
A Transformation Based Algorithm for
Reversible Logic Synthesis

D. Michael Miller
Dept. of Computer Science

University of Victoria
Victoria, BC, V8W 3P6

Canada
mmiller@csr.uvic.ca

Dmitri Maslov
Faculty of Computer Science
University of New Brunswick
Fredericton, NB, E3B 5A3

Canada
dmaslov@unb.ca

Gerhard W. Dueck
Faculty of Computer Science
University of New Brunswick
Fredericton, NB, E3B 5A3

Canada
gdueck@unb.ca

ABSTRACT
A digital combinational logic circuit is reversible if it maps
each input pattern to a unique output pattern. Such circuits
are of interest in quantum computing, optical computing,
nanotechnology and low-power CMOS design. Synthesis ap-
proaches are not well developed for reversible circuits even
for small numbers of inputs and outputs.

In this paper, a transformation based algorithm for the
synthesis of such a reversible circuit in terms of n × n Tof-
foli gates is presented. Initially, a circuit is constructed by
a single pass through the specification with minimal look-
ahead and no back-tracking. Reduction rules are then ap-
plied by simple template matching. The method produces
near-optimal results for 3-input circuits and also produces
very good results for larger problems.

Categories and Subject Descriptors
M1.8 [Design Methodologies]: Logic Design

General Terms
Design, Theory

Keywords
Reversible Logic, Quantum Circuits, Templates, Minimiza-
tion

1. INTRODUCTION
Landauer [8] proved that using traditional irreversible logic

gates necessarily leads to power dissipation regardless of the
underlying technology. Further, Bennett [1] showed that
for power not to be dissipated in an arbitrary circuit, it
must be built from reversible gates. Hence there are com-
pelling reasons to consider circuits composed of reversible

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

gates. Reversible circuits are of particular interest in low-
power CMOS design [17], optical computing [7], quantum
computing [14], and nanotechnology [10].

An n×n Toffoli gate [19] has n−1 control lines which pass
through the gate unaltered and a target line on which the
value is inverted if all the control lines have value ’1’. In this
paper, we present a fast synthesis algorithm which accepts
a reversible function specification and produces a reversible
circuit composed of n × n Toffoli gates [19].

The synthesis of reversible circuits differs significantly from
synthesis using traditional irreversible gates. Approaches
have been presented in [5, 6, 11, 13, 16, 18]. For many of
those methods extensive searching is required. A key factor
in this contribution is that we avoid extensive searching and
therefore the method has greater potential to be extended
to functions with more than just a few inputs and outputs.

We first give a basic naive algorithm which synthesizes the
circuit in one direction. We show that this algorithm will
always complete without introducing unnecessary garbage
outputs and that the circuit will have at most (m−1)2m +1
gates. Output permutation and an heuristic for minimizing
gate width are then introduced.

Next we show that the approach can be applied in both di-
rections simultaneously with gates being identified at either
the input or the output end of the circuit whichever offers
best advantage as the synthesis proceeds. Transformations
to reduce the number of gates are applied using template
matching. Our set of transformations is an expansion of the
those used in [18] and [5].

Necessary background is reviewed in Section 2. Our syn-
thesis approach is described in Section 3 and gate trans-
formation by template matching is discussed in Section 4.
Experimental results are presented in Section 5. By consid-
ering all 8! 3× 3 reversible functions we show that our algo-
rithm produces results quite close to the optimal circuit sizes
found by exhaustive search in [18]. We also demonstrate by
examples that our method can be applied to larger functions
and to the realization of irreversible functions. Section 6
concludes the paper with observations and suggestions for
further research.

2. BACKGROUND
Definition 1. An m-input, m-output, totally-specified

Boolean function f(X), X = {x1, x2, ..., xm} is reversible if
it maps each input assignment to a unique output assign-
ment.

c b a c′ b′ a′

0 0 0 1 1 1
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 0 1 0
1 1 0 1 1 0
1 1 1 1 0 1

Table 1: 3 × 3 Reversible Logic Function.

x x1'1

x1'

x2'x2

x1 x1'

x2'

x3'

x1

x2

x3

(a) (b) (c)

Figure 1: (a) TOF1(x1), (b) TOF2(x1, x2) and (c)
TOF3(x1, x2, x3) Toffoli Gates.

A reversible function can be written as a standard truth
table as in Table 1 and can also be viewed as a bijective map-
ping of the set of integers 0, 1, ..., 2m − 1 onto itself. Hence
a reversible function can be defined as an ordered set of
integers corresponding to the right side of the table, e.g.
{7, 1, 4, 3, 0, 2, 6, 5} for the function in Table 1. We can thus
interpret the function over the integers as f(0) = 7, f(1) =
1, f(2) = 4, etc.

A reversible function is, of course, a permutation and can
be expressed as a set of disjoint cycles as done in [18], but
we do not follow that approach here.

Definition 2. An n-input, n-output gate is reversible if
it realizes a reversible function.

A variety of reversible gates have been proposed [19, 3, 4].
Here we use the family of Toffoli gates [19] defined as follows:

Definition 3. An n×n Toffoli gate passes the first n−1
lines (control) through unchanged, and inverts the nth line
(target) if the control lines are all 1.

We shall write an n×n Toffoli gate as TOFn(x1, x2, ..., xn)
where xn is the target line. Using the prime symbol to
denote the value of a line after passing through the gate we
have

x
′

i = xi, i < n, (1)

x
′

n = x1x2...xn−1 ⊕ xn (2)

TOF1(x1) is the special case where there are no control
inputs, so x1 is always inverted, i.e. it is a NOT gate.
TOF2(x1, x2) has been termed a Feynman [3] or controlled-
NOT gate (CNOT). TOF3(x1, x2, x3) is often referred to
simply as a Toffoli gate [19]. These gates are depicted as
shown in Figure 1.

Definition 4. A SWAP gate exchanges a pair of inputs.

Definition 5. Given two bit strings, p and q, the Ham-
ming distance between them, denoted δ(p, q) is the number
of positions for which p and q differ.

Definition 6. Given the function f(X), the complexity
C(f) is defined as the the sum of the individual Hamming
distances over the 2m input-output patterns.

For example, the value of C(f) for the function in Table 1
is 10.

3. THE ALGORITHM
Applying a Toffoli gate to the inputs or the outputs of a

reversible function always yields a reversible function. The
synthesis problem is to find a sequence of Toffoli gates which
transforms a given reversible function to the identity func-
tion. As gates can be applied either to the inputs or the
outputs, the synthesis can proceed from outputs to inputs,
inputs to outputs or, as we show in Section 3.3, in both
directions simultaneously.

3.1 Basic Algorithm
To begin, we present a basic naive and greedy algorithm

which identifies Toffoli gates only on the output side of the
specification.

Consider, a reversible function specified as a mapping over
{0, 1, ..., 2m − 1}.

Basic Algorithm
Step 1: If f(0) 6= 0, invert the outputs corresponding to
1-bits in f(0). Each inversion requires a TOF1 gate. The
transformed function f+ has f+(0) = 0.

Step 2: Consider each i in turn for 1 ≤ i < 2m − 1 letting
f+ denote the current reversible specification. If f+(i) =
i, no transformation and hence no Toffoli gate is required
for this i. Otherwise, gates are required to transform the
specification to a new specification with f++(i) = i. The
required gates must map f+(i) → i.

Let p be the bit string with 1’s in all positions where the
binary expansion of i is 1 while the expansion of f+(i) is
0. These are the 1 bits that must be added in transforming
f+(i) → i. Conversely, let q be the bit string with 1’s in all
positions where the expansion of i is 0 while the expansion
of f+(i) is 1. q identifies the bits to be removed in the
transformation.

For each pj = 1, apply the Toffoli gate with control lines
corresponding to all outputs in positions where the expan-
sion of i is 1 and whose target line is the output in position
j. Then, for each qk = 1, apply the Toffoli gate with control
lines corresponding to all outputs in positions where the ex-
pansion of f+(i) is 1 and whose target line is the output in
position k.

For each 1 ≤ i < 2m − 1, Step 2 transforms f+(i) → i

by applying the specified sequence of Toffoli gates. Since we
consider the i in order, and step 1 handles the case for 0,
we know that f+(j) = j, 0 ≤ j < i. The importance of this
is that it shows that none of the Toffoli gates generated in
Step 2 affect f+(j), j < i. In other words, once a row of
the specification is transformed to the correct value, it will
remain at that value regardless of the transforms required
for later rows. Clearly, the final row of the specification
never requires a transformation as it is correct by virtue of
the correct placement of the preceding 2m − 1 values.

(i) (ii) (iii) (iv) (v)
cba c0b0a0 c1b1a1 c2b2a2 c3b3a3 c4b4a4

000 001 000 000 000 000
001 000 001 001 001 001
010 011 010 010 010 010
011 010 011 011 011 011
100 101 100 100 100 100
101 111 110 111 101 101
110 100 101 101 111 110
111 110 111 110 110 111

Table 2: Example of applying the basic algorithm.

a
b
c

a
b
c

0

0

0

Figure 2: Circuit for the function shown in Table 2.

Table 2 illustrates the application of the basic algorithm.
(i) is the given specification. Step 1 identifies the application
of TOF1(a0) giving (ii). At this point f+(i), 0 ≤ i ≤ 4 are as
required. Mapping f+(5) → 5 requires TOF3(c1, b1, a1) to
change the rightmost position to 1 (iii) and TOF3(c2, a2, b2)
to remove the centre 1 (iv). Lastly, TOF3(c3, b3, a3) is again
required, this time to map f+(6) → 6. Note that the gates
are identified in order from the output side to the input side.
The corresponding circuit is shown in Figure 2.

The basic algorithm is straightforward and easily imple-
mented. Its algorithmic complexity is n2n. It is also easily
seen that it will always terminate successfully with a circuit
for the given specification. However, it is possible to con-
struct a function for any m, that requires (m − 1)2m + 1
gates. For m = 3, this is the function shown in Table 1. We
next consider a number of approaches to reduce the size of
the circuit produced.

3.2 Output Permutation and Control Input
Reduction

The basic algorithm maps each output back to the cor-
responding input. Often this is not the best mapping. For
functions with up to 8 or 9 inputs it is practical to try all
m! output permutations. Permuting the outputs requires a
certain number of interchanges which in some technologies
may require explicit SWAP gates.

The basic algorithm naively assigns the maximum num-
ber of control lines to each Toffoli gate. Often a subset of
those control lines will suffice. The requirement is that the
gate does not affect a row earlier in the specification. This
is easily accounted for since the set of control lines must ei-
ther contain a line that has not appeared as a 1 in an earlier
row of the specification, or must contain all lines that have
appeared as 1’s in rows earlier in the specification. Given
that, the revised algorithm, instead of using the control lines
identified by the basic algorithm, considers all valid subsets
of those lines, and chooses the control that minimizes the
complexity C(f+) of the resulting specification. Recall, that
the complexity C is the total Hamming distance between the
input and output sides of the specification, so this heuris-
tic is choosing the gate that moves the specification furthest
towards the identity specification. In case of a tie, the small-

(i) (ii) (iii) (iv)
cba c0b0a0 c1b1a1 c2b2a2 c3b3a3

000 111 000 000 000
001 000 111 001 001
010 001 010 010 010
011 010 001 111 011
100 011 100 100 100
101 100 011 101 101
110 101 110 110 110
111 110 101 011 111

Table 3: Example of applying the bidirectional al-
gorithm.

a
b
c

,
A B

0

0

0

a
b
c

a
b
c

0

0

0

a
b
c

Figure 3: Circuit for the function shown in Table 3.

est set of control lines is used, and within that the choice is
arbitrary.

3.3 Bidirectional Algorithm
As described so far, the algorithm produces the circuit by

selecting Toffoli gates manipulating only the output side of
the specification. Since the specification is reversible, one
could consider the inverse specification deriving a reverse
circuit and then choose whichever is the smaller. A better
approach is to apply the method in both directions simulta-
neously choosing to add gates at the input side or the output
side.

To see how this works, consider the initial reversible spec-
ification in Table 3, column (i). The basic algorithm would
require that we invert each of a0, b0 and c0 to make f+(0) =
0. The alternative is to invert a, i.e. to apply the gate
TOF1(a) to the input side. Applying this gate, and then
reordering the specification so that the input side is again
in standard truth-table order yields the specification in (ii).
From the output side, we would next have to map f+(1) =
7 → 1. However, from the input side we can accomplish
what is required by interchanging rows 1 and 3, which is
done by applying the gate TOF2(a, b). Doing so, and re-
ordering the input side into standard order, yields the spec-
ification in (iii). At this point, selection from the output
side and the input side identify the same gate TOF3(a, b, c)
(when expressed in terms of the input lines) and the circuit
is done (iv). The result uses three gates (shown in Figure 3
A), whereas approaching the problem from the output side
alone requires three NOT gates just to handle f(0) and seven
gates in total (shown in Figure 3 B).

In general, when f+(i) 6= i, the choice is (a) to apply Tof-
foli gates to the outputs to map f+(i) → i, or (b) to apply
Toffoli gates to the inputs to map j → i where j is such that
f+(j) = i. Since we consider the i in order, j > i and must
always exist. Also, the same rules for identifying the control
lines, including reduction, described above apply. Our bidi-
rectional algorithm chooses (a) if δ(i, f+(i)) ≤ δ(i, j), and
(b) otherwise. We thus base the choice on the number of
gates required and not their width or how closely they map

the specification to the identity.

4. TEMPLATE MATCHING
The circuits produced by the algorithm as described thus

far frequently have gate sequences that can be reduced. For
example, the sequence TOF2(b, a), TOF1(b), TOF1(a) can
be replaced by the sequence TOF1(b), TOF2(b, a). We have
implemented a template driven reduction method. A tem-
plate consists of a sequence of gates to be matched and the
sequence of gates to be substituted when a match is found.
The lines in the template are generic and must be associated
to real lines in the circuit with the association applied con-
sistently across the template. This is accomplished by first
associating the widest target template gate with a gate in
the circuit and then searching the circuit for the other target
gates using the line association derived from the widest gate.
Note that since the order of the control lines to a Toffoli gate
is immaterial, c! line associations must be considered where
c is the number of control lines for the widest gate.

Our template matching procedure looks for the target
gates, including the initial match to the widest gate, across
the entire circuit. If all target gates are found, it attempts
to move the gates so that they are adjacent either match-
ing the template in the forward or reverse direction. If this
can be done, the matched gates are replaced with the new
gates specified by the template. For a reverse match, the
new gates are substituted in reverse order.

When moving the target gates, the matching procedure
takes account of Property 1 which follows directly from the
definition of n × n Toffoli gates. If two gates can not be
interchanged because they don’t satisfy this property and
that prohibits proper adjacent ordering of the target gates
for a match, the template being considered is not applicable.

Property 1. Two gates TOFk(x1, x2, ..., xk−1, xk) and
TOFl(y1, y2, ..., yl−1, yl) adjacent in a circuit can be inter-
changed iff xk 6∈ {y1, y2, ..., yl−1} and yl 6∈ {x1, x2, ..., xk−1}.

Our matching procedure tries all appropriate sets of target
gates for each template. When a template match is found,
the substitution dictated by the template and the process
restarts since a substitution may mean that a template re-
jected earlier becomes applicable.

Figure 4 shows the current template set employed by our
procedure. Templates 2.1, 3.1 - 3.3, and 4.1 - 4.3 were in-
troduced in [5]. We have classified the templates as follows
(classes are separated by horizontal lines):

(1) two inputs involving SWAPs;

(2) two input gate reductions without SWAPs;

(3) transformation rule 3 from [5];

(4) symmetric templates;

(5) controlled SWAP (equivalent to the Fredkin gate).

It can be shown that a generalization of classes (3) and (4)
generates all templates with n inputs and 3 gates that result
in a reduction in the number of gates.

5. EXPERIMENTAL RESULTS
Table 5 shows the results of applying various versions of

our algorithm to all 8! = 40320 3 × 3 reversible functions.
The four scenarios are:

4.6

4.1 4.2

4.5

4.3

4.4

,

,,

,

,,

,

,

3.1

2.1

1.1

3.2

2.2

1.2

3.3

5.1

Figure 4: Templates with 2 or 3 inputs.

(a) the basic output transformations algorithms;

(b) (a) plus Hamming distance based look-ahead;

(c) (b) plus bidirectional transformation;

(d) (c) plus template application.

For each scenario, we show the number of functions for each
gate count, the average number of gates required, and the
total time to apply our method for the 8! functions on a PC
with a 750MHz Pentium III with 256 Mb RAM.

Column (e) in Table 5 shows the optimal results reported
in [18]. That work used depth-first search with iterative
deepening to construct optimal gate count circuits for n = 3.
However, this approach does not scale-up to larger functions.
For example, while the optimal results for n = 3 were found
in 15 sec. using a PC with a 2 GHz Pentium-4 Xeon, the
authors report that a 4×4 reversible function requiring 8 or
less gates can be synthesized in less than a second whereas
the synthesis requires more than 1.5 hours when 9 or more
gates are required. As we will show below by example, our
approach is applicable to larger functions in reasonable time.

Table 5 compares the advantages of the various refine-
ments to our method. The full bidirectional algorithm with
output permutation, control input reduction and template
matching produces results quite comparable to the optimal
results. The table does not indicate the true advantage of
control input reduction. Overall, the average gate count is
essentially the same as without this refinement, but the gates
require fewer inputs for many circuits. Alternative heuristics
for reducing the gate input count need to be considered.

An irreversible function can be realized using reversible
gates [14]. Garbage outputs must be added as necessary so
that the output patterns are distinct and constant inputs
must be added as necessary so that the function has the
same number of inputs and outputs. This can be viewed as
extending the irreversible function specification to a larger
reversible one.

a

b

c

 d
(constant 0)

garbage

carry

sum

propogate

A B C

Figure 5: Full adder.

Definition 7. The maximum output pattern multiplic-
ity of a multiple-output Boolean function is the maximum
number of input assignments which yield the same output
pattern. Equivalently, it is the maximum number of times a
single output pattern appears in the truth table specification
of the function.

As shown in [9], the minimum number of garbage outputs
required is dlog2 qe, where q is the maximum output pattern
multiplicity of the irreversible function.

Optimal definition of the garbage outputs is a difficult
and open problem. At present we pre-assign them using
the approach described in [12]. Often they can simply be
set equal to input variables. At other times, we use XOR
functions involving subsets of the inputs.

Constant inputs when required are defined so that the
circuit yields the required functionality when they are set
to 0. At present, our approach does not handle dont-cares
so the reversible specification derived from the irreversible
specification must be totally-specified. This is most easily
accomplished by ensuring the output patterns are unique
for the section of the specification for all constant inputs
0, and then completing the specification by replacing cer-
tain outputs with the XOR of the output and one of the
constant inputs. Often, after an initial irreversible speci-
fication is constructed and a circuit found by applying our
algorithm, it is apparent from the circuit how to replace cer-
tain of the garbage outputs with alternative definitions so
that some gates in the circuit will be unnecessary. Also, all
SWAP gates generated amongst garbage outputs are unnec-
essary and all gates which simply complete the realization
of a garbage output (their target is not used as control for
a gate required to realize one of the “real” outputs) can
be discarded. Both these reductions of course redefine the
garbage specification.

First we consider a 3-input full adder which generates,
sum, carry and propagate as used in [2]. One garbage out-
put is required since the maximum output pattern multi-
plicity of the full adder is 2. The garbage output is set to
an input (from the symmetry of the adder it does not mat-
ter which). A single constant input (d) is required. The
complete reversible specification is

d
′ = d ⊕ carry(c, b, a)

c
′ = sum(c, b, a)

b
′ = b ⊕ a

a
′ = a

Our algorithm finds the 5 gate realization shown in Figure
5 (a) in 0.07 seconds. We compare this to previously ob-
tained results. A realization with 5 Fredkin gates is shown
in [2]. The complexity of the Fredkin gate is similar to the
3 × 3 Toffoli gate [15]. However our realization has a single
garbage output, whereas the circuit in [2] has 3. This is

a
b
c
d
e

f (=0)
g(=0)

h
h
h

0

1

2

a
b
c
d

'
'

'
'

Figure 6: Circuit for rd53.

a significant advantage if the circuit is implemented using
quantum gates.

We now show that our adder circuit can be optimized.
Note that the gates in Figure 5 (a) can be rearranged by
using Property 1 as shown in (b). The three shaded gates in
Figure 5 (b) are a generalization of template 3.2. When it is
replaced, we have a circuit with 4 gates shown in (c). Since
we have not yet implemented the generalization of templates
with n > 3, our program was not able to find this result.
This limitation is due to the set of templates currently used,
and is not a limitation of the template matching approach.
Our final result has the same gates as the adder obtained in
[6].

As a final example we consider the benchmark function
rd53. This function has 5 inputs and 3 outputs. The outputs
are the binary encoding of the weight of the input pattern
i.e. the number of 1’s in the input pattern. For example, in-
put 00000 yields output 000, input 00100 yields output 001
and input 11111 yields output 101. The maximum output
pattern multiplicity is 10 so at least 4 garbage outputs must
be added giving a total of at least 7 outputs. That in turn
requires two inputs be added. Initially the reversible spec-
ification given in [12] was used. The garbage outputs were
subsequently modified to remove unnecessary gates. Our
algorithm produces a circuit with 12 gates in 1.84 seconds
of CPU time. (A SWAP produced by the program was re-
moved, since the function is symmetric.) This is better than
the circuit with 14 gates proposed in [13]. Surprisingly this
result is obtained when using templates with a maximum
input of 3. It will be interesting to see if templates with
more inputs can further reduce this circuit.

6. CONCLUSIONS
A simple algorithm for the synthesis of a reversible circuit

composed of generalized Toffoli gates has been presented.
The basic algorithm will always terminate with a valid cir-
cuit. Heuristic approaches have been given to reduce the
size of the circuits produced through output permutation
and Toffoli gate control line reduction. The major enhance-
ment to the basic algorithm is a method by which gates can
be identified at either end of the specification and the circuit
synthesized in both directions simultaneously. An exhaus-
tive examination for m = 3 has shown our approach yields
results quite comparable to the optimal gate counts. Ex-
amples were given to show our approach can be applied to
larger functions.

The fact that we currently consider all output permuta-
tions limits our methods to problemswith 8 or 9 inputs and
outputs. We are studying methods for selecting a “good”

Size (a) (b) (c) (d) (e) (f)
17 1
16 14
15 92
14 380 4 5
13 1113 72 87
12 2468 477 550 3
11 4311 1759 1901 86 5
10 6083 4179 4267 493 110
9 7044 6912 6828 2312 792
8 6754 8389 8221 6944 4726 12
7 5379 7766 7670 11206 11199 6817
6 3549 5615 5610 10169 12076 17531
5 1922 3183 3204 5945 7518 11194
4 839 1391 1402 2375 2981 3752
3 286 453 455 650 767 844
2 72 104 104 121 130 134
1 12 15 15 15 15 15
0 1 1 1 1 1 1

avg. gates 8.67 7.65 7.67 6.53 6.18 5.63

Time (sec.) 0.94 2.19 3.87 3.92 20.2

(a): naive algorithm
(b): (a) plus output permutation
(c): (b) plus control input reduction
(d): (c) bidirectional reduction
(e): (d) plus template application
(f): optimal sizes [18]

Table 4: Number of reversible functions using a
specified number of gates for m = 3.

permutation based on the initial function specification. We
are also considering extensions to our method to allow don’t-
care conditions. Coupled with that, we are looking at ways
of dynamically assigning the garbage outputs required for ir-
reversible specifications rather than the pre-assignment method
we currently use.

We are studying the extension of templates to n > 3. In
particular, we are looking at classes of templates and generic
definitions of those classes to avoid the template specifica-
tion set becoming overly large and degrading the perfor-
mance of the approach.

Finally, we are looking at ways to directly incorporate
Fredkin gates [4] which have similar cost to Toffoli gates in
some technologies, but different expressive power. A Fred-
kin gate is, in fact, a controlled-swap and has the same re-
lation to a simple SWAP gate that a Toffoli gate has to a
simple NOT gate. Hence, a method to incorporate Fredkin
gates will also allow us to make better use of SWAP gates
throughout the synthesis process.

7. REFERENCES
[1] C. Bennett. Logical reversibility of computation.

I.B.M. J. Res. Dev., 17:525–532, 1973.

[2] J. W. Bruce, M. A. Thornton, L. Shivakumaraiah,
P. S. Kokate, and X. Li. Effiient adder circuits based
on a conservative reversible logic gate. In IEEE
Symposium on VLSI, pages 83–88, April 2002.

[3] R. Feynman. Quantum mechanical computers. Optic
News, 11:11–20, 1985.

[4] E. Fredkin and T. Toffoli. Conservative logic.
International Journal of Theoretical Physics,
21:219–253, 1982.

[5] K. Iwama, Y. Kambayashi, and S. Yamashita.
Transformation rules for designing cnot-based
quantum circuits. In Proceedings of the Design
Automation Conference, New Orleans, Louisiana,
USA, June 10-14 2002.

[6] A. Khlopotine, M. Perkowski, and P. Kerntopf.
Reversible logic synthesis by iterative compositions.
International Workshop on Logic Synthesis, 2002.

[7] E. Knill, R. Laflamme, and G. J. Milburn. A scheme
for efficient quantum computation with linear optics.
Nature, pages 46–52, Jan. 2001.

[8] R. Landauer. Irreversibility and heat generation in the
computing process. IBM J. Res., 5:183–191, 1961.

[9] D. Maslov and G. W. Dueck. Garbage in reversible
design of multiple output functions. In 6th
International Symposium on Representations and
Methodology of Future Computing Technologies, pages
162–170, March 2003.

[10] R. C. Merkle. Two types of mechanical reversible
logic. Nanotechnology, 4:114–131, 1993.

[11] D. M. Miller. Spectral and two-place decomposition
techniques in reversible logic. In Midwest Symposium
on Circuits and Systems, Aug. 2002.

[12] D. M. Miller and G. W. Dueck. Spectral techniques
for reversible logic synthesis. In 6th International
Symposium on Representations and Methodology of
Future Computing Technologies, March 2003.

[13] A. Mishchenko and M. Perkowski. Logic synthesis of
reversible wave cascades. In International Workshop
on Logic Synthesis, June 2002.

[14] M. Nielsen and I. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press,
2000.

[15] M. Perkowski and et al. A hierarchical approach to
computer-aided design of quantum circuits. Preprint,
2002.

[16] M. Perkowski, P. Kerntopf, A. Buller,
M. Chrzanowska-Jeske, A. Mishchenko, X. Song,
A. Al-Rabadi, L. Joswiak, A. Coppola, and B. Massey.
Regularity and symmetry as a base for efficient
realization of reversible logic circuits. In International
Workshop on Logic Synthesis, 2001.

[17] G. Schrom. Ultra-Low-Power CMOS Technology. PhD
thesis, Technischen Universität Wien, June 1998.

[18] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P.
Hayes. Reversible logic circuit synthesis. In ICCAD,
pages 125–132, San Jose, California, USA, Nov 10-14
2002.

[19] T. Toffoli. Reversible computing. Tech memo
MIT/LCS/TM-151, MIT Lab for Comp. Sci, 1980.

