
Hadamard Matrices/Operators

H

H
3

1

3

1

H
1 1

H
1 1

𝐇⨂" =
1
2"

1
1
1
1
1
1
1
1

1
−1
1

−1
1

−1
1

−1

1
1

−1
−1
1
1

−1
−1

1
−1
−1
1
1

−1
−1
1

1
1
1
1

−1
−1
−1
−1

1
−1
1

−1
−1
1

−1
1

1
1

−1
−1
−1
−1
1
1

1
−1
−1
1

−1
1
1

−1

Hadamard Matrices
• Square Matrices with Mutually Orthonormal

Rows/Columns
• All Matrix Elements are Either +1 or -1
• In Signal Processing, Known as the “Walsh

Transform”
• Walsh Transform is Fourier Transform with Square

Waves (Walsh Functions) as Basis Functions
– Fourier Transform on Two-Element Additive Group
ℤ2 :({-1,+1},+2)

• Different Row Orderings Yield Variations of the
Walsh Matrix

Hadamard Matrices
• Natural Row Ordering Defined by

Outer/Tensor (Kronecker Product)
• Rademacher-Walsh Ordering Defined by

XOR Operations among Adjacent Rows
• Transform can be Implemented Using
nlogn Operations (“Fast” Transform)
– Can factor as sparse direct product factors

• Certain Forms can be Used Directly as
Error Correcting Codes

• One Form is Known as the Reed-Muller
Codes/Transform

Hadamard Matrix with Natural Ordering
+1 is Square Root of 1
-1 is Square Root of 1

Unit Circle in
Complex Plane

𝑒!
"# $
" = −1

i

σ
𝑒!
"# %
" = +1

• This Form uses Square Roots of Unity Shown as Points
on the Unit Circle in the Complex Plane

• Transform is a Discrete Fourier Transform over GF(2)
• Can Think of this as a Discrete Fourier Transform with

Discretized Orthogonal Square Wave Functions as the
Basis Set

Fast Hadamard Transform
• So-called "fast" transforms and Butterfly

Diagrams (Signal Flow Graphs)

1
1

1 -1

x

y x-y

x+y

𝐇
𝑥
𝑦 =

1
2
1 1
1 −1

𝑥
𝑦

=
𝑥 + 𝑦
𝑥 − 𝑦

Fast Hadamard Transform
• So-called "fast" transforms due to Sparse

Factors

!⨂" = 1
√2"

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 			0
0 			1

			0 			0
			0 			0

1 			0
0 			0

			1 			0
			0 			1

			1 			0
			0 			1

			0 			0
			0 			0

			0 			0
			0 			0

			1 			0
			0 			1

1 			0
0 			1

			0 			0
			0 			0

0 			0
0 			0

			1 			0
			0 			1

−1 			0
			0 −1

			0 			0
			0 			0

			0 			0
			0 			0

−1 			0
			0 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 			0
0 			1

			1 			0
			0 			0

1 			0
0 			0

−1 			0
			0 −1

			0 			0
			0 			0

			0 			0
			0 			0

			0 			0
			0 			0

			0 			0
			0 			0

0 			0
0 			0

			0 			0
			0 			0

0 			0
0 			0

			0 			0
			0 			0

			1 			0
			0 			1

			1 			0
			0 			1

			1 			0
			0 			1

−1 			0
			0 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 			1
1 −1

			0 			0
			0 			0

0 			0
0 			0

			1 			1
			1 −1

			0 			0
			0 			0

			0 			0
			0 			0

			0 			0
			0 			0

			0 			0
			0 			0

0 			0
0 			0

			0 			0
			0 			0

0 			0
0 			0

			0 			0
			0 			0

			1 			1
			1 −1

			0 			0
			0 			0

			0 			0
			0 			0

			1 			1
			1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

Hadamard Matrix Rademacher-Walsh Ordering

+1 Maps to Integer 0
-1 Maps to Integer 1

Unit Circle in
Complex Plane

𝑒!
"# $
" = −1

i

σ
𝑒!
"# %
" = +1

• This Form uses Boolean Logic Values Instead of
Mappings to the Unit Circle in the Complex Plane

• Transform Yield a Form of ESOP in Classical Logic

Rademacher-Walsh Transform
• Same as the Naturally-ordered Hadamard Transform with

Rows/Columns Permuted
• Other Orderings Possible
• Referred to as "Walsh Transforms" in the Signal Processing

Community

• Sometimes the Scale Factor ⁄1 2
&

is Not Used in Signal
Processing Applications

!!" =

⎣
⎢
⎢
⎢
⎢
⎢
⎡1 			1
1 			1

			1 			1
			1 			1

1 			1
1 −1

−1 −1
			1 −1

			1 			1
−1 −1

			1 			1
−1 −1

			1 			1
			1 −1

−1 −1
			1 −1

1 −1
1 −1

−1 			1
			1 −1

1 			1
1 −1

−1 −1
−1 			1

			1 −1
−1 			1

−1 			1
−1 			1

−1 −1
−1 			1

			1 			1
			1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎤ 0

-.
/

.⨁/
-⨁/
-⨁.
-⨁.⨁/

Map 0 to +1
Map 1 to -1

Reed-Muller Matrix with Natural Ordering

+1 Maps to Integer 0
-1 Maps to Integer 1

Unit Circle in
Complex Plane

𝑒!
"# $
" = −1

i

σ
𝑒!
"# %
" = +1

• This Form uses Boolean Logic Values Instead of
Mappings to the Unit Circle in the Complex Plane

• Transform Yield a Form of ESOP in Classical Logic

Reed-Muller Form of Hadamard Matrix

+1 Maps to Boolean 0
-1 Maps to Boolean 1

Use 𝔹= 0,1 Instead of ℤ2

• This Form Uses the Boolean Logic Values Instead of
Mappings to the Unit Circle in the Complex Plane

• Transform Yields a Form of ESOP in Classical Logic

!⨂" = !" = !#⨂!#⨂!# = $1 1
1 0'⨂$1 1

1 0'⨂ $1 1
1 0'

𝑒!
"# $
" = −1

i

σ

𝑒!
"# %
" = +1

Reed-Muller Form of Hadamard Matrix

For More Details of Classical
Logic Synthesis of ESOPs:
CSE 8387 Switching Theory
Class

!⨂" = !" = !#⨂!#⨂!# = $1 1
1 0'⨂$1 1

1 0'⨂ $1 1
1 0'

!⨂" = ⨂#$%" $1 1
1 0' = $1 1

1 0'⨂ (
1 1
1 0

1 1
1 0

1 1
1 0

0 0
0 0

)

!⨂" =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 1
1 0

1 1
1 0

1 1
1 0

0 0
0 0

1 1
1 0

1 1
1 0

1 1
1 0

0 0
0 0

1 1
1 0

1 1
1 0

1 1
1 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

Naturally Ordered Hadamard

H

H

H

!⨂" = !⨂!⨂! = 1
√2

'1 			1
1 −1*⨂

1
√2

'1 			1
1 −1*⨂

1
√2

'1 			1
1 −1*

!⨂" = !⨂!⨂! = 1
√2'

1 			1
1 −1*⨂

1
√2# +

1 			1
1 −1

			1 			1
			1 −1

1 			1
1 −1

−1 −1
−1 			1

,

𝐇⨂" =
1
2"

1
1
1
1
1
1
1
1

1
−1
1

−1
1

−1
1

−1

1
1

−1
−1
1
1

−1
−1

1
−1
−1
1
1

−1
−1
1

1
1
1
1

−1
−1
−1
−1

1
−1
1

−1
−1
1

−1
1

1
1

−1
−1
−1
−1
1
1

1
−1
−1
1

−1
1
1

−1

Hadamard & Superposition

!⨂"|000⟩ = 1
√2"

⎣
⎢
⎢
⎢
⎢
⎢
⎡11
1
1
1
1
1
1

			1
−1
			1
−1
			1
−1
			1
−1

			1
			1
−1
−1
			1
			1
−1
−1

			1
−1
−1
			1
			1
−1
−1
			1

			1
			1
			1
			1
−1
−1
−1
−1

			1
−1
			1
−1
−1
			1
−1
			1

			1
			1
−1
−1
−1
−1
			1
			1

			1
−1
−1
			1
−1
			1
			1
−1⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡10
0
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

!⨂"|000⟩ = 1
√2"

⎣
⎢
⎢
⎢
⎢
⎢
⎡11
1
1
1
1
1
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

= 1
√2"

⎝

⎜⎜
⎜⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡10
0
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡01
0
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+ ⋯+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡00
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎠

⎟⎟
⎟⎟
⎞

!⨂"|000⟩ = 1
√2"

(|000⟩ + |001⟩⋯+ |111⟩)

Naturally Ordered Hadamard
• Alternative Notation (using symbolic logic)

– Conjunctive Logic Operation (Binary AND function): ⋀

• i and j are row and column numbers
• Can Rewrite Hadamard Matrix as:

! = #ℎ!"% =
1
√2

(−1)!⋀"

! = 1
√2

0 														1
((−1)

!∧! (−1)!∧#
(−1)#∧! (−1)#∧#,

0
1

column numbers

row numbers

!⊗" =#
1
√2

× 1
√2
(

00 						01 							10 						11

⎣
⎢
⎢
⎡(−1)

#

(−1)#
(−1)#
(−1)#

(−1)#
(−1)$
(−1)#
(−1)$

(−1)#
(−1)#
(−1)$
(−1)$

(−1)#
(−1)$
(−1)$
(−1)"⎦

⎥
⎥
⎤00
01
10
11

= 1
√2"

4
1
1
1
1

			1
−1
			1
−1

			1
			1
−1
−1

			1
−1
−1
			1
5

!⊗" =#
1
√2

× 1
√2
(

00 																														01 																															10 																														11

⎣
⎢
⎢
⎡(−1)

#∧# × (−1)#∧#
(−1)#∧# × (−1)%∧#
(−1)%∧# × (−1)#∧#
(−1)%∧# × (−1)%∧#

(−1)#∧# × (−1)#∧%
(−1)#∧# × (−1)%∧%
(−1)%∧# × (−1)#∧%
(−1)%∧# × (−1)%∧%

(−1)#∧% × (−1)#∧#
(−1)#∧% × (−1)%∧#
(−1)%∧% × (−1)#∧#
(−1)%∧% × (−1)%∧#

(−1)#∧% × (−1)#∧%
(−1)#∧% × (−1)%∧%
(−1)%∧% × (−1)#∧%
(−1)%∧% × (−1)%∧%⎦

⎥
⎥
⎤0001
10
11

Naturally Ordered Hadamard
!⨂" = 1

√2

0 														1
((−1)

#∧# (−1)#∧%
(−1)%∧# (−1)%∧%,

0
1⨂

1
√2

0 														1
((−1)

#∧# (−1)#∧%
(−1)%∧# (−1)%∧%,

0
1

• Multiply (-1)x by (-1)y = (-1)x+y:

!⊗" =#
1
√2

× 1
√2
(

00 																		01 																			10 																		11

⎣
⎢
⎢
⎡(−1)

#∧#%#∧#

(−1)#∧#%&∧#
(−1)&∧#%#∧#
(−1)&∧#%&∧#

(−1)#∧#%#∧&
(−1)#∧#%&∧&
(−1)&∧#%#∧&
(−1)&∧#%&∧&

(−1)#∧&%#∧#
(−1)#∧&%&∧#
(−1)&∧&%#∧#
(−1)&∧&%&∧#

(−1)#∧&%#∧&
(−1)#∧&%&∧&
(−1)&∧&%#∧&
(−1)&∧&%&∧&⎦

⎥
⎥
⎤00
01
10
11

Naturally Ordered Hadamard
• Multiplying (-1)x by (-1)y = (-1)x+y: Yields (-1)(2n) or (-1)(2n)+1

• Where n is an Integer n∈ℤ, ℤ={0, 1, 2, ...}
• Exponentiating -1 to a non-negative Integer Results in:

• Therefore,

• We Only Need to Consider if Exponent is Even or Odd
- When: 𝑖 ∧ 𝑗 + 𝑘 ∧ 𝑚 = 2𝑛 ⟶ −1 𝑖∧𝑗 + 𝑘∧𝑚 = +1
- When: 𝑖 ∧ 𝑗 + 𝑘 ∧ 𝑚 = 2𝑛 + 1 ⟶ −1 𝑖∧𝑗 + 𝑘∧𝑚 = −1

• This is Modulo-2 Addition, can Replace with Exclusive-OR

−1 "& = +1 −1 "&-$ = −1

−1 !∧. - /∧0 = −1 "& = +1

−1 !∧. - /∧0 = −1 "&-$ = −1

Naturally Ordered Hadamard
• We Only Need to Consider if Exponent is Even or Odd

- When: 𝑖 ∧ 𝑗 + 𝑘 ∧ 𝑚 = 2𝑛 ⟶ −1 𝑖∧𝑗 + 𝑘∧𝑚 = +1
- When: 𝑖 ∧ 𝑗 + 𝑘 ∧ 𝑚 = 2𝑛 + 1 ⟶ −1 𝑖∧𝑗 + 𝑘∧𝑚 = −1

• This is Modulo-2 Addition, can Replace with Exclusive-OR
- When: 𝑖 ∧ 𝑗 + 𝑘 ∧ 𝑚 = 2𝑛 ⟶ 𝑖 ∧ 𝑗 ⊕ 𝑘 ∧𝑚 = 0
- When: 𝑖 ∧ 𝑗 + 𝑘 ∧ 𝑚 = 2𝑛 + 1 ⟶ 𝑖 ∧ 𝑗 ⊕ 𝑘 ∧𝑚 = 1

• Can Express H⊗2 Hadamard Matrix as:

!⊗" =#
1
√2

× 1
√2
(

00 																		01 																			10 																		11

⎣
⎢⎢
⎢
⎡(−1)

#∧#⊕#∧#

(−1)#∧#⊕&∧#
(−1)&∧#⊕#∧#
(−1)&∧#⊕&∧#

(−1)#∧#⊕#∧&
(−1)#∧#⊕&∧&
(−1)&∧#⊕#∧&
(−1)&∧#⊕&∧&

(−1)#∧&⊕#∧#
(−1)#∧&⊕&∧#
(−1)&∧&⊕#∧#
(−1)&∧&⊕&∧#

(−1)#∧&⊕#∧&
(−1)#∧&⊕&∧&
(−1)&∧&⊕#∧&
(−1)&∧&⊕&∧&⎦

⎥⎥
⎥
⎤00
01
10
11

!⊗" =
1
√2"

00 						01 							10 						11

⎣
⎢
⎢
⎡(−1)

#

(−1)#
(−1)#
(−1)#

(−1)#
(−1)$
(−1)#
(−1)$

(−1)#
(−1)#
(−1)$
(−1)$

(−1)#
(−1)$
(−1)$
(−1)#⎦

⎥
⎥
⎤00
01
10
11

= 1
√2"

1
1
1
1
1

			1
−1
			1
−1

			1
			1
−1
−1

			1
−1
−1
			1
2

Notation
• Using this Form for Naturally Ordered Hadamard

– Following Function Notation is Helpful
– DO NOT Confuse with BraKet EXPECTED VALUE!!!!
– The COMMA is Important (this is NOT 𝐀 or Ψ|𝐀|Ψ)

– Inner Product Function over Strings, 𝔹2n = 0,1 2n→ 𝔹
EXAMPLE: Two n-bit Strings

– Note, We Use Bit-wise Exclusive-OR (a string):

– The "Inner Product" Notation is a Single Value:

, : 0,1 &× 0,1 & → 0,1

𝐱 = 𝑥&1$𝑥&1$⋯𝑥"𝑥$𝑥% 𝐲 = 𝑦&1$𝑦&1$⋯𝑦"𝑦$𝑦%

𝐱, 𝐲 = 𝑥#$% ∧ 𝑦#$% ⊕ 𝑥#$% ∧ 𝑦#$% ⊕⋯⊕ 𝑥% ∧ 𝑦% ⊕ 𝑥& ∧ 𝑦&

𝐱⊕ 𝐲 = 𝑥#$%⊕𝑦#$% , 𝑥#$%⊕𝑦#$% , ⋯ , 𝑥%⊕𝑦% , 𝑥&⊕𝑦&

Bit-String Inner Product Properties
, : 0,1 !× 0,1 ! → 0,1

〈"⨁"$, &〉 = 〈", &〉⨁〈"$, &〉 〈", $⨁$&〉 = 〈", $〉⨁〈", $&〉

〈"⋀$, &〉 = 〈0!, &〉 = 0 〈", $⋀&〉 = 〈", 0!〉 = 0
〈"⋀$, &〉 = 〈1!⋀$, &〉 = 〈$, &〉 〈", $⋀&〉 = 〈", 1!⋀&〉 = 〈", &〉

〈", $〉 = '!"#⨁'!"$⨁⋯⨁'#⨁'% 〈", $〉 = '!"#⨁'!"$⨁⋯⨁'#⨁'%
〈", $〉 = " 〈", $〉 = $

〈"⨁"$, &〉 = 〈), &〉 〈", $⨁$&〉 = 〈",)〉

!⊗" =
1
√2"

00 						01 							10 						11

⎣
⎢
⎢
⎡(−1)

#

(−1)#
(−1)#
(−1)#

(−1)#
(−1)$
(−1)#
(−1)$

(−1)#
(−1)#
(−1)$
(−1)$

(−1)#
(−1)$
(−1)$
(−1)#⎦

⎥
⎥
⎤00
01
10
11

= 1
√2"

1
1
1
1
1

			1
−1
			1
−1

			1
			1
−1
−1

			1
−1
−1
			1
2

Hadamard with New Notation

!⊗" =#
1
√2

× 1
√2(

00 															01 																10 															11

⎣
⎢
⎢⎢
⎡(−1)

〈$$,$$〉

(−1)〈$$,'$〉
(−1)〈'$,$$〉
(−1)〈'$,'$〉

(−1)〈$$,$'〉
(−1)〈$$,''〉
(−1)〈'$,$'〉
(−1)〈'$,''〉

(−1)〈$',$$〉
(−1)〈$','$〉
(−1)〈'',$$〉
(−1)〈'','$〉

(−1)〈$',$'〉
(−1)〈$',''〉
(−1)〈'',$'〉
(−1)〈'',''〉⎦

⎥
⎥⎥
⎤00
01
10
11

Naturally Ordered Hadamard
• Now Can Write General Formula for:

• i and j are row and column numbers
written as binary strings

• Quantum State Vector (example):

Red strings are row
numbers written as
binary strings – NOT
part of equation

!⊗"(#, %) = 1
√2"

(−1)〈$,&〉

|"⟩ = |000⋯00⟩ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 10
0
⋮

0
0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤ 000⋯00

000⋯01
000⋯10

⋮

111⋯10
111⋯11

Naturally Ordered Hadamard
• Multiplying a Quantum State Vector by 𝐇⊗𝑛

• For Arbitrary Quantum State

- Denotes “don’t care” or All Possible Rows from 0 to n-1

Leftmost Column
of Hadamard
Matrix

!⊗"|#⟩ = !⊗"[−, #] = 1
√2"

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 11
1
⋮

1
1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤ 000⋯00

000⋯01
000⋯10

⋮

111⋯10
111⋯11

= 1
√2" 6 |7⟩

#∈{&,(}!

|"⟩
!⊗"|#⟩ = !⊗"[−, #] = 1

√2" - (−1)〈$,&〉|01
$∈{*,+}!

