Λ10 = σX , Λ11 = (−i)σY , Λ01 = σZ . As usual, let
σw1w2 = σw1 ⊗ σw2 for w1, w2 ∈ {X, Y, Z}.

Claim:

E(α, β) =
1

2

∑

(x,z)∈Bool2

Λxz(α)[Λxz(β)]† (145)

=
1

2
(1 + σXX + σY Y + σZZ)(α, β) (146)

=
1

2
[1 + ~σ(α) · ~σ(β)] . (147)

proof:

23

1

2

∑

x,z

Λxz(α)(−1)xzΛxz(β) |a, b〉α,β = (148)

=
1

2

∑

x,z

(−1)xz(σX
xσZ

z |a〉α)(σX
xσZ

z |b〉β) (149)

=
1

2

∑

x,z

(−1)(x+a+b)z |a⊕ x, b⊕ x〉 (150)

=
1

2

∑

x

2δx
a⊕b |a⊕ x, b⊕ x〉 (151)

= |b, a〉 . (152)

QED

alternative proof:

Replace the 3 CNOTs in E(α, β) = σX(α)n(β)σX(β)n(α)σX(α)n(β) by σX(α)n(β) =
1
2

∑

x,z σX
x(α)σZ

z(β)(−1)xz. Details left to the reader.
QED

We could have predicted that E(α, β) would have the form Eq.(147) due to
the invariance of Exchanger under identical rotations of both bits; that is, due to

Eq.(140) with U = V = ei~θ·~σ, where ~θ is an arbitrary 3 dimensional real vector.

Claim:

∧

∨
=

∧ ∧
∨ ∧ ∨
∨

. (153)

proof:

Check that both sides map α→ γ, β → β, γ → α.
QED

8 Bell States

Define the Bell state |B00〉 by
∣
∣B00

〉
=

1√
2
(|00〉+ |11〉) . (154)

Claim:

24

∣
∣B00

〉

αβ
=

• H |0〉

× |0〉
. (155)

proof:

σX(β)n(α)H(α) |00〉αβ =
∑

a∈Bool

σX(β)n(α) |a〉α 〈a|αH(α) |00〉 (156)

=
∑

a

σX
a(β) |a, 0〉αβ (

1√
2
) (157)

=
1√
2

∑

a

|a, a〉 . (158)

QED

Claim:

|B00〉
σX

=
σX

|B00〉 , (159)

|B00〉
σZ

=
σZ

|B00〉 , (160)

|B00〉
H

=
H

|B00〉 . (161)

proof:

σX(β)
∑

a∈Bool

|a, a〉 =
∑

a

|a, a〉 =
∑

a

|a, a〉 = σX(α)
∑

a

|a, a〉 . (162)

σZ(β)
∑

a∈Bool

|a, a〉 =
∑

a

(−1)a |a, a〉 = σZ(α)
∑

a

|a, a〉 . (163)

Eq.(161) follows from the previous two equations and the observation that
H = 1√

2
(σX + σZ).

QED

Define the Bell states |Bx,z〉 and |Bx,z〉 for x, z ∈ Bool by

|Bx,z〉 = |B00〉
σX

xσZ
z

, (164)

25

and

|Bx,z〉 =
σX

xσZ
z

|B00〉 . (165)

Note that |B00〉 = |B00〉. Since

|Bx,z〉 = σX
x(β)σZ

z(β)(
1√
2
)(|00〉+ |11〉)αβ (166)

=
1√
2
(|0x〉+ (−1)z |1x〉) , (167)

it follows that

|B00〉 = 1 |B00〉 = 1√
2
(|00〉+ |11〉)

|B10〉 = σX(β) |B00〉 = 1√
2
(|01〉+ |10〉)

|B11〉 = (−i)σY (β) |B00〉 = 1√
2
(|01〉 − |10〉)

|B01〉 = σZ(β) |B00〉 = 1√
2
(|00〉 − |11〉)

. (168)

Claim:

For any x, z ∈ Bool,

|Bx,z〉αβ
= E(α, β) |Bx,z〉αβ (169)

= (−1)xz |Bx,z〉αβ . (170)

Thus, |Bx,z〉 and |Bx,z〉 are both eigenfunctions of E with eigenvalue (−1)xz.
proof:

Eq.(169) is obvious. Eq.(170) follows from

|B00〉
σX

xσZ
z

=
σZ

z

|B00〉
σX

x
(171)

=
σZ

zσX
x

|B00〉 (172)

= (−1)xz σX
xσZ

z

|B00〉 . (173)

QED

Claim:

For any x, z ∈ Bool,

26

|Bx,z〉 =
• H |z〉

× |x〉
, (174)

|Bx,z〉 =
× |x〉

• H |z〉
. (175)

proof:

|B00〉
σX

xσZ
z

=
σZ

z

|B00〉
σX

x
(176)

=
σZ

z • H |0〉

σX
x × |0〉

(177)

=
• H |z〉

× |x〉
. (178)

QED

Claim: (Orthonormality)

〈Bxz|Bx′z′〉 = δx′,z′

x,z (179)

for any x, z, x′z′ ∈ Bool, and
∑

(x,z)∈Bool2

|Bxz〉 〈Bxz| = 1 . (180)

proof:

〈z′| H • • H |z〉

〈x′| ×× |x〉
= δx′,z′

x,z . (181)

∑

x,z

• H |z〉 〈z| H •

× |x〉 〈x| ×
= 1 . (182)

QED

Claim:

27

For all a, b, x, z ∈ Bool, if P (a, b|x, z) = |〈a, b|Bx,z〉|2, then the marginals P (a|x, z)
and P (b|x, z) are both identically equal to 1

2
.

proof:

∑

a

P (a, b|x, z) =
∑

a

〈z| H • |a〉 〈a| • H |z〉

〈x| × |b〉 〈b| × |x〉
(183)

=
∑

a

∣
∣
∣
∣

(−1)za

√
2
〈x| σX

a |b〉
∣
∣
∣
∣

2

(184)

=
1

2

∑

a

|〈x|a⊕ b〉|2 (185)

=
1

2

∑

a

δx⊕b
a =

1

2
. (186)

QED

9 GHZ

The GHZ state is defined by

|GHZ〉 =
1√
2
(|000〉+ |111〉) . (187)

Claim:

|GHZ〉 =

× |0〉

× |0〉

• • H |0〉

. (188)

proof:

Let RHS denote right hand side of Eq.(188).

RHS = σX(α)n(γ)σX(β)n(γ)H(γ) |000〉αβγ (189)

= σX(α)n(γ)σX(β)n(γ) 1√
2

∑

a∈Bool

|0, 0, a〉 (190)

=
1√
2

∑

a∈Bool

|a, a, a〉 = |GHZ〉 . (191)

28

QED

Claim:

σXY Y |GHZ〉 = σY XY |GHZ〉 = σY Y X |GHZ〉 = − |GHZ〉 . (192)

Hence,

σXY Y σY XY σY Y X |GHZ〉 = − |GHZ〉 . (193)

However,

σXXX |GHZ〉 = + |GHZ〉 . (194)

proof:

For any a ∈ Bool, σY |a〉 = i(−1)a |a〉 and σX |a〉 = |a〉 so

σXY Y |GHZ〉 = σX ⊗ σY ⊗ σY

1√
2

∑

a∈Bool

|a, a, a〉 (195)

= (−1)
1√
2

∑

a

|a, a, a〉 (196)

= − |GHZ〉 . (197)

This establishes Eq.(192). Eq.(193) follows from Eq.(192). Eq.(194) can be proven
in the same way as Eq.(192).
QED

10 One and Two Qubit Projective Measurements

Claim: (Conversion: 1 qubit internal measurement → 1 qubit final measurement)
For any j ∈ Bool,

|j〉 〈j|
=
〈j| × |0〉

•
. (198)

proof:

Let LHS and RHS stand for the left and right hand sides of Eq.(198). For any
b ∈ Bool,

LHS |b〉β = |b〉β δb
j . (199)

29

RHS |b〉β = 〈j|α σX(α)n(β) |0, b〉αβ (200)

= 〈j|α |b, b〉αβ (201)

= |b〉β δb
j . (202)

QED

One qubit operations (such as internal or final one qubit measurements or one
qubit rotations) are “cheap” compared with two qubit operations such as CNOTs
and two qubit measurements (either internal or final). This is because two qubit
operations are slower and they require two qubits to interact, which opens the door
for noise from the environment to creep in. So in this section we will pay attention
only to the number of two qubit operations. Let bibit stand for two bits. Next we
will show what I like to call the “one to two” conversion rules. Namely, given a single
CNOT, one can always convert it to two bibit operations. Likewise, given a single
bibit operation, one can always convert it to two CNOTs.

As usual in this document, for j ∈ Bool, we define Πj
ZZ(α, β) = π[σZZ(α, β) =

(−1)j]; i.e, Πj
ZZ is the projection operator onto the 2 qubit subspace with (−1)j as

eigenvalue for σZ ⊗ σZ .

Claim: (Conversion: 1 bibit measurement → 2 CNOTs)
For any j ∈ Bool,

Πj
ZZ

=
• •

× |j〉 〈j| ×
. (203)

proof:

Let RHS stand for the right hand side of Eq.(203). For any a, b ∈ Bool,

RHS |a, b〉αβ = σX(β)n(α) |j〉β 〈j|β σX(β)n(α) |a, b〉αβ (204)

= σX(β)n(α) |j〉β δ
j
a⊕b |a〉α (205)

= δj
a⊕b |a, b〉αβ (206)

= Πj
ZZ |a, b〉αβ . (207)

QED

Claim: (Conversion: 1 bibit measurement → 1 CNOT. Special case of Eq.(203).)
For any j, k ∈ Bool,

30

〈k|
Πj

ZZ
=
〈k| •

σX
k |j〉 〈j| ×

. (208)

proof:

Follows immediately from Eq.(203).
QED

Claim: (Another Conversion of: 1 bibit measurement → 2 CNOTs)
For any j ∈ Bool,

Πj
ZZ

=

〈j| ×× |0〉

•

•

. (209)

proof:

Let LHS and RHS denote the left and right hand sides of Eq.(209).

LHS = • •

× |j〉 〈j| ×

(210)

=

〈j| × |0〉

• •

× • ×

(211)

=

〈j| ×× |0〉

• • •

• ××

(212)

= RHS . (213)

QED

Claim: (Conversion: 1 CNOT → 2 bibit measurements)
For any k, j1, j2 ∈ Bool,

31

•

×

= (−1)(k+j1)j22
√

2

σZ
j2

Πj1
ZZ〈k| H

Πj2
ZZ

H H |0〉

σX
k+j1 H H

. (214)

proof:

Define T by

T =
Πj1

ZZ〈k| H
Πj2

ZZ

H H |0〉

H H

. (215)

Then

T = 〈k| H × |j2〉

H •
︸ ︷︷ ︸

T1

•

〈j2| × H × |j1〉

• H
︸ ︷︷ ︸

T2

•

〈j1| × H |0〉

︸ ︷︷ ︸

T3

, (216)

T1 =
(−1)kj2

√
2

H(γ)σZ
k(γ) , (217)

T3 =
1√
2
, (218)

T2 =

•

〈j2| H • × |j1〉

H ×

(219)

=

• •

〈j2| H × • |j1〉

H × ×

(220)

=
(−1)j1j2

√
2

• σZ
j2

H × σX
j1

. (221)

32

Putting all this together,

T = T1T2T3 (222)

=
(−1)(k+j1)j2

2
√

2

• σZ
j2

HσZ
kH × σX

j1
(223)

=
(−1)(k+j1)j2

2
√

2

σZ
j2 •

σX
k+j1 ×

. (224)

QED

alternative proof:

Define operator S such that for all a, c ∈ Bool,
S |a, c〉αγ = 〈k|β H(β)Πj2

ZZ(β, γ)H(β)Πj1
ZZ(α, β)H(β) |a, 0, c〉αβγ . (225)

In Eq.(225), insert a partition of unity
∑

(a1,b1,c1)∈Bool3 |a1, b1, c1〉 〈a1, b1, c1| before the

first bibit measurement and another
∑

(a2,b2,c2)∈Bool3 |a2, b2, c2〉 〈a2, b2, c2| before the

second. Then use the fact that for a, b, j ∈ Bool, Πj
ZZ |a, b〉 = δj

a⊕b |a, b〉. Details left
to the reader.
QED

Claim: (Conversion: 1 CNOT → 1 bibit measurement. Special case of Eq.(214).)
For any j, k ∈ Bool,

•

× |j〉
= (−1)jk

√
2

σZ
j

Πj
ZZ

H |k〉
. (226)

proof:

Let LHS and RHS stand for the left and right hand sides of Eq.(226). Then

RHS = (−1)jk
√

2
σZ

j • •

× |j〉 〈j| × H |k〉
= LHS . (227)

QED

11 Two Qubit Exchange Scattering

Throughout this section, |ψ〉 will denote an arbitrary one qubit state.

33

Claim: (Exchange scattering via Exchanger)
For any z ∈ Bool,

√
2
〈z| H ∧ |ψ〉

∨ |0〉
=

|ψ〉
. (228)

proof:

Let LHS and RHS stand for the left and right hand sides of Eq.(228).

LHS =
√

2
〈z| H |0〉

|ψ〉
= RHS . (229)

QED

Claim: (Exchange scattering via CNOT)
For any z ∈ Bool,

√
2
〈z| H • |ψ〉

σZ
z × |0〉

=
|ψ〉

. (230)

proof:

Let LHS and RHS stand for the left and right hand sides of Eq.(230).

LHS =
√

2
〈z| • H • ∧ |0〉

• × ∨ |ψ〉
(231)

=
√

2
〈z| H × • • × • |0〉

• ×× • × |ψ〉
(232)

=
√

2
〈z| H |0〉

|ψ〉
(233)

= RHS . (234)

QED

alternative proof:

34

For any a ∈ Bool:

√
2
〈0|H • |a〉

× |0〉
= σX

a(β) |0〉β = |a〉β . (235)

Thus, for an arbitrary state |ψ〉,

√
2
〈0|H • |ψ〉

× |0〉
=

|ψ〉
. (236)

In Eq.(236), if we multiply ket |ψ〉 by a pre-processing and a post-processing σZ
z,

then we obtain

√
2
〈0|H • σZ

z |ψ〉

σZ
z × |0〉

=
(σZ

z)2 |ψ〉
, (237)

which easily yields

√
2
〈z| H • |ψ〉

σZ
z × |0〉

=
|ψ〉

. (238)

QED

Claim: (Another example of exchange scattering via CNOT)
For any x ∈ Bool,

√
2
〈x| × |ψ〉

σX
x • H |0〉

=
|ψ〉

. (239)

proof:

In Eq.(230), if we replace z by x and multiply the ket |ψ〉 by a pre-processing and a
post-processing H , then we obtain:

√
2
〈x| • H • H |ψ〉

H • × |0〉
=

H2 |ψ〉
. (240)

The last identity simplifies to

√
2
〈x| • × |ψ〉

× • H |0〉
=

|ψ〉
, (241)

35

which is the same as the claim that we set out to prove.
QED

Claim: (Exchange scattering via a 2 qubit projective measurement)
For any j, k ∈ Bool,

2
〈j| H

Πk
ZZ

|ψ〉

σZ
jσX

k H |0〉
=

|ψ〉
. (242)

proof:

〈j| H
Πk

ZZ

|ψ〉

H |0〉
= (243)

=
〈j| H × |k〉 〈k| × |ψ〉

• • H |0〉
(244)

=

[
(−1)jk

√
2

σZ
j(β)

][
σX

k(β)√
2
|ψ〉β

]

(245)

= σX
k(β)σZ

j(β) |ψ〉β /2 . (246)

To go from Eq.(243) to Eq.(244), we expressed the two qubit projective measurement
in terms of 2 CNOTs, as described in the section entitled One and Two Qubit Pro-
jective Measurements. To go from Eq.(244) to Eq.(245), we used identity Eq.(239)
to reduce the second dotted box of Eq.(244).
QED

alternative proof:

36

For any a ∈ Bool,

〈j| H
Πk

ZZ

|a〉

H |0〉
= (247)

= 〈j|αH(α)Πk
ZZ




∑

(a′,b′)∈Bool2

|a′, b′〉 〈a′, b′|



H(β) |a, 0〉αβ (248)

=
∑

a′,b′

〈j|αH(α) |a′〉α |b′〉β δk
a′⊕b′ 〈a′, b′|H(β) |a, 0〉αβ (249)

=
∑

a′,b′

(−1)ja′

√
2
|b′〉β δk

a′⊕b′
δa′

a√
2

(250)

=
(−1)ja

2
|k ⊕ a〉β (251)

= σX
k(β)σZ

j(β) |a〉β /2 . (252)

QED

12 Teleportation

Throughout this section, |ψ〉 will denote an arbitrary one qubit state.

Claim:

For any x, z ∈ Bool,

2
〈Bxz|

|ψ〉

|Bxz〉
=

|ψ〉

. (253)

proof:

Let LHS denote the left hand side of Eq.(253). Then

LHS =
〈
B00

∣
∣
αβ
σZ

z(β)σX
x(β)σX

x(β)σZ
z(β) |ψ〉α

∣
∣B00

〉

βγ
(254)

=
〈
B00

∣
∣
αβ
|ψ〉α

∣
∣B00

〉

βγ
, (255)

so we only need to prove Eq.(253) for x = z = 0.
For an arbitrary a ∈ Bool,

37

〈
B00

∣
∣
αβ
|a〉α

∣
∣B00

〉

βγ
= (

1

2
)(〈00|αβ + 〈11|αβ) |a〉α (|00〉βγ + |11〉βγ) (256)

=
〈a|β
2

(|00〉βγ + |11〉βγ) (257)

=
|a〉γ
2

. (258)

Alternatively, note that

2
〈B00|

|ψ〉

|B00〉
= 2

〈0| H • |ψ〉

〈0| × • H |0〉

× |0〉

(259)

= 2

〈0| H • • |ψ〉

〈0| • × H |0〉

× × |0〉

(260)

=
√

2

〈0| H • |ψ〉

× |0〉

(261)

= |ψ〉γ . (262)

QED

Claim:

For any x, z ∈ Bool,

2
〈Bxz|

|ψ〉

|B00〉
σX

xσZ
z

=

|ψ〉

. (263)

proof:

Follows immediately from Eq.(253).
QED

38

13 Dense Coding

Claim:

For any a, b ∈ Bool,
• |a〉

• |b〉

×× • × |0〉

H • • H |0〉

=

|a〉

|b〉

|a〉

|b〉

. (264)

proof:

Let LHS and RHS denote the left and right hand sides of Eq.(264).

RHS =

|a〉

|b〉

∑

(c,d)∈Bool2 |c, d〉
〈
Bc,d

∣
∣

∣
∣Ba,b

〉

. (265)

|a〉

|b〉

∣
∣Ba,b

〉

= |a, b〉αβ σX
a(γ)σZ

b(γ)
∣
∣B00

〉

γδ
(266)

= σX
n(α)(γ)σZ

n(β)(γ) |a, b〉αβ

∣
∣B00

〉

γδ
(267)

=

• |a〉

• |b〉

× • × |0〉

• H |0〉

. (268)

∑

c,d |c, d〉
〈
Bc,d

∣
∣

=
∑

c,d |c〉 〈c| ×

|d〉 〈d| H •

. (269)

39

QED

14 Quantum Fourier Transform

For this section, it is especially important that the reader read the Notation section
of QC Paulinesia. The Notation section explains what we mean by natural labelling.
Natural labelling will be used in this section.

Given a vector ~x = (xNB−1, . . . , x1, x0) ∈ BoolNB , let R~x = (x0, x1, . . . , xNB−1).
Thus R is the matrix that reverses the components of an NB dimensional vector. For
example, for NB = 4,

R =








1

0 1
1

1 0








. (270)

We will also use R to denote a map from the Hilbert space of NB qubits to itself
such that R |~x〉 = |R~x〉 for ~x ∈ BoolNB . We will also use R to denote the map
R : Z0,NB−1 → Z0,NB−1 such that R(i) = NB − 1 − i. For example, for NB = 4, R
maps 0→ 3, 1→ 2, 2→ 1, 3→ 0.

For any α, β ∈ Z0,NB−1, define

•
•

= V (α, β) = exp[iπ
n(α)n(β)

2|α−β|] = (−1)
n(α)n(β)

2|α−β| . (271)

Note that normally in QC Paulinesia, we use •
•

= σZ
n(α)(β) = (−1)n(α)n(β) , so

the definition given by Eq.(271) applies only to this section.
For any x ∈ Z0,NS−1, the Quantum Fourier Transform of |x〉 is defined by

UFT |x〉 =
1√
NS

NS−1∑

y=0

e
i
2πxy

NS |y〉 . (272)

Henceforth, for simplicity, we will often assume NB = 4. It will be obvious
how to extend our arguments to other values of NB.

Claim:

For any ~x = (x3, x2, x1, x0) ∈ Bool4,

40

UFT

|x0〉

|x1〉

|x2〉

|x3〉

=

• • • H |x3〉

• • H • |x2〉

• H • • |x1〉

H • • • |x0〉

, (273)

proof:

Recall from the Notation section that ~ν = (NB − 1, . . . , 2, 1, 0). Let n = 2~ν · ~n
and x = 2~ν · ~x. Then

UFT |~x〉~ν =
1√
NS

e
i2πxn

NS

∑

~y∈BoolNB

|~y〉~ν (274)

= e
i 2πxn

NS H(~ν) |0〉~ν . (275)

Furthermore,

exp[
i2πxn

16
] = e[

i2π
16

(8x3+4x2+2x1+x0)(8n(3)+4n(2)+2n(1)+n(0))] (276)

= exp[i2π







n(3)(x0

2
)

+n(2)(x1

2
+ x0

4
)

+n(1)(x2

2
+ x1

4
+ x0

8
)

+n(0)(x3

2
+ x2

4
+ x1

8
+ x0

16
)







] , (277)

where, in Eq.(277), we omitted all terms in the argument of the exponential that
yielded contributions of the form ei2π(integer).

Note that for any x ∈ Bool and bit α,

(−1)xn(α)H(α) |0〉α = σZ
x(α)H(α) |0〉α = H(α) |x〉α . (278)

Thus,

41

exp[
i2πxn

16
]H(~ν) |0〉~ν =







exp[iπn(3)x0]H(3) |0〉3
exp[iπn(2)(x1 + x0

2
)]H(2) |0〉2

exp[iπn(1)(x2 + x1

2
+ x0

4
)]H(1) |0〉1

exp[iπn(0)(x3 + x2

2
+ x1

4
+ x0

8
)]H(0) |0〉0

(279)

=







H(3) |x0〉3
exp[iπn(2)(x0

2
)]H(2) |x1〉2

exp[iπn(1)(x1

2
+ x0

4
)]H(1) |x2〉1

exp[iπn(0)(x2

2
+ x1

4
+ x0

8
)]H(0) |x3〉0

(280)

=







H(3)

exp[iπn(2)(n(3)
2

)]H(2)

exp[iπn(1)(n(2)
2

+ n(3)
4

)]H(1)

exp[iπn(0)(n(1)
2

+ n(2)
4

+ n(3)
8

)]H(0)







R |~x〉 (281)

= H(3)V (3, 2)H(2)V (3, 1)V (2, 1)H(1)V (3, 0)V (2, 0)V (1, 0)H(0)R |~x〉 .(282)

QED

Claim: (3-2-1 form equals 1-2-3 form)

UFT =

• • • H

R
• • H •

• H • •
H • • •

(283)

=

• • • H

R
• • H •
• H • •

H • • •

. (284)

proof:

Obvious.
QED

We call “the 1-2-3 form” the form of UFT given by Eq.(283). We call “the
3-2-1 form” the form given by Eq.(284). The numbers 1,2,3 refer to the number of V
operators between the H operators.

Claim:

42

UFT is a symmetric matrix.
proof:

Let † = Hermitian conjugate, ∗ = complex conjugate, so †∗ = transpose. For
any x, y ∈ Z0,NS−1,

〈y|UFT |x〉 = exp(
i2πxy

NS

) = 〈y|U †∗
FT |x〉 . (285)

QED

alternative proof:

U †∗
FT = R

H • • •
• H • •
• • H •
• • • H

(286)

=

• • • H

R
• • H •
• H • •

H • • •

(287)

= UFT . (288)

QED

For distinct bits α, β, let V (α, β)n(β)→b denote the result of substituting n(β)
in V (α, β) by b ∈ Bool.

Claim:

For any ~x = (x3, x2, x1, x0) ∈ Bool4 and ~y = (y3, y2, y1, y0) ∈ Bool4,

〈~y|UFT |~x〉 =

〈y0|H(0)
∣
∣xR(0)

〉

〈y1|H(1) V (1, 0)n(0)→y0

∣
∣xR(1)

〉

〈y2|H(2) V (2, 1)n(1)→y1
V (2, 0)n(0)→y0

∣
∣xR(2)

〉

〈y3|H(3) V (3, 2)n(2)→y2
V (3, 1)n(1)→y1

V (3, 0)n(0)→y0

∣
∣xR(3)

〉

.

(289)

proof:

43

Obvious.
QED

Claim:

R =
∧ ∧ ∧
∨ ∧ ∧
∨ ∨ ∧
∨ ∨ ∨

. (290)

proof:

Check that the right hand side of Eq.(290) maps 0→ 3, 1→ 2, 2→ 1, and 3→ 0.
QED

15 References

The following documents were useful in preparing this document.

References

[1] (good on controlled U) Cast of Thousands (Barenco et al.), “Elementary Gates
for Quantum Computation”, ArXiv eprint quant-ph/9503016

[2] (this guy thinks just like me) R.R. Tucci, “A Rudimentary Quantum Com-
piler(2cnd ed.)”, ArXiv eprint quant-ph/9902062 .

[3] (good on projective measurements) A. M. Childs, D. W. Leung, M. A. Nielsen,
“Unified derivations of measurement-based schemes for quantum computation”,
ArXiv eprint quant-ph/0404132

[4] (original paper on teleportation) Charles H. Bennett, Gilles Brassard, Claude
Crepeau, Richard Jozsa, Ashes Peres, and William K. Wootters, Phys. Rev.
Lett. 70, 1895 (1993)

[5] (original paper on dense coding) C.H. Bennett and S.J. Wiesner, Phys. Rev.
Lett. 69, 2881 (1992).

[6] (original paper on quantum Fourier Transform) D. Coppersmith, “An ap-
proximate Fourier transform useful in quantum factoring”, ArXiv eprint
quant-ph/0201067

[7] D. Gottesman, “The Heisenberg Representation of Quantum Computers”, ArXiv
eprint quant-ph/9807006

44

http://arxiv.org/abs/quant-ph/9503016
http://arxiv.org/abs/quant-ph/9902062
http://arxiv.org/abs/quant-ph/0404132
http://arxiv.org/abs/quant-ph/0201067
http://arxiv.org/abs/quant-ph/9807006

[8] N. David Mermin, lecture notes for Quantum Computing course taught at Cor-
nell.

[9] Paul Theroux, “The Happy Isles of Oceania” (G.F. Putnam’s Sons, NY, 1992).

45

	Introduction
	Notation
	Pauli Matrices
	Hadamard Matrices
	CNOTs
	CNOT Generalizations
	Exchanger
	Bell States
	GHZ
	One and Two Qubit Projective Measurements
	Two Qubit Exchange Scattering
	Teleportation
	Dense Coding
	Quantum Fourier Transform
	References

