Turing Machine

- Theoretical Model Developed by Alan Turing (published May 1936)
- Abstraction of Classical Digital Computer
- Allows for Reasoning About Fundamental Computational Issues:
- the Halting Problem
- Computable vs. Non-computable Functions
- Useful Model for use in Complexity Theory

Halting Problem/Decidability
Alan
Turing

Alonzo

Church

- Given a Description of a Program and Finite Input, Decide whether the Program will run forever or finishes
- One of First Problems of Decidability
- Led to Concept of Undecidability and Birth of Classical Complexity Theory
- Alonzo Church Lambda Calculus to Show the Existence of an Undecidable Problem (published April 1936)

Turing Machine Example

- Example Machine has 3 Parts:

1. A Recording Tape Divided into Squares
2. A Tape Read/Write (R/W) Head
3. A Dial that "Chooses" Operations

- Machine can Write a Symbol X or 1 in Blank Square
- Machine can Erase Symbols in an Occupied Square
- A Value is Written as a Sequence of 1 s , eg " 4 " is Written as "1111"
- Symbol x Indicates Beginning/Ending of a Number

Example Turing Machine Diagram

- Tape Contains Two Numbers Both with Unity Value (1)
- As Example, a "Program" will be Shown that Computes Sum of Two Numbers

[^0]
Programming Symbols

- Commands:

1. D Write the Digit 1
2. X Write the Symbol X
3. E Erase the Symbol
4. R Move Tape One Square to Right
5. L Move Tape One Square to Left
6. 1 to 6 Change Dial Setting to this Number

- ! Job is Completed
- ? Mistake
- Each Command can have Number Also

Addition Program Example

| | x | 1 | x | | x | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

Read/Write Tape

	(blank)	X	1
1	D6	E2	R1
2	R2	E3	$?$
3	R3	E4	E5
4	L4	$?$	R6
5	L5	$?$	R1
6	X6	!	R3

- R/W Head Reads a 1
- Dial Setting is $1 \rightarrow$ Command is R1
- Tape Head Moved One Position to Right
- Dial is Set to 1

- R/W Head Reads a x
- Dial Setting is $1 \rightarrow$ Command is E 2
- Tape Square is Erased (set to blank)
- Dial is Set to 2

Addition Program Example

- R/W Head Reads a blank
- Dial Setting is $2 \rightarrow$ Command is R2
- Tape Head Moved One Position to Right
- Dial is Set to 2

- R/W Head Reads a blank
- Dial Setting is $2 \rightarrow$ Command is R2
- Tape Head Moved One Position to Right
- Dial is Set to 2

Addition Program Example

- R/W Head Reads a x
- Dial Setting is $2 \rightarrow$ Command is E3
- Tape Square is Erased (set to blank)
- Dial is Set to 3

Addition Program Example

- R/W Head Reads a blank
- Dial Setting is $3 \rightarrow$ Command is R3
- Tape Head Moved One Position to Right
- Dial is Set to 3

Addition Program Example

- R/W Head Reads a 1
- Dial Setting is $3 \rightarrow$ Command is E3
- Tape Square is Erased (set to blank)
- Dial is Set to 5

Addition Program Example

- R/W Head Reads a blank
- Dial Setting is $5 \rightarrow$ Command is L5
- Tape Head Moved One Position to Left
- Dial is Set to 5

Summary of Example Program

Tape Content						Op
X	1	X	X	1	X	R1
X	1	X	X	1	X	E2
X	1	X		1	X	R2
X	1	X		1	X	R2
X	1	X		1	X	E3
X	1			1	X	R3
X	1			1	X	E5
X				1	X	L5
X		-		1	X	L5
X				1	X	L5
X				1	X	L5

Summary of Example Program (cont)

Summary of Example Program (cont)

Tape Content							Op
				1	1	x	R 6
				1	1	x	x 6
			$\underline{\mathrm{x}}$	1	1	x	$\mathrm{!}$

Result is:

$$
1+1=2
$$

- TM is Abstraction of Classical Computer
- Generalized (Programmable) Finite Automaton
- Halting Problem is Given Turing Machine and this Program, will it Terminate?

TM Analogy to Digital Computer

- Tape (Data Mem.) and Dial (Instr. Mem.) are Memory Elements
- Writing/Erasing Elements are ALU
- Programming "Actions" are the Control Unit (in Dial Also)
- Initial Tape Content is Input Data
- Tape Content after Halt is Output Data
- Sequence of Operations Represent Clocking or Sequential Behavior

TM Analogy to Digital Computer

- A Given Dial Setting Represents Inst. Pointer Register
- For Given Dial Setting, Choice Among next Operation Based on Current Tape Value Represents Decision Construct (i.e. if-thenelse)
- Any Problem that can be Solved as a Program on a TM is "Turing Computable"
- All Classical Computers can Execute any Turing Computable Program Regardless of Underlying Hardware/Software Implementation

TM as a Finite Automaton

- Finite Automaton is Mathematical Term for a Finite State Machine
- in TM, the State is the Combination of the Current Tape Symbol and the Dial Setting
- The Program Defines the State Transitions and the Machine Operation
- A Program has a Halt State (hopefully)
- Example Halt State is Dial Setting, (Tape Symbol)=(6,X) Causing a Halt Operation!
- Note that Digital Logic Control Circuits Typically have no Halt State

Probabilistic Turing Machine (PTM)

- Some Transitions are Random Choices Among the Possibilities
- In Our Example, a PTM would be Modeled as a Dial Setting where the Three Operations are Chosen Randomly Instead of Deterministically Based on Tape Content
- Stochastic Performance:
- Different Results Among Consecutive Runs with Same Program and Input Data
- Different Runtimes, Possible for Halt State to Never be Reached

Non-deterministic Turing Machine

- Similar to PTM - More than One Next State Per Computational Step
- Probability Distribution of all Allowed States is Known
- "Guesses" the Correct Answer at Each Step
- Mathematical Model of Computation
- Non-deterministic Turing Machine not Realized
- PTM Could be Built - but Probably not very useful

Computational Complexity Theory

- Measure of Computer Runtime (time) and Memory Usage (space) for Particular Computable Function in Terms of Elementary Operations
- Elementary Operation Examples:
- Number of Vertices of a Decision Diagram
- Number of Clock Cycles per Digit for a Square Root Algorithm
- Number of Clock Cycles per Vertex to Traverse a Graph
- Number of Swaps in a Bubble Sort Algorithm

Complexity Classes

- Theoretical Computer Scientists have Defined Several Different Classes of Decidable Problems
- Class P: Those Problems Requiring Total Time or Space Resources Expressible as a Polynomial in Terms of Elementary Operations on a Turing Machine (eg. Bubble Sort)
- Class NP: Those Problems Requiring Total Time or Space Resources Expressible as a Polynomial in Terms of Elementary Operations on a Non-determinstic Turing Machine ($N P$ does NOT stand for "not polynomial") (eg. Graph Isomorphism)
- Class Co- $N P$: The Complement of the Problems in $N P$ where the yes/ no Answer is Reversed
- Class $N P$-Complete: A subset of the problems in Class $N P$ such that if Any One Could be solved in P, all Others could be REDUCED to This One and Also Solved in P (eg. SAT, set covering, traveling salesman)
Does P equal NP? Prove/disprove it and you will receive \$1,000,000 from the Clay Institute!

Bubble Sort Example

- Given a List of n unsorted Numbers, place them in Ascending Order
- Elementary Operation is the Adjacent Number SWAP
- Begin at First Number in List and Proceed Forward in list Item by Item
- If Current Value > Next Item Perform a SWAP
- Repeat Traversal Through List Until Sorted
- First Traversal Through List Guarantees Largest Value Moved to End
- Second Traversal Guarantees Next Largest Moved to Second from End, etc.
- Spatial Worst-case Complexity: $O(n)=n$
- Temporal Worst-case Complexity: $O(n)=n^{2}$
- Temporal Best-case Complexity: $\Omega(n)=n$
- Theoretical Worst-case Complexity for the Sorting Problem: $O(n)=n \log _{2} n$

Tractable and Intractable Problems

- Informally, a Problem Solvable in Polynomial Time is Termed a Tractable Problem
- Likewise, Problems Requiring More than Polynomial Time are Intractable
- Intractable Problem Example is One that Requires 2^{n} (exponential) Amount of time
- Some Intractable Problems on TMs are Tractable on a Quantum Computer as Defined by Deutsch!!!!
- These Problems are in Complexity Class $Q P$
- Complexity Class $Q P$: The Set of Problems Solvable in Polynomial Time on a Quantum Computer for Which the Best Known TM Algorithm is Intractable

Quantum Parallelism

- This Notion may Explain why the Class QP Exists
- Qubits can Exist in a Superposition of Basis States
- This Allows Parallelism at the Information Level
- Classical Computer Parallelism Exists
- Temporal Level (aka Pipelining)
- Multiple CPUs

Quantum Parallelism Example

- Assume we Wish to Compute $f(j)$ in Polynomial Time
- Where j is a Binary String of Length n
- Need Single Copy of Quantum Circuit that Evaluates f
- Can Compute Superposition of all 2^{n} Values of f
- Polynomial Time with Single Copy of Quantum Circuit
- Classical Computer Requires:

1. 2^{n} Runs on Single Processor
2. 2^{n} Parallel Processors

First Stage in Example

- Initialize n Qubits to |0>
- Perform Hadamard Transform on n Qubits
$\mathbf{H} \otimes \mathbf{H} \otimes \cdots \otimes \mathbf{H}(|0\rangle|0\rangle \cdots|0\rangle)=\frac{1}{2^{n / 2}}(|0\rangle+|1\rangle)^{n}=\frac{1}{2^{n / 2}} \sum_{k=0}^{2^{n}-1}|k\rangle$

$$
\mathbf{H}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Second Stage in Example

- Quantum Gate Array Implements

Function f

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

- Maps n-bit Input String $j=\left(j_{0}, j_{1}, \ldots, j_{\mathrm{n}-1}\right)$ to 0 or 1 in Polynomial Time
- Quantum Gate Array Transformation:
$\mathbf{U}_{f}:\left|j_{0}\right\rangle\left|j_{1}\right\rangle \ldots\left|j_{n-1}\right\rangle|0\rangle$

$$
\mapsto\left|j_{0}\right\rangle\left|j_{1}\right\rangle \ldots\left|j_{n-1}\right\rangle\left|f\left(j_{0}, j_{1}, \ldots, j_{n-1}\right)\right\rangle
$$

Result in Example

- Input to Function Evaluation is in Superposition State Created by n Hadamard Gates
- Result is Superposition of all Values of Function f

$$
|f\rangle=\sum_{j=0}^{2^{n}-1}|j\rangle|f(j)\rangle
$$

Quantum Algorithm Classes

- 3 Broad Catagories (Shor' 03)

1. Finding Periodicity of a Function (using Fourier transforms)

- Shor's Algorithms-factoring/discrete log
- Hallgren's Algorithm-solve's Bell's equation

2. Search N items in $N^{1 / 2}$ time

- Grover's Algorithm

3. Simulation of Quantum Systems

- Potentially large class suggested by Feynman
- Not many of these Presently developed

Quantum Algorithm Development

- QAs Offer Substantial Speedup over Classical but Limited in Applicability
- Concentrate on Problems NOT in Class P
- Common Conjecture is QAs do NOT Solve NP Problems in Polynomial Time
- If Conjecture is True, Then Class of Problems Applicable for QA Speedup is Neither $N P$-hard nor P
- Remaining Population of Problems is Relatively Small

Parallelism

- Classical Computation
- \quad Single Copy of Circuit/Algorithm Requires to Compute Function 2^{n} Times
- $\quad 2^{n}$ Copies of Circuit/Algorithm Allows to Obtain all Values of Function in Single Time Step
- Quantum Circuit/Algorithm
- Requires Single Copy of Circuit/Algorithm
- Obtain all Values in Single Time Step
- Parallelism is at Information Level
- More than Superposition
- Entanglement also Plays a Role
- Power Requirements Differ Exponentially

Superposition Example

- Consider Qubit $|x\rangle$ with Two Possible Values |0> or |1>
- Consider a Function $f(x)$ With Two Possible Values

$$
|f(x)\rangle=|0\rangle \text { or }|f(f x)\rangle=|1\rangle
$$

- We Wish to Construct a Circuit Whose Output is a Superposition of $|f(0)\rangle$ and $|f(1)\rangle$
- Possible to Construct Circuit to Transform 2 Input Qubits $|x\rangle$ and $|y\rangle$ into Results $|x\rangle$ and $|\nu \oplus f(x)\rangle$ Using only Fredkin Gates (Marinescu, p.189)
- Function $f(x)$ is "Hardwired" into Circuit/Algorithm

Superposition Example (cont)

- Setting $|y\rangle=|0\rangle$ Results in the Following Transformation:

$$
|x 0\rangle \mapsto|x f(x)\rangle
$$

- Abbreviated Notation Implies Tensor Product: $|x\rangle|0\rangle \mapsto|x\rangle|f(x)\rangle \quad|x\rangle \otimes|0\rangle \mapsto|x\rangle \otimes|f(x)\rangle$

Superposition Example (cont)

- Instead of $|x\rangle$, Consider Replacing it With Qubit
$|0\rangle$ Applied to a Hadamard Gate Initially:

$$
\mathbf{H}|0\rangle=(1 / \sqrt{2})(|0\rangle\langle 0|+|0\rangle\langle 1|+|1\rangle\langle 0|-|1\rangle\langle 1|)|0\rangle
$$

$$
\mathbf{H}|0\rangle=(1 / \sqrt{2})(|0\rangle\langle 0 \mid 0\rangle+|0\rangle\langle 1 \mid 0\rangle+|1\rangle\langle 0 \mid 0\rangle-|1\rangle\langle 1 \mid 0\rangle)
$$

- Results in the Following Superposition State Applied to $\mathbf{U}_{f}: \quad \mathbf{H}|0\rangle=(1 / \sqrt{2})(|0\rangle+|1\rangle)$

Superposition Example (cont)

$\mathbf{H}|0\rangle=(1 / \sqrt{2})(|0\rangle+|1\rangle)$

$$
\mid f[(|0\rangle+|1\rangle) / \sqrt{2}]\rangle=\underline{[\mid f(|0\rangle)+f(|1\rangle)\rangle] / \sqrt{2}}
$$

Superposition Example (cont)

- Output State of Quantum System is Tensor Product of the Two Output Vectors:

$$
[\mid 0 f(|0\rangle)\rangle+\mid 0 f(|1\rangle)\rangle+|1 f(|0\rangle\rangle\rangle+\mid 1 f(|1\rangle)\rangle] / \sqrt{2}
$$

- Output State Contains Information About Both Possible Evaluations $|f(0)\rangle,|f(1)\rangle$ in One Run/ Execution Period - Quantum Parallelism
- Measurement will Yield one of the Basis States (Eigenvectors) of the Observable
- Complete Algorithm/Circuit Must Allow for "Cancelling Out" Undesirable Results
- Can be Applied to Systems of m Qubits Yielding 2^{m} Superimposed Results!

[^0]: *Berman, et al., Introduction to Quantum Computers, 1998

