Shor's Factoring Algorithm

Shor's Factoring Algorithm

- Factoring Composite Numbers Very Important and Used for Security (Encryption)
- Method Reduces Factoring Problem to Finding Period of Function
- Deterministic Polynomial Algorithm Exists for Determining if a Value is Prime
- Agrawal, Kayal, and Saxena, 2004
- Assumed Number is Already Checked for Primality

Modular Operation

- Modular Arithmetic
- Notation Where k, j, and r are Integers

$$
|k|_{j}=r
$$

- Denotes the Congruence:
$k \equiv r(\bmod j) \Rightarrow k(\bmod j)=r(\bmod j)$
- Such that:

$$
j>0 \quad 0 \leq r \leq j-1
$$

- Examples:

$\|7\|_{15}=7$	$\|199\|_{15}=4$	$\|23374\|_{371}=1$
$\|99\|_{15}=9$	$\|5317\|_{371}=123$	$\|1446\|_{371}=333$

Euclid's Algorithm

- Method for Computing the Greatest Common Divisor (GCD)
- GCD of Two Numbers is the Largest Number that Divides Both WITH a ZeroValued Remainder
- Principle is GCD of Two Numbers Does Not Change if Smaller Number is Subtracted from Larger Number:

$$
G C D(252,105)=21
$$

$G C D(252,105)=G C D(252-105,105)=G C D(147,105)=21$
$=G C D(147,105)=G C D(147-105,105)=G C D(42,105)$
$G C D(42,105)=G C D(63,42)=G C D(42,21)=G C D(21,0)=21$

CoPrimes

- Coprime Definition:
- Two Numbers a and b are Coprime if:

$$
G C D(a, b)=1
$$

- When Searching for Factor of Number N :
- Randomly Choose some value a Where $a<N$
- Invoke Euclid's Algorithm for $\operatorname{GCD}(a, N)$
- If $\operatorname{GCD}(a, N) \neq 1$, Then Factor of N is Found
- If $\operatorname{GCD}(a, N)=1$, Then a is Coprime to N and can be Used
- Next, we Find Powers of a Modulo N :

$$
\left|a^{0}\right|_{N},\left|a^{1}\right|_{N},\left|a^{2}\right|_{N},\left|a^{3}\right|_{N}, \ldots
$$

Modular Powers Function

- Finding Powers of a Modulo N Equivalent to Finding Values of Function:

$$
f_{a, N}(x)=a^{x}(\bmod N)=\left|a^{x}\right|_{N}
$$

- EXAMPLE: $N=15$ and $a=2$:

x	0	1	2	3	4	5	6	7	8	9	10	11	12	\ldots
$f_{2,15}(x)$	1	2	4	8	1	2	4	8	1	2	4	8	1	\ldots

- EXAMPLE: $N=15$ and $a=4$:

x	0	1	2	3	4	5	6	7	8	9	10	11	12	\ldots
$f_{4.15}(x)$	1	4	1	4	1	4	1	4	1	4	1	4	1	\ldots

Modular Powers Function

- Finding Powers of a Modulo N Equivalent to Finding Values of Function:

$$
f_{a, N}(x)=a^{x}(\bmod N)=\left|a^{x}\right|_{N}
$$

- EXAMPLE: $N=15$ and $a=13$:

x	0	1	2	3	4	5	6	7	8	9	10	11	12	\ldots
$f_{13,15}(x)$	1	13	4	7	1	13	4	7	1	13	4	7	1	\ldots

Modular Powers Function

- Useful Identities:
if $a \equiv a^{\prime}(\bmod N)$ and $b \equiv b^{\prime}(\bmod N)$
then $a \times b \equiv a^{\prime} \times b^{\prime}(\bmod N)$

$$
\begin{gathered}
|a \times b|_{N}=\left||a|_{N} \times|b|_{N}\right|_{N} \\
\left|a^{x}\right|_{N}=\left|a^{x-1} \times a\right|_{N}=\left|\left|a^{x-1}\right|_{N} \times|a|_{N}\right|_{N}
\end{gathered}
$$

- Since $a<N$ and $|a|_{N}=a$, Above Reduces to:

$$
\left|a^{x}\right|_{N}=\left|\left|a^{x-1}\right|_{N} \times a\right|_{N}
$$

- This Identity Allows Larger Values to be Used

Modular Powers Function $f_{a, N}(x)=a^{x}(\bmod N)=\left|a^{x}\right|_{N}$

- EXAMPLE: $N=371$ and $a=2$:

x	0	1	2	3	4	5	6	7	\ldots	78	\ldots	155	156	157	158	\ldots
$f_{2.371}(x)$	1	2	4	8	16	32	64	128	\ldots	211	\ldots	186	1	2	4	\ldots

- EXAMPLE: $N=371$ and $a=6$:

x	0	1	2	3	4	5	6	7	\ldots	13	\ldots	25	26	27	28	\ldots
$f_{6,371}(x)$	1	6	36	216	183	356	281	202	\ldots	370	\ldots	62	1	6	36	\ldots

- EXAMPLE: $N=371$ and $a=24$:

x	0	1	2	3	4	5	6	7	\ldots	39	\ldots	77	78	79	80	\ldots
$f_{24371}(x)$	1	24	205	97	102	222	134	248	\ldots	160	\ldots	201	1	24	205	\ldots

Modular Powers Function

- These Functions are Periodic
- We Only Need Period of Function
- Period: Find Smallest $x>0$ Such That:

$$
f_{a, N}(x)=a^{x}(\bmod N)=\left|a^{x}\right|_{N}=1
$$

- Number Theory Theorem: For any coprime $a \leq N$, the function $f_{a, N}$ will evaluate to 1 for some $x<N$. After, $f_{a, N}$ evaluates to 1 , the sequence of function values repeats.
- If $f_{a, N}(x)=1$, then

$$
f_{a, N}(x+1)=f_{a, N}(1) \quad f_{a, N}(x+s)=f_{a, N}(s)
$$

Finding the Period

- For Small Numbers $(15,371,247)$ Easy to Compute the Period
- Large Numbers with Hundreds of Digits are Beyond Capability of Classical Computers
- Use Quantum Computer with Qubit Superposition to Calculate $f_{a, N}(x)$ for all Needed x
- Must First Synthesize $f_{a, N}(x)$ into a Quantum Cascade

Period Finding Quantum Circuit

- Number of Qubits Required
- $f_{a, N}$ Always Evaluates to to Value Less Than N
- Need $n=\log _{2}(N)$ Qubits to Represent Function Value
- Need to Evaluate $f_{a, N}$ for at Least First N^{2}

Values of x, Thus Need $m=\log _{2}\left(N^{2}\right)=2 \log _{2}(N)=2 n$ Qubits for x Values

- Quantum Circuit Represented by Operator:
$\mathbf{U}_{f_{a, N}}$

Period Finding Quantum Circuit

- Discussion of Circuit Structure Postponed for Now

- Evaluate All Input Simultaneously Through Superposition
- Quantum Circuit Transfer Matrix:
$\left(\right.$ Measure $\left._{m} \otimes \mathbf{I}_{n}\right)\left(\mathbf{Q F T}_{m}^{\dagger} \otimes \mathbf{I}_{n}\right)\left(\mathbf{I}_{m} \otimes\right.$ Measure $\left._{n}\right) \mathbf{U}_{f_{a, N}}\left(\mathbf{H}^{\otimes m} \otimes \mathbf{I}_{n}\right)\left|\mathbf{0}_{m}, \mathbf{0}_{n}\right\rangle$

Example Calculation 1
$\left|\varphi_{2}\right\rangle=\left(\mathbf{H}^{\otimes m} \otimes \mathbf{I}_{n}\right) \mathbf{U}_{f_{a, N}}\left|\mathbf{0}_{m}, \mathbf{0}_{n}\right\rangle=\frac{\sum_{\mathbf{x} \in\{0,1\}^{m}}\left|\mathbf{x}, f_{a, N}(\mathbf{x})\right\rangle}{\sqrt{2^{m}}}=\frac{\sum_{\mathbf{x} \in\{0,1\}^{m}}\left|\mathbf{x},\left|a^{x}\right|_{N}\right\rangle}{\sqrt{2^{m}}}$

- Assume $N=15$ and $a=13$:

$$
\begin{gathered}
n=\left\lceil\log _{2}(N)\right\rceil=\left\lceil\log _{2}(15)\right\rceil=4 \\
m=\left\lceil\log _{2}\left(15^{2}\right)\right\rceil=2\left\lceil\log _{2}(15)\right\rceil=2 \times 4=8
\end{gathered}
$$

$$
\left|\varphi_{2}\right\rangle=\frac{|0,1\rangle+|1,13\rangle+|2,4\rangle+|3,7\rangle+|4,1\rangle+\ldots+|254,4\rangle+|255,7\rangle}{\sqrt{256}}
$$

x	0	1	2	3	4	5	6	7	8	9	10	11	12	\ldots
$f_{13,15}(x)$	1	13	4	7	1	13	4	7	1	13	4	7	1	\ldots

Example Calculation 2

$\left|\varphi_{2}\right\rangle=\left(\mathbf{H}^{\otimes m} \otimes \mathbf{I}_{n}\right) \mathbf{U}_{f_{a, N}}\left|\mathbf{0}_{m}, \mathbf{0}_{n}\right\rangle=\frac{\sum_{\mathbf{x} \in\{0,1\}^{m}}\left|\mathbf{x}, f_{a, N}(\mathbf{x})\right\rangle}{\sqrt{2^{m}}}=\frac{\sum_{\mathbf{x} \in\{0,1\}^{m}}\left|\mathbf{x},\left|a^{x}\right|_{N}\right\rangle}{\sqrt{2^{m}}}$

- Assume $N=371$ and $a=24$:

$$
\begin{gathered}
n=\left\lceil\log _{2}(N)\right\rceil=\left\lceil\log _{2}(371)\right\rceil=9 \\
m=\left\lceil\log _{2}\left(371^{2}\right)\right\rceil=2\left\lceil\log _{2}(371)\right\rceil=2 \times 9=18
\end{gathered}
$$

$$
\left|\varphi_{2}\right\rangle=\frac{|0,1\rangle+|1,24\rangle+|2,205\rangle+|3,97\rangle+|4,102\rangle+\ldots+\left|2^{18}-1,\left|22^{2^{18-1}}\right|_{371}\right\rangle}{\sqrt{2^{18}}}
$$

x	0	1	2	3	4	5	6	7	\ldots	39	\ldots	77	78	79	80	\ldots
$f_{2331}(x)$	1	24	205	97	102	222	134	248	\ldots	160	\ldots	201	1	24	205	\ldots

- Measure Bottom n Qubits of
- Bottom n Qubits are in State of Superposition Before Measurement
- Assume We Measure: $\left|a^{\bar{x}}\right|_{N}$
- For Some Particular Bitstring: $\overline{\mathbf{x}}$

- Assume We Measure: $\left|a^{\bar{x}}\right|_{N}$
- For Some Particular Bitstring: $\overline{\mathbf{x}}$
- Since $f_{a, N}$ is Periodic: $a^{\bar{x}} \equiv\left|a^{\bar{x}+r}\right|_{N}$ And $a^{\bar{x}} \equiv\left|a^{\bar{x}+2 r}\right|_{N}$
- For any $s \in \mathbb{Z}$

$$
a^{\overline{\mathrm{x}}} \equiv\left|a^{\overline{\mathrm{x}}+s r}\right|_{N}
$$

- There are 2^{m} Superpositions in $\left|\varphi_{2}\right\rangle$
- The Number of Superpositions that have $\left|a^{\bar{x}}\right|_{N}$ as the Result are

$$
\left\lfloor\frac{2^{m}}{r}\right\rfloor
$$

- This Result is used in the Expression for $\left|\varphi_{3}\right\rangle$

- t_{0} is Called the Offset
- $\left|\varphi_{3}\right\rangle$ Stage Employs Entanglement
- Top m and Bottom n Qubits are Entangled Such That When Bottom n are Measured, the Top m Retain Their State

Example Calculation 1

- Recall Earlier Result:

$$
\left|\varphi_{2}\right\rangle=\frac{|0,1\rangle+|1,13\rangle+|2,4\rangle+|3,7\rangle+|4,1\rangle+\ldots+|254,4\rangle+|255,7\rangle}{\sqrt{256}}
$$

- Assume that After Measurement of Bottom $n=4$ Qubits, the Value 7 is Obtained:

$$
\overline{\mathbf{x}}=0111=7
$$

- The Quantum State Becomes:

$$
\left|\varphi_{3}\right\rangle=\frac{|3,7\rangle+|7,7\rangle+|11,7\rangle+|15,7\rangle+\ldots+|251,7\rangle+|255,7\rangle}{\left[\frac{256}{4}\right]}
$$

Example Calculation 2

- Recall Earlier Result:
$\left|\varphi_{2}\right\rangle=\frac{|0,1\rangle+|1,24\rangle+|2,205\rangle+|3,97\rangle+|4,102\rangle+\ldots+\left|2^{18}-1,\left|22^{2^{18-1}}\right|_{371}\right\rangle}{\sqrt{2^{18}}}$
- Assume that After Measurement of Bottom $n=9$ Qubits, the Value 222 is Obtained:

$$
\overline{\mathbf{x}}=011011110=222=\left|24^{5}\right|_{371}
$$

- The Quantum State Becomes:

$$
\left|\varphi_{3}\right\rangle=\frac{|5,222\rangle+|83,222\rangle+|161,222\rangle+|239,222\rangle+\ldots}{\left[\frac{2^{18}}{78}\right]}
$$

- $\left|\varphi_{4}\right\rangle$ Step of the Quantum Part of Algorithm is Application of the Inverse Quantum Fourier Transform
- Final Step of Algorithm Measures the Top m Qubits

- Make Simplifying Assumption that r Evenly Divides into 2^{m}
- Shor's Actual Algorithm Does Not Make this Assumption

- With Simplifying Assumption, We Measure:

$$
x=\frac{\lambda 2^{m}}{r}
$$

- Where λ is Some Whole Number

Quantum Circuit

- Known Values After Measurement are $2^{\text {m }}$ and x
- Dividing Whole Number x by 2^{m} Yields

$$
\frac{x}{2^{m}}=\frac{\lambda 2^{m}}{r 2^{m}}=\frac{\lambda}{r}
$$

- \bar{r} is Reduced to an Irreducible Fraction and Denominator Then Becomes the Sought After r Value (the period)
- Without Simplifying Assumption, Process is Repeated and Results are Analyzed to Obtain r

Using Period to Get Factors

- We now Know the Period of $f_{a, N}$ for Some Value of a
- Number Theory Theorem States that for the Majority of a Values, r is an Even Number
- If it Turns Out that r is Odd, We Throw the Result Out and Try Again by Choosing Another a Value
- Once Even r is Found, We Have:

$$
a^{r} \equiv|1|_{N}
$$

Using Period to Get Factors

- Subtracting 1 From Both Sides of the Congruence Yields:

$$
\begin{aligned}
& a^{r}-1 \equiv|0|_{N} \\
& N \mid\left(a^{r}-1\right)
\end{aligned}
$$

- Using the Facts:

$$
1=1^{2} \quad x^{2}-y^{2}=(x+y)(x-y)
$$

- Results in:

$$
N ।\left(a^{r}-1\right)=N ।\left(\sqrt{a^{r}}+1\right)\left(\sqrt{a^{r}}-1\right)=N \perp\left(a^{\frac{r}{2}}+1\right)\left(a^{\frac{r}{2}}-1\right)
$$

Using Period to Get Factors

- Since r is Even, Exponent Yields a Whole Number
$N \perp\left(a^{r}-1\right)=N \perp\left(\sqrt{a^{r}}+1\right)\left(\sqrt{a^{r}}-1\right)=N \perp\left(a^{\frac{r}{2}}+1\right)\left(a^{\frac{r}{2}}-1\right)$
- Any Factor of N is Also a Factor of $\left(a^{\frac{r}{2}}+1\right)$ or $\left(a^{\frac{r}{2}}-1\right)$
- Can Employ Classical Euclid's Algorithm to Search for Factor of N

$$
\operatorname{GCD}\left(\left(a^{\frac{1}{2}}+1\right), N\right) \text { or GCD }\left(\left(a^{\frac{1}{2}}-1\right), N\right)
$$

Using Period to Get Factors

- Problem Can Occur if: $a^{\frac{r}{2}} \equiv|-1|_{N}$
- When This Occurs Right Side of Following Equation Becomes Zero and no Information about N Results

$$
N \mathrm{I}\left(a^{\frac{r}{2}}+1\right)\left(a^{\frac{r}{2}}-1\right)
$$

- If This Occurs Must Try Again With Different Value of a

GCD and Factor Example

- Period of $f_{2,15}$ is 4 or: $2^{4} \equiv|1|_{15}$

x	0	1	2	3	4	5	6	7	8	9	10	11	12	\ldots
$f_{2,15}(x)$	1	2	4	8	1	2	4	8	1	2	4	8	1	\ldots

- Using Previous Result with GCD:

$$
\begin{gathered}
15 ।\left(2^{2}+1\right)\left(2^{2}-1\right) \\
\operatorname{GCD}(5,15)=5 \quad \operatorname{GCD}(3,15)=3
\end{gathered}
$$

GCD and Factor Example

- Period of $f_{6,371}$ is 26 or: $6^{26} \equiv|1|_{371}$

x	0	1	2	3	4	5	6	7	\ldots	13	\ldots	25	26	27	28	\ldots
$f_{6,371}(x)$	1	6	36	216	183	356	281	202	\ldots	370	\ldots	62	1	6	36	\ldots

- It Is Also True That:

$$
6^{\frac{26}{2}}=6^{13} \equiv|370|_{371} \equiv|-1|_{371}
$$

- This is the Problem Case
- Must Discard $a=6$ and Try Again With New a Value

GCD and Factor Example

- Period of $f_{24,371}$ is 78 or $24^{78} \equiv \mid 11_{371}$

x	0	1	2	3	4	5	6	7	\ldots	39	\ldots	77	78	79	80	\ldots
$f_{24.371}(x)$	1	24	205	97	102	222	134	248	\ldots	160	\ldots	201	1	24	205	\ldots

- Checking for Problem Case:

$$
24^{\frac{78}{2}}=24^{39} \equiv|160|_{371} \neq|-1|_{371}
$$

- Can Use This a Value

$$
\begin{gathered}
371 ।\left(24^{39}+1\right)\left(24^{39}-1\right) \\
\operatorname{GCD}(161,371)=7 \quad \operatorname{GCD}(159,371)=53
\end{gathered}
$$

$$
371=7 \times 53
$$

Shor's Factoring Algorithm

 Input: Positive Integer N with $n=\left\lceil\log _{2}(N)\right\rceil$ Output: Factor p of N if it Exists1) Use classical polynomial algorithm to determine of N is prime or a power of a prime. If N is prime or power of prime, declare that it is and halt.
2) Randomly choose an integer a such that $1<a<N$. Invoke Euclid's algorithm to determine $\operatorname{GCD}(a, N)$. If GCD is not 1 , Then Halt.

Shor's Factoring Algorithm

3) Use Quantum Circuit to find period r.
4) If r is odd or is the "problem case", return to step 2 and choose another a value.
5) Invoke Euclid's algorithm to calculate:

$$
\operatorname{GCD}\left(\left(a^{\frac{1}{2}}+1\right), N\right) \text { or GCD }\left(\left(a^{\frac{1}{2}}-1\right), N\right)
$$

Return at least one of the nontrivial solutions.

Implementing $\mathbf{U} f_{a, N}$

- Operation of $f_{a, N}(\mathbf{x})$ Considered on Bit-byBit Basis
- Radix Polynomial Representation of \mathbf{x} :
$\mathbf{x}=x_{n-1} 2^{n-1}+x_{n-2} 2^{n-2}+\ldots+x_{2} 2^{2}+x_{1} 2^{1}+x_{0} 2^{0}$
$f_{a, N}(\mathbf{x})=\left|a^{x}\right|_{N}=\left|a^{x_{n-1}-2^{n-1}+x_{n-2}} 2^{n-2}+\ldots+x_{2} 2^{2}+x_{1} 1^{1}+x_{0} 2^{0}\right|_{N}$
$f_{a, N}(\mathbf{x})=\left|a^{x_{n-1}} 2^{2 n-1}\right|_{N} \times\left|a^{x_{n-2}-2^{n-2}}\right|_{N} \times \ldots \times\left|a^{x_{1} 2^{2}}\right|_{N} \times\left. a^{x_{0} 2^{0}}\right|_{N}$

Implementing $\mathbf{U} f_{a, N}$

- Rewrite This as an Inductive Formula:
$f_{a, N}(\mathbf{x})=\left|a^{x_{n-1} 2^{n-1}}\right|_{N} \times\left|a^{x_{n-2} 2^{n-2}}\right|_{N} \times \ldots \times\left|a^{x_{1} 2^{1}}\right|_{N} \times\left|a^{x_{0} 2^{0}}\right|_{N}$

$f_{a, N}(\mathbf{x})=y_{n-1}=y_{n-2} \times\left|a x_{n-1} 2^{n-1}\right|_{N} \quad y_{j}=y_{j-1} \times\left|a^{x_{j} j^{j}}\right|_{N}$

Implementing $\mathbf{U} f_{a, N}$
 $$
y_{j}=y_{j-1} \times\left|a^{x_{j} 2^{j}}\right|_{N}
$$

- When $x_{j}=0$ We Have:

$$
y_{j}=y_{j-1}
$$

- When $x_{j}=1$ We Should Multiply y_{j-1} by:

$$
\left|a^{x_{j} 2^{i}}\right|_{N}
$$

- When a and N are Coprime, Operation of Multiplying by This Factor is Reversible and Unitary - Realizable as Quantum Cascade

Implementing $\mathbf{U} f_{a, N}$

- For Each j, There is a Unitary Operator:

$$
\mathbf{U}_{\left|a^{2^{2}}\right|_{N}} \rightarrow \mathbf{U}_{a^{a^{j}}}
$$

- Each of These Operators are Performed Conditionally Based on Value of x_{j}
- To Implement we use a Controlled Version of the Operator
- The Quantum Cascade has the Form as Shown on the Following Overhead

Implementing $\mathbf{U} f_{a, N}$

