Hadamard Matrices/Operators

$$
\mathbf{H}^{\otimes 3}=\frac{1}{\sqrt{2^{3}}}\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right]
$$

Hadamard Matrices

- Square Matrices with Mutually Orthonormal Rows/Columns
- All Matrix Elements are Either +1 or -1
- In Signal Processing, Known as the "Walsh Transform"
- Walsh Transform is Fourier Transform with Square Waves (Walsh Functions) as Basis Functions
- Fourier Transform on Two-Element Additive Group $\mathbb{Z}_{2}:\left(\{-1,+1\},+_{2}\right)$
- Different Row Orderings Yield Variations of the Walsh Matrix

Hadamard Matrices

- Natural Row Ordering Defined by Outer/Tensor (Kronecker Product)
- Rademacher-Walsh Ordering Defined by XOR Operations among Adjacent Rows
- Transform can be Implemented Using $n \log n$ Operations ("Fast" Transform)
- Can factor as sparse direct product factors
- Certain Forms can be Used Directly as Error Correcting Codes
- One Form is Known as the Reed-Muller Codes/Transform

Hadamard Matrix with Natural Ordering

$$
e^{i \frac{2 \pi(1)}{2}}=-1
$$

- This Form uses Square Roots of Unity Shown as Points on the Unit Circle in the Complex Plane
- Transform is a Discrete Fourier Transform over GF(2)
- Can Think of this as a Discrete Fourier Transform with Discretized Orthogonal Square Wave Functions as the Basis Set

Fast Hadamard Transform

- So-called "fast" transforms and Butterfly Diagrams (Signal Flow Graphs)

$$
\begin{aligned}
\mathbf{H}\left[\begin{array}{l}
x \\
y
\end{array}\right] & =\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =\left[\begin{array}{l}
x+y \\
x-y
\end{array}\right]
\end{aligned}
$$

Fast Hadamard Transform

- So-called "fast" transforms due to Sparse Factors

$\mathbf{H}^{\otimes 3}=\frac{1}{\sqrt{2^{3}}}\left[\begin{array}{rrrrrrrr}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1\end{array}\right]\left[\begin{array}{rrrrrrrr}1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1\end{array}\right]\left[\begin{array}{rrrrrrrr}1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1\end{array}\right]$

Hadamard Matrix Rademacher-Walsh Ordering

- This Form uses Boolean Logic Values Instead of Mappings to the Unit Circle in the Complex Plane
- Transform Yield a Form of ESOP in Classical Logic

Rademacher-Walsh Transform

- Same as the Naturally-ordered Hadamard Transform with Rows/Columns Permuted
- Other Orderings Possible
- Referred to as "Walsh Transforms" in the Signal Processing Community
- Sometimes the Scale Factor $(1 / \sqrt{2})^{n}$ is Not Used in Signal Processing Applications

Map 0 to +1
Map 1 to -1

$$
\mathbf{H}_{R W}=\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right] \begin{gathered}
0 \\
x \\
y \\
y \oplus z \\
x \oplus z \\
x \oplus y \\
x \oplus y \\
y
\end{gathered}
$$

Reed-Muller Matrix with Natural Ordering

- This Form uses Boolean Logic Values Instead of Mappings to the Unit Circle in the Complex Plane
- Transform Yield a Form of ESOP in Classical Logic

Reed-Muller Form of Hadamard Matrix

$$
e^{i \frac{2 \pi(1)}{2}}=-1 \quad \underbrace{i}
$$

- This Form Uses the Boolean Logic Values Instead of Mappings to the Unit Circle in the Complex Plane
- Transform Yields a Form of ESOP in Classical Logic

$$
\mathbf{R}^{\otimes 3}=\mathbf{R}_{3}=\mathbf{R}_{1} \otimes \mathbf{R}_{1} \otimes \mathbf{R}_{1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

Reed-Muller Form of Hadamard Matrix

$$
\begin{gathered}
\mathbf{R}^{\otimes 3}=\mathbf{R}_{3}=\mathbf{R}_{1} \otimes \mathbf{R}_{1} \otimes \mathbf{R}_{1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
\mathbf{R}^{\otimes 3}=\otimes_{i=1}^{3}\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \otimes\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \\
\mathbf{R}^{\otimes 3}=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
\text { For More Details of Classical } \\
\text { Logic Synthesis of ESOPs: } \\
\text { CSE 8387 Switching Theory } \\
\text { Class }
\end{array}
\end{gathered}
$$

Naturally Ordered Hadamard

 $\mathbf{H}^{\otimes 3}=\mathbf{H} \otimes \mathbf{H} \otimes \mathbf{H}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] \otimes \frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] \otimes \frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$$$
\mathbf{H}^{\otimes 3}=\mathbf{H} \otimes \mathbf{H} \otimes \mathbf{H}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right] \otimes \frac{1}{\sqrt{2^{2}}}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

\mathbf{H}
\mathbf{H}

Hadamard \& Superposition

$$
\begin{aligned}
& \mathbf{H}^{\otimes 3}|000\rangle= \frac{1}{\sqrt{2^{3}}}\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \mathbf{H}^{\otimes 3 \mid}|000\rangle=\frac{1}{\sqrt{2^{3}}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{2^{3}}}\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+\cdots+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right) \\
& \mathbf{H}^{\otimes 3}|000\rangle=\frac{1}{\sqrt{2^{3}}}(|000\rangle+|001\rangle \cdots+|111\rangle)
\end{aligned}
$$

Naturally Ordered Hadamard

- Alternative Notation (using symbolic logic)
- Conjunctive Logic Operation (Binary AND function): \wedge

$$
\mathbf{H}=\left[h_{i j}\right]=\frac{1}{\sqrt{2}}(-1)^{i \wedge j}
$$

- i and j are row and column numbers
- Can Rewrite Hadamard Matrix as:

$$
\mathbf{H}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
(-1)^{0 \wedge 0} & (-1)^{0 \wedge 1} \\
(-1)^{1 \wedge 0} & (-1)^{1 \wedge 1}
\end{array}\right]_{1}^{0} \underbrace{}_{\text {row numbers }}
$$

Naturally Ordered Hadamard

$$
\left.\mathbf{H}^{\otimes 2}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
0 & 1 \\
(-1)^{0 \wedge 0} & (-1)^{0 \wedge 1} \\
(-1)^{1 \wedge 0} & (-1)^{1 \wedge 1}
\end{array}\right] 0 \text { } \begin{array}{c}
0 \\
\sqrt{2}
\end{array} \begin{array}{cc}
0 & 1 \\
(-1)^{0 \wedge 0} & (-1)^{0 \wedge 1} \\
(-1)^{1 \wedge 0} & (-1)^{1 \wedge 1}
\end{array}\right] 0
$$

- Multiply $(-1)^{x}$ by $(-1)^{y}=(-1)^{x+y}$:

$$
\begin{aligned}
& \left.\mathbf{H}^{\otimes 2}=\left(\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}\right)\left[\begin{array}{cc:cc}
00 & 01 & 10 & 11 \\
(-1)^{0} & (-1)^{0} & (-1)^{0} & (-1)^{0} \\
(-1)^{0} & (-1)^{1} & (-1)^{0} & (-1)^{1} \\
\hline(-1)^{0} & (-1)^{0} & (-1)^{1} & (-1)^{1} \\
(-1)^{0} & (-1)^{1} & (-1)^{1} & (-1)^{2}
\end{array}\right] \begin{array}{l}
00 \\
011 \\
10
\end{array}\right]=\frac{1}{\sqrt{2^{2}}}\left[\begin{array}{rr:rr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

Naturally Ordered Hadamard

- Multiplying $(-1)^{x}$ by $(-1)^{y}=(-1)^{x+y}$: Yields $(-1)^{(2 n)}$ or $(-1)^{(2 n)+1}$
- Where n is an Integer $n \in \mathbb{Z}, \mathbb{Z}=\{0,1,2, \ldots\}$
- Exponentiating -1 to a non-negative Integer Results in:

$$
(-1)^{2 n}=+1 \quad(-1)^{2 n+1}=-1
$$

- Therefore,

$$
\begin{aligned}
& (-1)^{(i \wedge j)+(k \wedge m)}=(-1)^{2 n}=+1 \\
& (-1)^{(i \wedge j)+(k \wedge m)}=(-1)^{2 n+1}=-1
\end{aligned}
$$

- We Only Need to Consider if Exponent is Even or Odd
- When: $(i \wedge j)+(k \wedge m)=2 n \rightarrow(-1)^{(i \wedge j)+(k \wedge m)}=+1$
- When: $(i \wedge j)+(k \wedge m)=2 n+1 \rightarrow(-1)^{(i \wedge j)+(k \wedge m)}=-1$
- This is Modulo-2 Addition, can Replace with Exclusive-OR

Naturally Ordered Hadamard

- We Only Need to Consider if Exponent is Even or Odd
- When: $(i \wedge j)+(k \wedge m)=2 n \longrightarrow(-1)^{(i \wedge j)+(k \wedge m)}=+1$
- When: $(i \wedge j)+(k \wedge m)=2 n+1 \rightarrow(-1)^{(i \wedge j)+(k \wedge m)}=-1$
- This is Modulo-2 Addition, can Replace with Exclusive-OR
- When: $(i \wedge j)+(k \wedge m)=2 n \rightarrow(i \wedge j) \oplus(k \wedge m)=0$
- When: $(i \wedge j)+(k \wedge m)=2 n+1 \rightarrow(i \wedge j) \oplus(k \wedge m)=1$
- Can Express $\mathbf{H}^{\otimes 2}$ Hadamard Matrix as:

$$
\begin{aligned}
& \mathbf{H}^{\otimes 2}=\left(\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}\right)\left[\begin{array}{cccc}
\begin{array}{c}
00 \\
(-1)^{0 \wedge 0 \oplus 0 \wedge 0}
\end{array} & (-1)^{0 \wedge \wedge 0 \oplus 0 \wedge 1} & (-1)^{0 \wedge \wedge \oplus 0 \wedge 0} & (-1)^{0 \wedge 1 \oplus 0 \wedge 1} \\
(-1)^{0 \wedge 0 \oplus 1 \wedge 0} & (-1)^{0 \wedge 0 \oplus 1 \wedge 1} & (-1)^{0 \wedge 1 \oplus 1 \wedge 0} & (-1)^{0 \wedge 1 \oplus 1 \wedge 1} \\
(-1)^{1 \wedge 0 \oplus 0 \wedge 0} & (-1)^{1 \wedge 0 \oplus 0 \wedge 1} & (-1)^{1 \wedge 1 \oplus 0 \wedge 0} & (-1)^{1 \wedge 1 \oplus 0 \wedge 1} \\
(-1)^{1 \wedge 0 \oplus 1 \wedge 0} & (-1)^{1 \wedge 0 \oplus 1 \wedge 1} & (-1)^{1 \wedge 1 \oplus 1 \wedge 0} & (-1)^{1 \wedge 1 \oplus 1 \wedge 1}
\end{array}\right] 11 \\
& \left.\mathbf{H}^{\otimes 2}=\frac{1}{\sqrt{2^{2}}}\left[\begin{array}{llll}
00 & 01 & 10 & 11 \\
(-1)^{0} & (-1)^{0} & (-1)^{0} & (-1)^{0} \\
(-1)^{0} & (-1)^{1} & (-1)^{0} & (-1)^{1} \\
(-1)^{0} & (-1)^{0} & (-1)^{1} & (-1)^{1} \\
(-1)^{0} & (-1)^{1} & (-1)^{1} & (-1)^{0}
\end{array}\right] \begin{array}{l}
01 \\
010
\end{array}\right]=\frac{1}{\sqrt{2^{2}}}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

Notation

- Using this Form for Naturally Ordered Hadamard
- Following Function Notation is Helpful
- DO NOT Confuse with BraKet EXPECTED VALUE!!!!
- The COMMA is Important (this is NOT $\langle\mathbf{A}\rangle$ or $\langle\Psi| \mathbf{A}|\Psi\rangle)$

$$
\langle,\rangle:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}
$$

- Inner Product Function over Strings, $\mathbb{B}^{2 n}=\{0,1\}^{2 n} \rightarrow \mathbb{B}$

EXAMPLE: Two n-bit Strings

$$
\mathbf{x}=x_{n-1} x_{n-1} \cdots x_{2} x_{1} x_{0} \quad \mathbf{y}=y_{n-1} y_{n-1} \cdots y_{2} y_{1} y_{0}
$$

- Note, We Use Bit-wise Exclusive-OR (a string):

$$
\mathbf{x} \oplus \mathbf{y}=\left(x_{n-1} \oplus y_{n-1}\right),\left(x_{n-1} \oplus y_{n-1}\right), \cdots,\left(x_{1} \oplus y_{1}\right),\left(x_{0} \oplus y_{0}\right)
$$

- The "Inner Product" Notation is a Single Value:
$\langle\mathbf{x}, \mathbf{y}\rangle=\left(x_{n-1} \wedge y_{n-1}\right) \oplus\left(x_{n-1} \wedge y_{n-1}\right) \oplus \cdots \oplus\left(x_{1} \wedge y_{1}\right) \oplus\left(x_{0} \wedge y_{0}\right)$

Bit-String Inner Product Properties

$$
\begin{array}{cc}
\langle\mathbf{x}, \mathbf{1}\rangle=x_{n-1} \oplus x_{n-2} \oplus \cdots \oplus x_{1} \oplus x_{0} & \langle\mathbf{1}, \mathbf{y}\rangle=y_{n-1} \oplus y_{n-2} \oplus \cdots \oplus y_{1} \oplus y_{0} \\
\langle\mathbf{x} \oplus \overline{\mathbf{x}}, \mathbf{y}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle \oplus\langle\overline{\mathbf{x}}, \mathbf{y}\rangle & \langle\mathbf{x}, \mathbf{y} \oplus \overline{\mathbf{y}}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle \oplus\langle\mathbf{x}, \overline{\mathbf{y}}\rangle \\
\langle\mathbf{x} \oplus \overline{\mathbf{x}}, \mathbf{y}\rangle=\langle\mathbf{1}, \mathbf{y}\rangle & \langle\mathbf{x}, \mathbf{y} \oplus \overline{\mathbf{y}}\rangle=\langle\mathbf{x}, \mathbf{1}\rangle
\end{array}
$$

$\langle\mathbf{0} \wedge \mathbf{x}, \mathbf{y}\rangle=\left\langle 0^{n}, \mathbf{y}\right\rangle=0 \quad\langle\mathbf{x}, \mathbf{0} \wedge \mathbf{y}\rangle=\left\langle\mathbf{x}, 0^{n}\right\rangle=0$
$\langle\mathbf{1} \wedge \mathbf{x}, \mathbf{y}\rangle=\left\langle 1^{n} \wedge \mathbf{x}, \mathbf{y}\right\rangle=\langle\mathbf{x}, \mathbf{y}\rangle \quad\langle\mathbf{x}, \mathbf{1} \wedge \mathbf{y}\rangle=\left\langle\mathbf{x}, 1^{n} \wedge \mathbf{y}\right\rangle=\langle\mathbf{x}, \mathbf{y}\rangle$

Hadamard with New Notation

$$
\mathbf{H}^{\otimes 2}=\frac{1}{\sqrt{2^{2}}}\left[\begin{array}{cc|cc}
00 & 01 & 10 & 11 \\
(-1)^{0} & (-1)^{0} \\
(-1)^{0} & (-1)^{1} & (-1)^{0} & (-1)^{0} \\
(-1)^{0} & (-1)^{1} \\
(-1)^{0} & (-1)^{0} & (-1)^{1} & (-1)^{1} \\
(-1)^{0} & (-1)^{1} & (-1)^{1} & (-1)^{0}
\end{array}\right]\left[\begin{array}{crrr}
00 \\
010
\end{array}\right]=\frac{1}{\sqrt{2^{2}}}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

$$
\mathbf{H}^{\otimes 2}=\left(\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}\right)\left[\begin{array}{cccc}
00 & 01 & 10 & 11 \\
(-1)^{\langle 00,00\rangle} & (-1)^{\langle 00,01\rangle} \\
(-1)^{\langle 00,10\rangle} & (-1)^{\langle 00,11\rangle} & (-1)^{\langle 01,00\rangle} & (-1)^{\langle 01,01\rangle} \\
\hline(-1)^{\langle 10,00\rangle} & (-1)^{\langle 10,01\rangle} & (-1)^{\langle 1,10\rangle} & \left.(-1)^{\langle 01,11\rangle}\right\rangle \\
(-1)^{\langle 11,00\rangle} & \left.(-1)^{\langle 11,01\rangle}\right\rangle & (-1)^{\langle 10,11\rangle} & (-1)^{\langle 11,10\rangle} \\
(-1)^{\langle 11,11\rangle}
\end{array}\right] 10
$$

Naturally Ordered Hadamard

- Now Can Write General Formula for:

$$
\mathbf{H}^{\otimes n}(\mathbf{i}, \mathbf{j})=\frac{1}{\sqrt{2^{n}}}(-1)^{(\mathbf{i}, \mathbf{j}\rangle}
$$

- \mathbf{i} and \mathbf{j} are row and column numbers written as binary strings
- Quantum State Vector (example):

$$
|\mathbf{0}\rangle=|000 \cdots 00\rangle=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] \begin{gathered}
000 \cdots 00 \\
000 \cdots 01 \\
000 \cdots 10 \\
\vdots \\
111 \cdots 10 \\
111 \cdots 11
\end{gathered}
$$

Red strings are row numbers written as binary strings - NOT part of equation

Naturally Ordered Hadamard

- Multiplying a Quantum State Vector by $\mathbf{H}^{\otimes n}$

Leftmost Column of Hadamard Matrix

$$
\mathbf{H}^{\otimes n}|\mathbf{0}\rangle=\mathbf{H}^{\otimes n}[-, \mathbf{0}]=\frac{1}{\sqrt{2^{n}}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
\vdots \\
1 \\
1
\end{array}\right] \begin{gathered}
000 \cdots 00 \\
000 \cdots 01 \\
000 \cdots 10 \\
\vdots \\
111 \cdots 10 \\
111 \cdots 11
\end{gathered} \quad=\frac{1}{\sqrt{2}^{n}} \sum_{\mathbf{x} \in\{0,1\}^{n}}|\mathbf{x}\rangle
$$

- For Arbitrary Quantum State |y>

$$
\mathbf{H}^{\otimes n}|\mathbf{y}\rangle=\mathbf{H}^{\otimes n}[-, \mathbf{y}]=\frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in\{0,1\}^{n}}(-1)^{\langle\mathbf{x}, \mathbf{y}\rangle}|\mathbf{x}\rangle
$$

- Denotes "don’t care" or All Possible Rows from 0 to $n-1$

