Turing Machine

- Theoretical Model Developed by Alan Turing (published May 1936)
- Abstraction of Classical Digital Computer
- Allows for Reasoning About Fundamental Computational Issues:
 - the Halting Problem
 - Computable vs. Non-computable Functions
 - Useful Model for use in Complexity Theory

Halting Problem/Decidability

- Given a Description of a Program and Finite Input, decide whether the Program will run forever or finishes
- One of First Problems of Decidability
- Led to Concept of Undecidability and Birth of Classical Complexity Theory
- Alonzo Church Lambda Calculus to Show the Existence of an Undecidable Problem (published April 1936)
Turing Machine Example

- Example Machine has 3 Parts:
 1. A Recording Tape Divided into Squares
 2. A Tape Read/Write (R/W) Head
 3. A Dial that “Chooses” Operations
- Machine can Write a Symbol \(x \) or \(1 \) in Blank Square
- Machine can Erase Symbols in an Occupied Square
- A Value is Written as a Sequence of 1s, eg “4” is Written as “1111”
- Symbol \(x \) Indicates Beginning/Ending of a Number

Example Turing Machine Diagram

- Tape Contains Two Numbers Both with Unity Value (1)
- As Example, a “Program” will be Shown that Computes Sum of Two Numbers

Berman, et al., Introduction to Quantum Computers, 1998
Programming Symbols

• Commands:
 1. **D** Write the Digit \textbf{1}
 2. **X** Write the Symbol \textbf{X}
 3. **E** Erase the Symbol
 4. **R** Move Tape One Square to Right
 5. **L** Move Tape One Square to Left
 6. \textbf{1} to \textbf{6} Change Dial Setting to this Number

• ! Job is Completed
• ? Mistake
• Each Command can have Number Also

Berman, et al., Introduction to Quantum Computers, 1998

Addition Program

Tape Content (before instruc.)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Current Dial Setting Column</th>
<th>Instructions Based on Dial Setting and Current Tape Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(blank)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D6</td>
<td>E2 R1</td>
</tr>
<tr>
<td>2</td>
<td>R2</td>
<td>E3 ?</td>
</tr>
<tr>
<td>3</td>
<td>R3</td>
<td>E4 E5</td>
</tr>
<tr>
<td>4</td>
<td>L4</td>
<td>? R6</td>
</tr>
<tr>
<td>5</td>
<td>L5</td>
<td>? R1</td>
</tr>
<tr>
<td>6</td>
<td>X6</td>
<td>! R3</td>
</tr>
</tbody>
</table>

Berman, et al., Introduction to Quantum Computers, 1998
Addition Program Example

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D6</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>R2</td>
<td>E2</td>
<td>R1</td>
</tr>
<tr>
<td>3</td>
<td>R3</td>
<td>E4</td>
<td>E5</td>
</tr>
<tr>
<td>4</td>
<td>L4</td>
<td>?</td>
<td>R6</td>
</tr>
<tr>
<td>5</td>
<td>L5</td>
<td>?</td>
<td>R1</td>
</tr>
<tr>
<td>6</td>
<td>X6</td>
<td>!</td>
<td>R3</td>
</tr>
</tbody>
</table>

- R/W Head Reads a \(\text{X} \)
- Dial Setting is \(\text{1} \rightarrow \) Command is \(\text{E2} \)
- Tape Square is Erased (set to \(\text{blank} \))
- Dial is Set to \(\text{2} \)

Berman, et al., Introduction to Quantum Computers, 1998
Addition Program Example

<table>
<thead>
<tr>
<th>(blank)</th>
<th>X</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D6</td>
<td>E2</td>
</tr>
<tr>
<td>2</td>
<td>R2</td>
<td>E3</td>
</tr>
<tr>
<td>3</td>
<td>R3</td>
<td>E4</td>
</tr>
<tr>
<td>4</td>
<td>L4</td>
<td>?</td>
</tr>
<tr>
<td>5</td>
<td>L5</td>
<td>?</td>
</tr>
<tr>
<td>6</td>
<td>X6</td>
<td>!</td>
</tr>
</tbody>
</table>

* Berman, et al., Introduction to Quantum Computers, 1998

• R/W Head Reads a **blank**
• Dial Setting is 2 → Command is R2
• Tape Head Moved One Position to Right
• Dial is Set to 2
Addition Program Example

- R/W Head Reads a X
- Dial Setting is 2 → Command is E3
- Tape Square is Erased (set to blank)
- Dial is Set to 3

Addition Program Example

- R/W Head Reads a blank
- Dial Setting is 3 → Command is R3
- Tape Head Moved One Position to Right
- Dial is Set to 3
Addition Program Example

Read/Write Tape

R/W Head

Dial

- R/W Head Reads a 1
- Dial Setting is 3 → Command is E3
- Tape Square is Erased (set to blank)
- Dial is Set to 5

<table>
<thead>
<tr>
<th>(blank)</th>
<th>X</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D6</td>
<td>E2</td>
</tr>
<tr>
<td>2</td>
<td>R2</td>
<td>E3</td>
</tr>
<tr>
<td>3</td>
<td>R3</td>
<td>E4</td>
</tr>
<tr>
<td>4</td>
<td>L4</td>
<td>?</td>
</tr>
<tr>
<td>5</td>
<td>L5</td>
<td>?</td>
</tr>
<tr>
<td>6</td>
<td>X6</td>
<td>!</td>
</tr>
</tbody>
</table>

Addition Program Example

Read/Write Tape

R/W Head

Dial

- R/W Head Reads a blank
- Dial Setting is 5 → Command is L5
- Tape Head Moved One Position to Left
- Dial is Set to 5

<table>
<thead>
<tr>
<th>(blank)</th>
<th>X</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D6</td>
<td>E2</td>
</tr>
<tr>
<td>2</td>
<td>R2</td>
<td>E3</td>
</tr>
<tr>
<td>3</td>
<td>R3</td>
<td>E4</td>
</tr>
<tr>
<td>4</td>
<td>L4</td>
<td>?</td>
</tr>
<tr>
<td>5</td>
<td>L5</td>
<td>?</td>
</tr>
<tr>
<td>6</td>
<td>X6</td>
<td>!</td>
</tr>
</tbody>
</table>
Summary of Example Program

<table>
<thead>
<tr>
<th>Tape Content</th>
<th>Op</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 1 X</td>
<td>X 1 X R1</td>
</tr>
<tr>
<td>X 1 X</td>
<td>X 1 X E2</td>
</tr>
<tr>
<td>X 1 X</td>
<td>1 X R2</td>
</tr>
<tr>
<td>X 1 X</td>
<td>1 X R2</td>
</tr>
<tr>
<td>X 1 X</td>
<td>1 X E3</td>
</tr>
<tr>
<td>X 1</td>
<td>1 X R3</td>
</tr>
<tr>
<td>X 1</td>
<td>1 X E5</td>
</tr>
<tr>
<td>X 1</td>
<td>1 X L5</td>
</tr>
<tr>
<td>X 1</td>
<td>1 X L5</td>
</tr>
<tr>
<td>X 1</td>
<td>1 X L5</td>
</tr>
</tbody>
</table>

Summary of Example Program (cont)

<table>
<thead>
<tr>
<th>Tape Content</th>
<th>Op</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1 X R1</td>
</tr>
<tr>
<td>X</td>
<td>1 X D6</td>
</tr>
<tr>
<td>X</td>
<td>1 X R3</td>
</tr>
<tr>
<td>X</td>
<td>1 X R3</td>
</tr>
<tr>
<td>X</td>
<td>1 X R3</td>
</tr>
<tr>
<td>X</td>
<td>1 X E4</td>
</tr>
<tr>
<td></td>
<td>1 X L4</td>
</tr>
</tbody>
</table>
Summary of Example Program (cont)

<table>
<thead>
<tr>
<th>Tape Content</th>
<th>Op</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 X</td>
<td>R6</td>
</tr>
<tr>
<td>_ 1 1 X</td>
<td>X6</td>
</tr>
<tr>
<td>X 1 1 X !</td>
<td></td>
</tr>
</tbody>
</table>

Result is: 1+1=2

- TM is Abstraction of Classical Computer
- Generalized (Programmable) Finite Automaton
- Halting Problem is Given Turing Machine and this Program, will it Terminate?

TM Analogy to Digital Computer

- Tape (Data Mem.) and Dial (Instr. Mem.) are Memory Elements
- Writing/Erasing Elements are ALU
- Programming “Actions” are the Control Unit (in Dial Also)
- Initial Tape Content is Input Data
- Tape Content after Halt is Output Data
- Sequence of Operations Represent Clocking or Sequential Behavior
TM Analogy to Digital Computer

- A Given Dial Setting Represents Inst. Pointer Register
- For Given Dial Setting, Choice Among next Operation Based on Current Tape Value Represents Decision Construct (i.e. if-then-else)
- Any Problem that can be Solved as a Program on a TM is “Turing Computable”
- All Classical Computers can Execute any Turing Computable Program Regardless of Underlying Hardware/Software Implementation

TM as a Finite Automaton

- Finite Automaton is Mathematical Term for a Finite State Machine
- in TM, the State is the Combination of the Current Tape Symbol and the Dial Setting
- The Program Defines the State Transitions and the Machine Operation
- A Program has a Halt State (hopefully)
- Example Halt State is Dial Setting, (Tape Symbol)=(6, x) Causing a Halt Operation ❗
- Note that Digital Logic Control Circuits Typically have no Halt State
Probabilistic Turing Machine (PTM)

- Some Transitions are Random Choices Among the Possibilities
- In Our Example, a PTM would be Modeled as a Dial Setting where the Three Operations are Chosen Randomly Instead of Deterministically Based on Tape Content
- Stochastic Performance:
 - Different Results Among Consecutive Runs with Same Program and Input Data
 - Different Runtimes, Possible for Halt State to Never be Reached

Non-deterministic Turing Machine

- Similar to PTM - More than One Next State Per Computational Step
- Probability Distribution of all Allowed States is Known
- “Guesses” the Correct Answer at Each Step
- Mathematical Model of Computation
- Non-deterministic Turing Machine not Realized
- PTM Could be Built - but Probably not very useful
Computational Complexity Theory

- Measure of Computer Runtime (time) and Memory Usage (space) for Particular Computable Function in Terms of Elementary Operations
- Elementary Operation Examples:
 - Number of Vertices of a Decision Diagram
 - Number of Clock Cycles per Digit for a Square Root Algorithm
 - Number of Clock Cycles per Vertex to Traverse a Graph
 - Number of Swaps in a Bubble Sort Algorithm

Complexity Classes

- Theoretical Computer Scientists have Defined Several Different Classes of Decidable Problems
- Class P: Those Problems Requiring Total Time or Space Resources Expressible as a Polynomial in Terms of Elementary Operations on a Turing Machine (eg. Bubble Sort)
- Class NP: Those Problems Requiring Total Time or Space Resources Expressible as a Polynomial in Terms of Elementary Operations on a Non-deterministic Turing Machine (NP does NOT stand for “not polynomial”) (eg. Graph Isomorphism)
- Class $Co-NP$: The Complement of the Problems in NP where the yes/no Answer is Reversed
- Class NP-Complete: A subset of the problems in Class NP such that if Any One Could be solved in P, all Others could be REDUCED to This One and Also Solved in P (eg. SAT, set covering, traveling salesman)

Does P equal NP? Prove/disprove it and you will receive $1,000,000 from the Clay Institute!
Bubble Sort Example

- Given a List of \(n \) unsorted Numbers, place them in Ascending Order
- Elementary Operation is the Adjacent Number SWAP
- Begin at First Number in List and Proceed Forward in list Item by Item
- If Current Value > Next Item Perform a SWAP
- Repeat Traversal Through List Until Sorted
- First Traversal Through List Guarantees Largest Value Moved to End
- Second Traversal Guarantees Next Largest Moved to Second from End, etc.
- Spatial Worst-case Complexity: \(O(n) = n \)
- Temporal Worst-case Complexity: \(O(n) = n^2 \)
- Temporal Best-case Complexity: \(\Omega(n) = n \)
- Theoretical Worst-case Complexity for the Sorting Problem: \(O(n) = n \log_2 n \)

Tractable and Intractable Problems

- Informally, a Problem Solvable in Polynomial Time is Termed a **Tractable** Problem
- Likewise, Problems Requiring More than Polynomial Time are **Intractable**
- **Intractable** Problem Example is One that Requires \(2^n \) (exponential) Amount of time
- Some **Intractable** Problems on TMs are **Tractable** on a Quantum Computer as Defined by Deutsch!!!!
- These Problems are in Complexity Class \(QP \)
- Complexity Class \(QP \): The Set of Problems Solvable in Polynomial Time on a Quantum Computer for Which the Best Known TM Algorithm is Intractable
Quantum Parallelism

- This Notion may Explain why the Class QP Exists
- Qubits can Exist in a Superposition of Basis States
- This Allows Parallelism at the Information Level
- Classical Computer Parallelism Exists
 - Temporal Level (aka Pipelining)
 - Multiple CPUs

Quantum Parallelism Example

- Assume we Wish to Compute $f(j)$ in Polynomial Time
- Where j is a Binary String of Length n
- Need Single Copy of Quantum Circuit that Evaluates f
- Can Compute Superposition of all 2^n Values of f
- Polynomial Time with Single Copy of Quantum Circuit
- Classical Computer Requires:
 1. 2^n Runs on Single Processor
 2. 2^n Parallel Processors
Example Quantum Computation

Quantum Gate Array carrying out the unitary transformation U_f in polynomial time

First Stage in Example

- Initialize n Qubits to $|0\rangle$
- Perform Hadamard Transform on n Qubits

$$H \otimes H \otimes \cdots \otimes H(|0\rangle |0\rangle \cdots |0\rangle) = \frac{1}{2^{n/2}} (|0\rangle + |1\rangle)^n = \frac{1}{2^{n/2}} \sum_{k=0}^{2^n-1} |k\rangle$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
Second Stage in Example

- Quantum Gate Array Implements Function f
 $$f : \{0,1\}^n \to \{0,1\}$$
- Maps n-bit Input String $j=(j_0,j_1,...,j_{n-1})$ to 0 or 1 in Polynomial Time
- Quantum Gate Array Transformation:
 $$U_f : |j_0\rangle |j_1\rangle \ldots |j_{n-1}\rangle |0\rangle$$
 $$\mapsto |j_0\rangle |j_1\rangle \ldots |j_{n-1}\rangle |f(j_0,j_1,...,j_{n-1})\rangle$$

Result in Example

- Input to Function Evaluation is in Superposition State Created by n Hadamard Gates
- Result is Superposition of all Values of Function f
 $$|f\rangle = \sum_{j=0}^{2^n-1} |j\rangle |f(j)\rangle$$
Quantum Algorithm Classes

• 3 Broad Categories (Shor’ 03)
 1. Finding Periodicity of a Function (using Fourier transforms)
 • Shor’s Algorithms-factoring/discrete log
 • Hallgren’s Algorithm-solve’s Bell’s equation
 2. Search N items in $N^{1/2}$ time
 • Grover’s Algorithm
 3. Simulation of Quantum Systems
 • Potentially large class suggested by Feynman
 • Not many of these Presently developed

Quantum Algorithm Development

• QAs Offer Substantial Speedup over Classical but Limited in Applicability
• Concentrate on Problems NOT in Class P
• Common Conjecture is QAs do NOT Solve NP Problems in Polynomial Time
• If Conjecture is True, Then Class of Problems Applicable for QA Speedup is Neither NP-hard nor P
• Remaining Population of Problems is Relatively Small
Parallelism

- Classical Computation
 - Single Copy of Circuit/Algorithm Requires to Compute Function 2^n Times
 - 2^n Copies of Circuit/Algorithm Allows to Obtain all Values of Function in Single Time Step
- Quantum Circuit/Algorithm
 - Requires Single Copy of Circuit /Algorithm
 - Obtain all Values in Single Time Step
- Parallelism is at Information Level
 - More than Superposition
 - Entanglement also Plays a Role
- Power Requirements Differ Exponentially

Superposition Example

- Consider Qubit $|x\rangle$ with Two Possible Values $|0\rangle$ or $|1\rangle$
- Consider a Function $f(x)$ With Two Possible Values $|f(x)\rangle = |0\rangle$ or $|f(x)\rangle = |1\rangle$
- We Wish to Construct a Circuit Whose Output is a Superposition of $|f(0)\rangle$ and $|f(1)\rangle$
- Possible to Construct Circuit to Transform 2 Input Qubits $|x\rangle$ and $|y\rangle$ into Results $|x\rangle$ and $|y\oplus f(x)\rangle$ Using only Fredkin Gates (Marinescu, p.189)
- Function $f(x)$ is “Hardwired” into Circuit/Algorithm

\[
\begin{array}{ccc}
|x\rangle & \rightarrow & |x\rangle \\
|y\rangle & \rightarrow & |y\oplus f(x)\rangle \\
\end{array}
\]
Superposition Example (cont)

- Setting \(|y\rangle = |0\rangle\) Results in the Following Transformation:

 \(|x\ 0\rangle \rightarrow |x \ f(x)\rangle\)

- Abbreviated Notation Implies Tensor Product:

 \(|x\rangle |0\rangle \rightarrow |x\rangle |f(x)\rangle\quad |x\rangle \otimes |0\rangle \rightarrow |x\rangle \otimes |f(x)\rangle\)

![Diagram]

Superposition Example (cont)

- Instead of \(|x\rangle\), Consider Replacing it With Qubit \(|0\rangle\) Applied to a Hadamard Gate Initially:

 \(H |0\rangle = (1/\sqrt{2})(|0\rangle + |1\rangle = |0\rangle\)

- Results in the Following Superposition State Applied to \(U_f\): \(H |0\rangle = (1/\sqrt{2})(|0\rangle + |1\rangle)\)

![Diagram]
Superposition Example (cont)

- Output State of Quantum System is Tensor Product of the Two Output Vectors:
 \[
 \left[|0\rangle f(|0\rangle) + |1\rangle f(|1\rangle)\right] / \sqrt{2}
 \]

- Output State Contains Information About Both Possible Evaluations \(|0\rangle\), \(|1\rangle\) in One Run/Execution Period – *Quantum Parallelism*

- Measurement will Yield one of the Basis States (Eigenvectors) of the Observable

- Complete Algorithm/Circuit Must Allow for “Cancelling Out” Undesirable Results

- Can be Applied to Systems of \(m\) Qubits Yielding \(2^m\) Superimposed Results!