
1

Turing Machine
•  Theoretical Model Developed by Alan

Turing (published May 1936)
•  Abstraction of Classical Digital

Computer
•  Allows for Reasoning About

Fundamental Computational Issues:
–  the Halting Problem
– Computable vs. Non-computable Functions
– Useful Model for use in Complexity Theory

Halting Problem/Decidability

•  Given a Description of a Program and Finite Input,
Decide whether the Program will run forever or
finishes

•  One of First Problems of Decidability
•  Led to Concept of Undecidability and Birth of

Classical Complexity Theory
•  Alonzo Church Lambda Calculus to Show the

Existence of an Undecidable Problem (published
April 1936)

Alan
Turing

Alonzo
Church

2

Turing Machine Example
•  Example Machine has 3 Parts:

1.  A Recording Tape Divided into Squares
2.  A Tape Read/Write (R/W) Head
3.  A Dial that “Chooses” Operations

•  Machine can Write a Symbol X or 1 in Blank
Square

•  Machine can Erase Symbols in an Occupied
Square

•  A Value is Written as a Sequence of 1s, eg “4” is
Written as “1111”

•  Symbol X Indicates Beginning/Ending of a
Number

Example Turing Machine Diagram
X X X X1 1

1

4

6 2

5 3

Read/Write Tape

R/W Head

Dial

•  Tape Contains Two Numbers
 Both with Unity Value (1)
•  As Example, a “Program”
 will be Shown that Computes
 Sum of Two Numbers

*Berman, et al., Introduction to Quantum Computers, 1998

3

Programming Symbols
•  Commands:

1.  D Write the Digit 1
2.  X Write the Symbol X
3.  E Erase the Symbol
4.  R Move Tape One Square to Right
5.  L Move Tape One Square to Left
6.  1 to 6 Change Dial Setting to this

Number
•  ! Job is Completed
•  ? Mistake
•  Each Command can have Number

Also *Berman, et al., Introduction to Quantum Computers, 1998

Addition Program

(blank) X 1
1 D6 E2 R1

2 R2 E3 ?

3 R3 E4 E5

4 L4 ? R6

5 L5 ? R1

6 X6 ! R3

Current Dial
Setting Column

Tape Content
(before instruc.)

*Berman, et al., Introduction to Quantum Computers, 1998

Instructions Based
on Dial Setting and
Current Tape Value

4

Addition Program Example
X X X X1 1

1

4

6 2
5 3

Read/Write Tape
R/W Head

Dial

*Berman, et al., Introduction to Quantum Computers, 1998

•  R/W Head Reads a 1
•  Dial Setting is 1 → Command is R1
•  Tape Head Moved One Position to Right
•  Dial is Set to 1

(blank) X 1

1 D6 E2 R1

2 R2 E3 ?

3 R3 E4 E5

4 L4 ? R6

5 L5 ? R1

6 X6 ! R3

Addition Program Example
X X X X1 1

1

4

6 2
5 3

Read/Write Tape
R/W Head

Dial

*Berman, et al., Introduction to Quantum Computers, 1998

•  R/W Head Reads a X
•  Dial Setting is 1 → Command is E2
•  Tape Square is Erased (set to blank)
•  Dial is Set to 2

(blank) X 1

1 D6 E2 R1

2 R2 E3 ?

3 R3 E4 E5

4 L4 ? R6

5 L5 ? R1

6 X6 ! R3

5

Addition Program Example
X X X1 1

1

46

2

5

3

Read/Write Tape
R/W Head

Dial

*Berman, et al., Introduction to Quantum Computers, 1998

•  R/W Head Reads a blank
•  Dial Setting is 2 → Command is R2
•  Tape Head Moved One Position to Right
•  Dial is Set to 2

(blank) X 1

1 D6 E2 R1

2 R2 E3 ?

3 R3 E4 E5

4 L4 ? R6

5 L5 ? R1

6 X6 ! R3

Addition Program Example
X X X1 1

1

46

2

5

3

Read/Write Tape
R/W Head

Dial

•  R/W Head Reads a blank
•  Dial Setting is 2 → Command is R2
•  Tape Head Moved One Position to Right
•  Dial is Set to 2

(blank) X 1

1 D6 E2 R1

2 R2 E3 ?

3 R3 E4 E5

4 L4 ? R6

5 L5 ? R1

6 X6 ! R3

6

Addition Program Example
X X1 1

Read/Write Tape
R/W Head

Dial

•  R/W Head Reads a X
•  Dial Setting is 2 → Command is E3
•  Tape Square is Erased (set to blank)
•  Dial is Set to 3

(blank) X 1

1 D6 E2 R1

2 R2 E3 ?

3 R3 E4 E5

4 L4 ? R6

5 L5 ? R1

6 X6 ! R3

X

1

46

2

5

3

Addition Program Example
X X1 1

1

4

6

2
5

3

Read/Write Tape
R/W Head

Dial

•  R/W Head Reads a blank
•  Dial Setting is 3 → Command is R3
•  Tape Head Moved One Position to Right
•  Dial is Set to 3

(blank) X 1

1 D6 E2 R1

2 R2 E3 ?

3 R3 E4 E5

4 L4 ? R6

5 L5 ? R1

6 X6 ! R3

7

Addition Program Example
X X1 1

1

4

6

2
5

3

Read/Write Tape
R/W Head

Dial

•  R/W Head Reads a 1
•  Dial Setting is 3 → Command is E3
•  Tape Square is Erased (set to blank)
•  Dial is Set to 5

(blank) X 1

1 D6 E2 R1

2 R2 E3 ?

3 R3 E4 E5

4 L4 ? R6

5 L5 ? R1

6 X6 ! R3

Addition Program Example
X X1

1
4 6

2

5

3

Read/Write Tape
R/W Head

Dial

•  R/W Head Reads a blank
•  Dial Setting is 5 → Command is L5
•  Tape Head Moved One Position to Left
•  Dial is Set to 5

(blank) X 1

1 D6 E2 R1

2 R2 E3 ?

3 R3 E4 E5

4 L4 ? R6

5 L5 ? R1

6 X6 ! R3

8

Summary of Example Program
Tape Content Op

X 1 X X 1 X R1

X 1 X X 1 X E2

X 1 X _ 1 X R2

X 1 X _ 1 X R2

X 1 X 1 X E3

X 1 _ 1 X R3

X 1 1 X E5

X _ 1 X L5

X _ 1 X L5

X _ 1 X L5

X _ 1 X L5

Summary of Example Program (cont)
Tape Content Op

X 1 X R1

X _ 1 X D6

X 1 1 X R3

X _ 1 1 X R3

X _ 1 1 X R3

X _ 1 1 X R3

X 1 1 X E4

_ 1 1 X L4

_ 1 1 X L4

_ 1 1 X L4

_ 1 1 X L4

9

Summary of Example Program (cont)
Tape Content Op

1 1 X R6

_ 1 1 X X6

X 1 1 X !

Result is:
1+1=2

•  TM is Abstraction of Classical Computer
•  Generalized (Programmable) Finite Automaton
•  Halting Problem is Given Turing Machine and this

Program, will it Terminate?

TM Analogy to Digital Computer
•  Tape (Data Mem.) and Dial (Instr.

Mem.) are Memory Elements
•  Writing/Erasing Elements are ALU
•  Programming “Actions” are the

Control Unit (in Dial Also)
•  Initial Tape Content is Input Data
•  Tape Content after Halt is Output Data
•  Sequence of Operations Represent

Clocking or Sequential Behavior

10

TM Analogy to Digital Computer
•  A Given Dial Setting Represents Inst.

Pointer Register
•  For Given Dial Setting, Choice Among next

Operation Based on Current Tape Value
Represents Decision Construct (i.e. if-then-
else)

•  Any Problem that can be Solved as a
Program on a TM is “Turing Computable”

•  All Classical Computers can Execute any
Turing Computable Program Regardless of
Underlying Hardware/Software
Implementation

TM as a Finite Automaton
•  Finite Automaton is Mathematical Term for

a Finite State Machine
•  in TM, the State is the Combination of the

Current Tape Symbol and the Dial Setting
•  The Program Defines the State Transitions

and the Machine Operation
•  A Program has a Halt State (hopefully)
•  Example Halt State is Dial Setting, (Tape

Symbol)=(6,X) Causing a Halt Operation !
•  Note that Digital Logic Control Circuits

Typically have no Halt State

11

Probabilistic Turing Machine (PTM)
•  Some Transitions are Random Choices

Among the Possibilities
•  In Our Example, a PTM would be Modeled

as a Dial Setting where the Three
Operations are Chosen Randomly Instead
of Deterministically Based on Tape
Content

•  Stochastic Performance:
–  Different Results Among Consecutive Runs with Same

Program and Input Data
–  Different Runtimes, Possible for Halt State to Never be

Reached

Non-deterministic Turing Machine
•  Similar to PTM - More than One Next State

Per Computational Step
•  Probability Distribution of all Allowed

States is Known
•  “Guesses” the Correct Answer at Each

Step
•  Mathematical Model of Computation
•  Non-deterministic Turing Machine not

Realized
•  PTM Could be Built - but Probably not very

useful

12

Computational Complexity Theory
•  Measure of Computer Runtime (time) and

Memory Usage (space) for Particular
Computable Function in Terms of
Elementary Operations

•  Elementary Operation Examples:
–  Number of Vertices of a Decision Diagram
–  Number of Clock Cycles per Digit for a Square Root

Algorithm
–  Number of Clock Cycles per Vertex to Traverse a

Graph
–  Number of Swaps in a Bubble Sort Algorithm

Complexity Classes
•  Theoretical Computer Scientists have Defined Several

Different Classes of Decidable Problems
•  Class P: Those Problems Requiring Total Time or Space Resources

Expressible as a Polynomial in Terms of Elementary Operations on a
Turing Machine (eg. Bubble Sort)

•  Class NP: Those Problems Requiring Total Time or Space
Resources Expressible as a Polynomial in Terms of Elementary
Operations on a Non-determinstic Turing Machine (NP does NOT
stand for “not polynomial”) (eg. Graph Isomorphism)

•  Class Co-NP: The Complement of the Problems in NP where the yes/
no Answer is Reversed

•  Class NP-Complete: A subset of the problems in Class NP such that
if Any One Could be solved in P, all Others could be REDUCED to
This One and Also Solved in P (eg. SAT, set covering, traveling
salesman)

Does P equal NP? Prove/disprove it and you will receive
$1,000,000 from the Clay Institute!

13

Bubble Sort Example
•  Given a List of n unsorted Numbers, place them in

Ascending Order
•  Elementary Operation is the Adjacent Number SWAP
•  Begin at First Number in List and Proceed Forward in list

Item by Item
•  If Current Value > Next Item Perform a SWAP
•  Repeat Traversal Through List Until Sorted
•  First Traversal Through List Guarantees Largest Value

Moved to End
•  Second Traversal Guarantees Next Largest Moved to

Second from End, etc.
•  Spatial Worst-case Complexity:
•  Temporal Worst-case Complexity:
•  Temporal Best-case Complexity:
•  Theoretical Worst-case Complexity for the Sorting

Problem:

 O(n) = n

 O(n) = n2

 Ω(n) = n

 O(n) = n log2 n

Tractable and Intractable Problems
•  Informally, a Problem Solvable in Polynomial

Time is Termed a Tractable Problem
•  Likewise, Problems Requiring More than

Polynomial Time are Intractable
•  Intractable Problem Example is One that

Requires 2n (exponential) Amount of time
•  Some Intractable Problems on TMs are Tractable

on a Quantum Computer as Defined by
Deutsch!!!!

•  These Problems are in Complexity Class QP
•  Complexity Class QP: The Set of Problems

Solvable in Polynomial Time on a Quantum
Computer for Which the Best Known TM
Algorithm is Intractable

14

Quantum Parallelism
•  This Notion may Explain why the

Class QP Exists
•  Qubits can Exist in a

Superposition of Basis States
•  This Allows Parallelism at the

Information Level
•  Classical Computer Parallelism

Exists
–  Temporal Level (aka Pipelining)
–  Multiple CPUs

Quantum Parallelism Example
•  Assume we Wish to Compute f(j) in

Polynomial Time
•  Where j is a Binary String of Length n
•  Need Single Copy of Quantum Circuit that

Evaluates f
•  Can Compute Superposition of all 2n

Values of f
•  Polynomial Time with Single Copy of

Quantum Circuit
•  Classical Computer Requires:

1.  2n Runs on Single Processor
2.  2n Parallel Processors

15

Example Quantum Computation

H

H

H

Quantum Gate Array
carrying out the unitary

transformation
Uf

in polynomial time

 | 0〉

 | 0〉

 | 0〉

 | 0〉 | f 〉

 | g1〉

 | g2 〉

 | gn 〉

Garbage
Qubits

Ancilla Qubit Result Qubit

n Qubits

First Stage in Example
•  Initialize n Qubits to |0⟩
•  Perform Hadamard Transform on

n Qubits

H⊗ H⊗!⊗ H(| 0〉 | 0〉! | 0〉) =

1
2n / 2 (| 0〉+ |1〉)n =

1
2n / 2 | k〉

k=0

2n −1

∑

H =

1
2

1 1
1 −1
⎡
⎣⎢

⎤
⎦⎥

16

Second Stage in Example
•  Quantum Gate Array Implements

Function f

•  Maps n-bit Input String j=(j0,j1,...,jn-1) to
0 or 1 in Polynomial Time

•  Quantum Gate Array Transformation:

 f :{0,1}n →{0,1}

U f :| j0 〉 | j1〉… | jn−1〉 | 0〉

!| j0 〉 | j1〉… | jn−1〉 | f (j0 , j1,…, jn−1)〉

Result in Example
•  Input to Function Evaluation is in

Superposition State Created by n
Hadamard Gates

•  Result is Superposition of all Values of
Function f

| f 〉 = | j〉 | f (j)〉

j=0

2n −1

∑

17

Quantum Algorithm Classes
•  3 Broad Catagories (Shor’03)

1.  Finding Periodicity of a Function (using Fourier
transforms)
•  Shor’s Algorithms-factoring/discrete log
•  Hallgren’s Algorithm-solve’s Bell’s equation

2.  Search N items in N1/2 time
•  Grover’s Algorithm

3.  Simulation of Quantum Systems
•  Potentially large class suggested by Feynman
•  Not many of these Presently developed

Quantum Algorithm Development
•  QAs Offer Substantial Speedup over Classical

but Limited in Applicability
•  Concentrate on Problems NOT in Class P
•  Common Conjecture is QAs do NOT Solve NP

Problems in Polynomial Time
•  If Conjecture is True, Then Class of Problems

Applicable for QA Speedup is Neither NP-hard
nor P

•  Remaining Population of Problems is Relatively
Small

18

Parallelism
•  Classical Computation

–  Single Copy of Circuit/Algorithm Requires to Compute Function 2n
Times

–  2n Copies of Circuit/Algorithm Allows to Obtain all Values of
Function in Single Time Step

•  Quantum Circuit/Algorithm
–  Requires Single Copy of Circuit /Algorithm
–  Obtain all Values in Single Time Step

•  Parallelism is at Information Level
–  More than Superposition
–  Entanglement also Plays a Role

•  Power Requirements Differ Exponentially

Superposition Example
•  Consider Qubit |x⟩ with Two Possible Values |0⟩ or |1⟩
•  Consider a Function f(x) With Two Possible Values

 |f(x)⟩= |0⟩ or |f(x)⟩=|1⟩
•  We Wish to Construct a Circuit Whose Output is a

Superposition of |f(0) ⟩ and |f(1) ⟩
•  Possible to Construct Circuit to Transform 2 Input Qubits

|x⟩ and |y⟩ into Results |x⟩ and |y⊕f(x)⟩ Using only Fredkin
Gates (Marinescu, p.189)

•  Function f(x) is “Hardwired” into Circuit/Algorithm

Uf

|x⟩

|y⟩

|x⟩

|y⊕f(x)⟩

19

Superposition Example (cont)
•  Setting |y⟩= |0⟩ Results in the Following

Transformation:

•  Abbreviated Notation Implies Tensor Product:

Uf

|x⟩

|0⟩

|x⟩

|0⊕f(x) ⟩= |f(x)⟩

| 0 | ()x x f x〉 〉!

| | 0 | | ()x x f x〉 〉 〉 〉! | | 0 | | ()x x f x〉⊗ 〉 〉⊗ 〉!

Superposition Example (cont)
•  Instead of |x⟩, Consider Replacing it With Qubit

|0⟩ Applied to a Hadamard Gate Initially:

•  Results in the Following Superposition State
Applied to Uf:

Uf
|0⟩

?

?

| 0 (1/ 2)(| 0 0 | | 0 1| |1 0 | |1 1|) | 0〉 = 〉〈 + 〉〈 + 〉〈 − 〉〈 〉H

| 0 (1/ 2)(| 0 0 | 0 | 0 1| 0 |1 0 | 0 |1 1| 0)〉 = 〉〈 〉+ 〉〈 〉+ 〉〈 〉− 〉〈 〉H

| 0 (1/ 2)(| 0 |1)〉 = 〉+ 〉H

H|0⟩

20

Superposition Example (cont)

Uf
|0⟩

H|0⟩

Uf

|x⟩

|y⟩

|x⟩

| y⊕f(x)⟩

| 0 (1/ 2)(| 0 |1)〉 = 〉+ 〉H

(| 0 |1) / 2〉+ 〉

| 0 [(| 0 |1) / 2]f⊕ 〉+ 〉 〉

| [(| 0 |1) / 2] [| (| 0) (|1)] / 2f f f〉+ 〉 〉 = 〉 + 〉 〉

Superposition Example (cont)
•  Output State of Quantum System is Tensor

Product of the Two Output Vectors:

•  Output State Contains Information About Both
Possible Evaluations |f(0)⟩, |f(1)⟩ in One Run/
Execution Period – Quantum Parallelism

•  Measurement will Yield one of the Basis States
(Eigenvectors) of the Observable

•  Complete Algorithm/Circuit Must Allow for
“Cancelling Out” Undesirable Results

•  Can be Applied to Systems of m Qubits Yielding
2m Superimposed Results!

[| 0 (| 0) | 0 (|1) |1 (| 0) |1 (|1)] / 2f f f f〉 〉+ 〉 〉+ 〉 〉+ 〉 〉

