
11/29/23

1

Quantum Logic Synthesis
(or, quantum computer compilation)

1

Synthesis Outline
• Irreversible into Reversible Switching Functions

• Proof that Reversible Switching Functions can be Implemented as Quantum Circuits
• The RTT Approach

• Reversible Switching Function into Reversible Operators
• The MMD Approach

• Irreversible Specifications into Reversible Operators
• The ESOP Approach
• Structure of an Oracle

• Mapping Reversible Operators into Technology-Dependent Operators
• Various Decompositions

• Representing Classical Data as State Preparation Circuits
• QROM versus QRAM
• Quantum Data Encoding

• Embedding Data within Quantum Programs/Circuits
2

11/29/23

2

Discrete Function Concepts
Function f Defines a Mapping of Elements

in Set A to a Subset of Elements in Set B

𝑓: A ⟶ B

f is a "Relation" among Sets A and B
𝑎𝑓𝑏 𝑓 𝑎 = 𝑏

b is the "Image" of a
a is the "Pre-image" of b

Set A is the "Domain" of f
Set B is the "Co-domain" of f

The "Range" of f is a Subset of Set B

Set A Set B

3

Discrete Function Concepts (cont.)

Set B

Function f Defines a Mapping of Elements
in Set A to a Subset of Elements in Set B

𝑓: A ⟶ B 𝑎𝑓𝑏 𝑓 𝑎 = 𝑏

b is the "Image" of aa is the "Pre-image" of b

"Domain" of f "Co-domain" of f

The "Range" of f is a Subset of Set B
Set A "Range" of f is the Set of "Images" of a:

R = 𝑏 ∈ B|𝑏 = 𝑓 𝑎 , for	some	𝑎 ∈ A

"Range" of f is a Subset of B :
R ⊆ B

4

11/29/23

3

Discrete Function Concepts (cont.)

Set B

Function f Defines a Mapping of Elements
in Set A to a Subset of Elements in Set B

𝑓: A ⟶ B 𝑎𝑓𝑏 𝑓 𝑎 = 𝑏

b is the "Image" of aa is the "Pre-image" of b

"Domain" of f "Co-domain" of f

Function 𝑓: A ⟶ B is "one-to-one"
(or "injective"), if and only if:Set A

In other words, f "one-to-one" if and only if it
does not map two distinct elements in A onto

the same element in B

∀𝑎!, 𝑎" ∈ A, 𝑓 𝑎! = 𝑓 𝑎" → 𝑎! = 𝑎"

∀𝑎!, 𝑎" ∈ A, 𝑓 𝑎! = 𝑏!, 𝑓 𝑎" = 𝑏" → 𝑏! ≠ 𝑏"

5

Discrete Function Concepts (cont.)

Set B

Function f Defines a Mapping of Elements
in Set A to a Subset of Elements in Set B

𝑓: A ⟶ B 𝑎𝑓𝑏 𝑓 𝑎 = 𝑏

b is the "Image" of aa is the "Pre-image" of b

"Domain" of f "Co-domain" of f

Function 𝑓: A ⟶ B is "onto"
(or "surjective"), if and only if:Set A

In other words, f is "onto" if and only if its
entire Range R is its entire Codomain B

∀𝑏 ∈ B, ∃𝑎 ∈ A|𝑓 𝑎 = 𝑏

R = B

6

11/29/23

4

Discrete Function Concepts (cont.)

Set B

Function f Defines a Mapping of Elements
in Set A to a Subset of Elements in Set B

𝑓: A ⟶ B 𝑎𝑓𝑏 𝑓 𝑎 = 𝑏

b is the "Image" of aa is the "Pre-image" of b

"Domain" of f "Co-domain" of f

Function 𝑓:A⟶ B is "onto" (or "surjective"),
if and only if ∀𝑏 ∈ B, ∃𝑎 ∈ A|𝑓 𝑎 = 𝑏Set A

Function 𝑓:A⟶ B is "one-to-one" (or "injective"),
if and only if R = B

Function 𝑓:A⟶ B is a "bijection" (or "surjective" and "injective"),
if and only if it is "onto" and "one-to-one"

7

Discrete Switching Function Concepts

Set B

Function f Defines a Mapping of Elements
in Set A to a Subset of Elements in Set B

𝑓: A ⟶ B 𝑎𝑓𝑏 𝑓 𝑎 = 𝑏

b is the "Image" of aa is the "Pre-image" of b

"Domain" of f "Co-domain" of f

Function 𝑓 is a "Switching Function" when
all 𝑎 ∈ A	and 𝑏 ∈ B	are represented

as binary label values (base-2 with 𝑏! ∈ 𝔹)
Set A

𝑛 is the minimum number of bits required
to sequentially label the largest 𝑎! ∈ A Domain

value of 𝑓

𝔹 = 0,1

𝑚 is the Minimum number of bits required to sequentially
label the largest 𝑏! ∈ B range value of 𝑓

𝑓: 𝔹" ⟶ 𝔹#

8

11/29/23

5

Discrete Switching Function Concepts (cont.)
Function f Defines a Mapping of Elements

in Set A = 𝔹" to a Subset of Elements in Set B = 𝔹#

Lemma 1: If 𝑓:𝔹# ⟶𝔹$ is a bijection then 𝑛 = 𝑚.

Proof: By definition, 𝑓 must be one-to-one if it is bijective, thus the cardinality of the
codomain of 𝑓, 𝔹$, must be greater than or equal to the cardinality of the domain of 𝑓,
𝔹# , that is, 𝔹$ ≥ 𝔹# to ensure the one-to-one correspondence of each unique

pair of pre-image and image values. Furthermore, since 𝑓 is a switching function, 𝔹# = 2#
and 𝔹$ = 2$. Additionally, since 𝑓 is a bijection, it must have the onto property and its
range R is equal to its codomain; therefore, the cardinality of the range is also R = 𝔹$ =
2$. Given that 𝑚 is the minimum number of bits for the largest-valued binary string that
sequentially labels the image values of 𝑓 and 𝑛 is the minimum number of bits for the largest-
valued binary string that sequentially labels the preimage values of 𝑓, it follows that 𝔹# =
𝔹$ = R . Thus, 2$ = 2# proving the lemma that 𝑛 = 𝑚.

9

Discrete Switching Function Concepts (cont.)
Function f Defines a Mapping of Elements

in Set A = 𝔹" to a Subset of Elements in Set B = 𝔹#

Lemma 2: If 𝑓:𝔹# ⟶𝔹$ is a bijection then it is of the form of permutation function wherein
each preimage of 𝑓 is mapped to a corresponding image value in accordance with a
permutation relation.

Proof: From Lemma 1, the cardinality of the range and domain of 𝑓 are equivalent and equal
to 2#. Since 𝑓 is a switching function, the domain is comprised of a set of 𝑛-bit binary strings
that are equivalent to the set of 𝑛-bit binary strings comprising the range. Furthermore, since
𝑓 is a bijection and a switching function, each preimage is in the form of an 𝑛-bit binary string
and each image is accordingly in the form of an 𝑛-bit binary string (i.e., 𝑚 = 𝑛), wherein each
pair of preimage and corresponding image values are unique. Therefore, 𝑓 is a permutation
relation.

10

11/29/23

6

Discrete Switching Function Concepts (cont.)
Function f Defines a Mapping of Elements

in Set A = 𝔹" to a Subset of Elements in Set B = 𝔹#

Lemma 3: If 𝑓:𝔹# ⟶𝔹$ is a bijection in the form of permutation, then it can be
represented by a 2#×2# permutation matrix, 𝐔 , that maps each pre-image to its
corresponding image.

Proof: We form a 2#-dimensional column vector where the components are labeled with 𝑛-
bit strings beginning with the topmost component represented by all zeros and each
subsequent lower value represented by increasing 𝑛 -bit values with the lowermost
component labeled by the all-ones 𝑛-bit label. In this way, each component represents a
unique value in the domain of 𝑓. The function 𝑓 can thus map each pre-image encoded as a
2#-dimensional column vector into its corresponding image value that is also represented as a
2#-dimensional column vector via a linear transformation defined by 𝐔. Because 𝑓 is a
bijection and thus a permutation mapping from Lemma 2, 𝐔 is accordingly a permutation
matrix.

11

Discrete Switching Function Concepts (cont.)
Function f Defines a Mapping of Elements

in Set A = 𝔹" to a Subset of Elements in Set B = 𝔹#
Definition 1: A reversible logic function, 𝑓, is a bijection wherein its corresponding inverse
function, 𝑓%!, is also a bijection.

Lemma 4: If 𝑓:𝔹# ⟶𝔹$ is a bijection, then it is a reversible logic function.

Proof: From the result of Lemma 3, 𝑓 can be represented by a permutation matrix 𝐔. It is
known that permutation matrices such as 𝐔 have unique inverses that are also permutation
matrices, thus 𝑓 is a reversible logic function.

Theorem: If 𝑓:𝔹# ⟶𝔹$ is a bijection, then it can be represented as a cascade of reversible
logic elements suitable for implementation as a quantum circuit.

Proof: From Lemma 4, 𝑓 is a reversible function represented by a permutation matrix 𝐔. It is
known that 𝐔𝐔%𝟏 = 𝐈, and that 𝐔 = 1, thus 𝐔 is unitary and implementable as a quantum
circuit.

12

11/29/23

7

Embedding an Irreversible into Reversible Function
• GOAL: Convert Irreversible Switching Function to Reversible Switching

Function with Minimal Number of Ancilla and Garbage Bits
• MOTIVATION: Functions are Often Embedded in Quantum Algorithms/Circuits

as Part of an Oracle – Must be Reversible to Implement
- QFT: Transformation Happened to be Unitary
- Shor's Factoring: Modular Power Function Happened to be Unitary
- What if the Function is Not Unitary? (eg. Grover's Oracle and Others?)

• One Approach is to Embed Irreversible Function into a Bijective Function
- Add Ancilla/Garbage to Ensure Same Number of Domain/Range Bits

o Necessary (but not sufficient) Condition for Function to be One-to-One
- Desirable to Assign Ancilla Bits to Zero to adhere to gate-model QC property

(initialization)
- Must Assign Garbage Bits to Values to Ensure Function Comprised of Unique Mappings

of Domain to Codomain – ensures that a bijective function results
o Sufficient Condition for Function to be One-to-One and Onto (a Bijection)

13

Example of Embedding an Irreversible Function
• Consider a classical half-adder circuit

• Need to add at least one Garbage, which in turn requires an Ancilla
• Ancillas should be set to Zero to Ease Initialization

𝑠𝑢𝑚 = 𝑥 ⊕ 𝑦

𝑐𝑎𝑟𝑟𝑦 = 𝑥𝑦

x y sum carry
0 0 0 0

0 1 1 0
1 0 1 0

1 1 0 1

Irreversible Table

a1 x y sum carry g1
0 0 0 0 0 0

0 0 1 1 0 1
0 1 0 1 0 0

0 1 1 0 1 1

𝑠𝑢𝑚 = 𝑎! 𝑥 ⊕ 𝑦

𝑐𝑎𝑟𝑟𝑦 = 𝑎!𝑥𝑦

𝑔! = 𝑎!𝑦

Reversible Table We will address how to synthesize into a quantum circuit later

Repeated Image
values; non-bijective

14

11/29/23

8

Reversible Truth Table (RTT) Method*
• Automated Method for Embedding Irreversible Switching Functions into

Reversible Switching Functions
• Previous Example Done Manually, but this is Difficult for Larger Functions
• RTT is a Method that Gives Minimal Additional Qubits - Provably

1) Mark Duplicate Output m-tuples
2) Table Expansion
3) One-to-one Mapping Assignments

• Example of RTT uses Truth Tables
- More Efficient Switching Function Representations Reduces Complexity

o Decision Diagrams (BDD, ADD, MDD, QMDD), Positional Cube Notation (PCN) lists/set. .pla Files
- Representing Switching Functions are Worst-case Exponential Complexity, 𝑂 2#
- Minimize Extra Ancilla/Garbage Qubits

o Set Ancilla Qubits to Zero to Facilitate Quantum Algorithm Initialization

*E. Gabrielsen and M.A. Thornton, "Minimizing Ancilla and Garbage Qubits in Reversible Functions," in proc. Southwest Quantum
 Information and Technology, 20th Annual SQuInT Workshop, February 22-24, 2018.

15

RTT* – Example: Irreversible Full Adder
• Example: Irreducible Form of Full Adder

x y cin sum cout
0 0 0 0 0
0 0 1 1 0

0 1 0 1 0
0 1 1 0 1

1 0 0 1 0

1 0 1 0 1
1 1 0 0 1

1 1 1 1 1

*E. Gabrielsen and M.A. Thornton, "Minimizing Ancilla and Garbage Qubits in Reversible Functions," in proc. Southwest Quantum
 Information and Technology, 20th Annual SQuInT Workshop, February 22-24, 2018.

16

11/29/23

9

RTT* – Marking Duplicate Entries
• Example: Irreducible Form of Full Adder

x y cin sum cout
0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

def mark_duplicate_tuples(output):
 seen = set()
 duplicates = {}
 index = 0
 for row in output:
 t = tuple(row)
 if t in seen:
 if t in duplicates:
 duplicates[t].append(index)
 else:
 duplicates[t] = [index]
 seen.add(t)
 index += 1

The number of identical fi m-tuples are counted and marked in a two-dimensional array by iterating through each
specified m-tuple in the fi specification. The final dictionary represents a summary of the overall number of unique
“keys”, the number of key duplicates, and the correspondence of each m-tuple with the corresponding n-tuple
valuation.

Irreversible Table

*E. Gabrielsen and M.A. Thornton, "Minimizing Ancilla and Garbage Qubits in Reversible Functions," in proc. Southwest Quantum
 Information and Technology, 20th Annual SQuInT Workshop, February 22-24, 2018.

17

RTT* – Table Expansion
• Example: Irreducible Form of Full Adder

def expand_table(input, output, dict={}):
 max_key = max(dict, key= lambda x: len(set(dict[x])))

 num_garbage = len("{0:b}".format(len(dict[max_key])))
 num_antica = (num_garbage + output.shape[1]) - input.shape[1]

 new_input = np.hstack((input, np.zeros((input.shape[0],
 num_antica), dtype=input.dtype)))

 new_output = np.hstack((output, np.zeros((output.shape[0],
 num_garbage)), dtype=input.dtype)))

The minimum number of ancilla and garbage bits
are determined. RTT expands table to hold
placeholder values in order to ensure the second
condition for function reversibility: for every input x
there must exist some output y

a0 x y cin sum cout g0 g1
0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 1 0 1 0 0 0
0 0 1 1 0 1 0 0

0 1 0 0 1 0 0 0
0 1 0 1 0 1 0 0

0 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0

Expanded Table

*E. Gabrielsen and M.A. Thornton, "Minimizing Ancilla and Garbage Qubits in Reversible Functions," in proc. Southwest Quantum
 Information and Technology, 20th Annual SQuInT Workshop, February 22-24, 2018.

18

11/29/23

10

RTT* – One-to-one Mapping Assignments
• Example: Irreducible Form of Full Adder
def one_to_one_mapping(input, output, num_antica, num_garbage, duplicates={}):
 buffer = output.shape[1] - num_garbage
 get_bin = lambda x, n: format(x, 'b').zfill(n)
 for key in duplicates:
 number = 1
 for item in duplicates[key]:
 garbage = get_bin(number, num_garbage)
 for col in range(num_garbage):
 output[item][col+buffer] = int(garbage[col])
 number = number + 1
 return (input, output)

Ensures the one-to-one rule holds for functional
reversibility. Each n-tuple and corresponding m-
tuple are iterated over to ensure unique rows. If a
row is duplicated, the garbage or antica bit group is
increased by 1 in binary.

a0 x y cin sum cout g0 g1
0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 1 0 1 0 0 1

0 0 1 1 0 1 0 0

0 1 0 0 1 0 1 0

0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0

0 1 1 1 1 1 0 0

Reversible Table

*E. Gabrielsen and M.A. Thornton, "Minimizing Ancilla and Garbage Qubits in Reversible Functions," in proc. Southwest Quantum
 Information and Technology, 20th Annual SQuInT Workshop, February 22-24, 2018.

19

RTT* – Experimental Results
• From .pla Benchmarks Set

The RTT method was validated for functionality and effectiveness in an environment where benchmark
irreversible functions were created and mapped to reversible form. We then compared our results to those from
the RevLib collection.

*E. Gabrielsen and M.A. Thornton, "Minimizing Ancilla and Garbage Qubits in Reversible Functions," in proc. Southwest Quantum
 Information and Technology, 20th Annual SQuInT Workshop, February 22-24, 2018.

20

11/29/23

11

RTT* – Complexity Analysis

*E. Gabrielsen and M.A. Thornton, "Minimizing Ancilla and Garbage Qubits in Reversible Functions," in proc. Southwest Quantum
 Information and Technology, 20th Annual SQuInT Workshop, February 22-24, 2018.

Overall Performance of RTT is O(2n) due to the data structure being in matrix form. Future research is needed to
reduce complexity closer to the theoretical minimum O(NdupNgar)

Routine Complexity
Marking Duplicate m-tuples O(2n)

Table Expansion O(Nduplog(Ndup))

One to One Mapping O(NdupNgar)

21

[1] IBM Corporation, ”QISKit: Compiling and Running a Quantum Pro- gram”, https://github.com/QISKit/qiskit-
tutorial/blob/master/1 introduction/compiling_and_running.ipynb [2] K.N. Smith and M.A. Thornton, ”MUSTANG-Q: A Technology
Dependent Quantum Logic Synthesis and Compilation Tool,” Tech. Report, Southern Methodist University, November 10, 2017.

[3] D. Deutsch, ”Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer,” in proc. Royal Soc. of London
A: Mathematical, Physical and Engineering Sciences, vol. 400, no. 1818, pp. 97-117, 1985.

[4] A.W. Cross, L.S. Bishop, J.A. Smolin, and J.M. Gambetta, “Open Quantum Assembly Language,” January 10, 2017,
https://arxiv.org/pdf/1707.03429.pdf (accessed November 12, 2017).

[5] K. Fazel, M.A. Thornton, and J.E. Rice, “ESOP-based Toffoli Gate Cascade Generation,” in proc. IEEE Pac. Rim Conf. on
Communications, Computers and Signal Processing, pp. 206-209, 2007.

[6] S. Hassoun and T. Sasao, Logic Synthesis and Verification, Kluwer Academic Publishers, ISBN 978-1-4613-5253-2, 2002.

[7] R.E. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,” IEEE Trans. Comp., 100(8), pp. 677-691, 1986.

[8] Vandana Maheshwari, Development of SyReC Based Expandable Reversible Logic Circuits Rajasthan, India: Rajasthan Technical
University, 2014.

[9] Gorden E. Moore, The Future of Integrated Electronics Fairchild Semi- conductor internal publication, 1964.

[10] R. Landauer Irreversibility and heat generation in the computing process, IBM J. Res. Dev., vol. 5, p. 183, 1961.

[11] R. Drechsler and R. Wille, From Truth Tables to Programming Languages: Progress in the Design of Reversible Circuits, Bremen,
Germany: University of Bremen, 2011.

[12] David Y. Feinstein and Mitchell A. Thornton, On the Guidance of Reversible Logic Synthesis by Dynamic Variable Reordering,
Dallas, Tx: Southern Methodist University.

RTT* - References

*E. Gabrielsen and M.A. Thornton, "Minimizing Ancilla and Garbage Qubits in Reversible Functions," in proc. Southwest Quantum
 Information and Technology, 20th Annual SQuInT Workshop, February 22-24, 2018.

22

11/29/23

12

Miller-Maslov-Dueck (MMD*) Method
(aka the "Table Based Method," TBS)

• Input is Reversible Switching Function Truth Table
• Output is Reversible Quantum Circuit using Operators:

• Pauli-X
• Controlled-Pauli-X, CNOT, Feynman Gate
• Toffoli Gate, Controlled-Controlled-Pauli-X
• Generalized Toffoli Gate (Controlled-Pauli-X with 3 or more control points)

• Requires Input Specification to be A Reversible (Bijective) Switching Truth
Table

• Exponential Representation Complexity
• Later Versions of MMD/TBS used BDDs for Reduced Average-case

Complexity but still has Exponential Worst-case Complexity
• Theory is to Reduce Transform "Residual" Function into an Identity

*D.M. Miller, D. Maslov and G.W. Dueck, "A Transformation Based Algorithm for Reversible Logic Synthesis," in proc. IEEE/ACM
 Design Automation Conference (DAC), June 2-6, 2003.

23

Miller-Maslov-Dueck (MMD*) Method
• Example: Reversible Switching Function Truth Table

*D.M. Miller, D. Maslov and G.W. Dueck, "A Transformation Based Algorithm for Reversible Logic Synthesis," in proc. IEEE/ACM
 Design Automation Conference (DAC), June 2-6, 2003.

a b c a' b' c'

0 0 0 1 1 1
0 0 1 0 0 1

0 1 0 1 0 0
0 1 1 0 1 1

1 0 0 0 0 0
1 0 1 0 1 0

1 1 0 1 1 0
1 1 1 1 0 1

MMD: Output to Input Cascade Stage
1) Apply Pauli-X to Transform f(00...0)=00...0
2) Process each Output Word in Order Corresponding

to Least Significant Input Word
3) And in Order of LSb to MSb in Output Word
4) Goal is to Make Output Word Equal Input Word
5) Use "Fixed" Bits to Transform "Unfixed" Bits in

Output Word with (X, T, Gen. T} Gates from Right
to Left

6) Repeat Until Output Words Match Input Words

24

11/29/23

13

Miller-Maslov-Dueck (MMD*) Method

*D.M. Miller, D. Maslov and G.W. Dueck, "A Transformation Based Algorithm for Reversible Logic Synthesis," in proc. IEEE/ACM
 Design Automation Conference (DAC), June 2-6, 2003.

a b c a' b' c' a0 b0 c0

0 0 0 1 1 1 0 0 0

0 0 1 0 0 1 1 1 0

0 1 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0 0

1 0 0 0 0 0 1 1 1

1 0 1 0 1 0 1 0 1

1 1 0 1 1 0 0 0 1

1 1 1 1 0 1 0 1 0

Step 1: Transform f(00...00) to 00...0

Residual Function,
To Be Synthesized

Force the output to be all zero for the 000 input term

Residual Function

pre-image to image
is an identity

25

Miller-Maslov-Dueck (MMD*) Method

*D.M. Miller, D. Maslov and G.W. Dueck, "A Transformation Based Algorithm for Reversible Logic Synthesis," in proc. IEEE/ACM
 Design Automation Conference (DAC), June 2-6, 2003.

a b c a' b' c' a0 b0 c0 a1 b1 c1

0 0 0 1 1 1 0 0 0 0 0 0
0 0 1 0 0 1 1 1 0 1 1 1

0 1 0 1 0 0 0 1 1 0 1 1

0 1 1 0 1 1 1 0 0 1 0 0
1 0 0 0 0 0 1 1 1 1 1 0

1 0 1 0 1 0 1 0 1 1 0 1
1 1 0 1 1 0 0 0 1 0 0 1

1 1 1 1 0 1 0 1 0 0 1 0

Step 2: Change c0 for Input Term 001 since a0b0=11

To Be Synthesized

Choose LSb of Input Term 001 to Change

26

11/29/23

14

Miller-Maslov-Dueck (MMD*) Method

*D.M. Miller, D. Maslov and G.W. Dueck, "A Transformation Based Algorithm for Reversible Logic Synthesis," in proc. IEEE/ACM
 Design Automation Conference (DAC), June 2-6, 2003.

a b c a' b' c' a0 b0 c0 a1 b1 c1 a2 b2 c2

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 1 1 0 1 1 1 1 0 1

0 1 0 1 0 0 0 1 1 0 1 1 0 0 1

0 1 1 0 1 1 1 0 0 1 0 0 1 0 0

1 0 0 0 0 0 1 1 1 1 1 0 1 1 0

1 0 1 0 1 0 1 0 1 1 0 1 1 1 1

1 1 0 1 1 0 0 0 1 0 0 1 0 1 1

1 1 1 1 0 1 0 1 0 0 1 0 0 1 0

Step 3: Change b2 for Input Term 001 since c1=1
To Be Synthesized

Must Synthesize b2 First, then a2

Choose "next" LSb of Input Term 001 to Change

27

Miller-Maslov-Dueck (MMD*) Method

*D.M. Miller, D. Maslov and G.W. Dueck, "A Transformation Based Algorithm for Reversible Logic Synthesis," in proc. IEEE/ACM
 Design Automation Conference (DAC), June 2-6, 2003.

a b c a' b' c' a2 b2 c2 a3 b3 c3

0 0 0 1 1 1 0 0 0 0 0 0
0 0 1 0 0 1 1 0 1 0 0 1

0 1 0 1 0 0 0 0 1 1 0 1
0 1 1 0 1 1 1 0 0 1 0 0

1 0 0 0 0 0 1 1 0 1 1 0
1 0 1 0 1 0 1 1 1 0 1 1

1 1 0 1 1 0 0 1 1 1 1 1

1 1 1 1 0 1 0 1 0 0 1 0

Step 4: Change a3 for Input Term 001 since c2=1
To Be Synthesized

Choose "next" LSb of Input Term 001 to Change

Identity

Identity

28

11/29/23

15

Miller-Maslov-Dueck (MMD*) Method

*D.M. Miller, D. Maslov and G.W. Dueck, "A Transformation Based Algorithm for Reversible Logic Synthesis," in proc. IEEE/ACM
 Design Automation Conference (DAC), June 2-6, 2003.

a b c a' b' c' a3 b3 c3 a4 b4 c4

0 0 0 1 1 1 0 0 0 0 0 0

0 0 1 0 0 1 0 0 1 0 0 1

0 1 0 1 0 0 1 0 1 1 0 0

0 1 1 0 1 1 1 0 0 1 0 1

1 0 0 0 0 0 1 1 0 1 1 1

1 0 1 0 1 0 0 1 1 0 1 1

1 1 0 1 1 0 1 1 1 1 1 0

1 1 1 1 0 1 0 1 0 0 1 0

Step 5: Change c4 for Input Term 010 since a3=1

To Be Synthesized

Choose LSb of Input Term 010 to Change

29

Miller-Maslov-Dueck (MMD*) Method

*D.M. Miller, D. Maslov and G.W. Dueck, "A Transformation Based Algorithm for Reversible Logic Synthesis," in proc. IEEE/ACM
 Design Automation Conference (DAC), June 2-6, 2003.

a b c a' b' c' a4 b4 c4 a5 b5 c5

0 0 0 1 1 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1

0 1 0 1 0 0 1 0 0 1 1 0
0 1 1 0 1 1 1 0 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 1
1 0 1 0 1 0 0 1 1 0 1 1

1 1 0 1 1 0 1 1 0 1 0 0

1 1 1 1 0 1 0 1 0 0 1 0

Step 6: Change b5 for Input Term 010 since a4=1

To Be Synthesized

Choose "next" LSb of Input Term 010 to Change

30

11/29/23

16

Miller-Maslov-Dueck (MMD*) Method

*D.M. Miller, D. Maslov and G.W. Dueck, "A Transformation Based Algorithm for Reversible Logic Synthesis," in proc. IEEE/ACM
 Design Automation Conference (DAC), June 2-6, 2003.

a b c a' b' c' a5 b5 c5 a6 b6 c6

0 0 0 1 1 1 0 0 0 0 0 0

0 0 1 0 0 1 0 0 1 0 0 1

0 1 0 1 0 0 1 1 0 0 1 0

0 1 1 0 1 1 1 1 1 0 1 1

1 0 0 0 0 0 1 0 1 1 0 1

1 0 1 0 1 0 0 1 1 1 1 1

1 1 0 1 1 0 1 0 0 1 0 0

1 1 1 1 0 1 0 1 0 1 1 0

Step 7: Change a6 for Input Term 010 since b5=1

To Be Synthesized

Choose "next" LSb of Input Term 010 to Change

31

Miller-Maslov-Dueck (MMD*) Method

*D.M. Miller, D. Maslov and G.W. Dueck, "A Transformation Based Algorithm for Reversible Logic Synthesis," in proc. IEEE/ACM
 Design Automation Conference (DAC), June 2-6, 2003.

a b c a' b' c' a6 b6 c6 a7 b7 c7

0 0 0 1 1 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1

0 1 0 1 0 0 0 1 0 0 1 0
0 1 1 0 1 1 0 1 1 0 1 1

1 0 0 0 0 0 1 0 1 1 0 0
1 0 1 0 1 0 1 1 1 1 1 0

1 1 0 1 1 0 1 0 0 1 0 1

1 1 1 1 0 1 1 1 0 1 1 1

Step 8: Change c7 for Input Term 100 since a6=1

To Be Synthesized

Choose LSb of Input Term 100 to Change

32

11/29/23

17

Miller-Maslov-Dueck (MMD*) Method

*D.M. Miller, D. Maslov and G.W. Dueck, "A Transformation Based Algorithm for Reversible Logic Synthesis," in proc. IEEE/ACM
 Design Automation Conference (DAC), June 2-6, 2003.

a b c a' b' c' a7 b7 c7 a8 b8 c8

0 0 0 1 1 1 0 0 0 0 0 0

0 0 1 0 0 1 0 0 1 0 0 1

0 1 0 1 0 0 0 1 0 0 1 0

0 1 1 0 1 1 0 1 1 0 1 1

1 0 0 0 0 0 1 0 0 1 0 0

1 0 1 0 1 0 1 1 0 1 1 1

1 1 0 1 1 0 1 0 1 1 0 1

1 1 1 1 0 1 1 1 1 1 1 0

Step 9: Change c8 for Input Term 101 since a7b7=11

To Be Synthesized

Choose LSb of Input Term 101 to Change

33

Miller-Maslov-Dueck (MMD*) Method

*D.M. Miller, D. Maslov and G.W. Dueck, "A Transformation Based Algorithm for Reversible Logic Synthesis," in proc. IEEE/ACM
 Design Automation Conference (DAC), June 2-6, 2003.

a b c a' b' c' a8 b8 c8 a9 b9 c9

0 0 0 1 1 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1

0 1 0 1 0 0 0 1 0 0 1 0
0 1 1 0 1 1 0 1 1 0 1 1

1 0 0 0 0 0 1 0 0 1 0 0
1 0 1 0 1 0 1 1 1 1 0 1

1 1 0 1 1 0 1 0 1 1 1 1

1 1 1 1 0 1 1 1 0 1 1 0

Step 10: Change b9 for Input Term 101 since a8c8=11

To Be Synthesized

Choose "next" LSb of Input Term 101 to Change

34

11/29/23

18

Miller-Maslov-Dueck (MMD*) Method

*D.M. Miller, D. Maslov and G.W. Dueck, "A Transformation Based Algorithm for Reversible Logic Synthesis," in proc. IEEE/ACM
 Design Automation Conference (DAC), June 2-6, 2003.

a b c a' b' c' a9 b9 c9 a10 b10 c10

0 0 0 1 1 1 0 0 0 0 0 0

0 0 1 0 0 1 0 0 1 0 0 1

0 1 0 1 0 0 0 1 0 0 1 0

0 1 1 0 1 1 0 1 1 0 1 1

1 0 0 0 0 0 1 0 0 1 0 0

1 0 1 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 1 1 1 1 1 0

1 1 1 1 0 1 1 1 0 1 1 1

Step 11: Change c10 for Input Term 110 since a9b9=11

Choose LSb of Input Term 110 to Change

Synthesis Complete!!

35

Miller-Maslov-Dueck (MMD*) Method

*D.M. Miller, D. Maslov and G.W. Dueck, "A Transformation Based Algorithm for Reversible Logic Synthesis," in proc. IEEE/ACM
 Design Automation Conference (DAC), June 2-6, 2003.

a b c a' b' c'

0 0 0 1 1 1
0 0 1 0 0 1

0 1 0 1 0 0
0 1 1 0 1 1

1 0 0 0 0 0

1 0 1 0 1 0
1 1 0 1 1 0

1 1 1 1 0 1

36

11/29/23

19

Miller-Maslov-Dueck (MMD*) Method
• This Basic Method Outputs Last Gate First and Iteratively Transforms the

Output List into the Input List in Lexicographical Order
• Could Alternatively Output First Gate First and Iteratively Transform the

Input List into the Output List
• "Bidirectional Method" Chooses Among the Two Approaches at Each

 Iteration
- Can Yield a Smaller-cost Circuit

• MMD is Exponentially Expensive
- Must Represent Entire Function – Exponential Size in Worst-case
- Exponential Number of Iterations in Worst-case

• Not in the Form of Typical Oracle Structure: pre-image values are not
present at oracle circuit outputs

*D.M. Miller, D. Maslov and G.W. Dueck, "A Transformation Based Algorithm for Reversible Logic Synthesis," in proc. IEEE/ACM
 Design Automation Conference (DAC), June 2-6, 2003.

37

Why do QC Algorithm Designer's Care About
Synthesis?
• For the Algorithms we have Studied, Many Such as Deutsch, Grover,

Simon, QFT, Shor, have Embedded Functions
• Luckily, Most of these Embedded Functions have Unitary Representations

• Analysis of the Functions Allow for a Unitary Representation
• Exception is: Deutsch and Grover (and others)

• If We are Designing Quantum Algorithms, We Need Synthesis Methods to
Embed Functions, Many of Which are Likely to be in Irreversible Form in
there Native Format

• Let's Consider the Embedded Functions in the Algorithms that we have
Studied so far in this Class

38

11/29/23

20

Deutsch's Algorithm Oracle

Uf
|x⟩

|y⟩

|x⟩

| y⊕f(x)⟩

• f(x) is a Single-bit Irreversible Switching Function “embedded”
inside Uf “gate”

• Actual f(x) embedded is unknown, but is Either Balanced or
Imbalanced

• We Synthesized it in the Notes by Using Our Intuitive Knowledge of
the Four Forms of Single-bit Switching Functions:

(0) 0f = (0) 1f = (1) 0f = (1) 1f =

1

1 1

1

39

Grover's Algorithm Oracle

Uf
|x⟩

|y⟩

|x⟩

| y⊕f(x)⟩

• f(x) is Grover's Oracle Function that Indicates if the Search Object is
Present in the ⟩|𝒙 Kets or Not

• The Embedded f(x) Function is Single-bit Since it Indicates "yes" or
"no" and it Must be Created when Implementing Grover's Search

• We Synthesized it in the Notes by Forming the Transfer Matrix as a
Sum of Projectors, but this is Not Always Easy to Convert into Gates
and it is exponentially complex

𝑛

1

𝑛

1

40

11/29/23

21

Simon's Periodicity Oracle

• f(x) is an Embedded Function for Which We Desire to Determine the
Periodicity

• We Completely Ignored the Problem of How to Embed the Function
Into the Oracle in the Class Notes for Simon's Periodicity Algorithm

n

n n

U f

n| x〉

| y〉

| x〉

| y⊕ f (x)〉

41

Quantum Fourier Transform Oracle

• QFT "oracle" is a Change of Basis of a Function 𝑓 to Express it as
𝐹, Where:

• We Showed that the Binary Decomposition of the DFT Transform
Matrix is Unitary and Mapped it Into Quantum Gates for the QFT

QFT
Transform

M=2n
⟩|𝑓

⟩|𝑓 = 2
&'(

)*+

𝑓& ⟩|𝑗 ⟩|𝐹 = 2
,'(

)*+

𝐹, ⟩|𝑘 𝐹, = 𝐃𝐅𝐓 𝑓& =
1
𝑀
2
&'(

)*+

𝑓&𝑒
!-.&,)

⟩|𝐹
M=2n

42

11/29/23

22

Shor's Factoring Oracle

• QFT "oracle" Previously Described
• Modular Powers Oracle Happened to be Decomposed as a

Cascade of Controlled Rotation Operators in a Radix-2 (bit-wise)
Decomposition (we got Lucky!)

QFT†
Transform

M=2n
⟩|𝑓 ⟩|𝐹

M=2n

43

Typical Oracle Structure
• For the Algorithms we have Studied (Deutsch, Grover, Simon, QFT, Shor),

there is an Embedded Function within an Oracle
• Most Oracles are of This Form:

• QFT is the Exception, but it is Known that DFT is an Orthogonal Transform,
so it is Really just a Projector that Changes the Basis of a Function

• The Question is: How do we, as QC Algorithm Designers, Embed Arbitrary
Functions into Oracles of this Form?

n

m m
U f

n| x〉

| y〉

| x〉

| y⊕ f (x)〉

44

11/29/23

23

Typical Oracle Structure (cont.)
• The Typical Structure is Useful Since the Ancilla Qubits, ⟩|𝒚 , can be Used

to Represent the Embedded Function (or its Inverse in Switching Function
Form) Allowing the Function Pre-image Values, ⟩|𝒙 , to be Entangled with
Each Image Value, ⟩|𝑓

- This Entanglement has Proved Useful for "Filtering" Out Function Values (Image
values) that we Wish to Discard

- Especially When we Place Hadamards on the ⟩|𝒙 Pre-image Values to Allow the
Embedded Function to be Evaluated at all Possible Domain Values Simultaneously

• We can Represent the Overall Transfer Matrix, 𝐓, as a Sum of Projectors:

• However, it is a Difficult Problem to Factor 𝐓 into a Set of Product
Matrices wherein the Product Matrices are Constrained to a Specific Set
of Quantum Gates!

𝐓 = | ⟩𝒙, 𝒚 ⊕ 𝑓 𝒙 ⟨𝒙, 𝒚| U f

n| x〉

| y〉

| x〉

| y⊕ f (x)〉m

n

m

45

How can we Implement Oracles as QC Programmers?
• If Desired Function is in Closed Form (not likely), we can TRY to

Manipulate it and Determine if we are Lucky Enough to Have a Unitary
Form

• But we Still Have to Implement it with Atomic Quantum Gate Operators

• In General, we will NOT have a Closed Form, we will have a Tabular
Specification (i.e. Grover's Database Search, we Have a List of Data with
Some Items to be Searched For Specified in a List)

• The Tabular Form is Likely to be an Irreversible Function
• We can Use RTT to Convert it to a Reversible Form by Adding Ancilla/Garbage, but

we still need to Synthesize it

• We can use MMD to Synthesize the Reversible Form (obtained from RTT),
but it is Exponentially Complex AND it is NOT in the Form of a Typical
Oracle

46

11/29/23

24

The ESOP Synthesis Method*
• This Technique was Invented in 2007 (here at SMU) and is the State-of-

the-Art in Synthesizing Irreversible Functions into Oracles
• Input can be in the Form of a Tabular Listing that is Irreversible

• Tabular Listings are Exponentially Complex (in space) Although Some Efficient
Methods for Reducing Average Spatial Complexity can be used such as .pla files,
PCN cube lists, and various Decision Diagrams

• ESOP Method Automatically Produces a Reversible Function without
Requiring RTT

• ESOP Method Automatically Results in a "Typical Oracle" Structure

U f

n| x〉

| y〉

| x〉

| y⊕ f (x)〉m

n

m

*K. Fazel, M.A. Thornton and J.E. Rice, "ESOP-based Toffoli Gate Cascade Generation," in proc. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp. 206-209, August 22-24, 2007.

47

Exclusive-OR Sum-of-Products
• The ESOP Form* is a Subject in Switching Theory (Classical Digital Logic)
• Basic Undergraduate Intro. to Digital Logic Classes Typically Discuss Two

Normal Forms of Switching Functions
- The SOP – "Sum-of-Products" Form (aka, Minimized Sum-of-Minterms)
- The POS – "Product-of-Sums" Form (aka, Minimized Product-of-Maxterms)

• We Briefly Review ESOP from the Point of View of Classical Switching
Theory (Digital Circuits or Boolean Algebra)

• This ESOP Review will Provide an Intuitive Understanding of the ESOP
Form

• We will then Show how the ESOP Form Relates to Reversible Logic

*In the Cryptography Community, ESOP Form is a Generalization of a Minimized Form known as the "Algebraic Normal Form" or ANF

48

11/29/23

25

Classical Sum-of-Minterms Form for Digital Logic
• Consider the Following Truth Table for a 3-Variable Single-output Function:

x2 x1 x0 f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

• The Switching Function can be written in symbolic form
directly from the truth table as a "Sum-of-Minterms"
(SOM):

• We can use Boolean Algebra Theorems/Postulates to
"Minimize" this into a "Sum-of-Products" (SOP):

• This is a "minimized" Sum-of-Products (SOP) form

𝑓 = �̅�-�̅�+𝑥(+ �̅�-𝑥+�̅�(+ 𝑥-𝑥+�̅�(

𝑓 = �̅�-�̅�+𝑥(+�̅�- 𝑥+�̅�(+ 𝑥- 𝑥+�̅�(
	 = �̅�-�̅�+𝑥(+ �̅�- + 𝑥- 𝑥+�̅�(
	 = �̅�-�̅�+𝑥(+𝑥+�̅�(

• "Minimized" in the sense that it has Fewer Product Terms and Literals

49

Minimizing SOP Forms
• You may have learned about "Karnaugh Maps" that are a way to Minimize

SOP Forms without Using Algebra
x2 x1 x0 f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

• A K-map is an Alternative Arrangement of a Truth Table:

• Circling Entries Allows for Directly Obtaining the
Minimal SOP Form:

x1x0
 x2 00 01 11 10

0 0 1 0 1
1 0 0 0 1

𝑓	 = �̅�-�̅�+𝑥(+𝑥+�̅�(

50

11/29/23

26

Minimizing Switching Function SOP Forms
• You may have learned about "Karnaugh Maps" that are a way to Minimize

SOP Forms without Using Algebra
• Minimizing SOPs is a Classic Problem in Complexity Theory, it is NP-Hard and

Reduces to the "Set Covering" Problem
• Determining if a Given Expression can be Further Minimized is NP-Complete

• In your Intro. to Digital Logic Class, you were asked to Minimize Functions,
but they were so Small, you could easily find (one of the) minimal solutions

• Using algebra OR using K-maps OR (perhaps) using other methods

• Modern Electronic Design (ICs) deal with Functions of 100's or even 1000's
of Variables, no Human could minimize these

• Minimizing is important because it means fewer transistors, faster circuits and less
power is required

• Therefore, a LOT of Research has gone into finding Heuristics to Minimize
Switching Functions

51

Minimizing Switching Function
• As Mentioned, there are Other Forms like POS (Product-of-Sums)
• Another Form that is Not Usually Taught in Intro. to Digital Logic is the

"Exclusive-OR Sum-of-Products" or ESOP Form
• You may Remember that there are Two Types of "OR" Gates:

• Inclusive-OR and Exclusive-OR
• The Inclusive-OR is often just called an "OR Gate"

• SOP Forms use the Inclusive-OR to combine Products
• In Logic Diagrams, {OR, AND, NOT} gates are all that are needed for SOP
• In Logic Diagrams, {XOR, AND} gates are all that are needed for ESOP

• ESOP Forms use the Exclusive-OR to Combine Products
• ESOP and SOP are Related by the Following Relationships:

�̅�! = 1⊕ 𝑥! 𝑥! + 𝑥& = 𝑥! ⊕ 𝑥& ⊕ 𝑥!𝑥&

52

11/29/23

27

Converting SOP to ESOP
• Using these Relationships, we can Algebraically Convert SOP to ESOP

• One form of ESOP is the "Reed-Muller" Form where all Literals have the
Same Polarity (so there are 2n Different RM forms)

• The "Polarity-zero" (PPRM) form requires that no Literals be Complemented
• Consider the Previous SOM Example:

• We can Algebraically Convert it to PPRM as:

• Note the third product in parentheses has the AND of two literals of
opposite polarity (twice in fact) so it goes to zero – "disjoint" minterms

�̅�! = 1⊕ 𝑥! 𝑥! + 𝑥& = 𝑥! ⊕ 𝑥& ⊕ 𝑥!𝑥&

𝑓 = �̅�-�̅�+𝑥(+ �̅�-𝑥+�̅�(+ 𝑥-𝑥+�̅�(

𝑓 = �̅�-�̅�+𝑥(⊕ �̅�-𝑥+�̅�(⊕ �̅�-�̅�+𝑥(�̅�-𝑥+�̅�(+ 𝑥-𝑥+�̅�(
	 = �̅�-�̅�+𝑥(⊕ �̅�-𝑥+�̅�(⊕ �̅�-�̅�+𝑥+𝑥(�̅�(+ 𝑥-𝑥+�̅�(

53

Converting SOP to ESOP (cont.)
• We can Algebraically Convert it to PPRM as:

• Note the third product in parentheses has the AND of two literals of
opposite polarity (twice in fact) so it goes to zero – "disjoint" minterms

• In fact, all minterms are disjoint from one another
• A minterm is a special case of a "product" term that contains all possible

literals
• In general, two product terms may NOT be disjoint, but minterms always are
• If two Product Terms ARE Disjoint, it means they each contain at least one

Literal of the same variable, but in opposite polarity
• If product Term pi and pj are Disjoint, then 𝑝! + 𝑝& = 𝑝! ⊕ 𝑝& , if the two

product terms are NOT disjoint, then 𝑝! + 𝑝& = 𝑝! ⊕ 𝑝& ⊕ 𝑝!𝑝&

𝑓 = �̅�-�̅�+𝑥(⊕ �̅�-𝑥+�̅�(⊕ �̅�-�̅�+𝑥(�̅�-𝑥+�̅�(+ 𝑥-𝑥+�̅�(
	 = �̅�-�̅�+𝑥(⊕ �̅�-𝑥+�̅�(⊕ �̅�-�̅�+𝑥+𝑥(�̅�(+ 𝑥-𝑥+�̅�(

54

11/29/23

28

Converting SOP to ESOP (cont.)
• Given the Disjointness Observation, let's Start over with our Example using

the following Identities to convert the example SOM into a PPRM form of
ESOP:

• This looks like a mess, but we can use two properties of the XOR to simplify,
these are 𝑝! ⊕ 𝑝! = 0 and	𝑝! ⊕ 𝑝! ⊕ 𝑝! = 𝑝!.

• In fact, an "even" number of XORed terms goes to zero and an "odd"
number of XORed terms reduces to a single instance of that term:

�̅�! = 1⊕ 𝑥! 𝑥! + 𝑥& = 𝑥! ⊕ 𝑥& ⊕ 𝑥!𝑥&
𝑓 = �̅�"�̅�!𝑥2 + �̅�"𝑥!�̅�2 +𝑥"𝑥!�̅�2
	 = �̅�"�̅�!𝑥2⊕�̅�"𝑥!�̅�2⊕𝑥"𝑥!�̅�2

	 = 1⊕𝑥" 1⊕𝑥! 𝑥2 ⊕ 1⊕𝑥" 𝑥! 1⊕𝑥2 ⊕𝑥"𝑥! 1⊕𝑥2
= 1⊕𝑥"⊕𝑥!⊕𝑥"𝑥! 𝑥2⊕𝑥! 1⊕𝑥"⊕𝑥2⊕𝑥"𝑥2 ⊕𝑥"𝑥!⊕𝑥"𝑥!𝑥2
= 𝑥"𝑥!𝑥2⊕𝑥"𝑥2⊕𝑥!𝑥2⊕𝑥2⊕𝑥"𝑥!𝑥2⊕𝑥"𝑥!⊕𝑥!𝑥2⊕𝑥!⊕𝑥"𝑥!⊕𝑥"𝑥!𝑥2

disjoint minterms

⊕JKL
MN 𝑝 = 0 ⊕JKL

MNOL 𝑝 = 𝑝
55

Converting SOP to ESOP (cont.)
• Continuing with our conversion of SOM to PPRM-form of ESOP, given the

XOR Relationships of "even" versus "odd" numbers of like terms:

• Thus, we have obtained the ESOP form known as PPRM
• The Reed-Muller forms allow any particular variable to be either

complemented, or not complemented, but not both. In Switching Theory
language, we say that all literals must be "unate."

• Other ESOP forms allow Literals to be present in both complemented and
uncomplemented form. In Switching Theory language, we would say these
variables are allowed to be present in a "binate" form.

𝑓 = �̅�"�̅�!𝑥2 + �̅�"𝑥!�̅�2 +𝑥"𝑥!�̅�2
	= 𝑥"𝑥!𝑥2⊕𝑥"𝑥2⊕𝑥!𝑥2⊕𝑥2⊕𝑥"𝑥!𝑥2⊕𝑥"𝑥!⊕𝑥!𝑥2⊕𝑥!⊕𝑥"𝑥!⊕𝑥"𝑥!𝑥2

= 𝑥"𝑥!𝑥2⊕𝑥"𝑥2⊕𝑥!⊕𝑥2

56

11/29/23

29

Different Classes of ESOP and other Theory
• Over the Years, many different subsets of ESOP forms have been defined

with various ways to automatically derive them.
• There is rich theory behind these classes, but we will not provide that here.
• The backup section contains a summary of the different forms.
• It is also the case that the 2n Reed-Muller Forms are in fact Discrete Fourier

Transforms over the SOM form with associated Orthogonal Transformation
Matrices. This is also detailed in the backup slides.

• Because the RM forms are Fourier Transforms of SOM, corresponding "fast" transform
algorithms are possible with butterfly diagrams – this is in the backup slides.

• Further, it is the Case that Many different forms of Decision Diagrams are
Simply Graphical versions of different Classes of ESOPs. Again, we will not go
into this theory.

57

Different Classes of ESOP

ESOP – Exclusive-OR Sum of Products PSDKRO – Psuedo-Kronecker

KRO – Kronecker Form GRM – Generalize Reed-Muller

Pseudo-Reed-Muller FPRM – Fixed Polarity Reed-Muller

PPRM – Positive Polarity Reed-Muller

ESOP
PSDKRO
KRO

GRM
PSDRMFPRM

PPRM

58

11/29/23

30

Examples of ESOP Forms
• PPRM (All Literals are Positive Polarity, or Polarity=0)

f xy yz zx= ⊕ ⊕
• FPRM (All Literals have Same Polarity, or Polarity=2)

f xy yz zx= ⊕ ⊕

• PSDRM (Some Literals have both Positive and Negative Polarity)
f xy yz zx= ⊕ ⊕

• PSDKRO (Some Literals have both Positive and Negative Polarity and
Cannot be Achieved Using KRO Type Expansions Only)

f x xy xy= ⊕ ⊕

59

Examples of ESOP Forms (CONT.)
• GRM (Some Literals have both Positive and Negative Polarity and
Cannot be Achieved Using PSDKRO Type Expansions Only)

f x y x y= ⊕ ⊕
• KRO (Not GRM since two Product Terms with Same Set of
Variables)

f x y z x y z= ⊕
• General ESOP (Not GRM or PSDKRO)

f x y x y x y= ⊕ ⊕ ⊕

60

11/29/23

31

How is ESOP Relevant to Quantum Oracle Synthesis?
• It Turns out that Reversible Logic Gates can be Considered in Terms of the

ESOP Switching Relationships as Shown:
- Note that this result Assumes Qubits are in Their Computational Basis States Only

(i.e., it is a "reversible logic" technique, not a general quantum method)

61

The ESOP Synthesis Method
• If an Irreversible Switching Function is Specified as a List of Pre-image and

Image Values, then the List can be Transformed into an ESOP Representation
• Transforming them into an ESOP List Causes Each Term to Either be Disjoint

in Relation to the Others, OR, it Causes Overlapping Bits to be Present an
ODD Number of Times

• This Means that Each Pre-image/Image Pair Can be Inserted into a Toffoli
Cascade (in any order), Thus Realizing the Irreversible Function as a Toffoli
Cascade

• There are Certain Structural Considerations as Explained in the Following
Slides

• Many Times, Switching Functions in this Form are Minimized in SOP Form, it
is Absolutely Essential that the Irreducible Function be Transformed into
ESOP Form BEFORE Mapping to a Circuit

62

11/29/23

32

Why ESOP Rather Than SOP Form is Required
• Clearly, we wish to Minimize the Function Listing BEFORE Mapping to

Reduce Quantum Cost; However, the Minimizer MUST Minimize to ESOP
Rather than SOP Form

• Consider the function f(x,y,w,z) = å(0,1,4,7,10,11,13,14)

SOP ESOP

In Digital Logic, the SOP form requires 6 AND gates
- Two 4-input and Four 3-input gates

yz

1100
1010

0101

0011
wx

00

01

11

10

00 01 11 10

1100
1010

0101

001100

01

11

10

00 01 11 10
wx

yz

In Digital Logic, the ESOP form only requires 3 AND gates
- Three 2-input gates

This Term is Covered
Twice, an EVEN Number

of Times!!!
Mapping to Reversible

Logic would cause it
to go to Zero!!!

Incorrect Circuit!!!!!

63

ESOP Mapping Algorithms
• As Mentioned, Converting from an SOP to a Minimized ESOP is an NP-hard

Problem!!
• Thus, we MUST Rely on Heuristic Methods to Perform this Mapping
• Fortunately, the Switching Theory Community has Worked on this Problem

since the 1980's
• Switching Theorists were Interested in ESOP Minimizers for Classical Logic

Because it is Postulated that (on average) ESOP Minimized Switching
Functions Require Fewer Literals than SOP Minimized Functions

• Thus, in Electronic Circuits, there will be fewer transistors, faster circuits (sometimes),
and less power dissipation

• One of the Best Heuristic Minimizers is EXORCISM4* by Alan Mishchenko
(primary author) and Bob Brayton (UC Berkeley), although Others Exist

*A. Mishchenko and M.A. Perkowski, "Fast Heuristic Minimization of Exclusive-Sums-of-Products," in proc. 5th International Reed-Muller
 Workshop (RMW), pp. 242-250, https://pdxscholar.library.pdx.edu/ece_fac/195/, (last accessed April 24, 2022), 2001.

64

https://pdxscholar.library.pdx.edu/ece_fac/195/

11/29/23

33

Switching Theory Interest in ESOP

• Hypothesis: On Average ESOP Requires Fewer Terms than SOP

• Exact Results for 5-Variable Functions (232 total):

• SOP – 7.46 Product Terms

• ESOP – 6.16 Product Terms

EXAMPLE

1 2 3 4 5f x x x x x= ⊕ ⊕ ⊕ ⊕

1 2 3 4 2 1 2... n nf x x x x x x−= + + +
SOP:16 Products, ESOP: 5 Products

SOP:n Products, ESOP: 2n-1 Products

65

ESOP Minimizers
• Prior to the 2007 Publication of the ESOP Reversible Logic Mapping

Method*, ESOP Minimization was a Relatively Obscure Topic of Interest
Only to a few Members in the Switching Theory Community

• Since then, Widespread Interest in ESOP Minimizers, and Many New
Results have been Published

• Some Improvements in the 2007 Method, but they are Typically Minor and
Special-case; the 2007 Method Remains State-of-the-Art in 2022

• Some New Approaches to ESOP Minimization have Occurred, but
EXORCISM4 Remains one of the Best Approaches

• Following Slide Contains some Earlier ESOP Minimizers

*K. Fazel, M.A. Thornton and J.E. Rice, "ESOP-based Toffoli Gate Cascade Generation," in proc. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp. 206-209, August 22-24, 2007.

66

11/29/23

34

Other ESOP Minimizers

*K. Fazel, M.A. Thornton and J.E. Rice, "ESOP-based Toffoli Gate Cascade Generation," in proc. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp. 206-209, August 22-24, 2007.

• Extensions to QM Tabulation Method
- Odd/Even Cube Covering [Thornton, et. al, ʻ01]

• Rule Based Approaches
- EXMIN2 [Sasaoʼ93]
- MINT [Kozlowski, et al. ʼ95]
- CANNES/EXORCISM [Perkowski, et al. ʼ92]
- EXORCISM4 [Mishchenko/Perkowski, et al. ʻ01]

• Graph Based Approaches
- XORDDs [Roy, et alʼ97]
- Parity-BDDs [Meinel, et. al ʼ98]
- PSDKRO [Drechsler, et. al ʼ98]

67

ESOP-based Toffoli Gate Cascade Generation*

• Based on EXORCISM4
• Very Large Circuits Generated
• Very Fast Synthesis Computer Runtime
• Based on:

- Recursive Divide and Conquer Algorithm
- Heuristic Cost Function

• n+m Qubits Required for n-input and m-output
function

*K. Fazel, M.A. Thornton and J.E. Rice, "ESOP-based Toffoli Gate Cascade Generation," in proc. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp. 206-209, August 22-24, 2007.

68

11/29/23

35

Approach*
• Utilize Toffoli Gate Analogy to AND/XOR
• Take Advantage of Classical ESOP Minimizers
• Generate a Cascade of 1 Gate per Resultant

Cube
• Order of Quantum Gates DOES NOT Matter

- Can Rearrange Order and Use Quantum NOT to
Generate Inverse Control Qubit Polarity

- Can Use Heuristic Cost Function to Determine Gate
Order

*K. Fazel, M.A. Thornton and J.E. Rice, "ESOP-based Toffoli Gate Cascade Generation," in proc. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp. 206-209, August 22-24, 2007.

69

Full Adder Mapping with 2n+m*

*K. Fazel, M.A. Thornton and J.E. Rice, "ESOP-based Toffoli Gate Cascade Generation," in proc. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp. 206-209, August 22-24, 2007.

.pla File Format after ESOP Minimized

70

11/29/23

36

Optimizations*
• Variables that Appear in Single Polarity Allow Alternate

Qubit to be Removed
• Variables Appearing in Both Polarities:

- Realize all Gates in One Polarity First and Second Polarity after
Insertion of Quantum Not Gate

- Reduces from 2 Qubits to 1 Qubit

• Must Determine Order of Variables in Which to Insert
Quantum NOT Gates to Minimize Number:

- Use Heuristic Based on Merit/Cost Metric

*K. Fazel, M.A. Thornton and J.E. Rice, "ESOP-based Toffoli Gate Cascade Generation," in proc. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp. 206-209, August 22-24, 2007.

71

QC NOT Insertion*
• Criteria for NOT Gate Insertion
• Insert NOT First For Qubits that:

1. Are Balanced in Polarity (occur in approximately Equal
Numbers of Polarity in a Group of Cubes)

2. Occur Most Frequently in a Group of Cubes
• Qubit First in Order has 1 QC NOT Gate, 2nd in Order 2

QC NOT Gates, nth in Order 2n NOT Gates
• Try to Do Polarity Splitting Such that Remaining Sublists

do not Contain Both Polarities
*to appear, Fazel, Thornton, Rice PACRIM’07

72

11/29/23

37

Merit/Cost Function*
• Definitions:

• Scaling Constants α,β∈[0,1], β=1-α
• Merit/Cost Function:

vi =
+1, variable in cube i is positive
0,variable in cube i is don't care
−1, variable in cube i is negative

⎧
⎨
⎪

⎩⎪

costv = α 1

| vi |∑
⎛

⎝
⎜

⎞

⎠
⎟ + β vi∑()

*K. Fazel, M.A. Thornton and J.E. Rice, "ESOP-based Toffoli Gate Cascade Generation," in proc. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp. 206-209, August 22-24, 2007.

73

Algorithm*

*K. Fazel, M.A. Thornton and J.E. Rice, "ESOP-based Toffoli Gate Cascade Generation," in proc. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp. 206-209, August 22-24, 2007.

74

11/29/23

38

Full Adder after Algorithm*

*K. Fazel, M.A. Thornton and J.E. Rice, "ESOP-based Toffoli Gate Cascade Generation," in proc. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp. 206-209, August 22-24, 2007.

75

(2007-era) Experimental Results*

*K. Fazel, M.A. Thornton and J.E. Rice, "ESOP-based Toffoli Gate Cascade Generation," in proc. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp. 206-209, August 22-24, 2007.

76

11/29/23

39

Toffoli Mapping Conclusions*
• Technique is Very Fast and Can Handle Relatively

Large Circuits
• Does Not Require Exponentially Sized Truth Table

as Initial Input
• Viable Initial Mapping Procedure for Further

Synthesis Optimization Methods

*K. Fazel, M.A. Thornton and J.E. Rice, "ESOP-based Toffoli Gate Cascade Generation," in proc. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp. 206-209, August 22-24, 2007.

77

ESOP Method Produces Oracle Structure
• Method Natively Produces Oracle Structure & Inherently Converts from

Irreversible to Reversible Form

n

m m
U f

n| x〉

| y〉

| x〉

| y⊕ f (x)〉

⟩|𝐲

⟩|𝐱 ⟩|𝐱

⟩|𝐲 ⊕ 𝑓 𝐱

Single-bit Full-adder
Embedded in a Quantum Oracle

Produced by ESOP Method*

*K. Fazel, M.A. Thornton and J.E. Rice, "ESOP-based Toffoli Gate Cascade Generation," in proc. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp. 206-209, August 22-24, 2007.

78

11/29/23

40

Recent Research Results
• J.M. Henderson, E.R. Henderson, A. Sinha, M.A. Thornton and D.M. Miller, Automated

Quantum Oracle Synthesis with a Minimal Number of Qubits, SPIE 12517, Quantum
Information Science, Sensing, and Computation XV, April 30-May 4, 2023, 1251706 (18
pp.), June 13, 2023.

• A. Sinha, E.R. Henderson, J.M. Henderson, E.C. Larson and M.A. Thornton, A
Programmable True Random Number Generator using Commercial Quantum Computers,
SPIE 12517, Quantum Information Science, Sensing, and Computation XV, April 30-May
4, 2023, 1251705 (15 pp.), June 13, 2023.

• A. Sinha, E.R. Henderson, J.M. Henderson and M.A. Thornton, Automated Quantum
Memory Compilation with Improved Dynamic Range, International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC22), International
Workshop on Quantum Computing software (QSC22), November 13, 2022, 14 pp., arXiv
version.

79

BACKUP SLIDES

80

https://s2.smu.edu/~mitch/ftp_dir/pubs/spie23b.pdf
https://s2.smu.edu/~mitch/ftp_dir/pubs/spie23b.pdf
https://s2.smu.edu/~mitch/ftp_dir/pubs/spie23a.pdf
https://s2.smu.edu/~mitch/ftp_dir/pubs/spie23a.pdf
https://s2.smu.edu/~mitch/ftp_dir/pubs/qcs22.pdf
https://s2.smu.edu/~mitch/ftp_dir/pubs/qcs22.pdf
http://arxiv.org/abs/2211.09860
http://arxiv.org/abs/2211.09860

11/29/23

41

Expansion Types
Shannon Expansion:

1 1 0 0(, ,.., ,.,)n n i i if x x x x x f x f− = ⊕

Positive Davio Expansion:

1 1 0 2(, ,.., ,.,)n n i if x x x x f x f− = ⊕

Negative Davio Expansion:
1 1 1 2(, ,.., ,.,)n n i if x x x x f x f− = ⊕

Function Co-factors:
0 1 1(, ,.., 0,.,)n n if f x x x x−= =
1 1 1(, ,.., 1,.,)n n if f x x x x−= =

2 0 1f f f= ⊕

81

Classes of ESOP Forms
• Forms are Classified by their EXPANSION TYPE (Shannon,
positive-Davio, negative Davio and the POLARITY of the
Literals

• PPRM – Two-Level form with all Literals Uncomplemented
and Uses the Logical AND and XOR Operators. 1 FPRM for
Every Function – Canonical RM Form.

• FPRM – Two-Level Form that has Each Literal (for a given
variable) Either Complemented or Uncomplemented, but not
Both. Uses the Logical AND and XOR Operations. Binary
Number Formed by Assigning a “1” to xi if it is Complemented
and a “0” to xj if it is Uncomplemented Gives the Polarity
Number. 2n FPRMs for Each Function.

82

11/29/23

42

Classes of ESOP Forms (CONT.)
• KRO – Two-Level Form Where the Function is Expanded by
Either the Positive Davio OR the Negative Davio OR the
Shannon Expansion Everywhere. This is a Generalization of
FPRM. 3n KRO Forms for Each Function.

• PSDRM – Two-Level Form Where the Function is Expanded
by Either Positive Davio OR Negative Davio only.
Different PSDRM Forms for Each Function.
• PSDKRO – Two-Level Form Where Each Expansion may be
One of Positive Davio , Negative Davio or Shannon. Various
Co-factors are Expanded in Any one of these Three ways.
Different Functions Possible.

2 12
n −

2 13
n −

83

Examples of ESOP Forms
• PPRM (All Literals are Positive Polarity)

f xy yz zx= ⊕ ⊕
• FPRM (All Literals have Same Polarity –
Polarity=2) f xy yz zx= ⊕ ⊕
• PSDRM (Some Literals have both Positive and Negative Polarity)

f xy yz zx= ⊕ ⊕
• PSDKRO (Some Literals have both Positive and Negative Polarity and Cannot be
Achieved Using KRO Type Expansions Only)

f x xy xy= ⊕ ⊕

84

11/29/23

43

Examples of ESOP Forms (CONT.)
• GRM (Some Literals have both Positive and Negative Polarity and Cannot be
Achieved Using PSDKRO Type Expansions Only)

f x y x y= ⊕ ⊕
• KRO (Not GRM since two Product Terms with Same Set of Variables)

f x y z x y z= ⊕
• ESOP (Not GRM or PSDKRO)

f x y x y x y= ⊕ ⊕ ⊕

85

Positive Polarity Reed-Muller (PPRM)

EXAMPLE

0 1 1 12 1 2 13 1 3

1 1 12... 1 2

...
... ...
n n

nn n n n n

f a a x a x a x x a x x
a x x a x x x− −

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕

{0,1}
()

i

i

a
x are all positve polarity uncomplemented literals
∈

x3 x2 x1 f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

1 2 6 3 2 1 3 2 1 3 2 1(, ,)f m m m x x x x x x x x x= = + +∑
• Sum of Minterms is Disjoint:

3 2 1 3 2 1 3 2 1f x x x x x x x x x= ⊕ ⊕
• Can Use the Following Identities:

1
0

x x
x x
x x x x

⊕ =
⊕ =
⊕ ⊕ =

86

11/29/23

44

PPRM Example (cont)

0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3 123 1 2 3f a a x a x a x a x x a x x a x x a x x x= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x3 x2 x1 f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

3 2 1 3 2 1 2 3 1(1)(1) (1) (1) (1)f x x x x x x x x x= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
3 2 1 3 2 1 3 2 1f x x x x x x x x x= ⊕ ⊕

2 3 2 3 1 1 3 1 3 2 2 3 1 2 3(1) (1)f x x x x x x x x x x x x x x x= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

1 1 3 1 2 1 2 3 2 2 3 1 2 1 2 3 2 3 1 2 3f x= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

1 2 1 3 1 2 3f x x x x x x x= ⊕ ⊕ ⊕

0 1 2 12 3 13 23 123(, , , , , , ,) (0,1,1,0,0,1,0,1)a a a a a a a a =

General Form:

87

Fixed Polarity Reed-Muller (PPRM)

EXAMPLE

{0,1}i

i

a
x are all eitherComplemented orUncomplemented
∈
!

0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3 123 1 2 3f a a x a x a x a x x a x x a x x a x x x= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕! ! ! ! ! ! ! ! ! ! ! !

1 2 3 1 2 3(, ,) (, ,) 5x x x x x x Polarity= → −! ! !

3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1f x x x x x x x x x x x x x x x x x x= + + = ⊕ ⊕

3 2 1 3 2 1 3 2 1(1)(1) (1)f x x x x x x x x x= ⊕ ⊕ ⊕ ⊕ ⊕

3 2 1 2 1 3 2 1 2 1 3 2 1(1)f x x x x x x x x x x x x x= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

3 3 2 1 3 2 1 3 2 1f x x x x x x x x x x= ⊕ ⊕ ⊕ ⊕

0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3 123 1 2 3f a a x a x a x a x x a x x a x x a x x x= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
0 1 2 12 3 13 23 123(, , , , , , ,) (0,0,0,1,1,1,1,1)a a a a a a a a =

88

11/29/23

45

Canonical Forms (PPRM)

0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3 123 1 2 3f a a x a x a x a x x a x x a x x a x x x= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕! ! ! ! ! ! ! ! ! ! ! !

0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3 123 1 2 3f a a x a x a x a x x a x x a x x a x x x= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

0 1 2 3 1 1 2 3 2 1 2 3 3 1 2 3

4 1 2 3 5 1 2 3 6 1 2 3 7 1 2 3

f m x x x m x x x m x x x m x x x
m x x x m x x x m x x x m x x x

= ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕

0 1 2 3 1 1 2 3 2 1 2 3 3 1 2 3

4 1 2 3 5 1 2 3 6 1 2 3 7 1 2 3

f m x x x m x x x m x x x m x x x
m x x x m x x x m x x x m x x x

= + + +
+ + + +

Disjunctive Sum of Minterms

Exclusively Disjunctive Sum of Minterms

Positive Polarity Reed-Muller Form

Fixed Polarity Reed-Muller Form

{0,1} {0,1}i im a∈ ∈
m or a vectors Uniquely Specify a Function

89

Relationship Between Canonical
Forms

Operation SOP ESOP
Multiplicative AND AND

Additive OR XOR

• Relationships Between the Two:

a b a b• = •
a b a b ab+ = ⊕ ⊕

1a a= ⊕
• Consider All Binary Functions of n=1 Variable

12

0 1

2 3

2 4 :
0

1

Functions
f f x
f x f

=
= =
= =

0 1() {0,1}f x d x d x where di= + ∈

90

11/29/23

46

Relationship Between Canonical Forms (cont)

Operation SOP ESOP
Multiplicative AND AND

Additive OR XOR

a b a b• = •
a b a b ab+ = ⊕ ⊕

1a a= ⊕

0 1() {0,1}if x d x d x where d= + ∈

0 1() (1)f x d x d x= ⊕ ⊕

0 0 1() ()f x d x d d= ⊕ ⊕

Let:
0 0

1 0 1

c d
c d d

≡
≡ ⊕

Then:
0 1()f x c c x= ⊕

91

The Reed-Muller Transform
0 1() {0,1}if x d x d x where d= + ∈

• Relationship Between the di and ci constants

0 1()f x c c x= ⊕

0 0

1 1

1 0
1 1

c d
c d
⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

• This is the Polarity-0 Reed-Muller Transform for n=1 Variable

• For More than 1 Variable, the Kronecker Product Can Be Used:

1

1 1

0n
n

n n

G
G

G G
−

− −

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

• Recursive Definition Allows for Usage of “fast”-transform techniques
– “Butterfly” Diagrams like FFT

• Must Use the Multiplication and Addition Operations as
 Defined when Deriving the Transform (• and ⊕)

92

11/29/23

47

PPRM Transform
1 2 6 3 2 1 3 2 1 3 2 1(, ,)f m m m x x x x x x x x x= = + +∑

x3 x2 x1 f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

• First Compute the Transformation Matrix
 for n=3 Variables Using Kronecker
 Expansion

1

1 0
1 1

G ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

3

1 0 1 0 1 0
1 1 1 1 1 1

G ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⊗ ⊗⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

3

1 0 0 0
1 1 0 0 1 0
1 0 1 0 1 1
1 1 1 1

G

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= ⊗⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

3

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

93

Calculating the PPRM Spectrum

1 2 6 3 2 1 3 2 1 3 2 1(, ,)f m m m x x x x x x x x x= = + +∑x3 x2 x1 f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

0

1

2

12

3

13

23

123

1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 1 1
1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 1 0 0 1 1 0 0 0 1
1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 0 1

a
a
a
a
a
a
a
a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢

⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 2 1 3 1 2 3f x x x x x x x= ⊕ ⊕ ⊕

• Same as Algebraic Result!

94

11/29/23

48

Polarity-5 FPRM Transform
1 2 6 3 2 1 3 2 1 3 2 1(, ,)f m m m x x x x x x x x x= = + +∑

x3 x2 x1 f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

• First Compute the Transformation Matrix
 for n=3 Variables Using Kronecker
 Expansion

1

1 0
1 1

G ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

3

1 1 1 0 1 1
0 1 1 1 0 1

G ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⊗ ⊗⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

3

1 1 0 0
0 1 0 0 1 1
1 1 1 1 0 1
0 1 0 1

G

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= ⊗⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

3

1 1 0 0 1 1 0 0
0 1 0 0 0 1 0 0
1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1

G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

3x 2x 1x

95

Calculating the Polarity-5 FPRM Spectrum

1 2 6 3 2 1 3 2 1 3 2 1(, ,)f m m m x x x x x x x x x= = + +∑x3 x2 x1 f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

13

3

123

23

1

0

12

2

1 1 0 0 1 1 0 0 0 1
0 1 0 0 0 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 0 1 0 0

a
a
a
a
a
a
a
a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢

⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 2 3 1 2 1 3 1 2 3f x x x x x x x x x x= ⊕ ⊕ ⊕ ⊕

• Same as Algebraic Result!

96

11/29/23

49

RM Transform Butterfly Diagrams

97

Quantum Circuit for RM Transform

98

11/29/23

50

Generalized QC for RM Transform

99

Classical Sum-of-Minterms Form for Digital Logic
• Consider the Following Truth Table for a 3-Variable Single-output Function:

x2 x1 x0 f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

• The Switching Function can be written in symbolic form
directly from the truth table as a "Sum-of-Minterms"
(SOM):

• We can use Boolean Algebra Theorems/Postulates to
"Minimize" this into a "Sum-of-Products" (SOP):

• sd

𝑓 = 𝑚(�̅�-�̅�+�̅�(+ 𝑚+�̅�-�̅�+𝑥(+ 𝑚-�̅�-𝑥+�̅�(+ 𝑚0�̅�-𝑥+𝑥(
 + 𝑚1𝑥-�̅�+�̅�(+ 𝑚2𝑥-�̅�+𝑥(+ 𝑚3𝑥-𝑥+�̅�(+ 𝑚3𝑥-𝑥+𝑥(

𝑓 = �̅�-�̅�+𝑥(+ �̅�-𝑥+�̅�(+ 𝑥-𝑥+�̅�(

100

