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In some implementations , a method includes retrieving data from multiple sensors in a computing device , and the 
multiple sensors comprise different types of sensors . The 
sensor data is analyzed based on a predictive model , and the 
predictive model is trained to detect malware . Initiation of 
malware is determined based on the analysis . In response to 
the determination , the malware is terminated . 
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DETECTING MALICIOUS SOFTWARE 
USING SENSORS 

BACKGROUND 
[ 0001 ] Effective defense against a ransomware attack is typically a multi - tiered or layered approach . Detection of the 
malware when downloading to the victim computer is an 
outer defense , and if possible , can prevent the ransomware 
from ever entering the system . This defense attempts to 
prevent an attack vector from penetrating a victims host 
computer . Packet signature monitoring via an intrusion 
detection system ( IDS ) or file signature monitoring via a local antivirus software program can provide this capability , 
but only if these methods are capable of recognizing the 
malware through knowledge of the data signatures . While 
this defense is a desirable , it is notoriously difficult to 
prevent infection with previously unknown ransomware 
versions , or so - called zero - day attacks . In the case of zero day ransomware , data signatures and other corresponding 
characteristics are unknown by definition . Furthermore , the increasing presence of polymorphic malware is causing 
signature - based approaches to become less effective than 
they once were . 

SUMMARY 
[ 0002 ] In some implementations , a method includes 
retrieving data from multiple sensors in a computing device , 
and the multiple sensors comprise different types of sensors . 
The sensor data is analyzed based on a predictive model , and 
the predictive model is trained to detect malware . Initiation 
of malware is determined based on the analysis . In response 
to the determination , the malware is terminated . 
[ 0003 ] The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below . Other features , objects , and advan 
tages of the invention will be apparent from the description 
and drawings , and from the claims . 

computer , mobile device ) during the initiation of its payload 
execution . In these instances , data streams from on - board 
sensors in the host can be monitored and ransomware 
infections can be detecting using these data streams and 
predefined criteria . In this sense , a physical side channel can 
be used where the victim's files are not directly monitored . 
The behavior of the victim machine is monitored and 
onboard sensor - provided data is used as side - channel infor mation that can indicate when an encryption operation is 
occurring . In other words , encryption detection depends 
upon the use of small yet distinguishable changes in the 
physical state of a system as reported through onboard sensor - provided data . In some implementations , monitoring 
can be accomplished through a background process that is 
loaded at boot time and thus continuously monitors the system for suspicious behavior . Once this suspicious behav 
ior is detected , the user can be alerted and the suspicious 
processes can be suspended . The central difference between 
this approach and other previous approaches is that this 
approach uses secondary effects to detect the presence of 
malware rather than a direct effect , such as measuring 
increases in file entropy . 
[ 0014 ] In some implementations , a feature vector can be 
formulated consisting of various sensor outputs that is 
coupled with a detection criterion for the binary states of 
ransomware present versus normal operation . In this instances , previously unknown or zero - day versions of ran 
somware are vulnerable since no a priori knowledge of the 
malware , such as a data signature , is required . Experimental 
results from a system which underwent testing with 16 different test configurations comprised of different simulated 
system loads unknown to the model and different AES 
encryption methods used during a simulated ransomware 
attack showed an average true positive prediction rate of 
98.82 % and an average false positive prediction rate of 
1.57 % for predictions made once every second about the 
state of the system under test . 
[ 0015 ] FIG . 1 illustrates an example computing device 
100 for detecting ransom where in accordance with one or more implementations of the present disclosure . In some 
implementations , the computing device 100 uses sensor data 
to detect initiation of encryption of data . In the illustrated , the computing device 100 includes a sensor - monitoring 
module 102 communicably coupled to sensors 104a - e to 
detect operating conditions of the device 100. As illustrated , 
the sensors 104a - e include a current sensor 104a , a tem 
perature sensor 1046 , RPM sensor 104c , a voltage sensor 104d , and a power sensor 104e . The computing device 100 
may include the same , some , or different sensors to detect 
malware ( e.g. , ransomware ) without departing from the 
scope of the disclosure . 
[ 0016 ] In general , the computing device 100 includes 
sensors 104a - e to monitor the state of internal hardware 
components . These sensors 104a - e can , in some implemen 
tations , continuously or periodically gather and supply sen 
sor data that is communicated with other devices and 
subsystems to substantially maintain the device 100 within specific operating specifications . If sensor data reveals that 
a device component is approaching a boundary for a rec ommended value of an operational specification , safety 
mechanisms can be engaged to correct the internal environ 
ment and prevent or otherwise reduce malfunctions . For 
example , when the data from the temperature sensor 1045 
of , for example , a computer's central processing unit ( CPU ) 

DESCRIPTION OF DRAWINGS 
[ 0004 ] FIG . 1 is an example computing device including 
sensors for detecting ransomware . 
[ 0005 ] FIG . 2 is an example confusion matrix representing 
machine state versus ransomware detection model predic 
tion for a Window machine . 
[ 0006 ] FIG . 3A is a plot of encryption activity versus time 
for a Window machine . 
[ 0007 ] FIG . 3B is a plot of ransomware detection model prediction versus time for a Window machine . 
[ 0008 ] FIG . 4 is a confusion matrix representing actual 
machine state versus ransomware detection model predic 
tion for an Apple machine . 
[ 0009 ] FIG . 5A is a plot of encryption activity versus time 
for an Apple machine . 
[ 0010 ] FIG . 5B is a plot of ransomware detection model 
prediction versus time for an Apple machine . 
[ 0011 ] FIG . 6 is a flowchart illustrating an example 
method for detecting ransomware . 
[ 0012 ] Like reference symbols in the various drawings 
indicate like elements . 

DETAILED DESCRIPTION 
[ 0013 ] The present disclosure is directed to a system and 
method for detecting ransomware in an infected host ( e.g. , 
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TABLE I - continued 
APPLE MACBOOK INTERNAL SENSORS AND READINGS 

Apple Macbook Sensor Value 

87.8 F. 
93.2 F. 
96.8 F. 
129.2 F. 

begins to increase , a signal can be sent to the CPU cooling 
fan . This signal causes the fan to either become active or to 
increase the fan speed in order to cool the CPU . Addition 
ally , the sensors 104a - e can provide input to other subsys 
tems such as internal power management units , PMUs , to 
conserve power usage . 
[ 0017 ] Typically , computing - device components are fre 
quently designed to be compact in size through the use of 
transistors with feature sizing often in the nanometer scale . 
As a direct result , whenever computations become more 
complex , more stress in placed on the components . This 
increased stress occurs because a large number of transistors are frequently switching in a circuit that correspondingly 
cause an increase in dynamic power consumption and , in 
turn , more heat dissipation especially during heavy compu 
tational activity . Thus , monitoring the side channels of the 
computing device 100 with the embedded sensors 104a - e 
that measure operating conditions such as temperature , power consumption , and battery voltage levels can indicate 
the type of processing that is underway on a computer at a 
given time . As a result , monitoring a computer's side 
channels through periodic observations of sensor output data 
can , in some implementations , indicate when a resource 
heavy task , such as encryption , is occurring . Since ransom 
ware utilizes encryption in its payload to deny its victims 
access to their files , trends to emerge in regard to how a 
computer behaves while under ransomware attack based on 
analyzing data from a computer's side channel sensor data . 
[ 0018 ] Conventional computers are comprised of the same 
set of basic internal devices to enable their operation . 
However , manufacturers may choose to use different and / or 
unique sets of components for their various computer mod 
els . Due to this variation among different product models , 
corresponding differences among the readings of the internal 
onboard sensors can occur when they are queried . In the 
illustrated implementation , the senso nsor - monitoring module 
102 can include any software , hardware , and / or firmware 
configured to access sensor data ( e.g. , main memory power 
usage ) . For example , the sensor - monitoring module 102 can 
be accessed sensor data via the command line and / or 
through calls to the operating system and interpret the 
onboard sensor data . During experimentation , the Hardware 
Monitor and the Open Hardware Monitor applications were 
used to provide information from systems running Apple's 
OSX® and Microsoft's Windows® operating systems . As an 
example of large number of available on - board sensors , a list 
of the 59 sensors and their readings from an Apple Mac 
book® is provided below in Table 1 . 

98.6 F. 
138.2 F. 
120.2 F. 
98.6 F. 
82.4 F. 

3.69299 V 
3.69398 V 
7.38699 V 
1.66211 V 
1.05176 V 

0 V 
7.16016 V 
3.29883 V 
3.29883 V 
1.45599 A 

0.0498047 A 
0.00292969 A 

93.2 F. 
96.8 F. 

129.2 F. 

SMC LEFT PALM REST [ TEMPERATURE ] : 
SMC MAIN HEAT SINK 2 [ TEMPERATURE ] : 
SMC MAIN LOGIC BOARD [ TEMPERATURE ] : 
SMC PLATFORM CONTROLLER HUB CHIP 
TEMPERATURE [ TEMPERATURE ] : 
SMC SSD BAY [ TEMPERATURE ] : 
SMC SSD TEMPERATURE A [ TEMPERATURE ] : 
SMC SSD TEMPERATURE B [ TEMPERATURE ] : 
SMC WLAN CARD [ TEMPERATURE ] : 
Smart Battery bq2Sz451 ( 1 ) [ TEMPERATURE ] : 
Battery 1 Cell 1 [ VOLTAGE ] : 
Battery 1 Cell 2 [ VOLTAGE ] : 
Battery 1 Voltage [ VOLTAGE ] : 
SMC CPU CORE [ VOLTAGE ] : 
SMC CPU SUPPLY 1 [ VOLTAGE ] : 
SMC DC INPUT [ VOLTAGE ] : 
SMC POWER SUPPLY / BATTERY [ VOLTAGE ] : 
SMC SSD SUPPLY [ VOLTAGE ] : 
SMC WLAN CARD [ VOLTAGE ] : 
Battery 1 Current [ CURRENT ] : 
SMC 5 V SO LINE [ CURRENT ] : 
SMC BACKLIGHT ( CURRENT ] : 
SMC MAIN HEAT SINK 2 [ TEMPERATURE ] : 
SMC MAIN LOGIC BOARD [ TEMPERATURE ] : 
SMC PLATFORM CONTROLLER HUB CHIP 
TEMPERATURE [ TEMPERATURE ] : 
SMC SSD BAY [ TEMPERATURE ] : 
SMC SSD TEMPERATURE A [ TEMPERATURE ] : 
SMC SSD TEMPERATURE B [ TEMPERATURE ] : 
SMC WLAN CARD [ TEMPERATURE ] : 
Smart Battery bq202451 ( 1 ) [ TEMPERATURE ] : 
Battery 1 Cell 1 [ VOLTAGE ] : 
Battery 1 Cell 2 [ VOLTAGE ] : 
Battery 1 Voltage [ VOLTAGE ] : 
SMC CPU CORE [ VOLTAGE ] : 
SMC CPU SUPPLY 1 [ VOLTAGE ] : 
SMC DC INPUT [ VOLTAGE ] : 
SMC POWER SUPPLY / BATTERY [ VOLTAGE ] : 
SMC SSD SUPPLY [ VOLTAGE ] : 
SMC WLAN CARD [ VOLTAGE ] : 
Battery 1 Current [ CURRENT ] : 
SMC 5 V SO LINE [ CURRENT ] : 
SMC BACKLIGHT ( CURRENT ] : 
SMC BATTERY CURRENT ( CURRENT ] : 
SMC CPU CORE ( CURRENT ] : 
SMC CPU HIGH SIDE [ CURRENT ] : 
SMC CPU SUPPLY 1 [ CURRENT ] : 
SMC CPU / VRM SUPPLY 2 [ CURRENT ] : 
SMC DC INPUT ( CURRENT ] : 
SMC DDR3 MEMORY 1.35 V LINE [ CURRENT ] : 
SMC DDR3 MEMORY S3 LINE [ CURRENT ] : 
SMC DISCRETE BATTERY [ CURRENT ] : 
SMC LCD PANEL ( CURRENT ) : 
SMC POWER SUPPLY / BATTERY ( CURRENT ) : 
SMC SSD SUPPLY ( CURRENT ) : 
SMC WLAN CARD [ CURRENT ] : 
SMC 5 V SO LINE [ POWER ] : 
SMC BACKLIGHT [ POWER ] : 
SMC CPU CORE [ POWER ] : 
SMC CPU HIGH SIDE [ POWER ] : 
SMC CPU SUPPLY 1 [ POWER ] : 
SMC CPU / VRM SUPPLY 2 [ POWER ] : 
SMC DDR3 MEMORY 1.35 V LINE [ POWER ] : 
SMC DDR3 MEMORY S3 LINE [ POWER ] : 
SMC LCD PANEL [ POWER ] : 
SMC POWER SUPPLY / BATTERY [ POWER ] : 
SMC SSD SUPPLY [ POWER ] : 
SMC WLAN CARD [ POWER ] : 
Battery 1 Current Capacity [ CAPACITY ] : 
Battery 1 Total Capacity [ CAPACITY ] : 
SMC FAN Exhaust [ RPMS ] : 
SMC AMBIENT LIGHT 1 [ LIGHT ] : 

98.6 F. 
138.2 F. 
120.2 F. 
98.6 F. 
82.4 F. 

3.69299 V 
3.69398 V 
7.38699 V 
1.66211 V 
1.05176 V 

0 V 
7.16016 V 
3.29883 V 
3.29883 V 
1.45599 A 

0.0498047 A 
0.00292969 A 

0.78125 A 
0.566406 A 
0.241211 A 

0.0107422 A 
? ? 

0.00195312 A 
0.881836 A 

0.0771484 A 
0.738281 A 

0.000976562 A 
0.770508 A 

0.0771484 A 
0.0107422 A 
0.164062 W 
0.015625 W 
0.964844 W 
1.72266 W 

0.0078125 W 
0 W 

1.05469 W 
0.0898438 W 

0 W 
5.51172 W 

0 25 W 
0.0351562 W 

503 mAh 
6559 mAh 
1192 RPM 
70 

TABLE I 
APPLE MACBOOK INTERNAL SENSORS AND READINGS 

Apple Macbook Sensor Value 

136.4 F. 

102.2 F. 
87.8 F. 
111.2 F. 

SMART Disk APPLE SSD SD0128F 
( 135251405113 ) [ TEMPERATURE ] : 
SMC AIR INLET [ TEMPERATURE ] : 
SMC BATTERY [ TEMPERATURE ] : 
SMC BATTERY CHARGER PROXIMITY 
[ TEMPERATURE ] : 
SMC BATTERY POSITION 2 [ TEMPERATURE ] : 
SMC BATTERY POSITION 3 [ TEMPERATURE ] : 
SMC CAMERA PROXIMITY [ TEMPERATURE ] : 
SMC CHARGER PROXIMITY TEMPERATURE 
[ TEMPERATURE ] : 
SMC CPU A PROXIMITY [ TEMPERATURE ] : 

87.8 F. 
87.8 F. 
113 F. 

100.4 F. 

120.2 F. 
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-continued 
// set condition to under attack if positive 
predictions 
// increase above threshold 
if attack count > threshold : 

under_attack = True 

[ 0019 ] In some implementations , the sensor - monitoring 
module 102 can determine prediction models using Machine 
Learning ( ML ) techniques . In these instances , the sensor 
monitoring module 102 trains models using a large amount 
of data gathered and processed from an experimental envi 
ronment . The sensor - monitoring module 102 can use the 
sensor data , such as that provided in Table 1 , to form a 
feature vector that differentiates between the binary machine 
states of “ normal operation ” versus “ ransomware payload 
execution ” ( i.e. , unauthorized encryption activity ) . Instead 
of relying one type of sensor data , the feature vector can 
combine multiple types of sensor data . In response to the 
sensor - data feature vector indicating a specific state of 
encryption , the sensor - monitoring module 102 can issue 
alerts and suspend the corresponding encryption processes . 
[ 0020 ] In some instances , the sensor - monitoring module 
102 can use a simple logistic regression approach as the ML 
classification algorithm to discriminate between the binary 
states of “ normal operation ” versus “ ransomware payload 
execution . ” Other alternative classification algorithms can 
be used without departing from the scope of the disclosure . 
In addition , the feature vector may be refined using tech 
niques such as Principal Component Analysis ( PCA ) , Linear 
Discriminant Analysis ( LDA ) , and others . In some imple 
mentations , the sensor - monitoring module 102 can train the 
prediction models using different methods of encryption 
such as Electronic Code Book , Cipher - Block Chaining , 
Cipher FeedBack , XOR encryption , and others . 
[ 0021 ] In some aspects of operations , the sensor - monitor 
ing module 102 receives a training set of hardware sensor 
data . The hardware sensor data can include data when how 
the sensors behave on the host computer under normal 
operating conditions as well data when a covert encryption 
process is executed . After the sensor training data has been 
retrieved , the sensor - monitoring module 102 can perform 
logistic regression to fit the model to the training data . Due 
to the slight variation between the components of each 
computer , the resulting ransomware detection model may be 
different for different devices . Once determined , the sensor 
monitoring module 102 can use the model to classify the 
state of the computing device 100 whenever the hardware 
sensors are routinely polled . If the model predicts that a 
suspicious encryption process is executing , the sensor - moni 
toring module 102 can notify the user and suspend or 
terminate the suspicious process . In some implementations , 
the detection algorithm can run as a background process to 
allow normal usage of the system . A pseudocode version of 
the detection algorithm is provided below . 

[ 0022 ] FIGS . 2-5 illustrate example results for testing 
conducted on two different computing devices . Testing was 
conducted on two mputing devices , one running Apple 
OSX® and the other running Microsoft Windows® . Spe 
cifically , the Apple OSX machine was a Macbook Air with 
a 1.3 GHz Intel® i5 processor and 4 GB of main memory 
and the Windows® machine was an Intel® i7 processor with 
32 GB of main memory . 
[ 0023 ] Training data was collected on both computing 
devices and the data was used to generate a prediction model 
for each computing device . The new encryption detection 
method was tested utilizing a ransomware simulation testing 
script written in Python . The size of the directory and the 
method of encryption were selected by randomly picking a 
number between 1 and 100. All values of 60 and below 
caused encryption of the small directory , all values from 61 
to 90 encrypted the medium directory , and all values from 91 
to 100 encrypted the large directory . The particular encryp 
tion method used was randomly selected among the four 
types we implemented in our experiments . 
[ 0024 ] After a particular directory has been encrypted , the 
script waits a random amount of time before performing 
additional encryption . The amount of time it waits is pro 
portional to the size of the directory it previously encrypted . 
After encrypting a small directory , a random amount of time 
between 1 and 60 seconds is selected , a time between 5 and 
10 minutes is selected for the medium directory , and a time 
between 15 and 30 minutes is selected for the large directory . 
The script also randomly selects a value between 5 and 15 
and waits for an hour and a half after encrypting that many 
gigabytes of data . Randomness and wait times are utilized in 
order to simulate the attempts made by an adversary to avoid 
detection of ransomware payload execution . During the 
encryption process , the script searches for files by recur 
sively starting from a given path . Files that have extensions 
matching a list of common user file types are read and their 
data is encrypted . After encryption the data is copied over 
the existing data in the original file . After testing the 
Windows® machine for 5 hours 94.2 % of sensor polls were 
accurately predicted as either “ under attack ” or “ no attack ” . 
The confusion matrix in FIG . 2 shows the relationship 
between the predictions made by the model and the actual 
state of the computing device . During the periods the script was performing encryption 98.1 % of polling predictions 
correctly identified a state of under attack . During the 
periods , the script was not performing encryption 92.5 % of 
polling predictions correctly identified a state of no attack . 
[ 0025 ] 1.9 % of the checks that occurred during periods of 
encryption incorrectly predicted that there was no attack 
( i.e. , a false negative error ) while 7.5 % of periods with no 
encryption incorrectly predicted that there was an attack 
( i.e. , a false positive error ) . The classification method was 
tuned in a conservative fashion to focus more upon the 
reduction of false negative errors than the case of false 
positives as the former error type is assumed to be more 
critical than the latter . 

== 

// load model from binary file 
model load ( " ./ model , pkl ' ) 
attack_count = 0 
previous_prediction 0 
under_attack False 
Il check sensor data and make prediction 
while True 

data monitor.read_sensors ( ) 
prediction = model.predict ( data ) 
Il determine action based on current and 
// previous data 
if prediction : 

attack_count + = 1 
else : 

if previous_prediction 0 : 
attack_count 0 
under_attack False 

previous_prediction = data 
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[ 0026 ] The overall accuracy of the encryption detection 
method is illustrated in FIG . 3. The uppermost graph , ( a ) , of 
the figure represents the actual periods of encryption or 
“ truth data ” while the plot on the bottom , ( b ) , represents the 
actual predicted periods of encryption . These graphs depict 
the machine state on the vertical axis with zero indicating 
normal operation and one indicating under attack . The 
horizontal axes depict time . The Apple computing device 
was tested by only encrypting the large directory after a 
random wait period between 30 and 60 minutes over a 
6 - hour period . This method gives a clear indication of how 
well the new detection method can detect periods of high 
volume encryption . The confusion matrix in FIG . 4 shows 
the relationship between the predictions made by the model 
and the actual state of the computing device . 
[ 0027 ] After testing the Apple machine , 98.2 % of the 
sensor polls resulted in accurate predictions . During the 
periods the script was actually performing an encryption 
operation , 99.7 % of the polling predictions correctly iden 
tified a state of “ under attack . ” During the periods the script 
was not performing encryption , 97.7 % of polling predictions 
correctly identified a state of “ no attack . ” A false negative 
rate of 0.27 % of the checks that occurred during periods of 
encryption incorrectly predicted that there was no attack 
while a false positive error rate of 2.3 % of observations with 
no encryption incorrectly predicted that there was an attack . 
FIG . 5 shows the periods of actual encryption in the upper 
most portion , ( a ) , and periods of predicted encryption in the 
lower portion , ( b ) . As in FIG . 3 , the vertical axes depict 
machine state and the horizontal axes depict time . 
[ 0028 ] Upon further analysis of the results , most periods 
of false positive predictions occurred directly after a correct 
attack prediction . This can be observed in FIG . 5 which 
contains false positive periods after the second and fourth encryption periods . Implementing additional testing and 
filtering techniques that more closely scrutinize predictions 
being made for a short period directly following a positive 
prediction period can result in increased overall accuracy . In some implementations , temporal or history data regarding 
past recent predictions may be included in the analysis . 
[ 0029 ] Legitimate encryption can be accounted using 
white - listing or other methods that notify the detection process that legitimate encryption operations are in process . 
For example , system registry data can be used to label 
processes that employ legitimate encryption and the ran 
somware detection process can be augmented to verify if a 
detection is the result of a legitimate process or not before 
a state of “ ransomware payload execution ” is declared . 
[ 0030 ] In some implementations , experimental ransom 
ware detection algorithm can use a simple polling or sam 
pling method wherein the operational phase of the detection 
method would periodically query the sensors to obtain 
readings . This approach suffers from potential aliasing prob 
lems , particularly if the malware payload were to be imple 
mented in short bursts or use some other form of intelligence 
about the state of the victim system before encryption is 
executed . In some implementations , the schedule sensor 
queries can be an event - based technique . In these instances , 
error rates can be reduced while also reducing the average 
computational overhead since ransomware payload execu 
tion is a relatively rare event . 
[ 0031 ] The method can be applicable to both previously 
known as well as zero - day instances of ransomware that 
employ encryption in the payload . The detection method 

results in very low , if any , data loss since encryption 
detection can occur very early in the timespan of the 
malicious encryption activity . For example , the data loss 
may be less than 5 % , 1 % , or 0.1 % . The method is based 
upon monitoring on - board , hardware sensor data streams 
rather than characteristics of the targeted data . The new 
technique may not include modification to hosting computer 
systems because most computing devices include pre - exist 
ing physical sensors , supporting circuitry , and access to the 
sensor readings . 
[ 0032 ] FIG . 6 is a flow diagram illustrating an example 
method 600 of analyzing a partial software program , accord 
ing to an implementation . For clarity of presentation , the 
description that follows generally describes method 600 in 
the context of the other figures in this description . However , 
it will be understood that method 600 may be performed , for 
example , by any suitable system , environment , software , 
and hardware , or a combination of systems , environments , 
software , and hardware , as appropriate . For example , 
method 200 can be performed by the example computing 
system 100 illustrated in FIG . 1. In some implementations , 
various steps of method 600 can be run in parallel , in 
combination , in loops , or in any order . 
[ 0033 ] The method 600 begins at step 602 where sensor 
data is collected during normal operations . For example , the 
sensor - monitoring module 102 can retrieve sensor data 
during normal operations . Ransomware encryption is simu 
lated at step 604 , and the sensor data is retrieved during that 
simulation at step 606. Next , at step 608 , a predictive model 
is trained using both data sets . Once trained , sensor data of 
the computing device is monitored , at step 610 , using the 
trained predictive model and sensor data to detect ransom 
ware encryption . At step 612 , initiation of ransomware 
encryption is detected using the trained predictive model and 
sensor data . At step 614 , the encryption is at least suspended . 
[ 0034 ] A number of embodiments of the invention have 
been described . Nevertheless , it will be understood that 
various modifications may be made without departing from 
the spirit and scope of the invention . Accordingly , other 
embodiments are within the scope of the following claims . 

1. A method , comprising : 
retrieving sensor data from multiple sensors in a comput 

ing device , wherein the multiple sensors comprise 
different types of sensors to monitor an operating 
condition of internal hardware components of the com 
puting device , and the sensor data reflective of the 
operating condition of the internal hardware compo 
nents ; 

analyzing the sensor data based on a predictive model , 
wherein the predictive model is trained to detect mal 
ware ; 

determining initiation of malware based on the analysis ; 
and 

in response to the determination , terminating the malware . 
2. The method of claim 1 , wherein the malware comprises 

ransomware , and initiation of ransomware encryption is 
detected . 

3. The method of claim 2 , further comprising : 
retrieving sensor data from the multiple sensors during 

normal operation of the computing device ; 
simulating initiation of a ransomware encryption ; 
retrieving sensor data from the multiple sensors during the 

simulation ; and 
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training the predictive model using the sensor data during the normal operation and the simulation . 
4. The method of claim 3 , wherein the predictive model comprises a feature vector determined using machine learn ing . 
5. The method of claim 1 , wherein the multiple sensors comprise a sensor for at least one of a main memory power , 

voltage , current , or temperature . 
6. The method of claim 1 , wherein the analysis is per 

formed at least one of continuously , periodically , or event triggered . 
7. The method of claim 1 , further comprising determining 

whether an encryption is authorized using a white list . 
8. The method of claim 1 , wherein the malware is a 

zero - day instance of malware . 
9. The method of claim 1 , wherein the predictive model comprises a hardware module . 
10. The method of claim 1 , wherein at least one of the multiple sensors is integral to the computing device . 
11. A mobile device , comprising : multiple sensors ; one or more processors ; and a non - transitory computer - readable storage medium coupled to the one or more processors and storing programming instructions for execution by the one or more processors , the programming instructions instruct 

the one or more processors to : retrieve data from multiple sensors in a computing 
device , wherein the multiple sensors comprise dif 
ferent types of sensors to monitor an operating condition of internal hardware components of the computing device , and the sensor data reflective of 
the operating condition of the internal hardware 
components ; 

analyze the sensor data based on a predictive model , 
wherein the predictive model is trained to detect 
malware ; 

determine initiation of malware based on the analysis ; 
and 

in response to the determination , terminate the mal 

simulating initiation of a ransomware encryption ; retrieving sensor data from the multiple sensors during the 
simulation , and 

training flail the predictive model using the sensor data 
during the normal operation and the simulation . 

14. The mobile device of claim 13 , wherein the predictive model comprises a feature vector determined using machine learning 
15. The mobile device of claim 11 , wherein the multiple 

sensors comprise a sensor for at least one of a main memory power , voltage , current , or temperature . 
16. A non - transitory computer readable medium storing instructions to cause a processor to perform operations comprising : 
retrieving data from multiple sensors in a computing device , wherein the multiple sensors comprise different types of sensors to monitor an operating condition of internal hardware components of the computing device , 

and the sensor data reflective of the operating condition of the internal hardware components ; 
analyzing the sensor data based on a predictive model , 

wherein the predictive model is trained to detect mal 
ware ; 

determining initiation of malware based on the analysis ; 
and 

in response to the determination , terminating the malware . 
17. The non - transitory computer readable medium of 

claim 16 , wherein the malware comprises ransomware , and 
initiation of ransomware encryption is detected . 

18. The non - transitory computer readable medium of 
claim 17 , the instructions further comprising : 

retrieving sensor data from the multiple sensors during 
normal operation of the computing device ; 

simulating initiation of a ransomware encryption ; 
retrieving sensor data from the multiple sensors during the 

simulation ; and 
training the predictive model using the sensor data during 

the normal operation and the simulation . 
19. The non - transitory computer readable medium of claim 18 , wherein the predictive model comprises a feature 

vector determined using machine learning . 
20. The non - transitory computer readable medium of claim 16 , wherein the multiple sensors comprise a sensor for 

at least one of a main memory power , voltage , current , or temperature . 

ware . 
12. The mobile device of claim 11 , wherein the malware comprises ransomware , and initiation of ransomware encryption is detected . 13. The mobile device of claim 12 , the programming instructions further comprising : retrieving sensor data from the multiple sensors during normal operation of the computing device ; 


