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DETECTING MALICIOUS SOFTWARE 
USING SENSORS 

BACKGROUND 

Effective defense against a ransomware attack is typically 

2 
In these instances, data streams from on-board sensors in the 
host can be monitored and ransomware infections can be 
detecting using these data streams and predefined criteria. In 
this sense, a physical side charmel can be used where the 

5 victim's files are not directly monitored. The behavior of the 
victim machine is monitored and onboard sensor-provided 
data is used as side-channel information that can indicate 
when an encryption operation is occurring. In other words, 
encryption detection depends upon the use of small yet 
distinguishable changes in the physical state of a system as 

a multi-tiered or layered approach. Detection of the malware 
when downloading to the victim computer is an outer 
defense, and if possible, can prevent the ransomware from 
ever entering the system. This defense attempts to prevent an 

10 
attack vector from penetrating a victims host computer. 
Packet signature monitoring via an intrusion detection sys­
tem (IDS) or file signature monitoring via a local antivirus 
software program can provide this capability, but only if 
these methods are capable of recognizing the malware 
through knowledge of the data signatures. While this 15 

defense is a desirable, it is notoriously difficult to prevent 
infection with previously unknown ransom ware versions, or 
so-called zero-day attacks. In the case of zero-day ransom­
ware, data signatures and other corresponding characteris­
tics are unknown by definition. Furthermore, the increasing 20 

presence of polymorphic malware is causing signature­
based approaches to become less effective than they once 

reported through onboard sensor-provided data. In some 
implementations, monitoring can be accomplished through a 
background process that is loaded at boot time and thus 
continuously monitors the system for suspicious behavior. 
Once this suspicious behavior is detected, the user can be 
alerted and the suspicious processes can be suspended. The 
central difference between this approach and other previous 
approaches is that this approach uses secondary effects to 
detect the presence of malware rather than a direct effect, 
such as measuring increases in file entropy. 

In some implementations, a feature vector can be formu­
lated consisting of various sensor outputs that is coupled 
with a detection criterion for the binary states of ransom ware 

were. 

SUMMARY 

In some implementations, a method includes retrieving 
data from multiple sensors in a computing device, and the 
multiple sensors comprise different types of sensors. The 
sensor data is analyzed based on a predictive model, and the 
predictive model is trained to detect malware. Initiation of 
malware is determined based on the analysis. In response to 
the determination, the malware is terminated. 

The details of one or more embodiments of the invention 
are set forth in the accompanying drawings and the descrip­
tion below. Other features, objects, and advantages of the 
invention will be apparent from the description and draw­
ings, and from the claims. 

DESCRIPTION OF DRAWINGS 

FIG. 1 is an example computing device including sensors 
for detecting ransomware. 

FIG. 2 is an example confusion matrix representing 
machine state versus ransomware detection model predic­
tion for a Window machine. 

FIG. 3A is a plot of encryption activity versus time for a 
Window machine. 

FIG. 3B is a plot of ransomware detection model predic­
tion versus time for a Window machine. 

FIG. 4 is a confusion matrix representing actual machine 
state versus ransomware detection model prediction for an 
Apple machine. 

FIG. SA is a plot of encryption activity versus time for an 
Apple machine. 

FIG. 5B is a plot of ransomware detection model predic­
tion versus time for an Apple machine. 

FIG. 6 is a flowchart illustrating an example method for 
detecting ransomware. 

25 present versus normal operation. In this instances, previ­
ously unknown or zero-day versions of ransomware are 
vulnerable since no a priori knowledge of the malware, such 
as a data signature, is required. Experimental results from a 
system which underwent testing with 16 different test con-

30 figurations comprised of different simulated system loads 
unknown to the model and different AES encryption meth­
ods used during a simulated ransomware attack showed an 
average true positive prediction rate of 98.82% and an 

35 
average false positive prediction rate of 1.57% for predic­
tions made once every second about the state of the system 
under test. 

FIG. 1 illustrates an example computing device 100 for 
detecting ransom where in accordance with one or more 

40 implementations of the present disclosure. In some imple­
mentations, the computing device 100 uses sensor data to 
detect initiation of encryption of data. In the illustrated, the 
computing device 100 includes a sensor-monitoring module 
102 communicably coupled to sensors 104a-e to detect 

45 operating conditions of the device 100. As illustrated, the 
sensors 104a-e include a current sensor 104a, a temperature 
sensor 104b, RPM sensor 104c, a voltage sensor 104d, and 
a power sensor 104e. The computing device 100 may 
include the same, some, or different sensors to detect mal-

50 ware ( e.g., ransomware) without departing from the scope of 
the disclosure. 

In general, the computing device 100 includes sensors 
l04a-e to monitor the state of internal hardware compo­
nents. These sensors 104a-e can, in some implementations, 

55 continuously or periodically gather and supply sensor data 
that is communicated with other devices and subsystems to 
substantially maintain the device 100 within specific oper­
ating specifications. If sensor data reveals that a device 

Like reference symbols in the various drawings indicate 60 

like elements. 

component is approaching a boundary for a recommended 
value of an operational specification, safety mechanisms can 
be engaged to correct the internal environment and prevent 

DETAILED DESCRIPTION 

The present disclosure is directed to a system and method 
for detecting ransom ware in an infected host ( e.g., computer, 
mobile device) during the initiation of its payload execution. 

or otherwise reduce malfunctions. For example, when the 
data from the temperature sensor 104b of, for example, a 
computer's central processing unit (CPU) begins to increase, 

65 a signal can be sent to the CPU cooling fan. This signal 
causes the fan to either become active or to increase the fan 
speed in order to cool the CPU. Additionally, the sensors 
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104a-e can provide input to other subsystems such as 
internal power management units, PMU s, to conserve power 
usage. 

Typically, computing-device components are frequently 
designed to be compact in size through the use of transistors 
with feature sizing often in the nanometer scale. As a direct 
result, whenever computations become more complex, more 
stress in placed on the components. This increased stress 
occurs because a large number of transistors are frequently 
switching in a circuit that correspondingly cause an increase 
in dynamic power consumption and, in turn, more heat 
dissipation especially during heavy computational activity. 
Thus, monitoring the side channels of the computing device 
100 with the embedded sensors 104a-e that measure oper­
ating conditions such as temperature, power consumption, 
and battery voltage levels can indicate the type of processing 
that is underway on a computer at a given time. As a result, 
monitoring a computer's side channels through periodic 
observations of sensor output data can, in some implemen­
tations, indicate when a resource-heavy task, such as encryp­
tion, is occurring. Since ransomware utilizes encryption in 
its payload to deny its victims access to their files, trends to 
emerge in regard to how a computer behaves while under 
ransomware attack based on analyzing data from a comput­
er's side channel sensor data. 

Conventional computers are comprised of the same set of 
basic internal devices to enable their operation. However, 
manufacturers may choose to use different and/or unique 
sets of components for their various computer models. Due 
to this variation among different product models, corre­
sponding differences among the readings of the internal 
onboard sensors can occur when they are queried. In the 
illustrated implementation, the sensor-monitoring module 
102 can include any software, hardware, and/or firmware 
configured to access sensor data ( e.g., main memory power 
usage). For example, the sensor-monitoring module 102 can 
be accessed sensor data via the command line and/or 
through calls to the operating system and interpret the 
onboard sensor data. During experimentation, the Hardware 
Monitor and the Open Hardware Monitor applications were 
used to provide information from systems running Apple's 
OSX® and Microsoft's Windows® operating systems. As an 
example oflarge number of available on-board sensors, a list 
of the 59 sensors and their readings from an Apple Mac­
book® is provided below in Table 1. 

TABLE I 

APPLE MACBOOK INTERNAL SENSORS AND READINGS 

Apple Macbook Sensor 

SMART Disk APPLE SSD SD0128F 
(135251405113) [TEMPERATURE]: 
SMC AIR INLET [TEMPERATURE]: 
SMC BATTERY [TEMPERATURE]: 
SMC BATTERY CHARGER PROXIMITY 
[TEMPERATURE]: 
SMC BATTERY POSITION 2 [TEMPERATURE]: 
SMC BATTERY POSITION 3 [TEMPERATURE]: 
SMC CAMERA PROXIMITY [TEMPERATURE]: 
SMC CHARGER PROXIMITY TEMPERATURE 
[TEMPERATURE]: 
SMC CPU A PROXIMITY [TEMPERATURE]: 
SMC LEFT PALM REST [TEMPERATURE]: 
SMC MAIN HEAT SINK 2 [TEMPERATURE]: 
SMC MAIN LOGIC BOARD [TEMPERATURE]: 
SMC PLATFORM CONTROLLER HUB CHIP 
TEMPERATURE [TEMPERATURE]: 
SMC SSD BAY [TEMPERATURE]: 
SMC SSD TEMPERATURE A [TEMPERATURE]: 

Value 

136.4 F. 

102.2 F. 
87.8 F. 

111.2 F. 

87.8 F. 
87.8 F. 
113 F. 

100.4 F. 

120.2 F. 
87.8 F. 
93.2 F. 
96.8 F. 

129.2 F. 

98.6 F. 
138.2 F. 

4 
TABLE I-continued 

APPLE MACBOOK INTERNAL SENSORS AND READINGS 

5 
Apple Macbook Sensor Value 

SMC SSD TEMPERATURE B [TEMPERATURE]: 120.2 F. 
SMC WLAN CARD [TEMPERATURE]: 98.6 F. 
Smart Battery bq2Sz451 (1) [TEMPERATURE]: 82.4 F. 
Battery 1 Cell 1 [VOLTAGE]: 3.69299 V 
Battery 1 Cell 2 [VOLTAGE]: 3.69398 V 

10 Battery 1 Voltage [VOLTAGE]: 7.38699 V 
SMC CPU CORE [VOLTAGE]: 1.66211 V 
SMC CPU SUPPLY 1 [VOLTAGE]: 1.05176 V 
SMC DC INPUT [VOLTAGE]: 0 V 
SMC POWER SUPPLY/BATTERY [VOLTAGE]: 7.16016 V 
SMC SSD SUPPLY [VOLTAGE]: 3.29883 V 

15 SMC WLAN CARD [VOLTAGE]: 3.29883 V 
Battery 1 Current [CURRENT]: 1.45599 A 
SMC 5 V SO LINE [CURRENT]: 0.0498047 A 
SMC BACKLIGHT [CURRENT]: 0.00292969 A 
SMC MAIN HEAT SINK 2 [TEMPERATURE]: 93.2 F. 
SMC MAIN LOGIC BOARD [TEMPERATURE]: 96.8 F. 
SMC PLATFORM CONTROLLER HUB CHIP 129.2 F. 

20 TEMPERATURE [TEMPERATURE]: 
SMC SSD BAY [TEMPERATURE]: 98.6 F. 
SMC SSD TEMPERATURE A [TEMPERATURE]: 138.2 F. 
SMC SSD TEMPERATURE B [TEMPERATURE]: 120.2 F. 
SMC WLAN CARD [TEMPERATURE]: 98.6 F. 
Smart Battery bq20z451 (1) [TEMPERATURE]: 82.4 F. 

25 Battery 1 Cell 1 [VOLTAGE]: 3.69299 V 
Battery 1 Cell 2 [VOLTAGE]: 3.69398 V 
Battery 1 Voltage [VOLTAGE]: 7.38699 V 
SMC CPU CORE [VOLTAGE]: 1.66211 V 
SMC CPU SUPPLY 1 [VOLTAGE]: 1.05176 V 
SMC DC INPUT [VOLTAGE]: 0 V 

30 SMC POWER SUPPLY/BATTERY [VOLTAGE]: 7.16016 V 
SMC SSD SUPPLY [VOLTAGE]: 3.29883 V 
SMC WLAN CARD [VOLTAGE]: 3.29883 V 
Battery 1 Current [CURRENT]: 1.45599 A 
SMC 5 V SO LINE [CURRENT]: 0.0498047 A 
SMC BACKLIGHT [CURRENT]: 0.00292969 A 

35 SMC BATTERY CURRENT [CURRENT]: 0.78125 A 
SMC CPU CORE [CURRENT]: 0.566406 A 
SMC CPU HIGH SIDE [CURRENT]: 0.241211 A 
SMC CPU SUPPLY 1 [CURRENT]: 0.0107422 A 
SMC CPUNRM SUPPLY 2 [CURRENT]: 0 A 
SMC DC INPUT [CURRENT]: 0.00195312 A 
SMC DDR3 MEMORY 1.35 V LINE [CURRENT]: 0.881836 A 

40 SMC DDR3 MEMORY S3 LINE [CURRENT]: 0.0771484 A 
SMC DISCRETE BATTERY [CURRENT]: 0.738281 A 
SMC LCD PANEL [CURRENT]: 0.000976562 A 
SMC POWER SUPPLY/BATTERY [CURRENT]: 0.770508 A 
SMC SSD SUPPLY [CURRENT]: 0.0771484 A 
SMC WLAN CARD [CURRENT]: 0.0107422 A 

45 SMC 5 V SO LINE [POWER]: 0.164062 W 
SMC BACKLIGHT [POWER]: 0.015625 W 
SMC CPU CORE [POWER]: 0.964844 W 
SMC CPU HIGH SIDE [POWER]: 1.72266 W 
SMC CPU SUPPLY 1 [POWER]: 0.0078125 W 
SMC CPUNRM SUPPLY 2 [POWER]: ow 

50 SMC DDR3 MEMORY 1.35 V LINE [POWER]: 1.05469 W 
SMC DDR3 MEMORY S3 LINE [POWER]: 0.0898438 W 
SMC LCD PANEL [POWER]: ow 
SMC POWER SUPPLY/BATTERY [POWER]: 5.51172 W 
SMC SSD SUPPLY [POWER]: 0 25 W 
SMC WLAN CARD [POWER]: 0.0351562 W 

55 Battery 1 Current Capacity [CAPACITY]: 503 mAb 
Battery 1 Total Capacity [CAPACITY]: 6559 mAb 
SMC FAN Exhaust [RPMS]: 1192 RPM 
SMC AMBIENT LIGHT 1 [LIGHT]: 70 

60 In some implementations, the sensor-monitoring module 
102 can determine prediction models using Machine Learn­
ing (ML) techniques. In these instances, the sensor-moni­
toring module 102 trains models using a large amount of 
data gathered and processed from an experimental environ-

65 ment. The sensor-monitoring module 102 can use the sensor 
data, such as that provided in Table 1, to form a feature 
vector that differentiates between the binary machine states 
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of "normal operation" versus "ransomware payload execu­
tion" (i.e., unauthorized encryption activity). Instead of 
relying one type of sensor data, the feature vector can 
combine multiple types of sensor data. In response to the 
sensor-data feature vector indicating a specific state of 
encryption, the sensor-monitoring module 102 can issue 
alerts and suspend the corresponding encryption processes. 

In some instances, the sensor-monitoring module 102 can 
use a simple logistic regression approach as the ML classi­
fication algorithm to discriminate between the binary states 

6 
Intel® i5 processor and 4 GB of main memory and the 
Windows® machine was an Intel® i7 processor with 32 GB 
of main memory. 

Training data was collected on both computing devices 
5 and the data was used to generate a prediction model for 

each computing device. The new encryption detection 
method was tested utilizing a ransomware simulation testing 
script written in Python. The size of the directory and the 
method of encryption were selected by randomly picking a 

10 number between 1 and 100. All values of 60 and below 
caused encryption of the small directory, all values from 61 
to 90 encrypted the medium directory, and all values from 91 
to 100 encrypted the large directory. The particular encryp-
tion method used was randomly selected among the four 
types we implemented in our experiments. 

After a particular directory has been encrypted, the script 
waits a random amount of time before performing additional 
encryption. The amount of time it waits is proportional to the 

of "normal operation" versus "ransomware payload execu­
tion." Other alternative classification algorithms can be used 
without departing from the scope of the disclosure. In 
addition, the feature vector may be refined using techniques 
such as Principal Component Analysis (PCA), Linear Dis- 15 

criminant Analysis (LDA), and others. In some implemen­
tations, the sensor-monitoring module 102 can train the 
prediction models using different methods of encryption 
such as Electronic Code Book, Cipher-Block Chaining, 
Cipher FeedBack, XOR encryption, and others. 20 size of the directory it previously encrypted. After encrypt­

ing a small directory, a random amount of time between 1 
and 60 seconds is selected, a time between 5 and 10 minutes 
is selected for the medium directory, and a time between 15 
and 30 minutes is selected for the large directory. The script 

In some aspects of operations, the sensor-monitoring 
module 102 receives a training set of hardware sensor data. 
The hardware sensor data can include data when how the 
sensors behave on the host computer under normal operating 
conditions as well data when a covert encryption process is 
executed. After the sensor training data has been retrieved, 
the sensor-monitoring module 102 can perform logistic 
regression to fit the model to the training data. Due to the 
slight variation between the components of each computer, 
the resulting ransomware detection model may be different 
for different devices. Once determined, the sensor-monitor­
ing module 102 can use the model to classify the state of the 
computing device 100 whenever the hardware sensors are 
routinely polled. If the model predicts that a suspicious 
encryption process is executing, the sensor-monitoring mod­
ule 102 can notify the user and suspend or terminate the 
suspicious process. In some implementations, the detection 
algorithm can run as a background process to allow normal 
usage of the system. A pseudocode version of the detection 
algorithm is provided below. 

// load model from binary file 
model - load('./model,pkl') 
attack_count = 0 
previous_prediction = 0 
under_attack - False 
// check sensor data and make prediction 
while True 

data - monitor.read_sensors( ) 
prediction - model.predict(data) 
// determine action based on current and 
// previous data 
if prediction: 

attack_count +- 1 
else: 

if previous_prediction == 0: 
attack_count = 0 
under_attack - False 

previous_prediction = data 
II set condition to under attack if positive 
predictions 
// increase above threshold 
if attack_count > threshold: 

under_attack = True 

FIGS. 2-5 illustrate example results for testing conducted 
on two different computing devices. Testing was conducted 
on two computing devices, one running Apple OSX® and 
the other running Microsoft Windows®. Specifically, the 
Apple OSX machine was a Macbook Air with a 1.3 GHz 

25 also randomly selects a value between 5 and 15 and waits for 
an hour and a half after encrypting that many gigabytes of 
data. Randonmess and wait times are utilized in order to 
simulate the attempts made by an adversary to avoid detec­
tion of ransomware payload execution. During the encryp-

30 tion process, the script searches for files by recursively 
starting from a given path. Files that have extensions match­
ing a list of common user file types are read and their data 
is encrypted. After encryption the data is copied over the 
existing data in the original file. After testing the Windows® 

35 machine for 5 hours 94.2% of sensor polls were accurately 
predicted as either "under attack" or "no attack". The 
confusion matrix in FIG. 2 shows the relationship between 
the predictions made by the model and the actual state of the 
computing device. During the periods the script was per-

40 forming encryption 98.1 % of polling predictions correctly 
identified a state of under attack. During the periods, the 
script was not performing encryption 92.5% of polling 
predictions correctly identified a state of no attack. 

1.9% of the checks that occurred during periods of 
45 encryption incorrectly predicted that there was no attack 

(i.e., a false negative error) while 7 .5% of periods with no 
encryption incorrectly predicted that there was an attack 
(i.e., a false positive error). The classification method was 
tuned in a conservative fashion to focus more upon the 

50 reduction of false negative errors than the case of false 
positives as the former error type is assumed to be more 
critical than the latter. 

The overall accuracy of the encryption detection method 
is illustrated in FIG. 3. The uppermost graph, (a), of the 

55 figure represents the actual periods of encryption or "truth 
data" while the plot on the bottom, (b ), represents the actual 
predicted periods of encryption. These graphs depict the 
machine state on the vertical axis with zero indicating 
normal operation and one indicating under attack. The 

60 horizontal axes depict time. The Apple computing device 
was tested by only encrypting the large directory after a 
random wait period between 30 and 60 minutes over a 
6-hour period. This method gives a clear indication of how 
well the new detection method can detect periods of high 

65 volume encryption. The confusion matrix in FIG. 4 shows 
the relationship between the predictions made by the model 
and the actual state of the computing device. 
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After testing the Apple machine, 98.2% of the sensor polls 
resulted in accurate predictions. During the periods the 
script was actually performing an encryption operation, 
99.7% of the polling predictions correctly identified a state 
of "under attack." During the periods the script was not 5 

performing encryption, 97.7% of polling predictions cor­
rectly identified a state of "no attack." A false negative rate 

8 
and hardware, as appropriate. For example, method 200 can 
be performed by the example computing system 100 illus­
trated in FIG. 1. In some implementations, various steps of 
me!hod 600 can be run in parallel, in combination, in loops, 
or m any order. 

The method 600 begins at step 602 where sensor data is 
collected during normal operations. For example, the sensor­
monitoring module 102 can retrieve sensor data during 
normal operations. Ransomware encryption is simulated at 
step 604, and the sensor data is retrieved during that simu­
lation at step 606. Next, at step 608, a predictive model is 
trained using both data sets. Once trained, sensor data of the 
computing device is monitored, at step 610, using the trained 
predictive model and sensor data to detect ransomware 

of 0.27% of the checks that occurred during periods of 
encryption incorrectly predicted that there was no attack 
while a false positive error rate of 2.3% of observations with 10 

no encryption incorrectly predicted that there was an attack. 
FIG. 5 shows the periods of actual encryption in the upper­
most portion, (a), and periods of predicted encryption in the 
lower portion, (b ). As in FIG. 3, the vertical axes depict 
machine state and the horizontal axes depict time. 

Upon further analysis of the results, most periods of false 
positive predictions occurred directly after a correct attack 
prediction. This can be observed in FIG. 5 which contains 
false positive periods after the second and fourth encryption 
periods. Implementing additional testing and filtering tech- 20 

niques that more closely scrutinize predictions being made 
for a short period directly following a positive prediction 
period can result in increased overall accuracy. In some 
implementations, temporal or history data regarding past 
recent predictions may be included in the analysis. 

15 ~ncryption. At_step 612, initiation ofransomware encryption 
1s detected usmg the trained predictive model and sensor 
data. At step 614, the encryption is at least suspended. 

A number of embodiments of the invention have been 
described. Nevertheless, it will be understood that various 
modifications may be made without departing from the spirit 
and scope of the invention. Accordingly, other embodiments 
are within the scope of the following claims. 

What is claimed is: 
. 1. A _non-transitory computer readable medium storing 

25 mstruct10ns to cause a processor of a computing device to 
perform operations comprising: Legitimate encryption can be accounted using white­

listing or other methods that notify the detection process that 
legitimate encryption operations are in process. For 
example, system registry data can be used to label processes 
that employ legitimate encryption and the ransomware 30 

detection process can be augmented to verify if a detection 
is the result of a legitimate process or not before a state of 
"ransomware payload execution" is declared. 

In some implementations, experimental ransomware 
detection algorithm can use a simple polling or sampling 35 

method wherein the operational phase of the detection 
method would periodically query the sensors to obtain 
readings. This approach suffers from potential aliasing prob­
lems, particularly if the malware payload were to be imple­
mented in short bursts or use some other form of intelligence 40 

about the state of the victim system before encryption is 
executed. In some implementations, the schedule sensor 
queries can be an event-based technique. In these instances, 
error rates can be reduced while also reducing the average 
computational overhead since ransomware payload execu- 45 

tion is a relatively rare event. 
The method can be applicable to both previously known 

as well as zero-day instances of ransomware that employ 
encryption in the payload. The detection method results in 
very low, if any, data loss since encryption detection can 50 

oc~u~ very early in the timespan of the malicious encryption 
activity. For example, the data loss may be less than 5% 1 % 
or 0.1%. The method is based upon monitoring on-b~ard: 
hardware sensor data streams rather than characteristics of 
the targeted data. The new technique may not include 55 

modification to hosting computer systems because most 
computing devices include pre-existing physical sensors, 
supporting circuitry, and access to the sensor readings. 

FIG. 6 is a flow diagram illustrating an example method 
600 of analyzing a partial software program, according to an 60 

implementation. For clarity of presentation, the description 
that follows generally describes method 600 in the context 
of the other figures in this description. However, it will be 
understood that method 600 may be performed, for example, 
by any suitable system, environment, software, and hard- 65 

ware, or a combination of systems, environments, software, 

simulating initiation of a ransomware encryption in the 
computing device; 

while the ransomware encryption is executed by the 
computing device, obtaining sensor data from multiple 
sensors in the computing device, wherein the multiple 
sensors comprise different types of sensors to monitor 
an operating condition of internal hardware compo­
nents of the computing device, the multiple sensors 
residing in a side channel separate from the processor 
of the computing device, and the obtained sensor data 
reflective of the operating condition of the internal 
~ard~are components while the ransomware encryp­
t10n 1s executed by the computing device, wherein the 
obtained sensor data obtained while the ransomware 
encryption is executed by the computing device is 
different from sensor data obtained while the comput­
ing device is not executing the ransomware encryption; 

training a predictive model to detect malware using the 
obtained sensor data to detect execution of ransomware 
by the computing device; 

after training the predictive model, obtaining sensor data 
from multiple sensors in the computing device during 
a normal operation of the computing device; 

analyzing the obtained sensor data retrieved during the 
normal operation based on the predictive model; 

determining initiation of malware in response to analyz­
ing the obtained sensor data retrieved during the normal 
operation based on the predictive model; and 

in response to the determination, terminating the malware. 
2. The non-transitory computer readable medium of claim 

1, wherein the malware comprises ransomware, and initia­
tion of ransomware encryption is detected. 

3. The non-transitory computer readable medium of claim 
1, wherein the predictive model comprises a feature vector 
determined using machine learning. 

4. The non-transitory computer readable medium of claim 
1, wherein the multiple sensors comprise a sensor for at least 
one of a main memory power, voltage, current, or tempera­
ture. 

* * * * * 


