
1

Turing Machine
•  Theoretical Model Developed by Alan 

Turing (published May 1936) 
•  Abstraction of Classical Digital 

Computer 
•  Allows for Reasoning About 

Fundamental Computational Issues: 
–  the Halting Problem 
– Computable vs. Non-computable Functions 
– Useful Model for use in Complexity Theory 

Halting Problem/Decidability

•  Given a Description of a Program and Finite Input, 
Decide whether the Program will run forever or 
finishes 

•  One of First Problems of Decidability 
•  Led to Concept of Undecidability and Birth of 

Classical Complexity Theory 
•  Alonzo Church Lambda Calculus to Show the 

Existence of an Undecidable Problem (published 
April 1936)

Alan  
Turing

Alonzo 
Church
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Turing Machine Example
•  Example Machine has 3 Parts: 

1.  A Recording Tape Divided into Squares 
2.  A Tape Read/Write (R/W) Head 
3.  A Dial that “Chooses” Operations 

•  Machine can Write a Symbol X or 1 in Blank 
Square 

•  Machine can Erase Symbols in an Occupied 
Square 

•  A Value is Written as a Sequence of 1s, eg “4” is 
Written as “1111” 

•  Symbol X Indicates Beginning/Ending of a 
Number

Example Turing Machine Diagram
X X X X1 1

1

4

6 2

5 3

Read/Write Tape

R/W Head

Dial

•  Tape Contains Two Numbers 
   Both with Unity Value (1) 
•  As Example, a “Program” 
   will be Shown that Computes 
   Sum of Two Numbers

*Berman, et al., Introduction to Quantum Computers, 1998
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Programming Symbols
•  Commands: 

1.   D Write the Digit 1 
2.   X Write the Symbol X 
3.   E Erase the Symbol 
4.   R Move Tape One Square to Right 
5.   L Move Tape One Square to Left 
6.   1 to 6 Change Dial Setting to this 

Number 
•   ! Job is Completed 
•   ? Mistake 
•  Each Command can have Number 

Also *Berman, et al., Introduction to Quantum Computers, 1998

Addition Program

(blank) X 1 
1 D6 E2 R1 

2 R2 E3 ? 

3 R3 E4 E5 

4 L4 ? R6 

5 L5 ? R1 

6 X6 ! R3 

Current Dial 
Setting Column

Tape Content  
(before instruc.)

*Berman, et al., Introduction to Quantum Computers, 1998

Instructions Based 
on Dial Setting and 
Current Tape Value
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Addition Program Example
X X X X1 1

1

4

6 2
5 3

Read/Write Tape
R/W Head

Dial

*Berman, et al., Introduction to Quantum Computers, 1998

•  R/W Head Reads a 1 
•  Dial Setting is 1 → Command is R1 
•  Tape Head Moved One Position to Right 
•  Dial is Set to 1 

(blank) X 1 

1 D6 E2 R1 

2 R2 E3 ? 

3 R3 E4 E5 

4 L4 ? R6 

5 L5 ? R1 

6 X6 ! R3 

Addition Program Example
X X X X1 1

1

4

6 2
5 3

Read/Write Tape
R/W Head

Dial

*Berman, et al., Introduction to Quantum Computers, 1998

•  R/W Head Reads a X 
•  Dial Setting is 1 → Command is E2 
•  Tape Square is Erased (set to blank) 
•  Dial is Set to 2 

(blank) X 1 

1 D6 E2 R1 

2 R2 E3 ? 

3 R3 E4 E5 

4 L4 ? R6 

5 L5 ? R1 

6 X6 ! R3 
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Addition Program Example
X X X1 1

1

46

2

5

3

Read/Write Tape
R/W Head

Dial

*Berman, et al., Introduction to Quantum Computers, 1998

•  R/W Head Reads a blank 
•  Dial Setting is 2 → Command is R2 
•  Tape Head Moved One Position to Right 
•  Dial is Set to 2 

(blank) X 1 

1 D6 E2 R1 

2 R2 E3 ? 

3 R3 E4 E5 

4 L4 ? R6 

5 L5 ? R1 

6 X6 ! R3 

Addition Program Example
X X X1 1

1

46

2

5

3

Read/Write Tape
R/W Head

Dial

•  R/W Head Reads a blank 
•  Dial Setting is 2 → Command is R2 
•  Tape Head Moved One Position to Right 
•  Dial is Set to 2 

(blank) X 1 

1 D6 E2 R1 

2 R2 E3 ? 

3 R3 E4 E5 

4 L4 ? R6 

5 L5 ? R1 

6 X6 ! R3 
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Addition Program Example
X X1 1

Read/Write Tape
R/W Head

Dial

•  R/W Head Reads a X 
•  Dial Setting is 2 → Command is E3 
•  Tape Square is Erased (set to blank) 
•  Dial is Set to 3 

(blank) X 1 

1 D6 E2 R1 

2 R2 E3 ? 

3 R3 E4 E5 

4 L4 ? R6 

5 L5 ? R1 

6 X6 ! R3 

X

1

46

2

5

3

Addition Program Example
X X1 1

1

4

6

2
5

3

Read/Write Tape
R/W Head

Dial

•  R/W Head Reads a blank 
•  Dial Setting is 3 → Command is R3 
•  Tape Head Moved One Position to Right 
•  Dial is Set to 3 

(blank) X 1 

1 D6 E2 R1 

2 R2 E3 ? 

3 R3 E4 E5 

4 L4 ? R6 

5 L5 ? R1 

6 X6 ! R3 
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Addition Program Example
X X1 1

1

4

6

2
5

3

Read/Write Tape
R/W Head

Dial

•  R/W Head Reads a 1 
•  Dial Setting is 3 → Command is E3 
•  Tape Square is Erased (set to blank) 
•  Dial is Set to 5 

(blank) X 1 

1 D6 E2 R1 

2 R2 E3 ? 

3 R3 E4 E5 

4 L4 ? R6 

5 L5 ? R1 

6 X6 ! R3 

Addition Program Example
X X1

1
4 6

2

5

3

Read/Write Tape
R/W Head

Dial

•  R/W Head Reads a blank 
•  Dial Setting is 5 → Command is L5 
•  Tape Head Moved One Position to Left 
•  Dial is Set to 5 

(blank) X 1 

1 D6 E2 R1 

2 R2 E3 ? 

3 R3 E4 E5 

4 L4 ? R6 

5 L5 ? R1 

6 X6 ! R3 
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Summary of Example Program
Tape Content Op 

X 1 X X 1 X R1 

X 1 X X 1 X E2 

X 1 X _ 1 X R2 

X 1 X _ 1 X R2 

X 1 X 1 X E3 

X 1 _ 1 X R3 

X 1 1 X E5 

X _ 1 X L5 

X _ 1 X L5 

X _ 1 X L5 

X _ 1 X L5 

Summary of Example Program (cont)
Tape Content Op 

X 1 X R1 

X _ 1 X D6 

X 1 1 X R3 

X _ 1 1 X R3 

X _ 1 1 X R3 

X _ 1 1 X R3 

X 1 1 X E4 

_ 1 1 X L4 

_ 1 1 X L4 

_ 1 1 X L4 

_ 1 1 X L4 
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Summary of Example Program (cont)
Tape Content Op 

1 1 X R6 

_ 1 1 X X6 

X 1 1 X ! 

Result is: 
1+1=2

•  TM is Abstraction of Classical Computer 
•  Generalized (Programmable) Finite Automaton 
•  Halting Problem is Given Turing Machine and this 

Program, will it Terminate? 

TM Analogy to Digital Computer
•  Tape (Data Mem.) and Dial (Instr. 

Mem.)  are Memory Elements 
•  Writing/Erasing Elements are ALU 
•  Programming “Actions” are the 

Control Unit (in Dial Also) 
•  Initial Tape Content is Input Data 
•  Tape Content after Halt is Output Data 
•  Sequence of Operations Represent 

Clocking or Sequential Behavior 
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TM Analogy to Digital Computer
•  A Given Dial Setting Represents Inst. 

Pointer Register 
•  For Given Dial Setting, Choice Among next 

Operation Based on Current Tape Value 
Represents Decision Construct (i.e. if-then-
else) 

•  Any Problem that can be Solved as a 
Program on a TM is “Turing Computable” 

•  All Classical Computers can Execute any 
Turing Computable Program Regardless of 
Underlying Hardware/Software 
Implementation

TM as a Finite Automaton
•  Finite Automaton is Mathematical Term for 

a Finite State Machine 
•  in TM, the State is the Combination of the 

Current Tape Symbol and the Dial Setting 
•  The Program Defines the State Transitions 

and the Machine Operation 
•  A Program has a Halt State (hopefully) 
•  Example Halt State is Dial Setting, (Tape 

Symbol)=(6,X) Causing a Halt Operation ! 
•  Note that Digital Logic Control Circuits 

Typically have no Halt State
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Probabilistic Turing Machine (PTM)
•  Some Transitions are Random Choices 

Among the Possibilities 
•  In Our Example, a PTM would be Modeled 

as a Dial Setting where the Three 
Operations are Chosen Randomly Instead 
of Deterministically Based on Tape 
Content 

•  Stochastic Performance: 
–  Different Results Among Consecutive Runs with Same 

Program and Input Data 
–  Different Runtimes, Possible for Halt State to Never be 

Reached

Non-deterministic Turing Machine
•  Similar to PTM - More than One Next State 

Per Computational Step 
•  Probability Distribution of all Allowed 

States is Known 
•  “Guesses” the Correct Answer at Each 

Step 
•  Mathematical Model of Computation 
•  Non-deterministic Turing Machine not 

Realized 
•  PTM Could be Built - but Probably not very 

useful 
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Computational Complexity Theory
•  Measure of Computer Runtime (time) and 

Memory Usage (space) for Particular 
Computable Function in Terms of 
Elementary Operations 

•  Elementary Operation Examples: 
–  Number of Vertices of a Decision Diagram 
–  Number of Clock Cycles per Digit for a Square Root 

Algorithm 
–  Number of Clock Cycles per Vertex to Traverse a 

Graph 
–  Number of Swaps in a Bubble Sort Algorithm 

Complexity Classes
•  Theoretical Computer Scientists have Defined Several 

Different Classes of Decidable Problems 
•  Class P: Those Problems Requiring Total Time or Space Resources 

Expressible as a Polynomial in Terms of Elementary Operations on a 
Turing Machine (eg. Bubble Sort) 

•  Class NP: Those Problems Requiring Total Time or Space 
Resources Expressible as a Polynomial in Terms of Elementary 
Operations on a Non-determinstic Turing Machine (NP does NOT 
stand for “not polynomial”) (eg. Graph Isomorphism) 

•  Class Co-NP: The Complement of the Problems in NP where the yes/
no Answer is Reversed 

•  Class NP-Complete: A subset of the problems in Class NP such that 
if Any One Could be solved in P, all Others could be REDUCED to 
This One and Also Solved in P (eg. SAT, set covering, traveling 
salesman) 

Does P equal NP?  Prove/disprove it and you will receive  
$1,000,000 from the Clay Institute!
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Bubble Sort Example
•  Given a List of n unsorted Numbers, place them in 

Ascending Order 
•  Elementary Operation is the Adjacent Number SWAP 
•  Begin at First Number in List and Proceed Forward in list 

Item by Item 
•  If Current Value > Next Item Perform a SWAP 
•  Repeat Traversal Through List Until Sorted 
•  First Traversal Through List Guarantees Largest Value 

Moved to End 
•  Second Traversal Guarantees Next Largest Moved to 

Second from End, etc. 
•  Spatial Worst-case Complexity: 
•  Temporal Worst-case Complexity: 
•  Temporal Best-case Complexity: 
•  Theoretical Worst-case Complexity for the Sorting 

Problem: 

  O(n) = n

  O(n) = n2

  Ω(n) = n

  O(n) = n log2 n

Tractable and Intractable Problems
•  Informally, a Problem Solvable in Polynomial 

Time is Termed a Tractable Problem 
•  Likewise, Problems Requiring More than 

Polynomial Time are Intractable 
•  Intractable Problem Example is One that 

Requires 2n (exponential) Amount of time 
•  Some Intractable Problems on TMs are Tractable 

on a Quantum Computer as Defined by 
Deutsch!!!!  

•  These Problems are in Complexity Class QP 
•  Complexity Class QP: The Set of Problems 

Solvable in Polynomial Time on a Quantum 
Computer for Which the Best Known TM 
Algorithm is Intractable 
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Quantum Parallelism
•  This Notion may Explain why the 

Class QP Exists 
•  Qubits can Exist in a 

Superposition of Basis States 
•  This Allows Parallelism at the 

Information Level 
•  Classical Computer Parallelism 

Exists 
–  Temporal Level (aka Pipelining) 
–  Multiple CPUs

Quantum Parallelism Example
•  Assume we Wish to Compute f(j) in 

Polynomial Time  
•  Where j is a Binary String of Length n 
•  Need Single Copy of Quantum Circuit that 

Evaluates f 
•  Can Compute Superposition of all 2n 

Values of f 
•  Polynomial Time with Single Copy of 

Quantum Circuit 
•  Classical Computer Requires: 

1.  2n Runs on Single Processor 
2.  2n Parallel Processors
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Example Quantum Computation

H

H

H

Quantum Gate Array 
carrying out the unitary 

transformation 
Uf 

in polynomial time

 | 0〉

 | 0〉

 | 0〉

 | 0〉   | f 〉

  | g1〉

  | g2 〉

  | gn 〉

Garbage 
Qubits

Ancilla Qubit Result Qubit

n Qubits

First Stage in Example
•  Initialize n Qubits to |0⟩ 
•  Perform Hadamard Transform on 

n Qubits

    
H⊗ H⊗!⊗ H(| 0〉 | 0〉! | 0〉) =

1
2n / 2 (| 0〉+ |1〉)n =

1
2n / 2 | k〉

k=0

2n −1

∑

  
H =

1
2

1   1
1 −1
⎡
⎣⎢

⎤
⎦⎥
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Second Stage in Example
•  Quantum Gate Array Implements 

Function f 

•  Maps n-bit Input String j=(j0,j1,...,jn-1) to 
0 or 1 in Polynomial Time 

•  Quantum Gate Array Transformation:

  f :{0,1}n →{0,1}

    

U f :| j0 〉 | j1〉… | jn−1〉 | 0〉

!| j0 〉 | j1〉… | jn−1〉 | f ( j0 , j1,…, jn−1)〉

Result in Example
•  Input to Function Evaluation is in 

Superposition State Created by n 
Hadamard Gates 

•  Result is Superposition of all Values of 
Function f

  
| f 〉 = | j〉 | f ( j)〉

j=0

2n −1

∑
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Quantum Algorithm Classes
•  3 Broad Catagories (Shor’03) 

1.  Finding Periodicity of a Function (using Fourier 
transforms) 
•  Shor’s Algorithms-factoring/discrete log 
•  Hallgren’s Algorithm-solve’s Bell’s equation 

2.  Search N items in N1/2 time 
•  Grover’s Algorithm 

3.  Simulation of Quantum Systems 
•  Potentially large class suggested by Feynman 
•  Not many of these Presently developed

Quantum Algorithm Development
•  QAs Offer Substantial Speedup over Classical 

but Limited in Applicability 
•  Concentrate on Problems NOT in Class P 
•  Common Conjecture is QAs do NOT Solve NP 

Problems in Polynomial Time 
•  If Conjecture is True, Then Class of Problems 

Applicable for QA Speedup is Neither NP-hard 
nor P 

•  Remaining Population of Problems is Relatively 
Small
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Parallelism
•  Classical Computation 

–  Single Copy of Circuit/Algorithm Requires to Compute Function 2n 
Times 

–  2n Copies of Circuit/Algorithm Allows to Obtain all Values of 
Function in Single Time Step 

•  Quantum Circuit/Algorithm 
–  Requires Single Copy of Circuit /Algorithm 
–  Obtain all Values in Single Time Step 

•  Parallelism is at Information Level 
–  More than Superposition 
–  Entanglement also Plays a Role 

•  Power Requirements Differ Exponentially

Superposition Example
•  Consider Qubit |x⟩ with Two Possible Values |0⟩ or |1⟩  
•  Consider a Function f(x) With Two Possible Values 

 |f(x)⟩= |0⟩ or |f(x)⟩=|1⟩ 
•  We Wish to Construct a Circuit Whose Output is a 

Superposition of |f(0) ⟩ and |f(1) ⟩ 
•  Possible to Construct Circuit to Transform 2 Input Qubits  

|x⟩ and |y⟩ into Results |x⟩ and |y⊕f(x)⟩ Using only Fredkin 
Gates (Marinescu, p.189) 

•  Function f(x) is “Hardwired” into Circuit/Algorithm  

Uf

|x⟩

|y⟩

|x⟩

|y⊕f(x)⟩
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Superposition Example (cont)
•  Setting |y⟩= |0⟩  Results in the Following 

Transformation: 

•  Abbreviated Notation Implies Tensor Product: 

Uf

|x⟩

|0⟩

|x⟩

|0⊕f(x) ⟩= |f(x)⟩

| 0 | ( )x x f x〉 〉!

| | 0 | | ( )x x f x〉 〉 〉 〉! | | 0 | | ( )x x f x〉⊗ 〉 〉⊗ 〉!

Superposition Example (cont)
•  Instead of |x⟩, Consider Replacing it With Qubit  

|0⟩ Applied to a Hadamard Gate Initially:  

•  Results in the Following Superposition State 
Applied to Uf: 

Uf
|0⟩

?

?

| 0 (1/ 2)(| 0 0 | | 0 1| |1 0 | |1 1|) | 0〉 = 〉〈 + 〉〈 + 〉〈 − 〉〈 〉H

| 0 (1/ 2)(| 0 0 | 0 | 0 1| 0 |1 0 | 0 |1 1| 0 )〉 = 〉〈 〉+ 〉〈 〉+ 〉〈 〉− 〉〈 〉H

| 0 (1/ 2)(| 0 |1 )〉 = 〉+ 〉H

H|0⟩
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Superposition Example (cont)

Uf
|0⟩

H|0⟩

Uf

|x⟩

|y⟩

|x⟩

| y⊕f(x)⟩

| 0 (1/ 2)(| 0 |1 )〉 = 〉+ 〉H

(| 0 |1 ) / 2〉+ 〉

| 0 [(| 0 |1 ) / 2 ]f⊕ 〉+ 〉 〉

| [(| 0 |1 ) / 2] [| (| 0 ) (|1 ) ] / 2f f f〉+ 〉 〉 = 〉 + 〉 〉

Superposition Example (cont)
•  Output State of Quantum System is Tensor 

Product of the Two Output Vectors:  

•  Output State Contains Information About Both 
Possible Evaluations |f(0)⟩, |f(1)⟩ in One Run/
Execution Period – Quantum Parallelism 

•  Measurement will Yield one of the Basis States 
(Eigenvectors) of the Observable 

•  Complete Algorithm/Circuit Must Allow for 
“Cancelling Out” Undesirable Results  

•  Can be Applied to Systems of m Qubits Yielding 
2m Superimposed Results! 

[| 0 (| 0 ) | 0 (|1 ) |1 (| 0 ) |1 (|1 ) ] / 2f f f f〉 〉+ 〉 〉+ 〉 〉+ 〉 〉


