Turing Machine

» Theoretical Model Developed by Alan
Turing (published May 1936)

» Abstraction of Classical Digital
Computer

 Allows for Reasoning About
Fundamental Computational Issues:
— the Halting Problem
— Computable vs. Non-computable Functions
— Useful Model for use in Complexity Theory

Halting Problem/Decidability

Alan Alonzo
S0 Turing Church

Given a Description of a Program and Finite Input,
Decide whether the Program will run forever or
finishes

One of First Problems of Decidability

Led to Concept of Undecidability and Birth of
Classical Complexity Theory
Alonzo Church Lambda Calculus to Show the

Existence of an Undecidable Problem (published
April 1936)




Turing Machine Example

Example Machine has 3 Parts:

1. A Recording Tape Divided into Squares

2. A Tape Read/Write (R/W) Head

3. A Dial that “Chooses” Operations

* Machine can Write a Symbol X or 1 in Blank
Square

* Machine can Erase Symbols in an Occupied
Square

« A Value is Written as a Sequence of 1s, eg “4” is
Written as “1111”

« Symbol x Indicates Beginning/Ending of a

Number

Example Turing Machine Diagram

X|1][X X|1]|X

Read/Write Tape

« Tape Contains Two Numbers R/W Head

Both with Unity Value (1)

 As Example, a “Program”
will be Shown that Computes
Sum of Two Numbers

Dial

*Berman, et al., Introduction to Quantum Computers, 1998




Programming Symbols

Commands:

D Write the Digit 1

X Write the Symbol x
E Erase the Symbol

SN~

Number
I Job is Completed
? Mistake

Also

R Move Tape One Square to Right
L Move Tape One Square to Left
1 to 6 Change Dial Setting to this

Each Command can have Number

*Berman, et al., Introduction to Quantum Computers, 1998

Addition Program

Current Dial
Setting Column

Instructions Based
on Dial Setting and
Current Tape Value

Tape Content ___| / (blank) X 1
(before instruc.) 1 D6 ‘{E 2 R1
2 R2 E3 ?
3 R3 E4 E5
4 L4 ? R6
5 L5 ? R1l
6 X6 ! R3

*Berman, et al., Introduction to Quantum Computers, 1998




Addition Program Example

[xla x| [x[1]x]
Read/Write Tape

(blank) X 1 R/W Head
1 D6 E2 R1
2 R2 E3 ?
3 R3 E4 E5 Dial
4 L4 ? R6
5 L5 ? R1
6 X6 ! R3 4

R/W Head Reads a 1

Dial Setting is 1 — Command is R1
Tape Head Moved One Position to Right
Dial is Setto 1

*Berman, et al., Introduction to Quantum Computers, 1998

Addition Program Example

[xla x| [x[a]x]
Read/Write Tape

(blank) X 1 R/W Head
1 D6 E2 R1
2 R2 E3 ?
3 R3 E4 E5 Dial
4 L4 ? R6
5 L5 ? R1
6 X6 ! R3 4

R/W Head Reads a x

Dial Setting is 1 — Command is E2
Tape Square is Erased (set to blank)
Dial is Set to 2

*Berman, et al., Introduction to Quantum Computers, 1998




Addition Program Example

[l sl | [alx]

Read/Write Tape
(blank) | X 1 R/W Head

1 D6 E2 R1

2 R2 E3

3 R3 E4 E5 ,

Dial

4 L4 ? R6

5 L5 ? R1

6 X6 ] R3

R/W Head Reads a blank

Dial Setting is 2 — Command is R2
Tape Head Moved One Position to Right
Dial is Set to 2

*Berman, et al., Introduction to Quantum Computers, 1998

Addition Program Example

[l sl | [alx]

Read/Write Tape
(blank) X 1 Head
1 D6 E2 R1
2 R2 E3
R. E4 E .
3 3 > | Dial
4 L4 ? R6
5 L5 ? R1
6 X6 ] R3

R/W Head Reads a blank

Dial Setting is 2 — Command is R2
Tape Head Moved One Position to Right
Dial is Set to 2




Addition Program Example

[xlalxl | lalx]
Read/Write Tape

R/W Head

(blank) X 1
1 D6 E2 | R1

2 R2 E3
Dial 3 R3 E4 | E5
4 L4 2 R6
5 L5 2 R1
6 X6 ! R3

R/W Head Reads a x

Dial Setting is 2 — Command is E3
Tape Square is Erased (set to blank)
Dial is Setto 3

Addition Program Example

[x[a] | [ lalx]
Read/Write Tape

R/W Head

(blank) X 1
1 D6 E2 | R1

2 R2 E3
Dial 3 R3 E4 | E5
4 L4 2 R6
5 L5 2 R1
6 X6 ! R3

R/W Head Reads a blank

Dial Setting is 3 — Command is R3
Tape Head Moved One Position to Right
Dial is Set to 3




Addition Program Example

[x[ ] || Talx]
Read/Write Tape

R/W Head

(blank) X 1
1 D6 E2 | R1

2 R2 E3
Dial 3 R3 E4 | E5
4 L4 2 R6
5 L5 2 R1
6 X6 ! R3

R/W Head Reads a 1

Dial Setting is 3 — Command is E3
Tape Square is Erased (set to blank)
Dial is Setto 5

Addition Program Example

[x[ |1 [ lalx]
Read/Write Tape

R/W Head

(blank) X 1
1 D6 E2 | R1

2 R2 E3
Dial 3 R3 E4 | E5
4 L4 2 R6
5 L5 2 R1
6 X6 ! R3

R/W Head Reads a blank

Dial Setting is 5 — Command is L5
Tape Head Moved One Position to Left
Dial is Setto 5




Summary of Example Program

Op

R1

E2

R2

R2

E3

R3

E5

L5

L5

L5

L5

Tape Content

'l

]|

=l

'l

Summary of Example Program (cont)

Op

R1

D6

R3

R3

R3

R3

E4

L4

L4

L4

L4

Tape Content

'l

'l

x|




Summary of Example Program (cont)

Tape Content Op
1 1 X | R6
1 1 X6
1 1 X !
\ /
Result is:
1+1=2

* TM is Abstraction of Classical Computer

» Generalized (Programmable) Finite Automaton

+ Halting Problem is Given Turing Machine and this
Program, will it Terminate?

e

X

TM Analogy to Digital Computer
« Tape (Data Mem.) and Dial (Instr.
Mem.) are Memory Elements
» Writing/Erasing Elements are ALU

* Programming “Actions” are the
Control Unit (in Dial Also)

 Initial Tape Content is Input Data
« Tape Content after Halt is Output Data

« Sequence of Operations Represent
Clocking or Sequential Behavior




TM Analogy to Digital Computer

* A Given Dial Setting Represents Inst.
Pointer Register

* For Given Dial Setting, Choice Among next
Operation Based on Current Tape Value
Represents Decision Construct (i.e. if-then-
else)

* Any Problem that can be Solved as a
Program on a TM is “Turing Computable”

» All Classical Computers can Execute any
Turing Computable Program Regardless of
Underlying Hardware/Software
Implementation

TM as a Finite Automaton

* Finite Automaton is Mathematical Term for
a Finite State Machine

 in TM, the State is the Combination of the
Current Tape Symbol and the Dial Setting

« The Program Defines the State Transitions
and the Machine Operation

A Program has a Halt State (hopefully)

« Example Halt State is Dial Setting, (Tape
Symbol)=(6,x) Causing a Halt Operation !

* Note that Digital Logic Control Circuits
Typically have no Halt State
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Probabilistic Turing Machine (PTM)

« Some Transitions are Random Choices
Among the Possibilities

* In Our Example, a PTM would be Modeled
as a Dial Setting where the Three
Operations are Chosen Randomly Instead
of Deterministically Based on Tape
Content

e Stochastic Performance:

— Different Results Among Consecutive Runs with Same
Program and Input Data

— Different Runtimes, Possible for Halt State to Never be
Reached

Non-deterministic Turing Machine

* Similar to PTM - More than One Next State
Per Computational Step

« Probability Distribution of all Allowed
States is Known

+ “Guesses” the Correct Answer at Each
Step

* Mathematical Model of Computation

* Non-deterministic Turing Machine not
Realized

« PTM Could be Built - but Probably not very
useful

11



Computational Complexity Theory

Measure of Computer Runtime (time) and
Memory Usage (space) for Particular
Computable Function in Terms of
Elementary Operations

Elementary Operation Examples:
— Number of Vertices of a Decision Diagram

— Number of Clock Cycles per Digit for a Square Root
Algorithm

— Number of Clock Cycles per Vertex to Traverse a
Graph

— Number of Swaps in a Bubble Sort Algorithm

Complexity Classes

Theoretical Computer Scientists have Defined Several
Different Classes of Decidable Problems

Class P: Those Problems Requiring Total Time or Space Resources
Expressible as a Polynomial in Terms of Elementary Operations on a
Turing Machine (eg. Bubble Sort)

Class NP: Those Problems Requiring Total Time or Space
Resources Expressible as a Polynomial in Terms of Elementary
Operations on a Non-determinstic Turing Machine (NP does NOT
stand for “not polynomial”) (eg. Graph Isomorphism)

Class Co-NP: The Complement of the Problems in NP where the yes/
no Answer is Reversed

Class NP-Complete: A subset of the problems in Class NP such that
if Any One Could be solved in P, all Others could be REDUCED to
This One and Also Solved in P (eg. SAT, set covering, traveling
salesman)

Does P equal NP? Prove/disprove it and you will receive
$1,000,000 from the Clay Institute!




Bubble Sort Example

« Given a List of n unsorted Numbers, place them in
Ascending Order

*  Elementary Operation is the Adjacent Number SWAP

«  Begin at First Number in List and Proceed Forward in list
ltem by Item

«  If Current Value > Next Item Perform a SWAP
* Repeat Traversal Through List Until Sorted

«  First Traversal Through List Guarantees Largest Value
Moved to End

«  Second Traversal Guarantees Next Largest Moved to
Second from End, etc.

«  Spatial Worst-case Complexity: O(n)=n
«  Temporal Worst-case Complexity: O(n) = n’
Temporal Best-case Complexity: () =7

»  Theoretical Worst-case Complexity for the Sorting
Problem: O(n) = nlog, n

Tractable and Intractable Problems

* Informally, a Problem Solvable in Polynomial
Time is Termed a Tractable Problem

« Likewise, Problems Requiring More than
Polynomial Time are Intractable

» Intractable Problem Example is One that
Requires 2" (exponential) Amount of time

 Some Intractable Problems on TMs are Tractable

on a Quantum Computer as Defined by
Deutsch!!!!

« These Problems are in Complexity Class QP

* Complexity Class OP: The Set of Problems
Solvable in Polynomial Time on a Quantum
Computer for Which the Best Known TM
Algorithm is Intractable
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Quantum Parallelism

This Notion may Explain why the
Class OP Exists

Qubits can Exist in a
Superposition of Basis States

This Allows Parallelism at the
Information Level

Classical Computer Parallelism
Exists

— Temporal Level (aka Pipelining)
— Multiple CPUs

Quantum Parallelism Example

Assume we Wish to Compute f{j) in
Polynomial Time

Where j is a Binary String of Length »

Need Single Copy of Quantum Circuit that
Evaluates f

Can Compute Superposition of all 2"
Values of f

Polynomial Time with Single Copy of
Quantum Circuit
Classical Computer Requires:

1. 27 Runs on Single Processor

2. 2" Parallel Processors

14



Example Quantum Computation

00— H —1g) \
00— H — 1) Garbage
; Qua_ntum Gate Ar!’ay . Qubits
Qubits carrying out the_umtary o
n . transformation .
U,
|0) — H in polynomial time —— |2 )
107 — /)
Ancilla Qubit Result Qubit

First Stage in Example

* Initialize » Qubits to |0>

 Perform Hadamard Transform on
n Qubits

2" -1

LSh

n/2
2775

Loy =

H®H®---®H(|0>|0>---|0>)=2,,
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U

Second Stage in Example

Quantum Gate Array Implements
Function f

S :10,13" = {0, 1
Maps n-bit Input String j=(j,,j,,---/,.1) 10
0 or 1 in Polynomial Time
Quantum Gate Array Transformation:

7 a1 1,20 10)

Sl o2 1701 2V f Ggs Jisee s d )

Result in Example

Input to Function Evaluation is in
Superposition State Created by n
Hadamard Gates

Result is Superposition of all Values of
Function f

|f>=2|j>|f(j>>

16



Quantum Algorithm Classes
« 3 Broad Catagories (Shor’ 03)

1. Finding Periodicity of a Function (using Fourier
transforms)
Shor’ s Algorithms-factoring/discrete log
Hallgren’ s Algorithm-solve’ s Bell’ s equation
2. Search N items in N'2 time
« Grover’ s Algorithm

3. Simulation of Quantum Systems
» Potentially large class suggested by Feynman
* Not many of these Presently developed

Quantum Algorithm Development

« QAs Offer Substantial Speedup over Classical
but Limited in Applicability

 Concentrate on Problems NOT in Class P

« Common Conjecture is QAs do NOT Solve NP
Problems in Polynomial Time

» If Conjecture is True, Then Class of Problems
Applicable for QA Speedup is Neither NP-hard
nor P

* Remaining Population of Problems is Relatively
Small

17



Parallelism

Classical Computation

— Single Copy of Circuit/Algorithm Requires to Compute Function 2"
Times

— 2" Copies of Circuit/Algorithm Allows to Obtain all Values of
Function in Single Time Step

Quantum Circuit/Algorithm
— Requires Single Copy of Circuit /Algorithm
—  Obtain all Values in Single Time Step
Parallelism is at Information Level
—  More than Superposition
—  Entanglement also Plays a Role

Power Requirements Differ Exponentially

Superposition Example

Consider Qubit |[x) with Two Possible Values |0 or |1)
Consider a Function f{x) With Two Possible Values
[fx)>=10> or |[fix)=|1)

We Wish to Construct a Circuit Whose Output is a
Superposition of [f{0) > and 1) »

Possible to Construct Circuit to Transform 2 Input Qubits
Ix) and |y» into Results |x) and |y®f(x)) Using only Fredkin
Gates (Marinescu, p.189)

Function f(x) is “Hardwired” into Circuit/Algorithm

[x) —— — Ix)
U

18



Superposition Example (cont)

Setting )= |0) Results in the Following
Transformation:

| x0) =[x f(x))

Abbreviated Notation Implies Tensor Product:

[ X)[0) =] x) | f(x))

Ix) ——

10) —

| X) @[ 0) =] x)®| f(x))

U,

— |x>

L 109f(x) )= Ifix)

Superposition Example (cont)

Instead of |x), Consider Replacing it With Qubit
|0> Applied to a Hadamard Gate Initially:

H | 0) = (1/4/2)(| 0)0 [+ ] 0)1| +] 10 | — | 1)(1]) | 0)

H | 0) = (1/3/2)( 0)(0] 0)+] 01| 0)+|1)(0| 0)— | 1)(1] 0))

Results in the Following Superposition State
H | 0) = (1/42)(| 0)+] 1))

Applied to Uy

10>

H

10) —

U,

N
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Superposition Example (cont)

[x) ——— - x)
Uf | v
ly) — — | yof(x))
H|0)=(1/~/2)( 0)+|1))
10) H L ((0)+] 1)) /2
U
00— | ——10® 11 0+ 1))/42)]

| FTAO+ 1) /N2D =[] £ O+ £ IINT/N2

Superposition Example (cont)

*  Output State of Quantum System is Tensor

Product of the Two Output Vectors:
[10£( 0+ 0L ADN+ LAY+ 1A (DNT/N2

*  Output State Contains Information About Both
Possible Evaluations |[f{0)», |f(1)) in One Run/
Execution Period — Quantum Parallelism

* Measurement will Yield one of the Basis States
(Eigenvectors) of the Observable

»  Complete Algorithm/Circuit Must Allow for
“Cancelling Out” Undesirable Results

« Can be Applied to Systems of m Qubits Yielding
2™ Superimposed Results!
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