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Introduction
As we move into an era where
dataset sizes are increasing ex-
ponentially with the advent of
the internet, and other tech-
nologically advanced surveying
systems, it becomes impossi-
ble to store all of the relevant
data. This is especially the
case when it comes to storing
data relevant to cryptographic
functions for analysis. Luck-
ily there exist methods whereby
we can reduce the necessary
storage through reduction tech-
niques such as the analysis and

storage of only sufficient statistics (first introduced by the marvelous
Ronald Fisher). In this poster we discuss one such reduction technique
used to store and analyze large collections of bit-strings from a statis-
tical perspective.

Background
A Bit-string is a collection of discretized voltage levels that are either
1 or 0. For example consider the bit-string below:

010011001011011101001100101101110100110010110111
010011001011011101001100101101110100110010110111
010011001011011101001100101101110100110010110111
010011001011011101001100101101110100110010110111
010011001011011101001100101101110100110010110111
0100110010110111

This is a collection of 256 bits, in order to store this exact value on
a computer the computer would accordingly require 256 bits of mem-
ory. there are 2256 possible bit strings of this size. Say we wanted to
store 1% of them.

(0.01) · 2256 = 1.15 · 1075

1.15 · 1075 strings · 256 bits/string = 2.96 · 1077 bits

2.96 · 1077 bits · 1 EB
268 bits

= 1.004 · 1057EB

For comparison 1 EB (Exa-byte) is 1048576 Tera-bytes. It is estimated
that there is about 295 EB of data stored in computers on Earth.

So data minimization is an absolute must when dealing with large
sets of bit strings. The question arises, how can we store this data
without losing critical information? Turns out, Fisher answered the
question for us, with his analysis of sufficient statistics.

Sufficient Statistics
Think of the bit string
before not as a collec-
tion of voltage levels, but
instead a collection of
Bernoulli Trials (IE two
possible outcomes Y/N).
Now imagine a set of
three random variables
X1, X2, X3 each of which
evaluates to 0, or 1. It
has been proven (to see
a proof ask!) that the
sum of Bernoulli trials is a
minimal sufficient statis-

tic(IE minimizes the number of partitions in the data set). A classical
result from statistical analysis is that:

(X1, X2, ..., Xn) ∼ Bernoulli(p) =⇒ (X1+X2+...+Xn) ∼ bin(n, p)

When dealing with a large collection of bit-strings as we are in our
research, we can save simply the sum of all the ones in the bit string
(known colloquially as the Hamming Weight) of the bit-string. We
are also saving another brand of descriptive statistic which we have
labeled the ones count, the table below depicts both the one’s count as
well as the Hamming-Weight storage procedure for a small example
string.

Figure 1: Hamming-Weight and Ones-Count Calculation

In essence we are taking data which would produce a uniform distri-
bution on [0,2256] and reducing it to a data set which is binomial on
[0,256] (Hamming Weight). In other words:

(X1, X2, ...X256) ∼ Bernoulli(p) =⇒ HW ∼ Bin(256, p)

Now consider if we wanted to compare our collection of bit strings
to one which was truly random, in the case that they are truly random
there is equal probability they will evaluate to a one or a zero.

(X1, X2, ...X256) ∼ Bernoulli(0.5) =⇒ HW ∼ Bin(256, p)

(X1, X2, ...X256) ∼ Bernoulli(0.5) =⇒ OC ∼ DUnif (0, 256)

We can now use tests such as goodness of fit tests to compare our
data to a theoretical model.

Procedure
Below is a flow diagram representing the procedure that is used in the
analysis of our data.

Figure 2: Flow Diagram of Proposed Procedure

After each data generation/calculation cycle we delete the unnecessary
data and save off a sample set of the statistics that are used for our
analysis. This dramatically cuts the necessary storage for our gener-
ated data.

When is this Approach Useful
1. Sampling Quickly and Accumulating Data is not a Problem.
2. Enough Desired Sufficient Statistics for proper Analysis are known
3. Sufficient Statistics can easily be calculated without depending on

prior data

Uses for Sufficient Statistics
• Comparison to idealistic models ie. (Chi Square Goodness of Fit

Tests).
• Comparison to other models ie. (Student’s T test, Wilcoxon Rank

Sum/Signed Rank, ANOVA)
•Modeling/Multipl Regression among many different models.

Results
During our research, we produced 50,000 bit strings from several dif-
ferent intentional processes, we wished to compare them to the ideal-

istic model of truly random bit strings and to one another. Histograms
of some of our data are provided below:

Figure 3: Sufficient Statistic Histograms

As we can see, they fit the idealized model fairly well! We also
used our descriptive statistics from several of our processes to perform
ANOVA among the processes themselves.

Figure 4: ANOVA among Processes

We found there was no statistical difference in our processes in the
above analysis.

Conclusions
•Data storage can be a huge burden when dealing with big data sets

•Data set minimization can occur by storing only sufficient statistics

• Be cautious of storing the right data for the analysis you desire

• Running analysis and Inference over sufficient statistics can give
great insight on the actual data, but is not a replacement for small
data sets.

Forthcoming Research
An actual analysis of the memory savings and disadvantages to this
method is forthcoming, in addition we are always seeking out new
ways to use these sufficient statistics to make inference on our data.
Any input would be greatly appreciated. We are also adapting methods
for using higher order cummulants such as kurtosis and skewness to
our methodology.
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