

HARDWARE ACCELERATION OF SOFTWARE

LIBRARY STRING FUNCTIONS

Approved By:

Dr. Mitchell A. Thornton

Dr. Frank Coyle

Dr. Peggy Ping Gui

HARDWARE ACCELERATION OF SOFTWARE

LIBRARY STRING FUNCTIONS

A Thesis Presented to the Graduate Faculty of

School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Master of Science

with a

Major in Computer Engineering

by

Pallavi Anil Kulkarni

(B.E., Cummins College of Engineering)

December 15, 2007

Copyright (2007)

Pallavi Anil Kulkarni

All Rights Reserved

iv

ACKNOWLEDGEMENT

Firstly, I would like to express the deepest appreciation to my advisor, Professor

Dr. Mitch Thornton, for giving me the opportunity to work in a very interesting area of

CAD, and for his support throughout my graduate studies at Southern Methodist

University. This thesis would not have been possible without his continuous

encouragement and guidance.

Secondly, I would like to thank Dr. Coyle, for sharing with me his knowledge

regarding the time measurement, which was the critical factor in my research. His

insightful suggestions helped me perform the time measurements to the maximum

accuracy. I would also like to thank Dr. Ping Gui for her invaluable help in suggesting a

robust and exact method to measure the time in my research.

Thirdly, I would really like to appreciate Prof. Jingbo Ye’s help in allowing me to

work in the department of Physic’s laboratory, to perform the time measurements on the

hardware. I am also grateful to Mr. Tiankuan Liu for offering me his help with any

technical difficulties during my lab visits.

My special thanks to Nikhil, my fiancé and Prajna, a good friend of mine, for their

suggestions, which helped me tackle number of difficulties during my experimentation. I

admire their ever lasting support and continuous encouragement throughout my research.

v

Kulkarni, Pallavi B.E., Cummins College of Engineering, 2004

Hardware Acceleration of Software
Library String Functions

 Advisor: Professor Dr. Mitch Thornton

Master of Science conferred December, 15, 2007

Thesis completed November, 1, 2007

 Character string matching, which involves finding all the occurrences of a pattern of

length ‘m’ in a string of length ‘n’, is a very well known problem in the field of

information systems. The strings may represent names of persons, postal addresses,

number plates of vehicles, DNA sequences, or music notes, depending upon applications,

and accordingly, the string matching can either be exact or approximate. Numerous

algorithms like KMP [30], Boyer Moore [29], Wagner and Fischer [5], Ukkonen’s [3],

and CASM [11] have been developed so far to solve this problem efficiently. As the

string lengths increase, the overall algorithm complexity in time and space also increases.

There has been a huge amount of efforts put forth in the research community to increase

the efficiency of such algorithms.

This thesis presents a very simple, efficient and fast implementation method for

performing different string operations. The proposed method of implementation is to map

the string matching operations into digital hardware. In this thesis, we used a Field

Programmable Gate Array (FPGA) to perform the string operations at the lowermost

level by representing strings in terms of bits. Several string functions implemented using

vi

the FPGA with this approach were found to produce the desired results within few

nanoseconds. The efficiency of the aforesaid approach is evident from the experimental

results obtained for a variety of string operations. Although we chose to implement the

character string algorithms in FPGA technology, these results are equally applicable to

dedicated Application Specific Integrated Circuits (ASIC) or other digital circuit

implementation technology.

vii

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

ACKNOWLEDGEMENTS iv

CHAPTER

1. INTRODUCTION 1

1.1 Motivation 1

1.2 Basic Terminologies Used In String Matching 1

1.3 Previous Work 4

1.3.1 Exact String Matching Algorithms 5

1.3.2 Approximate String Matching Algorithms 8

1.4 Organization Of Thesis 20

2. SOFTWARE AND HARDWARE FUNDAMENTALS 21

2.1 Basics Of Communication 21

2.2 Fundamentals Of Verilog Programming 26

2.3 Programmable Logic Devices 29

2.4 Software String Library Functions 34

3. IMPLEMENTATION DETAILS 39

3.1 DE2 Development And Education Board 39

3.2 QuartusII 40

3.3 Experimental Setup 42

3.4 Serial Communication Through C Program 43

3.5 Serial Communication Through Verilog Program 45

viii

3.5.1 Transmitter Block In Verilog 45

3.5.2 Receiver Block In Verilog 46

3.6 Verilog Implementation Of String Functions 47

3.7 Basic Setup 61

3.8 Time Measurement 63

3.8.1 Time Measurement In Software 63

3.8.2 Time Measurement In Hardware Using Oscilloscope 64

4. EXPERIMENTAL RESULTS AND ANALYSIS 66

4.1 Experimental Results 66

4.2 Analysis 72

5. CONCLUSION AND FUTURE WORK 74

5.1 Conclusion 74

5.2 Future Work 75

APPENDIX

A C CODE FOR SERIAL COMMUNICATION 76

B C CODE FOR TIME MEASUREMENT 81

C VERILOG CODE FOR SERIAL COMMUNICATION 85

D VERILOG CODES FOR STRING OPERATIONS 113

E IMAGES OF MEASUREMENTS AND RESULTS 173

REFERENCES 176

ix

LIST OF TABLES

Table

1.1: Editing Path 3

1.2: Performance Summary Of Algorithms 8

1.3: Edit Distance Table For Comparing ‘ONE ‘And ‘ON’ 10

1.4: Edit Distance Table For ‘TGGC’ And ‘ACTG’ 15

3.1: Truth Table Of X-OR Function 48

x

LIST OF FIGURES

Figure

1.1: Approximate String Matching 9

1.2: Trie Data Structure 13

1.3: Architecture Of Linear Systolic Array 16

1.4: Internal Architecture Of Processing Cell 18

2.1: Rs-232 Logic Waveform (8n1) 22

2.2: Serial Transmission Of Character ‘A’ 23

2.3: Structure Of A Module In Verilog 28

2.4: Internal Structure Of FPGA 31

2.5: Design Cycle With FPGA Devices 33

3.1: Altera DE2 Board 39

3.2: Design Flow On QuartusII Tool 41

3.3: Experimental Setup 43

3.4: Flowchart Of Serial Communication Through C 44

3.5: Transmitter Block In Verilog 46

3.6: Receiver Block In Verilog 47

3.7: ASM Chart Of ‘strcmp’ Function In Verilog 49

3.8: ASM Chart Of ‘strcasecmp’ Function In Verilog 50

xi

3.9: ASM Chart Of ‘strstr’ Function In Verilog 52

3.10: ASM Chart Of ‘strchr’ Function In Verilog 53

3.11: ASM Chart Of ‘strchr_pos’ Function In Verilog 55

3.12: ASM Chart Of ‘strrchr’ Function In Verilog 57

3.13: ASM Chart Of ‘strupr’ Function In Verilog 58

3.14: ASM Chart Of ‘strlwr’ Function In Verilog 60

3.15: ASM Chart Of ‘strlen’ Function In Verilog 61

3.16: Overall Implementation Methodology 63

3.17: Time Measurements On Oscilloscope 65

This thesis is dedicated to

my dearest family

and my friends

 1

Chapter 1

INTRODUCTION

1.1 Motivation

String matching is a very well known research problem in the information

systems area. This problem finds applications in the areas such as DNA sequence

matching, directory searches for particular name, and information retrieval based on

person’s SSN or Name etc. Many algorithms have been suggested so far for computing

string comparisons. These algorithms are designed to match the given strings either

exactly or approximately depending on application. The complexity involved in string

matching increases as the string size increases, reducing the speed of calculation achieved

through various proposed algorithms. Hence, different approaches have been developed

previously by researchers to make existing algorithms work efficiently in all possible

scenarios.

1.2 Basic Terminologies Used In String Matching

Following is the discussion of basic terminologies used in string matching.

 2

Edit distance [11, 4]:

Edit distance is measure of similarity between two strings. If strings are made of

‘n’ characters, then Edit distance between two strings string1 and string2 is

defined as number of operations which should be performed on these characters to

convert string1 to string2. The operations are called as Edit Operations which can

be insertion, deletion, and substitution or others [3, 11]. These operations have specific

weights associated with them.

The overall edit distance between two strings is the minimum sum of all the edit

operations required to obtain string2 from string1. The characters in strings can be

English letters, lines of source code, music notes, or DNA base pairs etc.

• Insertion operation: This operation inserts a particular character in a string.

For example string1 ‘ABC’ can be converted to string2 ‘ABCD’ by one

insertion operation consisting of the insertion of ‘D’.

• Deletion operation: This operation deletes one or more characters from a

string. For example string1 ‘ABCD’ can be converted to string2 ‘ABC’ by

deleting the last character ‘D’.

• Substitution operation: This operation substitutes one or more characters from

a string with one or more characters from another string. For example string1

‘ABCD’ can be converted to string2 ‘BBDD’ by two substitution operations:

substituting ‘A’ with ‘B’ and substituting ‘C’ with ‘D’.

• Transposition operation: This operation copies one or more characters from a

string to another string. For example string1 ‘ABCD’ can be converted to

 3

string2 ‘ABDD’ by two transposition operations: copying ‘A’ and ‘B’ from

first string to second string and one substitution operation: substituting ‘C’

with ‘D’.

Editing path [8]:

Editing path is a path that graphically represents the sequence of edit operations to

convert string1 to string2. Table 1.1 shows editing path between two strings ‘ABC’

and ‘ABB’.

Table 1.1: Editing Path

 A B C

 0 1 2 3

A 1

B 2

B 3

Normalized edit distance [8]:

The normalized edit distance between two strings, string1 and string2 is

defined as the minimum quotient between the sum of weights of the edit operations

required to transform string1 having length ‘m’ into string2 having length ‘n’, and

the length of the editing path corresponding to these operations. This can be symbolically

represented as follows:

P) of(length operations theseofnumber (P) L
P of operationsedit elementary theof weights theof sum (P)W

B andA between path Editing P Where,
)}(/)(min{

=
=

=
= PLPWNED

The string matching problem typically involves computation of edit distance.

Many algorithms have been proposed to calculate edit distance efficiently and at a faster

rate. The faster the computation of edit distance, the greater the increase in algorithm

speed. It is also observed that normalized edit distance is a better measure of similarity

than edit distance and it consistently provides better results than both unnormalized and

post-normalized edit distances. One important point to be noted is that it is not possible to

compute the normalized edit distance by calculating the unnormalized edit distance first

and then normalizing it by dividing by the length of edit distance path.

Post Normalized edit distance [29]:

The post normalized edit distance between two strings string1 and string2

is computed by first calculating the edit distance between these two strings and then

dividing this distance by the number of edit operations used.

1.3 Previous Work

Several algorithms have been suggested for exact string matching. These

algorithms preprocess the search string to make the string search operation faster.

 4

 5

1.3.1 Exact String Matching Algorithms

Wagner and Fischer algorithm [5]:

This algorithm determines edit distance between the two given strings by using a

matrix. The edit distance is computed by defining a cost function on a graphical structure

called ‘trace’. Trace is a description of how an edit sequence S converts string1 to

string2, ignoring the order of operations and redundancy in S. It is observed that for

every trace ‘T’ from string1 to string2, there exists an edit distance equal to cost of

the trace, and for every edit distance required to convert string1 to string2, the cost

of trace is less than or equal to the edit distance. The cost of trace is computed by the

addition of three operations; substitute, delete, and insert. The algorithm concentrates on

finding the minimum cost trace from string1 to string2. The computational

complexity of this algorithm is proportional to the product of lengths of two strings.

Knuth–Morris–Pratt algorithm [30]:

This algorithm searches for a word W within a string S. The comparison is carried

out from left to right in a word stream. This algorithm builds tables along the process of

searching and draws appropriate conclusions when there is a mismatch. Also it provides

an intelligent estimate that predicts approximately where the next match could begin.

This prediction process avoids re-examination of previously matched characters and

saves time enhancing the overall computation speed. The functionality of the algorithm is

explained with the help of the following example:

 6

String: BEG BBEGIERE BEGIN CODE

Word: BEGIN

The search starts with comparing the first character of the word and the string.

Since there exists a match, the next characters are compared until the letter ‘G’ is found to

be a successful match. In the next search operation, there is a mismatch as the string has a

‘space’ and the word has an ‘I’ character. Hence the search operation is halted. As ‘I’

doesn't appear in the first 3 characters of string compared previously, the comparisons

starts with ‘B’ after the space in the string and the ‘B’ of the word. Again, since there is a

match, the next character is compared which is found to be a mismatch. At this point, the

next character in the string is ‘B’ and hence the comparison starts with that character as it

could be the start of the actual word that the algorithm is searching for. The comparison

continues in the similar fashion until the desired word is found. In this example, we saw

that a wise decision is made while resuming the comparison after the mismatch is found

thus eliminating an unnecessary comparison.

Efficiency / Performance:

Assuming the prior existence of the table ‘T’, the search portion of the Knuth-

Morris-Pratt algorithm has complexity O(n), where ‘n’ is the length of the string. The

overall complexity along with the computation of the tables and search operation is O(m

+ n), where ‘m’ is the length of pattern. But this algorithm suffers when a word needs to

be searched in a string containing a large amount of repetitions.

 7

Boyer Moore algorithm [29]:

This algorithm follows a different approach in preprocessing the strings. Instead

of preprocessing the string to be searched it preprocesses the target string that is being

searched for. It scans the characters of the pattern from right to left, beginning with the

rightmost character, however the pattern is moved from left to right across the string. In

case of a mismatch (or a complete match of the whole pattern) it uses two pre-computed

functions to shift the pattern to the right. It doesn't need to actually check every character

of the string to be searched but rather skips over some of them. The algorithm pre-

computes two tables to process the information whenever it finds a mismatch. The first

table calculates the subsequent positions from where the next search will start and the

second table makes similar calculations depending upon the matched characters before

the mismatch occurred. This information is very useful to decide upon the next point to

start the search and rules out as many positions of the text as possible where the string

cannot possibly be matched and thus saves computation time.

It attempts to check whether a match exists at a particular position and works in a

backward fashion. For example, if the algorithm starts the search at the beginning of a

pattern for the word ‘ABCDEFGH’, it checks the eighth position of the text to see if it

contains an ‘H’. If it finds the ‘H’, it moves to the seventh position to see if that contains

the last ‘G’ of the word, and continues towards right until it checks the first position of

the text for an ‘A’.

Suppose there is a character ‘Z’ instead of an ‘H’ in the eighth position and ‘Z’

doesn't appear anywhere in the whole string, then there is no point to search the first

through seventh string positions. Once the algorithm finds that there is no match in the

 8

last character position, it skips an entire word length in the pattern and again compares

the last character in the pattern. This approach can prevent many unnecessary

comparisons from occurring.

Performance /efficiency:

The Boyer-Moore algorithm has sublinear execution time with searching

complexity of O(n).

Below is a table containing summary of complexities of algorithms explained so

far in terms of lengths of strings (m, n).

Table 1.2: Performance Summary Of Algorithms

Sr.
No.

Name of Algorithm Preprocessing
Complexity

Searching
Complexity

1 Wagner and Fischer O(m) O(mn)
2 Knuth-Morris-Pratt algorithm O(m) O(m + n)
3 Boyer-Moore algorithm O(m) O(n)

1.3.2 Approximate String Matching (ASM) Algorithms

This is a technique in which, strings are said to be similar when the value of edit

distance is less than some particular threshold say ‘k’. Approximate string matching is an

important operation to reduce errors, occurring due to misspelled words, in text

processing. Hence, any spell check program, which implements approximate string

matching, must be able to find the match for the incorrect word as close to the options

available in the dictionary as possible.

Approximate string
matching algorithm

String,
Pattern to be
searched,
threshold k

Result, pattern
searched by k
edit operations
on string

Figure 1.1: Approximate String Matching

Ukkonen's dynamic programming algorithm:

 The dynamic programming algorithm can be explained with the help of the

following example. The edit distance table for the comparison between strings ‘ONE’ and

‘ON’ is as follows:

 9

 10

Table 1.3: Edit Distance table for comparing ‘ONE ‘and ‘ON’

 O N

 0 1 2

O 1 0 1

N 2 1 0

E 3 2 1

Cost of insert operation: 1

Cost of delete operation: 1

Cost of substitute operation: 2

The difference between two strings is the value in the lower right corner of this

matrix. Hence this result 1 means that the string ‘ONE’ can be transformed to string ‘ON’

by 1 deletion operations i.e. deleting character ‘E’.

The dynamic programming is accomplished using the matrix in the figure above.

It builds the edit distance table and computes the edit distance between the two strings.

Ukkonen has suggested an extension to this algorithm. The new algorithm has an

asymptotic complexity similar to that of Ukkonen's algorithm, but it is significantly faster

due to a decreased number of array cell calculations. Reported experimental results [1]

indicate a 42 % increase in speed is achieved in applications involving name

comparisons. This percentage increases by considerable amount when longer and

dissimilar strings are compared. Although this speed is comparable to other fast ASM

 11

algorithms, this particular approach has greater effectiveness in text processing

applications.

The implementation of Ukkonen's algorithm to find the minimum edit distance

between two strings is based on a dynamic programming approach. The complexity is

O(dist x length) in both time and space, where ‘dist’ is the distance between two strings,

‘length’ being the smallest length of the two strings. This method is optimal, when the

two strings are identical since only n comparisons are made for strings of length n. In

Ukkonen's method, unnecessary calculations in the distance matrix are avoided in the

threshold test of distance between the two strings. This process is repeated with

successively larger threshold values until the test is successful, yielding the required

string distance in O(m×d) time.

Finding approximate patterns in strings:

In this algorithm the approximate pattern matching problem is solved. Suppose

there are two strings String1 and String2. String2’ is a string that has an edit

distance of at the most‘t’ units from String2. String2’ is searched in string

String1. The definitions of edit distance and editing operations explained earlier are

also applicable to the description of this algorithm.

The algorithm can be explained as follows:

String2 = a1, a2,….., am

String1 = b1, b2,….., bn

The edit distance matrix is calculated row by row or column by column with the help of

following equations:

 n j 0 0 ED0j ≤≤=

 m i 0 i EDi0 ≤≤=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+

≠+

=

=

−

−−

−−

otherwiseED

baifED

baifED

ED

ji

jiji

jiiji

ij

,1

,1min

1,

1,1

1,1

After the matrix is formed, the algorithm finds the value of the elements on the

last row of EDij, that have an edit distance value of at the most‘t’ units. The execution

time required for this algorithm is O(m x n).

 An extension to this algorithm is suggested which divides the computation into

two parts. In the first part, the pattern to be searched is preprocessed and in the second

part the original string is scanned for the pattern. This method is less efficient in some

applications because, after preprocessing, the scanning phase runs in time O (n).

Trie based algorithms [7]:

A trie is a tree data structure used to store strings. However, in keeping with the

convention in the original paper [7], we will also use the term ‘trie’.The text is

represented as a Trie as shown in the figure below. In dynamic programming, an edit

distance table of size ‘m x n’ is required, but the trie representation of text drastically

reduces the storage space as identical substrings in text are represented once.

 12

A text consists of one or more sistrings. If sistrings start at word boundaries, then the text,

"road rapid rolex rolling cupid castle“contains six sistrings. Figure 1.2

shows the sistrings and a corresponding index trie constructed over these sistrings.

ing x

pid ad

a

r

o

l

e

c

u

l

stle

a

Figure 1.2: Trie Data Structure

Sistrings are indexed by their locations in the text. Edit distances between the

sistring can be calculated by traversing the trie in depth-first manner, and simultaneously

computing edit distance table. In case of searching a string, branching decisions at each

node is made by each character of the string being sought. In the trie shown, while

searching string ‘castle’, at first node both branches are checked for character ‘c’ and

search proceeds in the direction of right branch. Again at the next node character branch

containing character ‘a’ is selected. In the next step the pattern is found. This means that,

 13

 14

search time is proportional only to the length of the pattern string, and independent of the

text size.

In trie representation the common prefixes like ‘r’,’c’,’a’ and ‘u’ of all sistrings

are stored only once. This gives significant data compression, and turns out to be useful

while indexing large texts. When the text size is huge, instead of having one huge tree, a

set of trees pointing to smaller sub-trees can be constructed. As sharing of common

prefixes is performed in a trie structure index space as well as search times are reduced.

And hence many sub-tries are bypassed as it is not necessary to evaluate every sistring in

a trie. As seen from example above the text searches performed with tries are

independent of the size of the text being searched, and therefore they are preferred for

large text size searches.

Linear systolic array for ASM / VLSI ASM [12]:

 This algorithm can be explained with following example. Comparison between

strings ‘TGGC’ and ‘ACTG’ can be represented with an edit distance table identical to that

used in Ukkonen’s algorithm as follows:

 15

Table 1.4: Edit Distance table for ‘TGGC’ and ‘ACTG’

 T G G C

 0 1 2 3 4

A 1 2 3 4 5

C 2 3 4 5 4

G 3 4 3 4 5

T 4 3 4 5 6

Cost of insert operation: 1

Cost of delete operation: 1

Cost of substitute operation: 2

The difference between two strings is the value in the lower right corner of this

matrix. Hence this result 6 means that the string ‘ACGT’ can be transformed to string

‘TGGC’ by 3 substitution operations i.e. substitute ‘A’ by ‘T’, ‘C’ by ‘T’ and ‘T’ by ‘C’.

The dynamic programming is by building the edit distance table and computing

the edit distance between the two strings. This process requires ‘m x n’ processing cells to

process strings of lengths ‘m’ and ‘n’, and in order to exploit parallelism ‘m+ n’ inputs

need to be provided in parallel during each clock cycle.

In this method it is observed that many elements of the edit distance table can be

computed simultaneously which will reduce the string comparison time tremendously. It

is possible to calculate the elements along the diagonals simultaneously. These

calculations are performed through a systolic array. The systolic array consists of

processing cells which are involved in calculating the elements of the edit distance table.

One processing cell calculates all elements of a diagonal. Hence, if the two strings have

length ‘m’ and ‘n’ respectively, there will be ‘m+n-1’ diagonals and hence total number

of processing cells required is ‘m+n-1’. The overall systolic architecture to compute the

edit distance table can be shown pictorially as follows:

P1 P2 Pm Pn

Characters from
String1 and elements
of edit distance table

Characters from String2
and elements of edit
distance table

Elements of edit
distance table

Figure 1.3: Architecture Of Linear Systolic Array

P1, P2,…, Pn: Processing cells

As seen from the architecture above, the two strings to be compared are shifted in

from opposite ends. Along with these strings, alternately the values from first row and

column are also sent. The processing cell calculates the new entry in the edit distance

table by considering the value of two numerical shifted in and comparison of the

characters and passes it to the next processing cell. This process continues until the last

element in the edit distance is computed which is actually the result. The strings, while

 16

 17

being output from the array, carry the result of the comparison along with them. The

straightforward implementation of this approach requires a bus width equal to the number

of bits required to represent each character. For example, UNICODE characters would

require a buswidth of 16 between each cell since each character is represented by 16 bits.

It is observed that adjacent elements of edit distance table differ by small amounts,

therefore instead of computing the element, its difference is computed with its left and

top element [11]. This reduces the buswidth required between adjacent cells and the

computations are also more efficient. An encoding scheme is proposed which computes

differences in the elements of the distance table rather than computing the element [11].

The detailed structure of the processing cell is shown in figure 1.4:

Comparator Processing
Block

Multiplexer Multiplexer

I
S

D

Lout

Lin

Rin

Comp

Rout

Elements of edit
distance table

Figure 1.4: Internal Architecture Of Processing Cell

S: Cost of substitution.

I: Cost of insertion.

D: Cost of deletion.

inin

in

out R
C

DR
IL

R −
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+
+

= min

inin

in

out L
C

DR
IL

L −
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+
+

= min

 18

⎭
⎬
⎫

⎩
⎨
⎧

=
=

=
0,
1,0

compS
comp

C

In the first clock cycle, characters from both the strings enter the processing cell,

which are then compared in the comparator. On the next clock cycle, values from the edit

distance table i.e. Lin and Rin shift in and the existing characters shift out. As shown in the

above equations, these values are modified based on the result of character comparison

and values of S, I, and D. In order to compute the difference, values of Rin and Lin are

subtracted from the respective calculated values. These values are passed to the next

processing element which computes the differences in similar manner. This process

continues until the element from last row and last column is computed. The strings shift

out of the last processing cell followed by this element. Edit distance between two strings

can be computed from this element.

For strings that are longer than the number of cells in the linear array, the

comparison can be performed in multiple passes. During each pass the element values of

the previous row and column are shifted in along with the string characters.

Performance:

The linear systolic array technique is a rapid way of performing string comparison

due to hardware acceleration. The time required to compare two strings of same length is

given by:

For a single pass, dClockperioPEofNoLengthTime *)2/)..((+=

For multiple passes,

dClockperioofPENonPEofNomTime *))2/.()2/)..(*2*)1((++−=

 19

 20

1.4 Organization Of Thesis

This thesis is organized in 5 chapters. It begins with a brief background of

hardware and software fundamentals. In chapter 2 previous contributions to string

matching problems has been mentioned. Implementation details about the prototype are

explained in the chapter3.Chapter 4 lists the experimental results followed by an analysis

section. Chapter 5 concludes with future work suggestions to enhance the prototype

system.

 21

Chapter 2

SOFTWARE AND HARDWARE FUNDAMENTALS

2.1 Basics Of Communication

Digital data communication is the process of sending data represented in terms of

bits that are modeled as streams of 1’s and 0’s, from one place to another .There are two

means of digital communication:

• Serial communication

• Parallel communication

As the name suggests serial communication is the process of sending all data bits

serially whereas in parallel communication multiple data bits are transmitted

concurrently. Serial communication can be synchronous or asynchronous in nature. In

synchronous communication, data transfer is dependant on a common clock signal at the

transmitter and receiver indicating the beginning of each transfer. Whereas in

asynchronous communication methods data transfer does not depend on a clock but on a

predefined bit pattern or “start frame” that precedes the data transfer. One important

advantage of asynchronous communication is that it requires fewer lines and hence is

comparatively inexpensive. For synchronization purpose a lager number of bits are

required per transmission to account for the start and stop frames.

 22

EIA-232C Serial Protocol [28]:

This section provides a detailed description of the asynchronous serial

communication protocol standard RS-232C (Recommended Standard 232) [28] which is

also known as EIA-232C. This standard defines an asynchronous serial communication

protocol over a physical channel that is typically implemented as a cable between from a

DTE (Data Terminal Equipment) and a DCE (Data Circuit-terminating Equipment). Each

bit of a data is transmitted independent of any clock or predefined time slot. Before the

actual communication, the transmitter and the receiver agree upon the format of data to

be transmitted and the baud rate, which is the rate at which the data will be transmitted.

This agreement ensures that the receiver detects the start and the end of the data and

receives the data correctly. Hence these initial steps are very important to avoid

misinterpretation or loss of data.

To transmit any kind of data, initially a start bit is transmitted, followed by the

actual data bits at the baud rate, and lastly one or more stop bits are transmitted. To

enable error detection at the receiver side, a parity bit can also be transmitted before the

stop bit. This can be pictorially represented as follows:

Mark (1) LSB MSB -5 to -12V
 Start 0 1 2 3 4 5 6 7 Stop

Space (0) +5 to +12V

Figure 2.1: RS-232C Logic Waveform (8N1)

Start bit: This bit is transmitted to indicate the start of a new data frame at the

receiver. This bit is logic 0 bit. In the idle state, the communication line is maintained at

 23

logic 1 and hence being of opposite logic, the start bit informs the receiver about the start

of a data-frame transmission.

 Data bits: Data bits are transmitted immediately after transmitting the start bit.

Each word can be represented by 5 to 8 bits. The least significant bit is always the first bit

to be transmitted according to the EIA-232C standard. For example if we want to send an

ASCII character ‘A’ (65d), the data will be transmitted as ‘start bit –data with LSB first –

stop bit’. This can be represented pictorially as follows:

Mark (1) LSB MSB -5 to -12V
 0 1 0 0 0 0 0 1 0 1

Space (0) +5 to +12V

Figure 2.2: Serial Transmission Of Character ‘A’

Parity bits: To enable error detection at the receiver side, an extra bit referred to as

the parity bit is transmitted after the data bits. It is optional to send this bit and it is a

simple way to encode the data word for single-bit error detection. The value of this bit is

calculated depending upon the data transmitted. The parity can be set as either odd or

even. The same parity calculating procedures are followed by both the transmitter and the

receiver for successful error detection. In the case of odd parity, the parity bit is adjusted

to make sure that an odd number of 1’s are transmitted to the receiver which means if the

data to be transmitted has four 1’s, then to construct an odd parity data frame, the parity

bit ‘1’ is transmitted, to make sure that an odd number of ones reach the receiver. To

generalize, for odd parity, if the number of logic 1 data bits is even, a logic 1 is appended

to the parity bit otherwise a logic 0 is appended. Similarly, in the case of an even parity,

 24

the parity bit is adjusted so that the number of data bits transmitted will always contain an

even number of logical 1's which means if the data bits contain five 1’s then the parity bit

is set to 1 so that the total number of logic 1's reaching the receiver are 6, which is an

even number. So, for an even parity, if the number of logic 1 data bits is odd, the parity

bit of logic 1 is appended otherwise a logic 0 is appended.

Stop bit: This bit indicates the end of the data frame. One or more stop bits can be

transmitted depending upon the convention agreed upon between the transmitter and the

receiver. When the data transmission is to be terminated, the stop bit is set to logic 1.

Because the length of each data frame is fixed, the receiver knows when to expect a stop

bit. If the receiver detects a value other than logic 1 when the stop bit is expected to be

present on the line, some problem with the synchronization is detected. As an example a

receiver might miss a start bit due to some noise in the transmission channel. The stop bit

can have different lengths i.e. it can be 1, 1.5 or 2 bits. 1.5 bits are used only with the

words of 5 bits length and 2 bits are used for longer words. A stop bit having a length of

1 bit is commonly used for all data word sizes.

 Data frame format: 1 Start bit, 8 Data bits, No Parity, 1 Stop bit. The data

transmission starts with a Start bit, followed by the data bits (LSB is sent first and MSB is

sent last), and ends with a "Stop" bit and is known as 8N1. Other formats are possible

such 7E1 indicating 7 data bits, an even parity bit, and a single stop bit.

 Physical properties: In the EIA-232C standard, logic 1 and 0 are defined in terms

of voltage levels. Logic 1 is defined as voltage -3 to -15 Volts. It is referred as a “mark”,

and it has a functional significance of the OFF state. Logic 0 has voltage between 3 to 15

 25

DCE pin functions. Other devices may have any combination of the above two

connectors and their respective pin functions.

Volts. It is referred to as “space”, and it has a functional significance of an ON state.

Therefore, valid signal ranges are ± 3 to ± 15 volts.

Commonly-used signals [28] are as follows:

• Transmitted Data (TxD): Data sent from DTE to DCE.

• Received Data (RxD): Data sent from DCE to DTE.

• Request To Send (RTS): Asserted (set to 0) by DTE to prepare DCE to

receive the data.

• Clear To Send (CTS): Asserted by DCE to acknowledge RTS and allow DTE

to transmit.

• Data Terminal Ready (DTR): Asserted by DTE to indicate that it is ready to

be connected.

• Data Set Ready (DSR): Asserted by DCE to indicate an active connection.

• Data Carrier Detect (DCD): Asserted by DCE when a connection has been

established with remote equipment.

• Ring Indicator (RI): Asserted by DCE when it detects a ring signal from the

telephone line.

Connectors: RS-232 devices may be classified as Data Terminal Equipment

(DTE) or Data Circuit termination Equipment (DCE).Terminals typically have male

connectors with DTE pin functions, and modems typically have female connectors with

 26

gth of 15

500 pF). The cable length given by this

standar

n:

• Simple to use.

serial port on each PC.

 lengths possible (maximum cable length for EIA-232C is 15meters,

 to 5 meters)

2.2 Funda

Verilog is a Hardware Description Language. It is used to design digital

al language. The Verilog description of

any dig e of

Maximum cable lengths: This standard specifies the maximum cable len

meters or less (total equivalent capacitance of 2

d allows for communication with the maximum baud rate specified. If a longer

cable is required, the baud rate may need to be decreased .However, care must taken so

that signal levels do not fall outside the ± 3 to ± 15 V range due to IR voltage drops

depending upon the cable length.

Advantages of serial communicatio

• Low cost.

• Availability of

• Long cable

whereas that for a USB cable is limited

mentals Of Verilog Programming

systems by describing their behavior via form

ital system can be transformed into gate level implementation through the us

automated circuit synthesis tools. The resulting gate level netlist can provide parameters

for the analysis of design in terms of functional simulation, verification, and timing

analysis.

 27

ntax

og and C exhibits some similarity. It has its own set of data types wire and

eg and sets of logical, arithmetic and reduction operators along with a unique set of

keywor

 in the sequential order within the block. However, all concurrent statements

f

/or registers, parameter definitions; and a set of sequential and concurrent

stateme ules

Verilog is a case-sensitive language. It has a preprocessor like C and the sy

of Veril

r

ds.

 There are two types of Verilog statements called procedural and concurrent

statements. Procedural statements are placed inside ‘always’ block and they are

instantiated

are instantiated parallel. Hence, two or more ‘always’ blocks are instantiated in

parallel.

Verilog designs typically consist of a hierarchy of modules. Each module

defines a set of inputs and outputs to communicate to the external world and a set o

wires and

nts to perform actual operations. Any module can either instantiate other mod

or can be instantiated from other modules. A general structure of a module is shown

below:

 28

Figure 2.3: Structure Of A Module In Verilog

 By the process of synthesis, Verilog description can be transformed into a netlist

that describes the ba d in hardware. For

xample, an ‘if-then-else’ block may get transformed into a multiplexer.

RTL le

nly functionality of the

Module ModuleName (port names);

Input, output, inout declarations,

Wire, reg, parameter declarations,

Assign (concurrent) statements,

Initial, always blocks,

Gate, module instantiations,

endmodule

sic components and connections to be implemente

e

A design can be described in different levels of abstraction which are as follows:

Netlist level model: This is the lowest level of abstraction where any design is directly

expressed in terms of a set of connections of basic elements.

vel: The design is described in terms of Boolean expressions and registers. Such

descriptions can be automatically synthesized to a netlist with the help of a CAD tool.

Behavioral level: This is a high level construct that specifies o

design.

 29

dvantages of the Verilog language:

• It is easy and simple to learn.

• It also produces compact code which is easier both to write, and to read.

bed in a number of styles and at various levels of

structural or lower-level implementations.

 in

•

• can be synthesized to actual hardware and can be simulated many

ces overall cost.

2.3 Program

A PLD is a device which can be used to implement a digital circuit. The main

contains resources that allow the internal circuitry to be

realize ic

A),

s in

A

• It allows a design to be descri

abstraction namely behavioral,

Thus, the overall design with all these styles turns out to be very effective

the end.

Many synthesis tools are available to allow very simple descriptions to be

automatically translated into gate-level netlist.

A design

times to achieve required functionality before actual fabrication. This

detecting and removing bugs in the design redu

mable Logic Devices (PLD)

feature of a PLD is that it

configured into many different specific circuits, and hence can be “programmed” to

a large amount of different circuits. There are many types of programmable log

devices such as Programmable Array logic (PAL), Programmable Logic Array (PL

microprocessors, microcontrollers, CPLDs, and FPGAs. Each of these devices differ

terms of the number of gates, programmable resources and offer different design

tradeoffs.

 30

combinational programming resources such as AND gates, OR gates, and

. Hence one or more Boolean equations can be easily realized. One

 and

s.

•

Advantages of PLD:

• Each PLD has many macrocells which ultimately consist of numerous

Flip-Flops

chip can contain a design ranging from least complex to most complex,

hence it requires less board area, power, and wiring than several other chip

Design inside the chip is flexible, so a change in the logic doesn't require any

rewiring of the board.

Field P grro ammable Gate Arrays (FPGAs):

This programmable device can be viewed as a sea of logic gates with

programmable interconnects placed between them. These logic cells and interconnects

can be programmed by the designer, after the FPGA is manufactured, to implement a

logical function, hence the name is “field-programmable”.

The basic building block of FPGA is called a logic cell. These logic cells can be

arranged in the form of rows and columns with programmable interconnects between

them. A logic cell must be classified as a functionally complete logic family with which

any des ign can be built with them .It can be universal gates such as NAND gates or NOR

gates or 2:1 multiplexers or lookup tables along with a D flip flop which can be built with

any type of logic. In addition to these, other features such as dedicated memory elements,

ALU units, phase locked loops for clock synchronization, might be included.

Figure 2.4: Internal Structure Of FPGA

L1, L2: Logic cell

IO1, IO2: I/O cells

Pr1, Pr2: Programmable interconnection resources

above shows a simplified FPGA architecture. It consists of logic cells

mable interconnect resources (Pr1, Pr2…), and I/O elements (Io1,

re the pins either as unidirectional

(input /

The figure

(L1, L2…), program

Io2…). Each I/O cells are programmable to configu

 31

 output) or as bidirectional. These I/O cells surround a set of logic blocks and

programmable interconnect resources. These interconnects allow connection between

different logic blocks as well as between logic block and I/O block.

 32

dvantages of FPGA design methodologies:

• Rapid design development process and hence shorter time to market, ability to

re-program in the field to fix bugs and lower non-recurring engineering costs.

 of CAD tools to perform tasks such as

Basic D i

The figure n

rocess starts of with the specifications of the design which include the set of inputs, set

e functionality required. After the specifications are

A

• FPGA design flows support the use

timing analysis, formal verification, and RTL and gate level simulation.

es gn process with FPGAs:

2.5 shows different steps involved in designing a digital system. The desig

p

of outputs, timing constraints and th

understood, the actual design process starts. A variety of CAD tools may be used to

implement a design. These tools allow the initial design to be described in the form of

block diagram or in the form of a code in Verilog / VHDL or set of connected gates and

library components.

Design Specification

Design ready

Initial Design

Simulation

Is Design Correct?

Redesign

Figure 2.5: Design Cycle With FPGA Devices

After initial compilation, a series of simulations are usually carried out. The

simulator uses user defined inputs, simulates the design, resulting in a set of output

waveforms. These output waveforms are compared with the reference waveforms in the

design specification to verify functionality of the design for the defined input stimulus. If

there is a mismatch, the design is modified to rectify the logical errors, and then it is

recompiled. The design is modified to remove the errors if any and then compiled again.

The process is continued until the desired functionality is obtained.

 33

 34

Programmability options of FPGAs:

FPGAs can be programmed with the help of a separate piece of equipment, a

device programmer or can be in-circuit programmable. The following programmability

options are available for FPGAs:

• Antifuse - One-time programmable.

• UV-Erasable- Erased with ultraviolet (UV) light. Programmability limited to

1000 cycles.

• EEPROM - Electrically erasable as well as programmable.

• SRAM – Configuration bits are stored in SRAM. Unlimited programmability.

• Flash - Unlimited programmability.

Points to be considered in choosing a device:

A particular type of FPGA chip is selected based on the application which it is

going to be used for. The important factors considered while making a particular choice

are availability of gates, number of Input / Output pins, cost of the chip, availability of

CAD tools for synthesis and simulation of design, expected performance, and the power

consumption.

2.4 C String Library <string.h>

String.h is a built in standard library for performing different string operations in

C. These functions include string comparison, string length calculation, string

 35

The strlen function calculates and returns the length of given string.

concatenation, string copying, finding the index of substring and so on. The following list

shows the detailed string operations along with example:

• int strcmp(const char* s1, const char* s2):

Input: s1 = “abc”, s2 = “abc”

Output: 0

The strcmp function compares two strings s1 and s2 and returns an integer

indicating the result of comparison. If the return value is 0, then the strings

match. If the return value is less than zero (-1), then s1 is lexically less than

s2. If the return value is greater than zero (1), then s1 is lexically greater than

s2.

• char* strcat(char*dest, const char* src):

Input: dest = “abc”, src = “def”

Output: “abcdef”

The strcat function concatenates one string to the other string and returns a

pointer to the destination string.

• char* strcpy(char* dest, const char* src):

Input: dest = “abc”, src = “def”

Output: dest = “def”

The strcpy function copies one string to another.

• int strlen(const char* s):

Input: s = “abc”

Output: 3

 36

• :

ccurrences of a given substring within another string

• t char *string1, char *string2,

1 = “abcd”, string2 = “efg”, n = 2

 specified ‘n’ characters from string2 to stringl.

• g2,

g1 = “abcde”, string2 = “abcfg”, n = 3

ompares first n characters of two strings. If n is zero, this

• onst char *s1,const char *s2, size_t

: s1 = “abc”, s2 = “efgh”, n = 2

ers of s2 to sl.

char* strstr(const char* str, const char* substr)

Input: str = “abcdef”, substr = “bc”

Output: “bcdef”

This function finds the o

and returns a pointer to its first instance. If the sub-string can not be found, a

NULL pointer is returned.

char *strncat(cons

size_t n):

Input: string

Output: “abcdef”

This function appends the

int strncmp(const char *string1, char *strin

size_t n):

Input: strin

Output: 0

This function c

function will always return zero – and no characters are checked, so no

differences are found.

char *strncpy(c

n):

Input

Output: string1 = “ef”

This function copies first n charact

 37

• st char *s2):

ompares s2 and s1 but by ignoring the case of the characters. It

• , const char *s2, int

: s1 = “aBcghy”, s2 = “AbCdfde”, n = 3

 a case insensitive version of strncmp().

• ar *s2):

eturns the number of characters at the begining of s1 that match

• e_t strcspn(const char *s1, const char *s2):

turns the number of characters at the begining of s1 that do not

int strcasecmp(const char *s1, con

Input: s1 = “aBc”, s2 = “AbC”

Output: 0

This function c

is a case-insensitive version of strcmp().

int strncasecmp(const char *s1

n):

Input

Output: 0

This function is

size_t strspn(const char *s1, const ch

Input: s1 = “abcdef”, s2 = “abctyu”

Output: 3

This function r

s2.

siz

Input: s1 = “abcdef”, s2 = “ergdef”

Output: 3

This function re

match s2.

•

 38

har *strrchr(const char *string, int c):

 string2 =

t: 18

s last occurrence of character‘s’ in string.

c

Input: string = "This is a sample string",

“s”

Outpu

This function find

Chapter 3

IMPLEMENTATION DETAILS

3.1 Altera DE2 Development And Education Board

Figure 3.1: Altera DE2 board

The figure above shows the Altera DE2 board [22] used for implementing

different string functions. This board contains a Cyclone II EP2C35F672C6 FPGA (672

pins), which is programmed based on a Verilog description of various string operations.

 39

 40

This board also provides support circuitry including toggle switches, push button

switches, LED’s, 7 segment displays, LCD, SRAM, SDRAM, Flash memory chips, RS-

232 and PS/2 ports, and many more components which can be interfaced with the

cyclone FPGA to provide inputs or to show the results.

This board is also equipped with a NIOS II processor, standard connectors for a

microphone, Line-in, Line-out (24 bit codec), video-in (TV Decoder), and a VGA (10 bit

DAC) for advanced applications.

3.2 QuartusII

This software tool is produced by the Altera programmable logic device company and

provides complete support for the design of circuitry to be implemented in FPGA and

CPLD device families available from Altera. It is compatible with a wide variety of

device families like MAX II, Stratix II, Stratix III, Apex II, Flex 10K, Cyclone,

CycloneII, and Cyclone III. Hence it can be used to program the FPGA, Cyclone II

EP2C35F672C6, which is available on the DE2 board. In this work, we developed

Verilog descriptions for various string operations and synthesized them into hardware

netlists using the QuartusII CAD tool that were then used to configure the FPGA on the

DE2 board.

Figure 3.2: Design Flow On QuartusII Tool

QuartusII allows the initial design to be described in the form of block diagrams a HDL

description in Verilog or VHDL and a set of connected gates and standard library

components. The process outlined in Figure 3.2 involves the three steps given in the

following section.

First, an intermediate representation of the hardware design is produced. This step

is called synthesis and the result is a representation called ‘netlist’ which is a set of

interconnected circuit elements, gates etc. Netlist is device independent; therefore its

contents do not depend on the particulars of the FPGA or CPLD.

 41

 42

The second step is called place & route and involves mapping the logical

structures described in the netlist onto the actual logic cells, interconnections, and input

and output pins. The assignment editor allows assigning inputs and outputs of the Verilog

code to the necessary pins of FPGA.

The result of the place & route process is a bitstream which is a stream of 1’s and

0’s. This format is device specific. The bitstream is then downloaded on the FPGA on

DE2 board to configure the FPGA.

After initial compilation and before the actual downloading of the designs onto

the FPGA, a series of simulations are carried out to remove logical errors in the design.

The simulator receives user-defined inputs and simulates the design with the provided set

of inputs and displays the output waveforms. As it’s not possible to check the

functionality for each and every possible input, a subset of inputs is applied to check the

performance of the design. The design is modified to remove the errors if any and then

recompiled again. This process continues until the design works as per the desired

functionality.

3.3 Experimental Setup

Figure 3.3 shows the experimental setup for the string comparison operations we

investigated. The DE2 board and the computer have 2 different sets of cables running

between them. The USB blaster cable is used to download the bitstream corresponding to

the design onto FPGA, whereas the RS-232 serial cable is used for the actual data transfer

during the string operations.

DE2 board

Computer (with Serial
port, QuartusII
software and C

program)

RS-232 cable (Data)

USB blaster cable
(FPGA configuration)

Figure 3.3: Experimental Setup

A serial cable is connected between the serial ports of DE2 board and the

computer as per EIA-232C standard. This cable transmits strings from the computer to

the DE2 board for performing the operations and receives the results of the string

operations.

3.4 Serial Communication Through C Program

The following flow chart shows the working of C code for serial communication.

 43

Start

Open COM port and
perform settings

Send strings to COM port

Result
received?

Display result and Close
com port

Stop

Y

N

Figure 3.4: Flowchart Of Serial Communication Through C

This C code is basically used to send strings to the DE2 board for performing

operations and then receiving the results back on the computer. This program initially

opens the COM port with the help of CreateFile function. Then it sets the COM port for

total number of bits, start bit, stop bits, and parity bits. It then sends two strings to the

COM port through a function which calls Writefile function to send data to the port. The

C code then waits for the result of string operation. ReadFile function is used to read the

data from the port. Once the data is received, it is printed onto the console. The

corresponding codes can be found in Appendix A.

 44

 45

3.5 Serial Communication Through Verilog Program [22]

3.5.1 Transmitter Block In Verilog

The Verilog Transmitter block transmits the result of string operations to the

computer through serial port using EIA-232C standard. The result of string operations is

buffered before it is transmitted. Transmitter block consists of two modules. One of them

is to generate the clock as per the baud rate and other one is for instantiating scfifo (single

clock FIFO) megafunction. On receiving the transmit enable signal the clock is generated

according to baud rate. The data to be transmitted is saved in the internal memory block

of FPGA through scfifo megafunction. Use of this megafunction ensures the transmission

of data to be following the order in which they were received. After sending the logic 0

start bit, the data to be transmitted is shifted by one bit using a shift register which

outputs one bit starting from LSB. This bit is transferred at the rising edge of baud rate

clock. A separate bit counter keeps track of number of bits to be transmitted. When all the

bits have been transmitted, a logic 1 stop bit is sent. The corresponding codes can be

found in Appendix C.

Bit
counter

Baud clock
generator

…….
…….

Data

Transmission
Unit

Shift
register

TXD

Result

F

I

F

O

Figure 3.5: Transmitter Block In Verilog

3.5.2 Receiver Block In Verilog

The Verilog Receiver module receives strings for performing operations,

through serial port, using EIA-232C standard. It consists of three modules, two of which

are similar to the modules from transmitter block. When data is received, the data bits are

accepted one by one based on the baud rate clock. The start and stop bits are removed,

and the 8 bit data corresponding to the string is obtained with the help of shift register.

This data, which is a character from one of the strings, is then written to the memory

block using scfifo megafunction. The strings are still bounded by STX and ETX. Once a

character is received the processing block starts checking for STX and ETX flags, and

after removing these special characters the strings are ready to get operated. This

operation can be pictorially represented as that in figure 3.6. The corresponding codes

can be found in Appendix C.

 46

Data

Receiving
Unit

…….
…….
 Shift

register

Processing

block

F
I
F
O

Bit
counter

Baud clock
generator

String1

String2

RXD

Figure 3.6: Receiver Block In Verilog

3.6 Verilog Implementation Of String Functions

1) strcmp:

Input: String1, string2

Output: 0 if string1 is not equal to string2

 1 if string1 is equal to string2

This function receives string1 and string2 as inputs. It uses a simple X-OR

function to decide if the strings are equal or not. The bitwise X-OR operation of two

strings can be explained with the help of following truth table:

 47

 48

Table 3.1 Truth Table of X-OR Function

Input1 Input2 Output

0 0 0

0 1 1

1 0 1

1 1 0

When two strings are identical i.e. have exactly same bits, the result of X-OR

operation yields logic 0 result otherwise the result is logic 1.The operation of function is

case sensitive. Hence, if string1 and string2 are same but with different cases the

result will be 0. These operations require a single clock cycle to finish. Figure 3.5 shows

the functionality of strcmp function through ASM chart.

Result = String1 X-OR string2

Result

0
1

Display result as
string1 and string2
are unequal.

Display result as
string1 and string2
are equal.

Figure 3.7: ASM Chart Of ‘strcmp’ Function In Verilog

2) strcasecmp:

Input: String1, string2

Output: 0 if string1 is not equal to string2

 1 if string1 is equal to string2

 49

This is a case insensitive version of string comparison. It receives string1 and

string2 as input arguments. The function checks the equality of strings character by

character. Every time a character is compared to the other character, it is checked to see if

it is a lower case letter or an uppercase letter. In ASCII representation lower case letters

(a-z) have decimal values (97-122) and upper case letters A-Z have (65-90) values. A

lowercase letter and uppercase letter differ by value 32 i.e. have opposite value of 6th bit.

Hence, during each character comparison the 6th bit is ignored meaning that the case of

the letter is ignored. Thus, if string1 and string2 are same but with different case

the result will be 1 otherwise result will be 0. Figure 3.6 shows the functionality of

strcasecmp function through ASM chart.

Take next character

Compare character c1 from
string1 to c2 from string 2

Change the case of c1 and
compare again with c2

Equal?

Equal?

Display result as 0

N

N

All characters
compared? N

Y

Y

All characters
compared?

All characters
compared?

Display
result

Y

Y

N

N

Y

Figure 3.8: ASM Chart Of ‘strcasecmp’ Function In Verilog

 50

 51

3) strstr:

Input: String1, string2

Output: 0 if string2 is not found in string1

 1 if string2 is found in string1

This function searches for the first occurrence of string2 in string1 and

when string2 is found in string1, the result of string2 is displayed as the output.

This logic is implemented using state machine. The implementation is divided into two

separate parts namely datapath and controller logic. The data path consists of shifter and

comparator blocks which get control signals from the controller block. Controller is

implemented as a state machine in which every state provides signals for shifting the

string2 and comparing it with string1.

Unless the strings are ready, logic keeps waiting in initial state state0.As soon as

the strings are ready for comparison the state changes to state1 and signals to start

comparison and shifting is provided. In state1, the output of initial comparison is

checked. If it is logic 1, the position of string2 in string1 is displayed. Otherwise

the control goes to the next state, state2 in which string2 is shifted right by one

character position. In each state the output of comparator is used to decide the signals to

be given to the comparator and shifter blocks in next state. If the result of comparator is

logic 1, then the shift and compare operations are stopped and the corresponding position

of string2 in string1 is displayed. If the result of comparator is 0, these operations

continue until the program finds a match or until the end of the string1 and terminates

when a match is found.

string1=string2?

Right shift string2 by 1 character
and append 0s.

Finished shifting
string2 completely?

N

N

Display result as
string2 found

Y

Y

Display result as
string2 not found

Figure 3.9: ASM Chart Of ‘strstr’ Function In Verilog

4) strchr: search a single character in string 1

Input: String1, char1

Output: 0 if char1 is not found in string1

 1 if char1 is found in string1

This function searches for the first occurrence of a particular character, char1 in

a given string, string1. For a string of length 'n', this function is implemented with the

help of 'n' shifter and comparator blocks. Each shifter and comparator block right shifts a

character by one position and perform a logical X-OR operation with the original string.

 52

These 'n' outputs are ORed together to give final result of search operation. For an OR

logic when either of the input signals is logic 1 the result is logic 1.Hence whenever there

is a match between the character in a string, one of the eight outputs will be high and

hence the output of OR logic will be high indicating the occurrence of character in the

given string. However, if the character is not found throughout the string, the results from

all shifter and comparator block will be logic 0 and hence the ultimate result will be logic

0 indicating that character is not found in the string. The advantage of this

implementation is that irrespective of the length of the string, the comparison is

performed in 2 clock cycles.

Right shift character 8 times
throughout the length of string1 by
1 character and append 0s.
Compare each shifted character with
the input string.

Display result as
character found

Display result as
character not found

‘OR’ the outputs obtained from
shifter and comparator blocks.

Result of OR
operation=1?

N

Y

Figure 3.10: ASM Chart Of ‘strchr’ Function In Verilog

 53

 54

5) strchr_pos (display the position)

Input: String1, char1

Output: NULL if char1 is not found in string1

 Position of char1 if char1 is found in string1

This function searches for the first occurrence of a particular character, char1 in

a given string, string1. When the character is found in the given string, its position is

determined otherwise it is set as NULL. For a string of length 'n', this function is

implemented with the help of 'n' shifter and comparator blocks. Each shifter and

comparator block right shifts a character by one position and perform a logical X-OR

operation with the original string. These 'n' outputs are ORed together to give final result

of search operation. For an OR logic when either of the input signals is logic 1 the result

is logic 1.Therefore, whenever there is a match between the character in a string, one of

the eight outputs will be high and the output of OR logic will be high indicating the

occurrence of character in the given string. The position is determined by checking for

logic 1 output of previous stage. However, if the character is not found throughout the

string, the results from all shifter and comparator block will be of logic 0 and hence the

ultimate result will be logic 0 indicating that character is not found in the string. The

advantage of this implementation is that irrespective of the length of the string, the

comparison and displaying position is performed in 2 clock cycles.

Right shift character 8 times
throughout the length of string1 by
1 character and append 0s.
Compare each shifted character with
the input string.

Find and display
position of character.

Y

Display position as
NULL.

‘OR’ the outputs obtained from
shifter and comparator blocks.

Result of OR
operation=1?

N

Y

Figure 3.11: ASM Chart Of ‘strchr_pos’ Function In Verilog

6) strrchr:

Input: String1, char1

Output: Last occurrence of char1 in String1.

This function searches for the last occurrence of a particular character, char1 in

a given string, string1 and displays the position of char1 if it is found in

string1.For a string of length 'n', this function is implemented with the help of 'n'

shifter and comparator blocks. Each shifter and comparator block right shifts a character

by one position and perform a logical X-OR operation with the original string. These 'n'

outputs are ORed together to give final result of search operation. For an OR logic when

 55

 56

either of the input signals is logic 1 the result is logic 1.Therefore, whenever there is a

match between the character in a string, one of the eight outputs will be high and the

output of OR logic will be high indicating the occurrence of character in the given string.

The position is determined by checking for logic 1 output of previous stage. In this case,

the outputs of the previous stage are checked from last shifter and comparator block

which allows to find the last occurrence of character in the string, However, if the

character is not found throughout the string, the results from all shifter and comparator

block will be 0 and hence the ultimate result will be 0 indicating that character is not

found in the string and the position will be displayed as NULL. The advantage of this

implementation is that irrespective of the length of the string, the comparison and

displaying position is performed in 2 clock cycles.

For example is string1 is ‘ABCDC’ and char1 is ‘C’, strrchr function will output

the position of char1 as 4 but strchr function will output the position as 2.

Right shift character 8 times
throughout the length of string1 by
1 character and append 0s.
Compare each shifted character with
the input string.

Find and display
position of character.

Y

Display position as
NULL.

‘OR’ the outputs obtained from
shifter and comparator blocks.

Result of OR
operation=1?

N

Y

Figure 3.12: ASM Chart Of ‘strrchr’ Function In Verilog

7) strupr:

Input: String1

Output: String1 converted to uppercase

This function converts all the characters in a given string string1 to uppercase.

It reads a character every clock cycle and checks if it is in upper case or lower case. The

lower case letters from ‘a’ to ‘z’ fall in the range of ASCII equivalent 97 to 122 and

upper case letters from ‘A’ to ‘Z’ fall in the range of ASCII equivalent 65 to 90. The only

difference between a particular character’s lowercase and uppercase is its 6th bit. All the

lowercase letters have this bit as 1 and upper case letters have this bit 0. Hence to check

 57

and change the case of a letter 6th bit is checked. If it is 1 it is converted to 0 to change the

case to upper otherwise it is not modified. This process continues until the end of

string1 is reached.

If character >97
and <122

Subtract 32 to convert it to
uppercase and proceed to next
character

Reached end of
string?

N

Y
N

Y

Display result as
uppercase string1.

Keep the character
as it is.

Take next
character

Figure 3.13: ASM Chart Of ‘strupr’ Function In Verilog

8) strlwr:

Input: String1

Output: String1 converted to lowercase

 58

 59

This function converts all the characters in a string to lowercase. The characters

which are already in lowercase are kept untouched. The upper case characters from A to

Z fall in the range of ASCII equivalent 65 to 91. Hence every time the character is

checked if it falls in this range, and it is converted to the lowercase by adding 32 to the

original string.

This function converts all the characters in a given string string1 to lower case.

It reads a character every clock cycle and checks if it is in upper case or lower. The lower

case letters from ‘a’ to ‘z’ fall in the range of ASCII equivalent 97 to 122 and upper case

letters from ‘A’ to ‘Z’ fall in the range of ASCII equivalent 65 to 90. The only difference

between a particular character’s lowercase and uppercase is its 6th bit. All the lowercase

letters have this bit as 1 and upper case letters have this bit 0. Hence to check and change

the case of a letter 6th bit is checked. If it is 0 it is converted to 1 to change the case to

lower otherwise it is not modified. This process continues until the end of string is

reached.

If character >64
and <91

Add 32 to convert it to lower case
and proceed to next character

Reached end of
string?

N

Y
N

Y

Display result as
lowercase string1.

Keep the character
as it is.

Take next
character

Figure 3.14: ASM Chart Of ‘strlwr’ Function In Verilog

9) strlen:

Input: String1

Output: Length of string1

This function calculates the length of a given string, string1.On every clock

cycle a character is read from the string1 and a counter is incremented. This character

is appended in a new string, string3.This string3 is ORed with string1 and the

result is compared with string3.If its equal length is displayed as the counter value. If

the result is not same as string3, next character from string1 is appended to string3

 60

and same procedure is followed until the end of string is reached. The counter value

which is the actually the length of string1 is displayed when the end of string1 is

reached.

Read a character from string1
and put it in new string3 and
append zeroes.

String3= (string3 or
string1)?

N

Y

Y

Display result as
length string1.

Increment
counter and take
next character

Reached end of
string1?

N

Figure 3.15: ASM Chart Of ‘strlen’ Function In Verilog

3.7 Basic Setup

The following block diagram shows the prototype system we developed. The

Verilog modules that are synthesized and used to configure the FPGA on the DE2

board consists of 3 different blocks. The actual string comparison block is coupled with

 61

 62

the sender and receiver blocks to allow communication with the computer through the

RS-232 serial cable.

A program written in C runs on the computer and provides the strings or characters,

depending on the operation required, to the board through serial cable and waits to

receive the results. This data is sent in a specified format in order to distinguish between

the two strings. The start of each string or character is characterized by sending STX and

similarly end of string is characterized by sending ETX. Hence if we need to send two

strings, ABCDE and AB then they are sent as STX ABCDE ETX STX AB ETX.

These strings are received by the receiver and formatting block both of which are

implemented in the FPGA.This block converts the serial data into a parallel word through

the implementation of a serial input register in the FPGA and allows the strings or

character to be available for performing string operations. The string comparison block

can perform any of the functions mentioned above. Once the result is ready the data is

sent to the transmitter block also implemented on the FPGA which transmits data serially

over the RS-232 cable to the computer. Once the data is transmitted, it is received by the

C program running on the computer and the result is displayed on the console.

Verilog Modules

Receiver and
formatting
block

String
operations
block

Transmitter

C code on laptop
which provides strings
for operation and
receives the result Strings for

performing
operations

Result of
string
operations

Figure 3.16: Overall Implementation Methodology

3.8 Timing Measurements

Various timing measurements are performed and computed in order to evaluate

the effectiveness of hardware acceleration of string operations. This section describes

these measurements.

3.8.1 Timing Measurement Of The Software String Functions

 63

We used some of the C Library functions which return various time measures to

determine computation time for our test cases. There are low as well as high resolution

timers available to provide timing measurements. The Functions time() and clock()

can be used together to calculate this parameter. This function returns the elapsed CPU

time since the execution of the program commenced. This value is the total time of the

 64

entire process. The function returns value in units of CPU clock cycles. A constant named

CLOCKS_PER_SEC is defined as a data type of float in the C language header file

time.h that contains the number of CPU clock cycles per second. To determine number

of CPU seconds elapsed, the result is calculated by calling clock() and dividing the

result by CLOCKS_PER_SEC. This generally gives the result in milliseconds, which is

insufficient for our purposes since we are dealing with timing resolutions that are several

orders of magnitude smaller. For this reason, we utilized the high resolution timer

function described in [32].

The high resolution performance timer is called

QueryPerformanceCounter(). This function measures the CPU time from the

point where the execution of program starts. The returned parameter is divided by

number of clock to calculate the actual CPU runtime. The number of CPU clock cycles is

obtained by the function QueryPerformanceFrequency(). This calculated CPU

runtime is the total time of the program including system overhead time.

3.8.2 Timing Measurement Of The Hardware String Functions Using Oscilloscope

To measure the function when it is implemented in hardware, for our case on

FPGA, we added a new output signals to the FPGA circuit that outputs two pulses. One

pulse transitions from logic-0 to logic-1 when the string operations are started and

another pulse transitions from logic-0 to logic-1 when the string operations are

completed. The delta time between these two pulses is measured using an oscilloscope.

DE2 board

Computer (with
Serial port and
QuartusII software)

Serial cable

USB blaster cable

Digital
Oscilloscope

Via probes

Figure 3.17: Timing Measurements On Oscilloscope

 65

 66

Chapter 4

EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Experimental Results

This chapter provides the results and the interpretation of the suggested hardware

accelerated string functions. We compare these results to the amount of runtime required

when the C library functions are used. In addition, theoretical calculations and circuit

simulations using QuartusII tool are also included. The following tables contain the

results obtained for the time measurements for different different string functions. Each

string function is exercised with different data and corresponding timing values are

reported.

Software Runtime Results:

These results are obtained by computing an average of 10,000 runs on a Windows

machine using the Queryperformancetimer() function. The computer used to

obtain these results is a Sony laptop with an Intel Pentium III processor containing 512

MB of RAM running the Windows XP Professional operating system at 1.2GHz. The

detailed software program of the timer is included in Appendix B.

Theoretical Calculations:

The theoretical time for the actual string operations when implemented in

hardware is listed in terms of number of clock cycles.

Two strings used for performing string operations are transmitted as STX

string1 ETX STX string2 ETX. The time required to receive one byte utilizing

the EIA-232C standard in 8N1 format at a baud rate of 115200, is given by:

()

86.80us
us 8.68 10

bit single ofission for transm Timebit stop bit start bits data ofNumber

=
∗=

∗++=ntimeComputatio

Hence, the time to receive two strings of length ‘m’ and ‘n’ is:

86.60us*n 86.60us*m 86.80us*4 ++

The transmission time to transmit the result:

10 x 8.68us =86.80 us.

Sample calculation:

String1: A

String2: A

Time to receive two strings = 4*86.80us + 1*86.60us+ 1*86.60us =520.8 us

Time to transmit result =10 x 8.68us =86.80 us.

Hence the total time for this implementation methodology is Ts+607.6us, where Ts is the

time required for string operations. This Ts is mentioned in terms of number of clock

cycles in the result table.

 67

 68

Simulation Results:

The string functions written in Verilog are compiled and simulated on the

Cyclone FPGA present on the Altera DE2 board using the QuartusII timing simulator.

The screenshots of the simulation results of strcmp function can be found in appendix

as a sample. Some of these results are provided as screen captures in Appendix E.

 Oscilloscope Measurements:

The FPGA board provides two 40-pin expansion headers, GPIO_A and GPIO_B

.Each expansion header provides DC +5V, DC +3.3V and two ground pins, along with

the pins for data transfer which are directly associated with the FPGA chip. Two signals

GPIO_0[0] and GPIO_0[1] from FPGA are connected to the two channels of oscilloscope

(Agilient Infiniium Oscilloscope,1.5GHz) with the help of probes. The ground of these

probes is connected to the ground pin provided by the header. FPGA chip outputs pulses

at the start and the end of string operations. The time difference between these two pulses

is observed and measured on the oscilloscope to find out the actual time required for

string operations on FPGA board.

 69

Strcmp function:

String1

String2

Software
Runtime
Results

(us)

Theoretical
Results

(No. of clock
cycles)

Simulation
Results

(ns)

Oscilloscope
Results

(ns)

A A 1.060 1 20.21 20.25
B A 1.067 1 19.68 20.34

ABCDEFGH ABCDEFGH 1.136 1 20.03 20.6423
ABCDEFGH AABBCEDF 1.134 1 20.15 20.6984

AB ABCDE 1.119 1 20.19 20.6496
ABCD ABCD 1.179 1 20 20.6635

 Strcasecmp function:

String1

String2

Software
Runtime
Results

(us)

Theoretical
Results

(No. of clock
cycles)

Simulation
Results

(ns)

Oscilloscope
Results

(ns)

A A 1.061 1 21.36 20.963
A a 1.058 1 18.71 20.9275

ABCDEFG ABcDEFg 1.122 8 161.2 159.96
ABCDEFG AABBCED 1.130 2 39.57 40.86

Abcde AB 1.119 3 62.3 60.96
Abcd abcd 1.179 4 80.34 80.123

strupr function:

String1

Software
Runtime
Results

(us)

Theoretical
Results
(No. of
clock

cycles)

Simulation
Results (ns)

Oscilloscope
Results (ns)

AbcD 1.131 4 80 80.16
A 1.121 1 19.88 20.192

Abcd 1.171 4 80.56 80.16
ABcDe 1.378 5 100.08 100.18

Ab 1.219 2 39.87 40.16

 70

strlwr function:

String1

Software
Runtime
Results

(us)

Theoretical
Results
(No. of
clock

cycles)

Simulation
Results (ns)

Oscilloscope
Results (ns)

AbcD 1.15 4 80.23 80.23
A 1.129 1 20.07 20.07

Abcd 1.356 4 80.90 80.90
ABcDe 1.449 5 100.13 100.13

AB 1.121 2 39.95 39.95

strlen function:

String1

Software
Runtime
Results

(us)

Theoretical
Results
(No. of
clock

cycles)

Simulation
Results (ns)

Oscilloscope
Results (ns)

A 1.973 1 19.3 19.489
Abcd 1.150 4 79.44 79.5979

ABcDe 1.494 5 99.76 99.42
AB 1.122 2 42.1 39.4019

ABCDEFGH 1.774 8 158.99 159.42

Strchr function:

String1

String2

Software
Runtime
Results

(us)

Theoretical
Results
(No. of
clock

cycles)

Simulation
Results (ns)

Oscilloscope
Results (ns)

ABCD A 1.141 2 40.41 39.805
ABCD a 1.173 2 40.30 39.8314
ABCD C 1.119 2 40.01 39.8415

ABCDB B 1.163 2 40.28 39.8411
ABCDEF D 1.119 2 40.41 39.8313

AbCd d 1.170 2 40.42 39.8646

 71

Strchr function (returns position):

String1

String2

Software
Runtime
Results

(us)

Theoretical
Results
(No. of
clock

cycles)

Simulation
Results (ns)

Oscilloscope
Results (ns)

ABCD A 1.141 2 40.20 40.2509
ABCD a 1.173 2 40.202 40.2846
ABCD C 1.119 2 40.46 40.2202

ABCDB B 1.163 2 39.87 40.2763
ABCDEF D 1.119 2 40.147 40.2846

AbCd d 1.170 2 40.468 40.3013

Strstr function (returns position):

String1

String2

Software
Runtime
Results

(us)

Theoretical
Results
(No. of
clock

cycles)

Simulation
Results

(ns)

Oscilloscope
Results (ns)

ABCD A 1.120 2 40.20 40.313
ABCD a 1.128 5 100.354 100.13
ABCD CD 1.447 4 79.752 81.3013
ABCD BC 1.079 3 59.646 61.16

ABCDEF DE 1.121 5 99.9597 101.13
AbCd CD 1.355 4 100.242 100.18

Strrchr function:

String1

String2

Software
Runtime
Results

(us)

Theoretical
Results
(No. of
clock

cycles)

Simulation
Results (ns)

Oscilloscope
Results (ns)

ABCD A 1.123 2 41.896 40.2520
ABCDB B 1.177 2 41.818 40.2668

ABCDCC C 1.126 2 41.52 40.2622
ABCDCC F 1.176 2 41.91 40.2944

AbCd B 1.184 2 41.88 40.2453

 72

4.2 Analysis

The theoretical results are the ideal expected results from the suggested

implemented technology. These results are stated in terms of number of clock cycles

required to obtain result from a particular string operations block. The Altera DE2 board

has a 50 MHz clock cycle i.e. a clock period of 20 ns; hence all the results are roughly

multiples of 20 ns.

The Verilog descriptions of the string operations are synthesized to the netlist

and are mapped onto the actual device using the QuartusII tool. The simulated results are

very close to the theoretical results stated earlier. These results differ in the range of 0.01

ns to 0.50 ns.

The measurements performed on the actual hardware give the results which

validate the simulated results. A configured FPGA while performing string operations

experiences delays from the realized circuitry such as gates, registers multiplexers etc.

which affect the output by a small amount. These delays include clock to Q output delay

of a register, and pure pin to pin combinational delay, and register to register delay which

is given by addition of clock to Q delay ,longest path delay from Q output to next register

input and setup time of register.

An important point to be noted here is that, the FPGA runs at a clock frequency of

only 50 MHz whereas, the computer on which the string functions are executed in

software, runs at a frequency of the order of GHz. So if we shift to an FPGA operating at

a higher frequency we will definitely achieve a tremendous speed boost. In order to find

the maximum frequency of the design, the designs were mapped to a fast device and

QuartusII Timing Analyzer tool was run. The maximum frequency of various string

 73

operations was found to be in the range of 220MHz - 270MHz, which proves that these

Verilog descriptions are not limited by the clock frequency of 50MHz provided on the

board.

Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

It can be observed from the results given in the chapter 4 that the theoretical

results for string operations match almost exactly with the simulated as well actual

experimental results, obtained from the oscilloscope. It can also be seen that the string

functions yield the results ranging from few nanoseconds to few hundreds of

nanoseconds. These results are minuscule compared to the results obtained from the timer

in software.

Thus, the FPGA implementation of string functions considerably improved the

computation time. The overall average reduction in computation time is observed to be

close to 98%. This clearly supports the hypothesis behind this research that “The

computation time required for string operations using hardware assisted acceleration

should be less than that required on any software”.

However, in this implementation technology the speedup from hardware

acceleration is offset by the slow communication link to the hardware acceleration

platform. The communication standard used in this experimental setup is EIA-232C

which supports the maximum possible baud rate of 115200 bps, which is very slow.

 74

 75

 Therefore, for any particular string application implemented in our prototype system, the

majority of the time is spent in communication and the actual time required for the string

operation is very small. Hence there is significant amount of scope for improving the

communication time.

5.2 Future Work

This section describes how hardware accelerated string functions can be

improved. Building a dedicated interface between the hardware acceleration circuitry and

the computer will allow our approach to become feasible. This dedicated interface would

ensure minimum communication time and hence faster overall computation of string

operations. There are various ways to achieve this and some suggested approaches are

listed below:

Recent Press Release [26] “AMD’s Opteron Processor-Based Systems having

XD1000 FPGA coprocessor module make use of Altera® Stratix II EP2S180 FPGA and

a HyperTransport bus, to increase the processing performance” is a perfect example of

enhancing our prototype implementation.

A further step is to make this kind of FPGA dynamically configurable as per

application. Defining an Application Programmer’s Interface (API) library which will be

a first interface between the user and the hardware. This will also involve fixing the set of

conventions to call these newly implemented functions.

 76

APPENDIX A

C CODE FOR SERIALCOMMUNICATION [31]

#include <stdio.h>

#include <windows.h>

HANDLE handle1;

void ComPortClose()

{

 CloseHandle(handle1);

}

void ComPortOpen()

{

 COMMTIMEOUTS TimeOuts;

 DCB dcb;

handle1 = CreateFile("COM1:",GENERIC_READ | GENERIC_WRITE,

0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

 77

if(handle1==INVALID_HANDLE_VALUE) { printf("\n error2 \n

"); exit(1); }

 if(!SetupComm(handle1, 4096, 4096)) { printf("\n error3 \n

");exit(1); }

 if(!GetCommState(handle1, &dcb)) { printf("\n error4 \n

"); exit(1); }

 dcb.BaudRate = 115200;

 ((DWORD*)(&dcb))[2] = 0x1001; // Com port setting no

flow-control

 dcb.ByteSize = 8; // 8 data bits

 dcb.Parity = NOPARITY; //no parity

 dcb.StopBits = ONESTOPBIT;//1 stop bit

 if(!SetCommState(handle1, &dcb)) { printf("\n error5 \n

"); exit(1); }

 TimeOuts.ReadIntervalTimeout = MAXDWORD;

 TimeOuts.ReadTotalTimeoutMultiplier = 0;

 TimeOuts.ReadTotalTimeoutConstant = 0;

 TimeOuts.WriteTotalTimeoutMultiplier = 0;

 TimeOuts.WriteTotalTimeoutConstant = 0;

 if(!SetCommTimeouts(handle1, &TimeOuts)) { printf("\n

error6 \n "); exit(1);}

 }

 78

DWORD WriteCom(char* Buffer, int Length)

{

 DWORD status;

 if(!WriteFile(handle1, Buffer, Length, &status, NULL))

exit(1);

 return status;

}

void WriteComChar(char byte)

{

 WriteCom(&byte, 1);

}

int ReadCom(char *Buffer, int Length)

{

 DWORD nRec;

 if(!ReadFile(handle1, Buffer, Length, &nRec, NULL))

exit(1);

 return (int)nRec;

 // printf("\n Reading from com port");

}

 79

char ReadComChar()

{

 DWORD nRec;

 char c;

 if(!ReadFile(handle1, &c, 1, &nRec, NULL)) exit(1);

 return nRec ? c : 0;

 // printf("\n Reading character from com port");

}

void main()

{

 char c, s[256],z,str1[256],str2[256];

 int len,tt,i,l1,l2,d;

printf("*************************START

*****************************");

printf("\n\n INTERPRETATION OF RESULTS ");

printf("\n\n RESULT 0 : string/character not found ");

printf("\n\n RESULT 1 : string/character found ");

printf("\n\n RESULT > 0 : length of string ");

printf("\n\n\n Please enter the string1 ");

gets(str1);printf("\n Please enter length of string1 ");

scanf("%d",&l1);

fflush(stdin);printf("\n Please enter the string2 ");

 80

gets(str2);printf("\n Please enter the length of string2

");

scanf("%d",&l2);

ComPortOpen();

printf("\n Opened COM port\n ");

WriteComChar(0x02); WriteCom(str1,l1); WriteComChar(0x03);

printf("\n Transmitted string1 %s",str1);

WriteComChar(0x02); WriteCom(str2,l2); WriteComChar(0x03);

printf("\n Transmitted string2 %s",str2);

sleep(3); i=25;

printf("\n The result of operation is as follows \n RESULT

: ");

while(i>0)

{

c=ReadComChar(); printf("%c",c); i--;

}

ComPortClose(); printf("\n\n Closed COM port\n ");

printf("\n\n\n ********************** END

********************** ");

}

 81

APPENDIX B

C CODE FOR TIME MEASUREMENT [32]

#include <stdio.h>

#include <windows.h>

#include <string.h>

void startTimer(Timer *t);

void stopTimer(Timer *t);

double Convert(LARGE_INTEGER * L);

double getElapsedTime(Timer *timer);

typedef struct {

 LARGE_INTEGER start_timer;

 LARGE_INTEGER stop_timer;

} Timer;

void startTimer(Timer *t) {

QueryPerformanceCounter(&t->start_timer);

}

 82

void stopTimer(Timer *t) {

QueryPerformanceCounter(&t->stop_timer);

}

double Convert(LARGE_INTEGER * L) {

LARGE_INTEGER frequency;

QueryPerformanceFrequency(&frequency);

return ((double)L->QuadPart /(double)frequency.QuadPart);

}

double getElapsedTime(Timer *t) {

LARGE_INTEGER time;

time.QuadPart = t->stop_timer.QuadPart - t-

>start_timer.QuadPart;

return Convert(&time) ;

}

int main(void) {

 Timer tm;

int i,j, len;

 long k=1;

 double difference, sum1=0, sum2=0;

 char *result;

 83

 char *s1 = "Abcdefgh";

 char *s2= "CD";

 char s3[]="AB";

 printf("\n*************You are in the main

program***********\n");

 for(j=0;j<10;j++) {

 for(i=0;i<1000;i++) {

 difference=0;

 startTimer(&tm);

 // len=strcmp(s1,s2);

result=strupr(s3);

 // result=strlwr(s3);

 len=strlen(s1);

 // len=strrstr(s1,s2);

 // result=strrchr(s1,'B');

 // len=strrstr(s1,s2);

// result=strchr(s1,'d');

// result=strstr(s1,"A");

 stopTimer(&tm);

 difference=getElapsedTime(&tm);

 sum1=sum1+difference;

 84

 }

 sum1=sum1/1000;

 sum2=sum2+sum1;

 }

 sum2=sum2/10;

 printf("\nTime required = %0.9lf",sum2);

 printf("\n");

// printf("The result is %d",result-s1+1);

getch();

}

 85

APPENDIX C

VERILOG CODE FOR SERIAL COMMUNICATION [22]

Sender module:

module my_sender

(clk,reset,transmit_data,transmit_data_en,p1_i,p2_i,p3_i,p4

_i,fifo_write_space,sop_data,p1_o,p2_o,p3_o,p4_o);

//parameters

parameter BAUD_COUNTER_WIDTH = 9;

parameter BAUD_TICK_INCREMENT = 9'd1;

parameter BAUD_TICK_COUNT = 9'd433;

parameter HALF_BAUD_TICK_COUNT = 9'd216;

parameter TOTAL_DATA_WIDTH = 10;//11;

parameter DATA_WIDTH = 8;//9;

//Inputs

input clk,p1_i,p2_i,p3_i,p4_i;

input reset;

input [DATA_WIDTH:1]transmit_data;

input transmit_data_en;

 86

//outputs

output reg[7:0]fifo_write_space;

output reg sop_data;

reg serial_data_out;

output reg p1_o,p2_o,p3_o,p4_o;

// Internal Wires

wire shift_data_reg_en;

wire all_bits_transmitted;

wire read_fifo_en;

wire fifo_is_empty;

wire fifo_is_full;

wire [6:0] fifo_used;

wire [DATA_WIDTH:1] data_from_fifo;

// Internal Registers

reg transmitting_data;

reg [DATA_WIDTH:0] data_out_shift_reg;

always @(posedge clk)

begin

 if (reset == 1'b1)

 fifo_write_space <= 8'h00;

 87

else

 fifo_write_space <= 8'h80 - {fifo_is_full,

fifo_used};

end

always @(posedge clk)

begin

 if (reset == 1'b1)

 serial_data_out <= 1'b1;

 else

 serial_data_out <= data_out_shift_reg[0];

end

always @(posedge clk)

begin

 if (reset == 1'b1)

 transmitting_data <= 1'b0;

 else if (all_bits_transmitted == 1'b1)

 begin transmitting_data <= 1'b0; end

//output_ready=1;end PAK

 else if (fifo_is_empty == 1'b0)

 transmitting_data <= 1'b1;

 88

end

always @(posedge clk)

begin

 if (reset == 1'b1)

 data_out_shift_reg <= {(DATA_WIDTH + 1){1'b1}};

 else if (read_fifo_en)

 data_out_shift_reg <= {data_from_fifo, 1'b0};

 else if (shift_data_reg_en)

 data_out_shift_reg <=

 {1'b1, data_out_shift_reg[DATA_WIDTH:1]};

end

always @(posedge clk)

begin

if(all_bits_transmitted ==1)

begin p1_o=0; p2_o=0;p3_o=0; p4_o=0; end

else

begin p1_o=p1_i; p2_o=p2_i;p3_o=p3_i; p4_o=p4_i;

end

end

 89

assign read_fifo_en = ~transmitting_data & ~fifo_is_empty &

~all_bits_transmitted;

//instantiation of other modules

Altera_UP_RS232_Counters_s RS232_Out_Counters_s (

 // Inputs

 .clk (clk),

 .reset (reset),

 .reset_counters

 (~transmitting_data),

 // Outputs

 .baud_clock_rising_edge (shift_data_reg_en),

 .baud_clock_falling_edge (),

 .all_bits_transmitted (all_bits_transmitted)

);

defparam

 RS232_Out_Counters_s.BAUD_COUNTER_WIDTH =

BAUD_COUNTER_WIDTH,

 RS232_Out_Counters_s.BAUD_TICK_INCREMENT =

BAUD_TICK_INCREMENT,

 90

 RS232_Out_Counters_s.BAUD_TICK_COUNT =

BAUD_TICK_COUNT,

 RS232_Out_Counters_s.HALF_BAUD_TICK_COUNT =

HALF_BAUD_TICK_COUNT,

 RS232_Out_Counters_s.TOTAL_DATA_WIDTH =

TOTAL_DATA_WIDTH;

Altera_UP_SYNC_FIFO_s RS232_Out_FIFO_s (

 // Inputs

 .clk (clk),

 .reset (reset),

 .write_en (transmit_data_en & ~fifo_is_full),

 .write_data (transmit_data),

 .read_en (read_fifo_en),

 // Outputs

 .fifo_is_empty (fifo_is_empty),

 .fifo_is_full (fifo_is_full),

 .words_used (fifo_used),

 .read_data (data_from_fifo)

);

defparam

 RS232_Out_FIFO_s.DATA_WIDTH = DATA_WIDTH,

 91

 RS232_Out_FIFO_s.DATA_DEPTH = 128,

 RS232_Out_FIFO_s.ADDR_WIDTH = 7;

endmodule

Bit Counter module:

module Altera_UP_RS232_Counters_s

(clk,reset,reset_counters,

 baud_clock_rising_edge,baud_clock_falling_edge,all_bit

s_transmitted);

parameter BAUD_COUNTER_WIDTH = 9;

parameter BAUD_TICK_INCREMENT = 9'd1;

parameter BAUD_TICK_COUNT = 9'd433;

parameter HALF_BAUD_TICK_COUNT = 9'd216;

parameter TOTAL_DATA_WIDTH = 11;

// Inputs

input clk,reset,reset_counters;

// Outputs

output reg baud_clock_rising_edge;

 92

output reg baud_clock_falling_edge;

output reg all_bits_transmitted;

// Internal Registers

reg [(BAUD_COUNTER_WIDTH - 1):0] baud_counter;

reg [3:0] bit_counter;

always @(posedge clk)

begin

 if (reset == 1'b1)

 baud_counter <= {BAUD_COUNTER_WIDTH{1'b0}};

 else if (reset_counters)

 baud_counter <= {BAUD_COUNTER_WIDTH{1'b0}};

 else if (baud_counter == BAUD_TICK_COUNT)

 baud_counter <= {BAUD_COUNTER_WIDTH{1'b0}};

 else

 baud_counter <= baud_counter +

BAUD_TICK_INCREMENT;

end

always @(posedge clk)

begin

 if (reset == 1'b1)

 93

 baud_clock_rising_edge <= 1'b0;

 else if (baud_counter == BAUD_TICK_COUNT)

 baud_clock_rising_edge <= 1'b1;

 else

 baud_clock_rising_edge <= 1'b0;

end

always @(posedge clk)

begin

 if (reset == 1'b1)

 baud_clock_falling_edge <= 1'b0;

 else if (baud_counter == HALF_BAUD_TICK_COUNT)

 baud_clock_falling_edge <= 1'b1;

 else

 baud_clock_falling_edge <= 1'b0;

end

always @(posedge clk)

begin

 if (reset == 1'b1)

 bit_counter <= 4'h0;

 else if (reset_counters)

 bit_counter <= 4'h0;

 94

 else if (bit_counter == TOTAL_DATA_WIDTH)

 bit_counter <= 4'h0;

 else if (baud_counter == BAUD_TICK_COUNT)

 bit_counter <= bit_counter + 4'h1;

end

always @(posedge clk)

begin

 if (reset == 1'b1)

 all_bits_transmitted <= 1'b0;

 else if (bit_counter == TOTAL_DATA_WIDTH)

 all_bits_transmitted <= 1'b1;

 else

 all_bits_transmitted <= 1'b0;

end

endmodule

module Altera_UP_SYNC_FIFO_s

(clk,reset,write_en,write_data,read_en,

 fifo_is_empty,fifo_is_full,words_used,read_data);

parameter DATA_WIDTH = 32;

 95

parameter DATA_DEPTH = 128;

parameter ADDR_WIDTH = 7;

// Inputs

input clk, reset,write_en,read_en;

input [DATA_WIDTH:1]write_data;

// Outputs

output fifo_is_empty, fifo_is_full;

output [ADDR_WIDTH:1] words_used;

output [DATA_WIDTH:1] read_data;

//lpm module instantiation

scfifo Sync_FIFO (

 // Inputs

 .clock (clk),

 .sclr (reset),

 .data (write_data),

 .wrreq (write_en),

 .rdreq (read_en),

 96

 // Outputs

 .empty (fifo_is_empty),

 .full (fifo_is_full),

 .usedw (words_used),

 .q (read_data)

 ,

 .aclr (),

 .almost_empty (),

 .almost_full ()

);

defparam

 Sync_FIFO.add_ram_output_register = "OFF",

 Sync_FIFO.intended_device_family = "Cyclone II",

 Sync_FIFO.lpm_numwords = DATA_DEPTH,

 Sync_FIFO.lpm_showahead = "ON",

 Sync_FIFO.lpm_type = "scfifo",

 Sync_FIFO.lpm_width = DATA_WIDTH,

 Sync_FIFO.lpm_widthu = ADDR_WIDTH,

 Sync_FIFO.overflow_checking = "OFF",

 Sync_FIFO.underflow_checking = "OFF",

 Sync_FIFO.use_eab = "ON";

always @(posedge clk)

 97

begin

case(tr_en)

0:sop_out=1;

1:sop_out=serial_data_out & 1;

default:sop_out=1;

endcase

end

endmodule

Receiver module:

module my_rx

(clk,reset,serial_data_in,receive_data_en,fifo_read_availab

le,output_ready,received_data,hex0,hex1,p1,p2);

parameter BAUD_COUNTER_WIDTH = 9;

parameter BAUD_TICK_INCREMENT = 9'd1;

parameter BAUD_TICK_COUNT = 9'd433;

parameter HALF_BAUD_TICK_COUNT = 9'd216;

parameter TOTAL_DATA_WIDTH = 10;//11;

parameter DATA_WIDTH = 8;//9;

// Inputs

input clk,reset,serial_data_in,receive_data_en;

//outputs

output reg [7:0] fifo_read_available;

 98

output [(DATA_WIDTH - 1):0] received_data;

output output_ready;

output reg [6:0]hex0;

output reg [6:0]hex1;

output reg p2;

output wire p1;

//registers

reg [3:0] chek0;

reg [3:0] chek1;

reg receiving_data;

reg [(TOTAL_DATA_WIDTH - 1):0] data_in_shift_reg;

reg output_ready;

reg [7:0] display;

assign p1=receive_data_en;

// Wires

wire

shift_data_reg_en,all_bits_received,fifo_is_empty,fifo_is_f

ull;

wire [6:0] fifo_used;

always @(posedge clk)

begin

 if (reset == 1'b1)

 fifo_read_available <= 8'h00;

 99

 else

 fifo_read_available <= {fifo_is_full, fifo_used};

end

always @(posedge clk)

begin

 if (reset == 1'b1)

 begin receiving_data <= 1'b0; end

 else if (all_bits_received == 1'b1)

 receiving_data <= 1'b0;

 else if (serial_data_in == 1'b0)

 begin receiving_data <= 1'b1; p2=1; end

end

always @(posedge clk)

begin

 if (reset == 1'b1)

 data_in_shift_reg <= {TOTAL_DATA_WIDTH{1'b0}};

 else if (shift_data_reg_en)

 data_in_shift_reg <=

 {serial_data_in,

data_in_shift_reg[(TOTAL_DATA_WIDTH - 1):1]};

end

Altera_UP_RS232_Counters_r RS232_In_Counters_r (

 100

 // Inputs

 .clk (clk),

 .reset (reset),

 .reset_counters (~receiving_data),

 // Outputs

 .baud_clock_rising_edge (),

 .baud_clock_falling_edge (shift_data_reg_en),

 .all_bits_transmitted (all_bits_received)

);

defparam

 RS232_In_Counters_r.BAUD_COUNTER_WIDTH =

BAUD_COUNTER_WIDTH,

 RS232_In_Counters_r.BAUD_TICK_INCREMENT =

BAUD_TICK_INCREMENT,

 RS232_In_Counters_r.BAUD_TICK_COUNT =

BAUD_TICK_COUNT,

 RS232_In_Counters_r.HALF_BAUD_TICK_COUNT =

HALF_BAUD_TICK_COUNT,

 RS232_In_Counters_r.TOTAL_DATA_WIDTH =

TOTAL_DATA_WIDTH;

Altera_UP_SYNC_FIFO_r RS232_In_FIFO_r (

 // Inputs

 101

 .clk (clk),

 .reset (reset),

 .write_en (all_bits_received & ~fifo_is_full),

 .write_data (data_in_shift_reg[(DATA_WIDTH +

1):1]),

 .read_en (receive_data_en & ~fifo_is_empty),

 // Outputs

 .fifo_is_empty (fifo_is_empty),

 .fifo_is_full (fifo_is_full),

 .words_used (fifo_used),

 .read_data (received_data)

);

defparam

 RS232_In_FIFO_r.DATA_WIDTH = DATA_WIDTH,

 RS232_In_FIFO_r.DATA_DEPTH = 128,

 RS232_In_FIFO_r.ADDR_WIDTH = 7;

always @(receive_data_en)

begin

if(received_data!=0)

 102

begin display=received_data; chek0=display[3:0];

chek1=display[7:4]; end

else

begin display=0; chek0=display[3:0]; chek1=display[7:4];

end

//if(chek!=0)

end

always @(posedge clk)

begin

case(chek0)

 4'h1: hex0 = 7'b100100100;

 4'h3: hex0 = 7'b0110000;

 4'h4: hex0 = 7'b0011001;

 4'h5: hex0 = 7'b0010010;

 4'h6: hex0 = 7'b0000010;

 4'h7: hex0 = 7'b1111000;

 4'h8: hex0 = 7'b0000000;

 4'h9: hex0 = 7'b0011000;

 4'ha: hex0 = 7'b0001000;

 4'hb: hex0 = 7'b0000011;

 103

 4'hc: hex0 = 7'b1000110;

 4'hd: hex0 = 7'b0100001;

 4'he: hex0 = 7'b0000110;

 4'hf: hex0 = 7'b0001110;

 4'h0: hex0 = 7'b1000000; //displays 0

default : hex0 = 7'b1000000;

 endcase

end

always @(posedge clk)

begin

case(chek1)

 4'h1: hex1 = 7'b100100100;

 4'h3: hex1 = 7'b0110000;

 4'h4: hex1 = 7'b0011001;

 4'h5: hex1 = 7'b0010010;

 4'h6: hex1 = 7'b0000010;

 4'h7: hex1 = 7'b1111000;

 4'h8: hex1 = 7'b0000000;

 4'h9: hex1 = 7'b0011000;

 104

 4'ha: hex1 = 7'b0001000;

 4'hb: hex1 = 7'b0000011;

 4'hc: hex1 = 7'b1000110;

 4'hd: hex1 = 7'b0100001;

 4'he: hex1 = 7'b0000110;

 4'hf: hex1 = 7'b0001110;

 4'h0: hex1 = 7'b1000000; //displays 0

default : hex1 = 7'b1000000;

 endcase

end

always @(received_data)

begin

if(received_data==0)

output_ready=0;

else

output_ready=1;

end

endmodule

 105

Buffer module:

module buff (

clk,reset,in_data,enable,p1_i,p2_i,p3_i,p4_i,out_data,stop,

hex4,hex5,p1_o,p2_o,p3_o,p4_o);

input clk,reset,p1_i,p2_i,p3_i,p4_i;

input [7:0] in_data;

input enable;

output reg [7:0] out_data;

output reg stop;

reg [1:0] ctr;

reg [3:0] lsb;

reg [3:0] msb;

output reg [6:0]hex4;

output reg [6:0]hex5;

output wire p1_o;

output wire p2_o;

output wire p3_o;

output wire p4_o;

assign p1_o=p1_i;

assign p2_o=p2_i;

assign p3_o=p3_i;

assign p4_o=p4_i;

 always @(posedge clk)

 106

 begin

 if(reset==0)

 begin

 if(in_data!=0 && enable==1)

 begin

 out_data=in_data;

 lsb=out_data[3:0];

 msb=out_data[7:4];

 case(ctr)

 0: stop=1;//0

 1: stop=0; //1

 default:stop=0; //1

 endcase

 ctr=ctr+1;

 if(ctr==0)

 ctr=1;

 end

 end

 end

always @(posedge clk)

begin

case(lsb)

 107

 4'h1: hex4 = 7'b1111001;

 4'h2: hex4=7'b0100100;

 4'h3: hex4 = 7'b0110000;

 4'h4: hex4 = 7'b0011001;

 4'h5: hex4 = 7'b0010010;

 4'h6: hex4 = 7'b0000010;

 4'h7: hex4 = 7'b1111000;

 4'h8: hex4 = 7'b0000000;

 4'h9: hex4 = 7'b0011000;

 4'ha: hex4 = 7'b0001000;

 4'hb: hex4 = 7'b0000011;

 4'hc: hex4 = 7'b1000110;

 4'hd: hex4 = 7'b0100001;

 4'he: hex4 = 7'b0000110;

 4'hf: hex4 = 7'b0001110;

 4'h0: hex4 = 7'b1000000; //displays 0

default : hex4 = 7'b1000000;

 endcase

end

always @(posedge clk)

begin

case(msb)

 108

 4'h1: hex5 = 7'b1111001;

 4'h2: hex5=7'b0100100;

 4'h3: hex5 = 7'b0110000;

 4'h4: hex5 = 7'b0011001;

 4'h5: hex5 = 7'b0010010;

 4'h6: hex5 = 7'b0000010;

 4'h7: hex5 = 7'b1111000;

 4'h8: hex5 = 7'b0000000;

 4'h9: hex5 = 7'b0011000;

 4'ha: hex5 = 7'b0001000;

 4'hb: hex5 = 7'b0000011;

 4'hc: hex5 = 7'b1000110;

 4'hd: hex5 = 7'b0100001;

 4'he: hex5 = 7'b0000110;

 4'hf: hex5 = 7'b0001110;

 4'h0: hex5 = 7'b1000000; //displays 0

default : hex5 = 7'b1000000;

 endcase

end

endmodule

 109

//This code takes the input received on RXD, removes

//delimiters and outputs 2 strings for operations.

Formatting Module:

module proc

(clk,reset,start,str_in,p1_i,p2_i,str11_o,str22,str_ready,p

1_o,p2_o,p3,num,pulse);

//inputs

input clk,p1_i,p2_i,start,reset;

input [7:0] str_in;

//outputs

output reg [63:0] str11_o;

output reg [63:0] str22 ;

output wire p1_o,p2_o;

output reg p3; output reg [3:0] num; output reg pulse;

output reg str_ready;

parameter stx=2;

parameter etx=3;

reg st1,see;

reg [63:0] str1;

reg [63:0] str11;

reg [4:0]counter;

reg go,other;

assign p1_o=p1_i;

 110

assign p2_o=p2_i;

always @(posedge clk)

begin

if(reset==0 && start==1 && str_in!=0)

begin

case(counter)

0: begin see=1; end//stx

1: begin if (str_in != etx && str_in !=0 && str_in!=stx)

str1[63:56]=str_in;

 else begin str1=0; go=1; end end

2: begin if (str_in != etx && str_in !=0 && str_in!=stx)

str1[55:48]=str_in;

 else begin str1[55:0]=0;go=1; end end

3: begin if (str_in != etx && str_in !=0 && str_in!=stx)

str1[47:40]=str_in;

 else begin str1[47:0]=0; go=1; end end

4: begin if (str_in != etx && str_in !=0 && str_in!=stx)

str1[39:32]=str_in;

 else begin str1[39:0]=0; go=1; end end

5: begin if (str_in != etx && str_in !=0 && str_in!=stx)

str1[31:24]=str_in;

 else begin str1[31:0]=0; go=1; end end

 111

6: begin if (str_in != etx && str_in !=0 && str_in!=stx)

str1[23:16]=str_in;

 else begin str1[23:0]=0; go=1; end end

7: begin if (str_in != etx && str_in !=0 && str_in!=stx)

str1[15:8]=str_in;

 else begin str1[15:0]=0; go=1; end end

8: begin if (str_in != etx && str_in !=0 && str_in!=stx)

str1[7:0]=str_in;

 else begin str1[7:0]=0;go=1; end end

9: begin if(other==0)begin str11=str1; other=1;str1=0; end

else begin str22=str1; str11_o=str11;other=0;

str1=0;str_ready=1;p3=1;end end //etx

10: begin counter=10;end

default: begin str11=0;

str22=0;go=0;counter=0;other=0;str1=0;str_ready=0;p3=0;end

endcase //inner case

counter=counter+1;

if(go==1) begin if(other==0) begin str11=str1;

other=1;go=0;str1=0;counter=0;end else begin if(other==1)

begin str22=str1;

str11_o=str11;other=0;str_ready=1;go=0;str1=0;counter=0;p3=

1; end end end

if(counter==10)

 112

counter=0;

end

if(reset==1) begin str_ready=0; str11_o=0; str22=0; end

end //always end

always@(posedge clk) begin

if(str_in==etx) begin num=num+1;

if(num!=0 && (num%2)==0) pulse=1;

else pulse=0;

end end

endmodule

 113

APPENDIX D

VERILOG CODES FOR STRING OPERATIONS

Strcmp Function:

module

str_cmp(clk,reset,in1,in2,result,cmp_start,p1_i,p2_i,p3_i,s

t_tr,hex6,hex7,p1_o,p2_o,p3_o,p4);

//inputs

input [63:0] in1;

input [63:0] in2;

input clk,reset,cmp_start,p1_i,p2_i,p3_i;

//outputs

output [7:0]result;

output st_tr; //start transmission

output [6:0]hex6;

output [6:0]hex7;

output reg p4;

output wire p1_o,p2_o,p3_o;

//registers

reg st_tr;

 114

reg [63:0] middle;

reg [7:0]result;

reg [3:0] lsb;

reg [3:0] msb;

reg [6:0]hex6;

reg [6:0]hex7;

assign p1_o=p1_i;

assign p2_o=p2_i;

assign p3_o=p3_i;

always @(posedge clk)

begin

if(reset==0 && cmp_start==1)

begin

middle=in1 ^ in2;

 if (middle==0)

 begin result=49; st_tr=1; lsb[3:0]=result[3:0];

msb[3:0]=result[7:4]; p4=1;end //result=1; ascii 1

//result=49;

 else

begin result=48; st_tr=1;lsb[3:0]=result[3:0];

msb[3:0]=result[7:4];p4=1;end//result=0; ascii 0

//result=48;

end

 115

else

begin

result=0;st_tr=0;lsb[3:0]=9; msb[3:0]=9;p4=0;

end

end

always @(posedge clk)

begin

case(lsb)

 4'h1: hex6 = 7'b1111001;

 4'h2: hex6=7'b0100100;

 4'h3: hex6 = 7'b0110000;

 4'h4: hex6 = 7'b0011001;

 4'h5: hex6 = 7'b0010010;

 4'h6: hex6 = 7'b0000010;

 4'h7: hex6 = 7'b1111000;

 4'h8: hex6 = 7'b0000000;

 4'h9: hex6 = 7'b0011000;

 4'ha: hex6 = 7'b0001000;

 4'hb: hex6 = 7'b0000011;

 4'hc: hex6 = 7'b1000110;

 4'hd: hex6 = 7'b0100001;

 4'he: hex6 = 7'b0000110;

 116

 4'hf: hex6 = 7'b0001110;

 4'h0: hex6 = 7'b1000000; //displays 0

 default : hex6 = 7'b1000000;

 endcase

end

always @(posedge clk)

begin

case(msb)

 4'h1: hex7 = 7'b1111001;

 4'h2: hex7=7'b0100100;

 4'h3: hex7 = 7'b0110000;

 4'h4: hex7 = 7'b0011001;

 4'h5: hex7 = 7'b0010010;

 4'h6: hex7 = 7'b0000010;

 4'h7: hex7 = 7'b1111000;

 4'h8: hex7 = 7'b0000000;

 4'h9: hex7 = 7'b0011000;

 4'ha: hex7 = 7'b0001000;

 4'hb: hex7 = 7'b0000011;

 4'hc: hex7 = 7'b1000110;

 4'hd: hex7 = 7'b0100001;

 4'he: hex7 = 7'b0000110;

 117

 4'hf: hex7 = 7'b0001110;

 4'h0: hex7 = 7'b1000000; //displays 0

 default : hex7 = 7'b1000000;

 endcase

end

endmodule

strcasecmp Function:

module

IC(clk,reset,str1,str2,st_ic,p1_i,p2_i,p3_i,result,done,p1_

o,p2_o,p3_o,hex6,hex7);

input reset,clk,st_ic,p1_i,p2_i,p3_i;

output [7:0] result;

input [63:0] str1;

input [63:0] str2;

reg [7:0] result;

reg [63:0] str_and;

reg [63:0] str_xor;

reg [7:0] counter;

reg [63:0] str22;

reg [3:0] msb;

output reg [6:0]hex6;

reg [3:0] lsb;

 118

output reg [6:0]hex7;

output reg done;

output wire p1_o,p2_o,p3_o;

assign p1_o=p1_i;assign p2_o=p2_i;assign p3_o=p3_i;

always @(posedge clk)

begin

if(reset==1)

begin str_and=0; str_xor=0; counter=0; str22=str2;

done=0; end

else begin

if(st_ic==1) begin

str_xor=str1 ^ str2;

str_and=str1 & str2;

if(str_xor==0 && str_and==str1 && str1!=0 && str2!=0)

begin result=49; done=1;lsb[3:0]=result[3:0];end//string

found result=1;

else

begin

counter=counter+1;

if(str1==0 && str2==0)

begin result=48;counter=10; done=0;

lsb[3:0]=result[3:0];end //result=0;

case (counter)

 119

1: begin

if(str2[63:56]==32 || (str2[63:56]==str1[63:56])) begin

str22[63:56]=str1[63:56]; end

if(str2[63:56]!=str1[63:56]) begin

if(str2[63:56]>96 && str2[63:56]<123 && str2[63:56]!=32)

 begin str22[63:56]=str2[63:56]-32; end

if(str2[63:56]>64 && str2[63:56]<91 && str2[63:56]!=32)

 begin str22[63:56]=str2[63:56]+32; end

if(str22[63:56]!=str1[63:56]) begin result=48; counter=10;

done=1; lsb[3:0]=result[3:0];end else //begin

if(str2[55:0]==0) begin result=49; done=1; end end end

begin if(str2[55:0]==0 && str1[55:0]!=0) begin result=48;

done=1; lsb[3:0]=result[3:0];end if(str2[55:0]==0 &&

str1[55:0]==0)begin

result=49;done=1;lsb[3:0]=result[3:0];end end end

end

2: begin if(str2[55:48]==32 ||

(str2[55:48]==str1[55:48])) begin

str22[55:48]=str1[55:48]; end

if(str2[55:48]!=str1[55:48]) begin

if(str2[55:48]>96 && str2[55:48]<123 && str2[55:48]!=32)

 begin str22[55:48]=str2[55:48]-32; end

if(str2[55:48]>64 && str2[55:48]<91 && str2[55:48]!=32)

 120

 begin str22[55:48]=str2[55:48]+32; end

if(str22[55:48]!=str1[55:48]) begin result=48; counter=10;

done=1; lsb[3:0]=result[3:0];end else //begin

if(str2[47:0]==0) begin result=49; done=1; end end end

begin if(str2[47:0]==0 && str1[47:0]!=0) begin result=48;

done=1;lsb[3:0]=result[3:0]; end if(str2[47:0]==0 &&

str1[47:0]==0)begin

result=49;done=1;lsb[3:0]=result[3:0];end end end end

3: begin if(str2[47:40]==32 ||

(str2[47:40]==str1[47:40])) begin

str22[47:40]=str1[47:40]; end

if(str2[47:40]!=str1[47:40]) begin

if(str2[47:40]>96 && str2[47:40]<123 && str2[47:40]!=32)

begin str22[47:40]=str2[47:40]-32; end

if(str2[47:40]>64 && str2[47:40]<91 && str2[47:40]!=32)

begin str22[47:40]=str2[47:40]+32; end

if(str22[47:40]!=str1[47:40])

begin result=48; counter=10; done=1;

lsb[3:0]=result[3:0];end else

begin if(str2[39:0]==0 && str1[39:0]!=0) begin result=48;

done=1; lsb[3:0]=result[3:0];end if(str2[39:0]==0 &&

str1[39:0]==0)begin

result=49;done=1;lsb[3:0]=result[3:0];end end end end

 121

4: begin if(str2[39:32]==32 || (str2[39:32]==str1[39:32]))

begin str22[39:32]=str1[39:32]; end

if(str2[39:32]!=str1[39:32])begin

if(str2[39:32]>96 && str2[39:32]<123 && str2[39:32]!=32)

str22[39:32]=str2[39:32]-32;

if(str2[39:32]>64 && str2[39:32]<91 && str2[39:32]!=32)

str22[39:32]=str2[39:32]+32;

if(str22[39:32]!=str1[39:32])

begin result=48; counter=10; done=1;

lsb[3:0]=result[3:0];end

else

begin if(str2[31:0]==0 && str1[31:0]!=0) begin result=48;

done=1; lsb[3:0]=result[3:0];end if(str2[31:0]==0 &&

str1[31:0]==0)begin

result=49;done=1;lsb[3:0]=result[3:0];end end end end

5: begin if(str2[31:24]==32 || (str2[31:24]==str1[31:24]))

begin str22[31:24]=str1[31:24]; end

if(str2[31:24]!=str1[31:24])begin

if(str2[31:24]>96 && str2[31:24]<123 && str2[31:24]!=32)

str22[31:24]=str2[31:24]-32;

if(str2[31:24]>64 && str2[31:24]<91 && str2[31:24]!=32)

str22[31:24]=str2[31:24]+32;

 122

if(str22[31:24]!=str1[31:24]) begin result=48; counter=10;

done=1;lsb[3:0]=result[3:0]; end

else begin if(str2[23:0]==0 && str1[23:0]!=0) begin

result=48; done=1; lsb[3:0]=result[3:0];end

if(str2[23:0]==0 && str1[23:0]==0)begin

result=49;done=1;lsb[3:0]=result[3:0];end end end end

6: begin

if(str2[23:16]==32 || (str2[23:16]==str1[23:16])) begin

str22[23:16]=str1[23:16]; end

if(str2[23:16]!=str1[23:16])

begin

if(str2[23:16]>96 && str2[23:16]<123 && str2[23:16]!=32)

str22[23:16]=str2[23:16]-32;

if(str2[23:16]>64 && str2[23:16]<91 && str2[23:16]!=32)

str22[23:16]=str2[23:16]+32;

if(str22[23:16]!=str1[23:16])

begin result=48; counter=10; done=1; end else

begin if(str2[15:0]==0 && str1[15:0]!=0) begin result=48;

done=1; lsb[3:0]=result[3:0];end if(str2[15:0]==0 &&

str1[15:0]==0)begin

result=49;done=1;lsb[3:0]=result[3:0];end end end end

7: begin

 123

if(str2[15:8]==32 || (str2[15:8]==str1[15:8])) begin

str22[15:8]=str1[15:8]; end

if(str2[15:8]!=str1[15:8])

begin

if(str2[15:8]>96 && str2[15:8]<123 && str2[15:8]!=32)

str22[15:8]=str2[15:8]-32;

if(str2[15:8]>64 && str2[15:8]<91 && str2[15:8]!=32)

str22[15:8]=str2[15:8]+32;

if(str22[15:8]!=str1[15:8])

begin result=48; counter=10; done=1;

lsb[3:0]=result[3:0];end else

begin if(str2[7:0]==0 && str1[7:0]!=0) begin result=48;

done=1;lsb[3:0]=result[3:0]; end if(str2[7:0]==0 &&

str1[7:0]==0)begin

result=49;done=1;lsb[3:0]=result[3:0];end end end

end

 8: begin

if(str2[7:0]==32 || (str2[7:0]==str1[7:0])) begin

str22[7:0]=str1[7:0]; end

if(str2[7:0]!=str1[7:0])

begin

if(str2[7:0]>96 && str2[7:0]<123 && str2[7:0]!=32)

str22[7:0]=str2[7:0]-32;

 124

if(str2[7:0]>64 && str2[7:0]<91 && str2[7:0]!=32)

str22[7:0]=str2[7:0]+32;

if(str22[7:0]!=str1[7:0])

begin result=48; counter=10; lsb[3:0]=result[3:0];

done=1; end else begin result=49;done=1;

lsb[3:0]=result[3:0];end end //result=0;

end

9: begin result=49; lsb[3:0]=result[3:0]; done=1; end

10: begin str22=str2; done=1; end

11: begin done=1; counter=11;end

default: counter=11; endcase end end else begin

done=0;counter=0; end end //else end

end //always end

always @(posedge clk)

begin

msb=0;

case(msb)

 4'h1: hex7 = 7'b1111001;

 4'h2: hex7 = 7'b0100100;

 4'h3: hex7 = 7'b0110000;

 4'h4: hex7 = 7'b0011001;

 4'h5: hex7 = 7'b0010010;

 4'h6: hex7 = 7'b0000010;

 125

 4'h7: hex7 = 7'b1111000;

 4'h8: hex7 = 7'b0000000;

 4'h9: hex7 = 7'b0011000;

 4'ha: hex7 = 7'b0001000;

 4'hb: hex7 = 7'b0000011;

 4'hc: hex7 = 7'b1000110;

 4'hd: hex7 = 7'b0100001;

 4'he: hex7 = 7'b0000110;

 4'hf: hex7 = 7'b0001110;

 4'h0: hex7 = 7'b1000000; //displays 0

default : hex7 = 7'b1000000;

 endcase

end

always @(posedge clk)

begin

case(lsb)

 4'h1: hex6 = 7'b1111001;

 4'h2: hex6= 7'b0100100;

 4'h3: hex6 = 7'b0110000;

 4'h4: hex6 = 7'b0011001;

 4'h5: hex6 = 7'b0010010;

 4'h6: hex6 = 7'b0000010;

 4'h7: hex6 = 7'b1111000;

 126

 4'h8: hex6 = 7'b0000000;

 4'h9: hex6 = 7'b0011000;

 4'ha: hex6 = 7'b0001000;

 4'hb: hex6 = 7'b0000011;

 4'hc: hex6 = 7'b1000110;

 4'hd: hex6 = 7'b0100001;

 4'he: hex6 = 7'b0000110;

 4'hf: hex6 = 7'b0001110;

 4'h0: hex6 = 7'b1000000; //displays 0

default : hex6 = 7'b1000000;

 endcase end

endmodule

Strlen Function:

module

length(clk,reset,str1,start_l,,p1_i,p2_i,p3_i,length,done,p

1_o,p2_o,p3_o,p4,done1);

//inputs

input reset,clk,start_l,p1_i,p2_i,p3_i;

input [63:0] str1;

//outputs

output reg done,done1;

output reg [7:0] length;

 127

output reg p4;

output wire p1_o,p2_o,p3_o;

//registers

reg [3:0] counter;

reg [63:0] str_im;

reg [63:0] str_or;

assign p1_o= p1_i;

assign p2_o= p2_i;

assign p3_o= p3_i;

always @(posedge clk)

begin

if(reset==1)

begin

str_im=0; counter=0;length=48;done=0;done1=0; //length=0;

end

else

begin

if(start_l==1) begin

counter=counter+1;

if(str1==0)

begin length=48; counter=9 ; done=0;done1=0;end //length=0;

 128

case (counter)

1: begin

str_im[63:56]=str1[63:56];

str_im[55:0]=0;

str_or=str_im | str1;

if (str_or==str_im)

begin length=49; done =1; done1 =1;counter=9;end

else

done=0;

end

2: begin

if(done!=1) begin

str_im[63:48]=str1[63:48];

str_im[47:0]=0;

str_or=str_im | str1;

if (str_or==str_im)

begin length=50; done =1;done1 =1;counter=9; end //length 2

else

done=0;

end

else

begin

counter=9;

 129

end

end

3: begin

if(done!=1) begin

str_im[63:40]=str1[63:40];

str_im[39:0]=0;

str_or=str_im | str1;

if (str_or==str_im) begin length=51; done =1;done1

=1;counter=9; end //length 3

else begin done=0; end

end

else

begin

counter=9;

end

end

4: begin

if(done!=1) begin

str_im[63:32]=str1[63:32];

str_im[31:0]=0;

str_or=str_im | str1;

if (str_or==str_im)

 130

begin length=52; done =1; counter=9;done1 =1; end //length

//4

else

done=0;

end

else

begin

counter=9;

end

end

5: begin

if(done!=1) begin

str_im[63:24]=str1[63:24];

str_im[23:0]=0;

str_or=str_im | str1;

if (str_or==str_im)

begin length=53; done =1; counter=9;done1 =1; end

//length 5

else

done=0;

end

else

begin

 131

counter=9;

end

end

6: begin

if(done!=1) begin

str_im[63:16]=str1[63:16];

str_im[15:0]=0;

str_or=str_im | str1;

if (str_or==str_im)

begin length=54; done =1; counter=9;done1 =1; end

//length 6

else

done=0;

end

else

begin

counter=9;

end

end

7: begin

if(done!=1) begin

str_im[63:8]=str1[63:8];

 132

str_im[7:0]=0;

str_or=str_im | str1;

if (str_or==str_im)

begin length=55; done =1;counter=9; done1 =1;end //length 7

else

done=0;

end

else

begin

counter=9;

end

end

8: begin

if(done!=1) begin

str_im[63:0]=str1[63:0];

str_or=str_im | str1;

if (str_or==str_im)

begin length=56; done =1;counter=9;done1 =1; end //length 8

else

done=0;

end

else

begin

 133

counter=9;

end

end

default: begin counter=9;done=0; done1 =1;end

endcase

end

else //else of start_l

begin

length=48;done1 =0;//length=0;

end

end //else of reset

if(start_l==0)begin done1=0; counter=0; done=0; end

end //always end endmodule

strupr Function:

module

to_uppercase(clk,reset,str1,start_conv,p1_i,p2_i,p3_i,str_o

ut1,done,start_u,p1_o,p2_o,p3_o,p4);

//inputs

input reset,clk,start_conv;

input [63:0] str1;

input p1_i,p2_i,p3_i;

 134

//outputs

output reg done;

output reg start_u,p4;

output [7:0] str_out1;

output wire p1_o,p2_o,p3_o;

//registers

reg [7:0] str_out1;

reg [3:0] counter;

assign p1_o= p1_i;

assign p2_o= p2_i;

assign p3_o= p3_i;

always @(posedge clk)

begin

if(reset==1)

begin

counter=0;

str_out1=0;

start_u=0;

end

else

begin

if(start_conv==1)begin

counter=counter+1;

 135

case(counter)

1:

begin

if(str1[63:56]!=0) begin

if(str1[63:56]>96 && str1[63:56]<123 &&

str1[63:56]!=32)

 begin

 str_out1=str1[63:56]-32; //make it capital

 end

 else

 str_out1=str1[63:56];

done=1;

start_u=1;p4=1;

end

else

begin

start_u=0;p4=0;

done=1;

end

end

2:

begin

 if(str1[55:48]!=0)

 136

 begin

if(str1[55:48]>96 && str1[55:48]<123 &&

str1[55:48]!=32)

 begin

 str_out1=str1[55:48]-32; //make it capital

 end

else

str_out1=str1[55:48];

done=1;

start_u=1;

p4=1;

end

else

begin

start_u=0;

done=1;

p4=0;

end

end

3:

begin

if(str1[47:40]!=0) begin

 137

 if(str1[47:40]>96 && str1[47:40]<123 &&

str1[47:40]!=32)

 begin

 str_out1=str1[47:40]-32; //make it capital

 end

else

str_out1=str1[47:40];

done=1;

start_u=1;

p4=1;

end

else

begin

start_u=0;

done=1;

p4=0;

end

end

4:

begin

if(str1[39:32]!=0) begin

 if(str1[39:32]>96 && str1[39:32]<123 &&

str1[39:32]!=32)

 138

 begin

 str_out1=str1[39:32]-32; //make it capital

 end

 else

 str_out1=str1[39:32];

done=1;

start_u=1;

p4=1;

end

else

begin

start_u=0;

done=1;

p4=0;

end

end

5:

begin

if(str1[31:24]!=0) begin

if(str1[31:24]>96 && str1[31:24]<123 &&

str1[31:24]!=32)

 begin

 str_out1=str1[31:24]-32; // 32; //make it capital

 139

 end

else

str_out1=str1[31:24];

done=1;

start_u=1;

p4=1;

end

else

begin

start_u=0;

done=1;

p4=0;

end

end

6:

begin

if(str1[23:6]!=0) begin

if(str1[23:16]>96 && str1[23:16]<123 &&

str1[23:16]!=32)

 begin

 str_out1=str1[23:16]-32; //make it capital

 end

else

 140

str_out1=str1[23:16];

done=1;

start_u=1;

p4=1;

end

else

begin

start_u=0;

done=1;

p4=0;

end

end

7:

begin

if(str1[15:8]!=0) begin

 if(str1[15:8]>96 && str1[15:8]<123 && str1[15:8]!=32)

 begin

 str_out1=str1[15:8]-32; //make it capital

 end

else

str_out1=str1[15:8];

 done=1;

 141

start_u=1;

p4=1;

end

else

begin

start_u=0;

done=1;

p4=0;

end

end

8:

begin

if(str1[7:0]!=0) begin

 if(str1[7:0]>96 && str1[7:0]<123 && str1[7:0]!=32)

 begin

 str_out1=str1[7:0]-32; //make it capital

 end

else

str_out1=str1[7:0];

done=1;

start_u=1;

p4=1;

end

 142

else

begin

start_u=0;

done=1;p4=0;

end

end

default: begin done=1; start_u=0;counter=9;p4=0;end

endcase

end

else

begin done=0; counter=0; end

end //else of reset

end //always end

endmodule

strlwr Function:

module

to_lowercase(clk,reset,str1,start_conv,p1_i,p2_i,p3_i,str_o

ut1,done,start_u,p1_o,p2_o,p3_o,p4);

//inputs

input reset,clk,start_conv;

input [63:0] str1;

input p1_i,p2_i,p3_i;

 143

//outputs

output reg [7:0] str_out1;

output reg done;

output reg start_u,p4;

output wire p1_o,p2_o,p3_o;

reg [3:0] counter;

assign p1_o= p1_i;

assign p2_o= p2_i;

assign p3_o= p3_i;

always @(posedge clk)

begin

if(reset==1)

begin

counter=0;

str_out1=0;

start_u=0;

end

else

begin

if(start_conv==1)begin

counter=counter+1;

case(counter)

 144

1:

begin

if(str1[63:56]!=0) begin

if(str1[63:56]>64 && str1[63:56]<91 &&

str1[63:56]!=32)

 begin

 str_out1=str1[63:56]+32; //make it capital

 end

else

 str_out1=str1[63:56];

done=1;

start_u=1;p4=1;

end

else

begin

start_u=0;p4=0;

done=1;

end

end

2:

begin

 if(str1[55:48]!=0)

 begin

 145

if(str1[55:48]>64 && str1[55:48]<91 &&

str1[55:48]!=32)

 begin

 str_out1=str1[55:48]+32; //make it capital

 end

else

str_out1=str1[55:48];

done=1;

start_u=1;

p4=1;

end

else

begin

start_u=0;

done=1;

p4=0;

end

end

3:

begin

 if(str1[47:40]!=0) begin

if(str1[47:40]>64 && str1[47:40]<91 &&

str1[47:40]!=32)

 146

 begin

 str_out1=str1[47:40]+32; //make it capital

 end

 else

str_out1=str1[47:40];

done=1;

start_u=1;

p4=1;

 end

 else

begin

start_u=0;

done=1;

p4=0;

end

end

4:

begin

if(str1[39:32]!=0) begin

if(str1[39:32]>64 && str1[39:32]<91 &&

str1[39:32]!=32)

 begin

 str_out1=str1[39:32]+32; //make it capital

 147

 end

 else

 str_out1=str1[39:32];

done=1;

start_u=1;

p4=1;

end

else

begin

start_u=0;

done=1;

p4=0;

end

end

5:

begin

if(str1[31:24]!=0) begin

if(str1[31:24]>64 && str1[31:24]<91 &&

str1[31:24]!=32)

 begin

 str_out1=str1[31:24]+32; // 32; //make it capital

 end

else

 148

str_out1=str1[31:24];

done=1;

start_u=1;

p4=1;

end

else

begin

start_u=0;

done=1;

p4=0;

end

end

6:

begin

if(str1[23:6]!=0) begin

if(str1[23:16]>64 && str1[23:16]<91 &&

str1[23:16]!=32)

 begin

 str_out1=str1[23:16]+32; //make it capital

 end

else

str_out1=str1[23:16];

done=1;

 149

start_u=1;

p4=1;

end

else

begin

start_u=0;

done=1;

p4=0;

end

end

7:

begin

if(str1[15:8]!=0) begin

 if(str1[15:8]>64 && str1[15:8]<91 && str1[15:8]!=32)

 begin

 str_out1=str1[15:8]+32; //make it capital

 end

else

str_out1=str1[15:8];

done=1;

start_u=1;

p4=1;

end

 150

else

begin

start_u=0;

done=1;

p4=0;

end

end

8:

begin

if(str1[7:0]!=0) begin

 if(str1[7:0]>64 && str1[7:0]<91 && str1[7:0]!=32)

 begin

 str_out1=str1[7:0]+32; //make it capital

 end

else

str_out1=str1[7:0];

done=1;

start_u=1;

p4=1;

end

else

begin

start_u=0;

 151

done=1;p4=0;

end

end

default: begin done=1; start_u=0;counter=9;p4=0;end

endcase

end

else

begin done=0; counter=0; end

end //else of reset

end //always end

endmodule

strchr Function:

module shift_or(clk,reset,shift,in1,in2,out1,wait1);

input clk,reset,shift;

input [63:0]in1;

input [63:0]in2;

output reg out1;

reg [63:0]im_r;

output reg wait1;

always @(posedge clk)

begin

if(reset==0 && shift==1)

 152

begin

wait1=1;

im_r= in1 | in2;

if(im_r==in1 && in1[63:56]==in2[63:56]) out1=1; else

out1=0;

end

else

begin wait1=0; end

end

endmodule

strchr_pos Function:

module shift_or(clk,reset,shift,in1,in2,out1,wait1);

input clk,reset,shift;

input [63:0]in1;

input [63:0]in2;

output reg out1;

reg [63:0]im_r;

output reg wait1;

always @(posedge clk)

begin

if(reset==0 && shift==1)

begin

 153

wait1=1;

im_r= in1 | in2;

if(im_r==in1 && in1[63:56]==in2[63:56]) out1=1; else

out1=0;

end

else

begin wait1=0; end

end

endmodule

module

comp(clk,reset,in,in1,in2,in3,in4,in5,in6,in7,wait1,res_out

,pos,ready);

input clk,reset,in,in1,in2,in3,in4,in5,in6,in7,wait1;

output reg [7:0]res_out;

output reg [7:0] pos;

output reg ready;

always @(posedge clk)

begin

if(reset==0 && wait1==1)

begin

if (in | in1 | in2 | in3 | in4 | in5 | in6 | in7 == 1)

begin res_out=49; ready=1; end //ascii for 1

 154

else

begin res_out=48; ready=1; end //ascii for 0

if (in==1) pos=48;//pos=0;

else

begin

if (in1==1) pos=49;//pos=1;

else

begin

if (in2==1) pos=50;//pos=2;

else

begin

if (in3==1) pos=51;//pos=3;

else

begin

if (in4==1) pos=52;//pos=4;

else

begin

if (in5==1) pos=53;//pos=5;

else

begin

if (in6==1) pos=54;//pos=6;

else

begin

 155

if (in7==1) pos=55;//pos=7;

else

pos=33;//pos=255; ! mark will be displayed if character is

//not found

end

end

end

end

end

end

end

end

else

begin

ready=0; //pos=255;

end

end endmodule

strrchr Function:

module shift_or(clk,reset,shift,in1,in2,out1,wait1);

input clk,reset,shift;

input [63:0]in1;

input [63:0]in2;

 156

output reg out1;

reg [63:0]im_r;

output reg wait1;

always @(posedge clk)

begin

if(reset==0 && shift==1)

begin

wait1=1;

im_r= in1 | in2;

if(im_r==in1 && in1[63:56]==in2[63:56]) out1=1; else

out1=0;

end

else

begin wait1=0; end

end

endmodule

module

comp(clk,reset,in,in1,in2,in3,in4,in5,in6,in7,wait1,res_out

,pos,ready);

input clk,reset,in,in1,in2,in3,in4,in5,in6,in7,wait1;

output reg [7:0]res_out;

output reg [7:0] pos;

output reg ready;

 157

always @(posedge clk)

begin

if(reset==0 && wait1==1)

begin

if (in | in1 | in2 | in3 | in4 | in5 | in6 | in7 == 1)

begin res_out=49; ready=1; end //ascii for 1

else

begin res_out=48; ready=1; end //ascii for 0

if (in7==1) pos=55;//pos=7;

else

begin

if (in6==1) pos=54;//pos=6;

else

begin

if (in5==1) pos=53;//pos=5;

else

begin

if (in4==1) pos=52;//pos=4;

else

begin

if (in3==1) pos=51;//pos=3;

else

begin

 158

if (in2==1) pos=50;//pos=2;

else

begin

if (in1==1) pos=49;//pos=1;

else

begin

if (in==1) pos=48;//pos=0;

else

pos=33;//pos=255; ! mark will be displayed if character is

not found

end

end

end

end

end

end

end

end

else

begin

ready=0;pos=255;

end

end

 159

endmodule

strstr Function:

Shifting Module

module my_shifting(clk,reset,shift,din,shifted);

//input

input clk,reset,shift;

input [63:0] din;

//output

output [63:0] shifted;

reg [4:0] counter1;

reg [4:0] counter2;

reg [4:0] counter3;

reg [4:0] counter4;

reg [4:0] counter5;

reg [4:0] counter6;

reg [4:0] counter7;

reg [63:0] shifted;

reg dont_shift;

reg transmit;

wire [4:0] length;

assign length=2;

always @ (posedge clk) //or posedge reset)

 160

begin

if(shift==1)

begin

//shifted=din;

if(length==1)

begin

counter1=counter1+1;

case (counter1)

1: begin shifted=din; end

2: begin shifted[63:56]=0;shifted[55:48]=din[63:56];

shifted[47:0]=0; end

3: begin shifted[63:48]=0;shifted[47:40]=din[63:56];

shifted[39:0]=0; end

4: begin shifted[63:40]=0;shifted[39:32]=din[63:56];

shifted[31:0]=0; end

5: begin

shifted[63:32]=0;shifted[31:24]=din[63:56];shifted[23:0]=0;

end

6: begin

shifted[63:24]=0;shifted[23:16]=din[63:56];shifted[15:0]=0;

end

7: begin shifted[63:16]=0;shifted[15:8]=din[63:56];

shifted[7:0]=0;end

 161

8: begin

shifted[63:8]=0;shifted[7:0]=din[63:56];counter1=0;end

endcase

end

if(length==2)

begin

counter2=counter2 + 1;

case (counter2)

1: begin shifted[63:48]=din[63:48]; shifted[47:0]=0;end

2: begin

shifted[63:56]=0;shifted[39:0]=0;shifted[55:40]=din[63:48];

end

3: begin

shifted[63:48]=0;shifted[31:0]=0;shifted[47:32]=din[63:48];

end

4: begin

shifted[63:40]=0;shifted[23:0]=0;shifted[39:24]=din[63:48];

end

5: begin

shifted[63:32]=0;shifted[15:0]=0;shifted[31:16]=din[63:48];

end

 162

6: begin

shifted[63:24]=0;shifted[7:0]=0;shifted[23:8]=din[63:48];

end

7: begin shifted[63:16]=0;shifted[15:0]=din[63:48];

counter2=0;end

endcase

end

if(length==3)

begin

counter3=counter3+1;

case (counter3)

1: begin shifted[63:40]=din[63:40]; end

2: begin shifted=0;shifted[55:32]=din[63:40]; end

3: begin shifted=0;shifted[47:24]=din[63:40]; end

4: begin shifted=0;shifted[39:16]=din[63:40]; end

5: begin shifted=0;shifted[31:8]=din[63:40]; end

6: begin shifted=0;shifted[23:0]=din[63:40];counter3=0; end

endcase

end

if(length==4)

begin

counter4=counter4+1;

case (counter4)

 163

1: begin shifted[63:32]=din[63:32]; end

2: begin shifted=0;shifted[55:24]=din[63:32]; end

3: begin shifted=0;shifted[47:16]=din[63:32]; end

4: begin shifted=0;shifted[39:8]=din[63:32]; end

5: begin shifted=0;shifted[31:0]=din[63:32]; counter4=0;end

endcase

end

if(length==5)

begin

counter5=counter5+1;

case (counter5)

1: begin shifted[63:24]=din[63:24]; end

2: begin shifted=0;shifted[55:16]=din[63:24]; end

3: begin shifted=0;shifted[47:8]=din[63:24]; end

4: begin shifted=0;shifted[39:0]=din[63:24]; counter5=0;end

endcase

end

if(length==6)

begin

counter6=counter6+1;

case (counter6)

 164

1: begin shifted[63:16]=din[63:16]; end

2: begin shifted=0;shifted[55:8]=din[63:16]; end

3: begin shifted=0;shifted[47:0]=din[63:16]; counter6=0;end

endcase

end

if(length==7)

begin

counter7=counter7+1;

case (counter7)

1: begin shifted[63:8]=din[63:8]; end

2: begin shifted=0;shifted[55:0]=din[63:8]; counter7=0;end

endcase

end

if(length==8)

begin shifted=din; end

end //shift end

else

begin

counter1=0; counter2=0; counter3=0; counter4=0; counter5=0;

counter6=0; counter7=0;

end end //always end

endmodule

 165

Controller Module

module

ctrl_signals(clk,reset,op,s_cs,shift_en,cmp_en,pstate,yes,p

os,done1);

input clk,reset,op,s_cs;

output reg shift_en,cmp_en,done1;

output reg [7:0]yes;

output reg [7:0]pos;

reg [4:0] nstate;

output reg [4:0] pstate;

reg done;

//state encoding (gray coding)

parameter s0=5'b00000,s1=5'b00001,s2=5'b00010;

parameter s3=5'b00011,s4=5'b00100,s5=5'b00101;

parameter s6=5'b00110,s7=5'b00111,s8=5'b01000,s9=5'b01001;

always @ (posedge clk or posedge reset)

 166

begin

 if (reset == 1'b1) pstate = s0;

 else

 pstate = nstate;

 end

always @ (pstate)

 begin

nstate=pstate;

case (pstate)

//reset state

s0:

begin

if(s_cs==1) begin

shift_en=1;

cmp_en=1;

done=0;

 167

nstate=s1;

done1=1;

//pos=pstate-2;

end else begin shift_en=0;

cmp_en=0;

done=0;done1=0;end

 end

s1:

begin

if(op==1)

begin shift_en=0; cmp_en=0; nstate=s9; pos=0;

done=1;done1=1;end

else begin nstate=s2; shift_en=1; cmp_en=1; end

end

s2:

begin

 168

if(op==1)

begin shift_en=0;cmp_en=0; nstate=s9; pos=0; done=1;

done1=1;end

else

begin nstate=s3; shift_en=1; cmp_en=1; end

end

s3:

begin

if(op==1) begin shift_en=0; cmp_en=0; pos=1+48;

nstate=s9; done=1;done1=1; end

else

begin nstate=s4; shift_en=1; cmp_en=1; end

end

s4:

begin

if(op==1)

 169

begin shift_en=0; cmp_en=0; pos=2+48; nstate=s9;

done=1; done1=1;end

else

begin nstate=s5; shift_en=1; cmp_en=1; end

end

s5:

begin

if(op==1)

begin shift_en=0; cmp_en=0; pos=3+48; nstate=s9; done=1;

done1=1;end

else

begin nstate=s6; shift_en=1;cmp_en=1; end

end

s6:

begin

if(op==1)

 170

begin shift_en=0; cmp_en=0; pos=4+48; nstate=s9;

done=1; done1=1;end

else

begin nstate=s7; shift_en=1; cmp_en=1; end

end

s7:

begin

if(op==1)

begin shift_en=0; cmp_en=0;pos=5+48; nstate=s9;

done=1; done1=1;end

else

begin

nstate=s8; shift_en=1; cmp_en=1;end

end

s8:

begin

//display results

 171

if(op==1) begin pos=6+48;

shift_en=0; cmp_en=0;done=1;done1=1;

nstate=s9; //s0

yes=op+48;

end

else

begin pos=33;done=1;done1=1;nstate=s9;end

end

s9:begin

done=0; shift_en=0; cmp_en=0; done1=1;end

endcase

if(s_cs==0) begin done1=0; nstate=s0; end

end endmodule

Compare module:

module my_comp(clk,reset,in1,in2,start_comp,op,done_comp);

input clk,reset;

input [63:0] in1;

 172

input [63:0] in2;

input start_comp;

output reg op,done_comp;

reg [63:0] im;

always @ (posedge clk) //or posedge reset)

begin

if(reset==0 && start_comp==1)

begin

im=in1 | in2; //or

if(in1==im && in1!=0 && in2!=0) begin op=1;done_comp=1;end

 else begin op=0; end

end

else

begin

done_comp=0;

end

end

endmodule

 173

APPENDIX E

IMAGES OF MEASUREMENTS AND RESULTS

The following section shows screen shots of results obtained from oscilloscope

and simulation measurements for strcmp function. The figure E.1 shows the

calculation of execution time on oscilloscope, for Verilog implemented strcmp

function. The two vertical lines represent the cursor positions for two pulses outputted by

FPGA board and respective delta time 20.6425ns can be seen as the computation time for

strcmp

Simulation results:

Figure E.2 and E.3 show the simulation results for strcmp function.

Figure E.2 shows the result when string1 = string2, and figure E.3 shows the result when

string1 ≠ string2.

Figure E.1 Oscilloscope Screen For Measurement Of Computation Time

for strcmp function

Figure E.2 Simulation Result For string1 = string2

 174

 Figure E.3 Simulation Result For string1 ≠ string2

 175

 176

REFERENCES

[1] Hal Berghel and David Roach ,”An extension of Ukkonen's enhanced

dynamic programming ASM algorithm”, ACM Transactions on Information
Systems (TOIS) archive, Volume 14 , Issue 1 (January 1996),Pages: 94 -
106,Year of Publication: 1996,ISSN:1046-8188

[2] Ricardo Baeza-Yates and Gaston H. Gonnet,"A new approach to text

searching”, Communications of the ACM archive Volume 35 , Issue 10
(October 1992),Pages: 74 - 82,Year of Publication: 1992,ISSN:0001-0782

[3] E. Ukkonen,"Finding approximate patterns in strings", J. Algorithms 6 (1985),

132-137.

[4] H. D. Cheng and K. S. Fu , “VLSI architectures for string matching and
pattern matching” , Pattern Recognition archive ,Volume 20 , Issue 1 (1987)
table of contents, Pages: 125 - 144,Year of Publication: 1987,ISSN:0031-
3203.

[5] Robert A. Wagner and Michael J. Fischer, "The String-to-String Correction

Problem”, Journal of the ACM (JACM) archive Volume 21 , Issue 1
(January 1974),Pages: 168 - 173,Year of Publication: 1974,ISSN:0004-5411

[6] Patrick A. V. Hall and Geoff R. Dowling , “Approximate String Matching”,

ACM Computing Surveys (CSUR) archive, Volume 12 , Issue 4 (December
1980),Pages: 381 - 402 ,Year of Publication: 1980,ISSN:0360-0300

[7] H. Shang and T.H. Merrett ,“Tries for Approximate String Matching “,IEEE

Trans. on Knowledge and Data Eng., Vol. 8, No. 4, pp. 540-547, Aug. 1996

[8] Enrique Vidal, Andres Marzal and Pablo Aibar ,"Fast Computation of
Normalized Edit Distances ", IEEE Transactions on Pattern analysis and
machine intelligence ,September 1995 (Vol. 17, No. 9) pp. 899-902

[9] G. M. Landau and U. Vishkin ,”Fast parallel and serial approximate string

matching”, Journal of Algorithms archive,Volume 10 , Issue 2 (June
1989),Pages: 157 - 169,Year of Publication: 1989,ISSN:0196-6774

 177

[10] K. Zhang and D. Shasha,"Simple fast algorithms for the editing distance
between trees and related problems”, SIAM Journal on Computing archive,
Volume 18, issue 6 (December 1989),Pages: 1245 - 1262,Year of
Publication: 1989,ISSN:0097-5397

[11] Raghu Sastry,N. Ranganathan and Klinton Remedios ,"CASM: A VLSI Chip

for Approximate String Matching", IEEE Transactions on Pattern analysis and
machine intelligence ,August 1995 (Vol. 17, No. 8) pp. 824-830

[12] Richard J. Lipton and Daniel Lopresti,"A Systolic Array for Rapid String

Comparison" 1985.

[13] Daniel P. Lopresti, “Rapid implementation of a genetic sequence comparator
using field-programmable logic arrays”, Proceedings of the 1991 University
of California/Santa Cruz conference on Advanced research in VLSI,Pages:
138 - 152,Year of Publication: 1991,ISBN:0-262-19308-6

[14] Sun Wu and Udi Manber,"Fast text searching: allowing

errors",Communications of the ACM archive Volume 35 , Issue 10 (October
1992),Pages: 83 - 91,Year of Publication: 1992,ISSN:0001-0782

[15] http://www.xess.com/fpgatut.htm

[16] String Handling by Dave Marshall

Available: http://www.cs.cf.ac.uk/Dave/C/node19.html

[17] String Matching- National Institute of Standards and Technology, By Paul
E Black,Available: http://www.nist.gov/dads/HTML/stringMatching.html

[18] Top Coder Software- String Distance 1.0 Component Specification

Available: http://software.topcoder.com/catalog/document?id=8457494

[19] Exact String Matching Algorithms, Animations in Java by Christian
Charras - Thierry Lecroq, Available:
http://wwwigm.univmlv.fr/~lecroq/string/

[20] Dr. Mitch Thornton, Southern Methodist University,

Available: http://engr.smu.edu/~mitch/

[21] QuartusII Web Edition Software, Altera Corporation.
Available: http://www.altera.com/support/software/sof-quartus.html

[22] Altera’s Development and Education Board, Altera Corporation

Available: http://www.altera.com/education/univ/materials/boards/unv-de2-
board.html

http://www.xess.com/fpgatut.htm
http://www.cs.cf.ac.uk/Dave/C/node19.html
http://www.nist.gov/dads/HTML/stringMatching.html
http://software.topcoder.com/catalog/document?id=8457494
http://wwwigm.univmlv.fr/%7Elecroq/string/
http://engr.smu.edu/%7Emitch/
http://www.altera.com/support/software/sof-quartus.html
http://www.altera.com/education/univ/materials/boards/unv-de2-board.html
http://www.altera.com/education/univ/materials/boards/unv-de2-board.html

 178

[23] Approximate String Matching, Wikipedia Encyclopedia
Available: http://en.wikipedia.org/wiki/Approximate_string_matching

[24] RS-232C (EIA 232 C) presentation, Available:

http://www.bridgewater.edu/~lwilliam/Chapter%2005/sld044.htm

[25] http://www.nullmodem.com/DB-9.htm

[26] Altera Press Release, Altera Corporation, Available:
http://www.altera.com/corporate/news_room/releases/releases_archive/2006/p
roducts/nr-xtremedata.html

[27] Egecioglu, O. and Ibel, M.,"Parallel algorithms for fast computation of

normalized edit distance(Extended abstract)", Parallel and Distributed
Processing, 1996.

[28] RS-232, Wikipedia Encyclopedia, Available: http://en.wikipedia.org/wiki/RS-

232

[29] Boyer–Moore string search algorithm, Wikipedia Encyclopedia, Available:
http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorit
hm

[30] Design and Analysis of Algorithms, Knuth-Morris-Pratt string matching,Dept.

Information & Computer Science -- UC Irvine, Available:
http://www.ics.uci.edu/~eppstein/161/960227.html

[31] Serial Communication in Win32,Microsoft Developer Network,

Available: http://msdn2.microsoft.com/en-us/library/ms810467.aspx

[32] High resolution timer for Windows C programs , Information Metrics
Institute, Available: http://www.unb.ca/metrics/software/HRtime.html

[33] ASCII Table and description,Available: http://www.asciitable.com

[34] scfifo (Single-Clock FIFO) megafunction,

Available:http://www.pldworld.com/_altera/html/_sw/q2help/source/mega/me
ga_file_scfifo.htm

http://en.wikipedia.org/wiki/Approximate_string_matching
http://www.bridgewater.edu/%7Elwilliam/Chapter%2005/sld044.htm
http://www.nullmodem.com/DB-9.htm
http://www.altera.com/corporate/news_room/releases/releases_archive/2006/products/nr-xtremedata.html
http://www.altera.com/corporate/news_room/releases/releases_archive/2006/products/nr-xtremedata.html
http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
http://www.ics.uci.edu/%7Eeppstein/161/960227.html
http://msdn2.microsoft.com/en-us/library/ms810467.aspx
http://www.unb.ca/metrics/software/HRtime.html
http://www.pldworld.com/_altera/html/_sw/q2help/source/mega/mega_file_scfifo.htm
http://www.pldworld.com/_altera/html/_sw/q2help/source/mega/mega_file_scfifo.htm

	INTRODUCTION
	1.1 Motivation
	1.2 Basic Terminologies Used In String Matching
	1.3 Previous Work
	1.3.1 Exact String Matching Algorithms
	
	1.3.2 Approximate String Matching (ASM) Algorithms
	Figure 1.1: Approximate String Matching

	Table 1.3: Edit Distance table for comparing ‘ONE ‘and ‘ON’
	Figure 1.2: Trie Data Structure

	Table 1.4: Edit Distance table for ‘TGGC’ and ‘ACTG’
	Figure 1.3: Architecture Of Linear Systolic Array
	Figure 1.4: Internal Architecture Of Processing Cell

	1.4 Organization Of Thesis

	SOFTWARE AND HARDWARE FUNDAMENTALS
	2.1 Basics Of Communication
	Figure 2.1: RS-232C Logic Waveform (8N1)
	Figure 2.2: Serial Transmission Of Character ‘A’

	2.2 Fundamentals Of Verilog Programming
	Figure 2.3: Structure Of A Module In Verilog

	2.3 Programmable Logic Devices (PLD)
	Figure 2.4: Internal Structure Of FPGA
	Figure 2.5: Design Cycle With FPGA Devices

	2.4 C String Library <string.h>

	IMPLEMENTATION DETAILS
	3.1 Altera DE2 Development And Education Board
	Figure 3.1: Altera DE2 board

	3.2 QuartusII
	Figure 3.2: Design Flow On QuartusII Tool

	3.3 Experimental Setup
	Figure 3.3: Experimental Setup

	3.4 Serial Communication Through C Program
	Figure 3.4: Flowchart Of Serial Communication Through C

	3.5 Serial Communication Through Verilog Program [22]
	3.5.1 Transmitter Block In Verilog
	Figure 3.5: Transmitter Block In Verilog

	3.5.2 Receiver Block In Verilog
	Figure 3.6: Receiver Block In Verilog

	3.6 Verilog Implementation Of String Functions
	Figure 3.7: ASM Chart Of ‘strcmp’ Function In Verilog
	Figure 3.9: ASM Chart Of ‘strstr’ Function In Verilog
	Figure 3.11: ASM Chart Of ‘strchr_pos’ Function In Verilog
	Figure 3.12: ASM Chart Of ‘strrchr’ Function In Verilog
	Figure 3.13: ASM Chart Of ‘strupr’ Function In Verilog
	Figure 3.15: ASM Chart Of ‘strlen’ Function In Verilog

	3.7 Basic Setup
	3.8 Timing Measurements
	3.8.1 Timing Measurement Of The Software String Functions
	Figure 3.17: Timing Measurements On Oscilloscope

	EXPERIMENTAL RESULTS AND ANALYSIS
	4.1 Experimental Results
	4.2 Analysis

	CONCLUSION AND FUTURE WORK
	APPENDIX A
	APPENDIX B
	
	APPENDIX C
	
	APPENDIX D
	begin
	 if (reset == 1'b1) pstate = s0;
	 else
	 pstate = nstate;
	 end
	always @ (pstate)
	 begin
	nstate=pstate;
	case (pstate)
	//reset state
	s0:
	begin
	if(s_cs==1) begin
	shift_en=1;
	cmp_en=1;
	done=0;
	nstate=s1;
	done1=1;
	//pos=pstate-2;
	end else begin shift_en=0;
	cmp_en=0;
	done=0;done1=0;end
	 end
	s1:
	begin
	if(op==1)
	begin shift_en=0; cmp_en=0; nstate=s9; pos=0; done=1;done1=1;end
	else begin nstate=s2; shift_en=1; cmp_en=1; end
	end
	s2:
	begin
	if(op==1)
	begin shift_en=0;cmp_en=0; nstate=s9; pos=0; done=1; done1=1;end
	else
	begin nstate=s3; shift_en=1; cmp_en=1; end
	end
	s3:
	begin
	if(op==1) begin shift_en=0; cmp_en=0; pos=1+48; nstate=s9; done=1;done1=1; end
	else
	begin nstate=s4; shift_en=1; cmp_en=1; end
	end
	s4:
	begin
	if(op==1)
	begin shift_en=0; cmp_en=0; pos=2+48; nstate=s9; done=1; done1=1;end
	else
	begin nstate=s5; shift_en=1; cmp_en=1; end
	end
	s5:
	begin
	if(op==1)
	begin shift_en=0; cmp_en=0; pos=3+48; nstate=s9; done=1; done1=1;end
	else
	begin nstate=s6; shift_en=1;cmp_en=1; end
	end
	s6:
	begin
	if(op==1)
	begin shift_en=0; cmp_en=0; pos=4+48; nstate=s9; done=1; done1=1;end
	else
	begin nstate=s7; shift_en=1; cmp_en=1; end
	end
	s7:
	begin
	if(op==1)
	begin shift_en=0; cmp_en=0;pos=5+48; nstate=s9; done=1; done1=1;end
	else
	begin
	nstate=s8; shift_en=1; cmp_en=1;end
	end
	s8:
	begin
	//display results
	if(op==1) begin pos=6+48;
	shift_en=0; cmp_en=0;done=1;done1=1;
	nstate=s9; //s0
	yes=op+48;
	end
	else
	begin pos=33;done=1;done1=1;nstate=s9;end
	end
	s9:begin
	done=0; shift_en=0; cmp_en=0; done1=1;end
	endcase
	if(s_cs==0) begin done1=0; nstate=s0; end
	end endmodule
	Compare module:

