

S	um	mar	у о	fEx	am	ple	Prc	ogra	m
[Tape Content								
	x	1	x		X	<u>1</u>	x	R1	
	x	1	x		x	1	x	E2	
	x	1	x		_	1	x	R2	
	x	1	x	_		1	x	R2	
	x	1	x			1	x	E3	
	x	1				1	x	R3	
	x	<u>1</u>				1	x	E5	
	x	_				1	x	L5	
\longrightarrow	x					1	x	L5	
	x					1	x	L5	
	x					1	x	L5	

Su	mma	ary o	of E	xam	ple	Pro	grar	n (c	ont)
			Ор						
	х					<u>1</u>	x	R1	
	x				_	1	x	D6	
	x				<u>1</u>	1	x	R3	
	x			_	1	1	x	R3	
	x		_		1	1	x	R3	
	x	_			1	1	x	R3	
	x				1	1	x	E4	
					1	1	x	L4	
					1	1	x	L4	
					1	1	х	L4	
				_	1	1	х	L4	

Result in ExampleInput to Function Evaluation is in Superposition State Created by *n* Hadamard Gates Result is Superposition of all Values of Function *f* $|f\rangle = \sum_{j=0}^{2^n-1} |j\rangle |f(j)\rangle$

Quantum Algorithm Classes

- 3 Broad Catagories (Shor' 03)
 - 1. Finding Periodicity of a Function (using Fourier transforms)
 - Shor's Algorithms-factoring/discrete log
 - Hallgren's Algorithm-solve's Bell's equation
 - 2. Search *N* items in $N^{1/2}$ time
 - Grover's Algorithm
 - 3. Simulation of Quantum Systems
 - Potentially large class suggested by Feynman
 - Not many of these Presently developed

- but Limited in Applicability
 Concentrate on Problems NOT in Class P
- Common Conjecture is QAs do NOT Solve *NP* Problems in Polynomial Time
- If Conjecture is True, Then Class of Problems Applicable for QA Speedup is Neither *NP*-hard nor *P*
- Remaining Population of Problems is Relatively
 Small

Parallelism

- Classical Computation
 - Single Copy of Circuit/Algorithm Requires to Compute Function 2ⁿ Times
 - 2ⁿ Copies of Circuit/Algorithm Allows to Obtain all Values of Function in Single Time Step
- Quantum Circuit/Algorithm
 - Requires Single Copy of Circuit /Algorithm
 - Obtain all Values in Single Time Step
- Parallelism is at Information Level
 - More than Superposition
 - Entanglement also Plays a Role
- Power Requirements Differ Exponentially

