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CONTROL SYSTEM ANOMALY DETECTION 
USING NEURAL NETWORK CONSENSUS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims priority to U.S. Provisional Appli
cation No. 63/211,281, filed Jun. 16, 2021, and U.S. Provi
sional Application No. 63/275,759, filed Nov. 4, 2021, 
which are hereby incorporated by reference in their entire
ties. 

BACKGROUND 

Control systems provide transportation, essential utilities, 
and manufacturing of goods to the masses. It is critical that 
controlled processes within these systems are executed 
correctly and according to schedule. Monitoring the sys
tem's performance during their operation is important for 
maintaining their reliability and availability. 

SUMMARY 

Many control systems, including those in industrial and 
manufacturing facilities, rely on computer controlled elec
tro-mechanical frameworks (e.g., industrial control system 
(ICS)). These frameworks coordinate industrial operations 
between protocols, connections, and devices in the control 
system, so they can be executed properly and on schedule. 
Further, these various components are generally interoper
able due to the emergence of standardized computer inter
faces and networking protocols that support control system 
implementations. Thus, it may be the case that the control 
system demonstrates state-like behavior that characterizes 
its overall functionality. However, often times the protocols 
employed may be open communication protocols or the 
software may be open source, which may increase the risk 
of cyberattacks. Further, the components in the control 
system may be supplied by various vendors and often have 
large state spaces with high complexity ( e.g., cycling states), 
thus making it impractical to capture the complete behavior 
of the control system. Thus, critical processes may be 
disrupted, resulting in damage to essential utilities, without 
detection. 

Detecting anomalies in a control system may help to 
increase its safety, reliability, and resilience. An automated 
anomaly detection may be achieved using machine learning/ 
artificial intelligence (ML) algorithms, such as neural net
works, that analyze the overall health of the components in 
a control system and predict the states of the components. 
The ML algorithms may consider patterns in data related to 
network traffic as well data from equipment ( e.g., sensor 
data), and the states may be classified taking into account 
random deviations that may occur. If the control system is 
functioning properly, the state classified should match or be 
reasonably similar (i.e., consensus from the two models is 
achieved). However, when faulty equipment or processing 
errors cause unexpected behavior in the system, the classi
fication may diverge, causing loss of consensus. Because the 
system diverges from normal behavior, this classification 
can also be described as anomaly detection. 

In one aspect, disclosed herein are computer-implemented 
methods for control system anomaly detection comprising: 
receiving input data comprising: sensor data from equipment 
in the control system; and network data from a network in 
communication with the control system; normalizing distri
butions of the sensor data and the network data; checking 

2 
time alignment between the sensor data to the network data; 
selecting a time window for accumulating the sensor data 
and the network data; feeding the sensor data into a first 
neural network comprising a behavior classifier of the 

5 equipment of the control system to output a first classified 
state of the control system; feeding the network data into a 
second neural network comprising a network traffic classi
fier to output a second classified state of the control system; 
and comparing the first and the second classified states for 

10 consensus for system anomaly detection, wherein accumu
lation of differences in classified states in a given time 
interval above a threshold indicates occurrence of an 
anomaly. In some embodiments, the control system com
prises an industrial control system, distributed control sys-

15 tern (DCS), supervisory control and data acquisition 
(SCADA) system, embedded control system, or a combina
tion thereof. In some embodiments, the control system 
comprises a general purpose computer. In some embodi
ments, the industrial control system comprises one or more 

20 of programmable logic controllers, remote terminal units, 
intelligent electronic devices, engineering workstations, 
human machine interfaces, data historians, communication 
gateways, and front-end processors. In some embodiments, 
the control system employs one or more network commu-

25 nication protocols. In further embodiments, the one or more 
network communication protocols comprise standard net
work communication protocols, non-standard network com
munication protocols, or a combination thereof. In still 
further embodiments, the standard network communication 

30 protocols comprise process field bus (Profibus ), process field 
net (Profinet), highway addressable remote transducer 
(HART), distributed network protocol (DNP3), Modbus, 
open platform communication (OPC), building automation 
and control networks (BACnet ), common industrial protocol 

35 (CIP), or ethernet for control automation technology (Eth
erCAT). In some embodiments, the sensor data comprises 
time series data. In some embodiments, the sensor data is 
obtained from a standalone sensor or an integrated sensor. In 
further embodiments, the integrated sensor is part of a 

40 control device comprising an actuator. In some embodi
ments, the network data comprises packet data, metadata, or 
a combination thereof. In further embodiments, the packet 
data comprises a packet's header, payload, trailer, or any 
combination thereof. In still further embodiments, the packet 

45 data from the packet's payload comprises bit streams. In 
some embodiments, normalizing distributions of the sensor 
data and the network data comprises adjusting the distribu
tions' mean, variance, higher-ordered moments, or a com
bination thereof. In some embodiments, the method com-

50 prises resampling the sensor data, the network data, or a 
combination thereof for the time alignment between the 
sensor data and network data. In further embodiments, the 
resampling results in the sensor data and the network data 
having a same number of samples. In further embodiments, 

55 the resampling comprises downsampling. In further embodi
ments, the resampling comprises upsampling. In further 
embodiments, the resampling comprises unsampling. In 
some embodiments, the method comprises windowing to 
adjust the time window for accumulating the sensor data, the 

60 network data, or a combination thereof. In further embodi
ments, the windowing accounts for delays in the network 
data, the sensor data, or a combination thereof. In some 
embodiments, one or both of the first neural network and the 
second neural network are deep neural networks. In further 

65 embodiments, the deep neural networks comprise convolu
tional layers such that one or both of the first neural network 
and the second neural network are convolutional neural 
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networks. In still further embodiments, the convolutional 
neural networks comprise convolutional layers, pooling 
layers, flattening layers, dropout layers, and dense layers. In 
still further embodiments, the convolutional layers comprise 
ID, 2D, or 3D convolutional layers. In still further embodi- 5 

ments, the pooling layers comprise maximum pooling lay-

4 
network communication protocols comprise standard net
work communication protocols, non-standard network com
munication protocols, or a combination thereof. In still 
further embodiments, the standard network communication 
protocols comprise process field bus (Profibus), process field 
net (Profinet), highway addressable remote transducer 
(HART), distributed network protocol (DNP3), Modbus, 
open platform communication (OPC), building automation 
and control networks (BACnet ), common industrial protocol 
(CIP), or ethernet for control automation technology (Eth
erCAT). In some embodiments, the sensor data comprises 
time series data. In some embodiments, the sensor data is 
obtained from a standalone sensor or an integrated sensor. In 
further embodiments, the integrated sensor is part of a 

ers, minimum pooling layers, average pooling layers, or a 
combination thereof. In still further embodiments, the con
volutional neural networks have hyperparameters that are 
empirically chosen based on patterns in the network of the 10 

control system. In still further embodiments, the convolu
tional neural networks are supervised for training to identify 
one or both of the first classified state and the second 
classified state. In some embodiments, the comparing the 
first and the second classified states for consensus for system 
anomaly detection is unsupervised for detecting the differ
ences between the first and the second classified states. In 
some embodiments, the threshold is an average discrepancy 
rate between the first and the second classified state. In 
further embodiments, the threshold is dynamically changed 
over time. In some embodiments, the anomaly is due to 
attacks on at least one of the equipment in the control system 
and the network of the control system. 

15 control device comprising an actuator. In some embodi
ments, the network data comprises packet data, metadata, or 
a combination thereof. In further embodiments, the packet 
data comprises a packet's header, payload, trailer, or a 
combination thereof. In still further embodiments, the packet 

In another aspect, disclosed herein are computer-imple
mented systems for control system anomaly detection com
prising: at least one logic element configured to perform 
operations on sensor data from equipment in the control 
system and network data from a network in the control 
system the operations comprising: a normalization operation 
to normalize distributions of the sensor data and the network 
data; a checking operation to check time alignment between 
the sensor data and the network data; and a selection 
operation to select a time window for accumulating the 
sensor data and the network data; a first neural network 
comprising a behavior classifier of the equipment of the 
control system for outputting a first classified state of the 
control system from the sensor data; a second neural net
work comprising a network traffic classifier for outputting a 
second classified state of the control system from the net
work data; and a discrepancy aggregator for comparing the 
first and the second classified state for consensus for control 
system anomaly detection, wherein accumulation of differ
ences in the classified states in a given time interval above 

20 data from the packet's payload comprises bit streams. In 
some embodiments, the normalization operation comprises 
adjusting the distribution's mean, variance, higher-ordered 
moments, or a combination thereof. In some embodiments, 
the at least one logic element is configured to perform a 

25 resampling operation of the sensor data, the network data, or 
a combination thereof for the time alignment between the 
network data and the sensor data. In further embodiments, 
the resampling operation results in the sensor data and the 
network data having a same number of samples. In further 

30 embodiments, the resampling operation comprises down
sampling. In further embodiments, the resampling operation 
comprises upsampling. In further embodiments, the resam
pling operation comprises unsampling. In some embodi
ments, the at least one logic element is configured to perform 

35 a windowing operation to adjust the time windows for 
accumulating the sensor data, the network data, or a com
bination thereof. In further embodiments, the windowing 
operation accounts for delays in the network data, sensors 
data, or a combination thereof. In some embodiments, one or 

40 both of the first neural network and the second neural 

a threshold indicates occurrence of an anomaly. In some 
embodiments, the computer-implemented system comprises 45 

at least one processor, a memory, and instructions executable 
by at least one processor. In some embodiments, the com
puter-implemented system comprises a general purpose 
computer. In some embodiments, the at least one logic 
element comprises a programmable logic controller (PLC), 50 

programmable logic array (PLA), progranimable array logic 
(PAL), generic logic array (GLA), complex programmable 
logic decide (CPLD), field progranimable gate array 
(FPGA), or application-specific integrated circuit (ASIC). In 
some embodiments, the at least one logic element is imple- 55 

mented on a general purpose computer. In some embodi
ments, the control system comprises an industrial control 
system, distributed control system (DCS), supervisory con-
trol and data acquisition (SCADA) system, embedded sys
tem, or a combination thereof. In further embodiments, the 60 

industrial control system comprises one or more of program
mable logic controllers, remote terminal units, intelligent 
electronic devices, engineering workstations, human 
machine interfaces, data historians, communication gate
ways, and front-end processors. In some embodiments, the 65 

control system employs one or more network communica
tion protocols. In further embodiments, the one or more 

network are deep neural networks. In further embodiments, 
the deep neural networks comprise convolutional layers 
such that one or both of the first neural network and the 
second neural network are convolutional neural networks. In 
still further embodiments, the convolutional neural networks 
comprise convolutional layers, pooling layers, flattening 
layers, dropout layers, and dense layers. In still further 
embodiments, the convolutional layers comprise ID, 2D, or 
3D convolutional layers. In still further embodiments, the 
pooling layers comprise maximum pooling layers, minimum 
pooling layers, average pooling layers, or a combination 
thereof. In further embodiments, the convolutional neural 
networks have hyperparameters that are empirically chosen 
based on patterns in the network of the control system. In 
further embodiments, the convolutional neural networks are 
supervised for training to identify the classified states. In 
some embodiments, the threshold is an average discrepancy 
rate between the first and the second classified state. In 
further embodiments, the threshold is dynamically changed 
over time. In some embodiments, the anomaly is due to 
attacks on at least one of the equipment in the control system 
and the network of the control system. 

In another aspect, disclosed herein are platforms for 
control system anomaly detection comprising: an apparatus 
comprising at least one logic element for performing opera
tions on sensor data from equipment in the control system 
and network data from a network in communication with the 
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control system; and a discrepancy aggregator for control 
system anomaly detection; and a cloud computing resource 
communicably coupled to the apparatus and comprising a 
first neural network and a second neural network; wherein 
the operations comprise: a normalization operation to nor- 5 

malize distributions of the sensor data and the network data; 
a checking operation to check time alignment between the 
sensor data and the network data; and a selection operation 
to select a time window for accumulating the sensor data and 
the network data; wherein the first neural network comprises 10 

a behavior classifier of the equipment of the control system 
outputting a first classified state of the control system from 

6 
the resampling operation results in the sensor data and the 
network data having a same number of samples. In further 
embodiments, the resampling operation comprises down-
sampling. In further embodiments, the resampling operation 
comprises upsampling. In further embodiments, the resam
pling operation comprises unsampling. In some embodi-
ments, the operations comprise a windowing operation to 
adjust the time windows for accumulating the sensor data, 
the network data, or a combination thereof. In further 
embodiments, the windowing operation accounts for delays 
in the network data, sensors data, or a combination thereof. 
In some embodiments, one or both of the first neural 
network and the second neural network are deep neural 
networks. In further embodiments, the deep neural networks 
comprise convolutional layers such that one or both of the 
first neural network and the second neural network are 
convolutional neural networks. In still further embodiments, 
the convolutional neural networks comprise convolutional 
layers, pooling layers, flattening layers, dropout layers, and 

the sensor data from the operations; wherein the second 
neural network comprises a network traffic classifier out
putting a second classified state of the control system from 15 

the network data from the operations; wherein the discrep
ancy aggregator compares the first and the second classified 
state for consensus for control system anomaly detection; 
and wherein accumulation of differences in the classified 
states in a given time interval above a threshold indicates 
occurrence of an anomaly. In some embodiments, the appa
ratus comprising at least one logic element comprises at 
least one processor, a memory, and instructions executable 

20 dense layers. In still further embodiments, the convolutional 
layers comprise ID, 2D, or 3D convolutional layers. In still 
further embodiments, the pooling layers comprise maximum 
pooling layers, minimum pooling layers, average pooling 
layers, or a combination thereof. In still further embodi-by at least one processor. In some embodiments, the at least 

one logic element comprises a progranimable logic control 25 ments, the convolutional neural networks have hyperparam
eters that are empirically chosen based on patterns in the 
network of the control system. In still further embodiments, 
the convolutional neural network is supervised for training 
to identify the first and the second classified states. In some 

ler (PLC), programmable logic array (PLA), programmable 
array logic (PAL), generic logic array (GLA), complex 
programmable logic decide (CPLD), field programmable 
gate array (FPGA), or application-specific integrated circuit 
(ASIC). In some embodiments, the control system com
prises an industrial control system, distributed control sys
tem (DCS), supervisory control and data acquisition 
(SCADA) system, embedded system, or a combination 
thereof. In some embodiments, the industrial control system 
comprises one or more of programmable logic controllers, 35 

remote terminal units, intelligent electronic devices, engi
neering workstations, human machine interfaces, data his
torians, communication gateways, and front-end processors. 

30 embodiments, the threshold is an average discrepancy rate 
between the first and the second classified state. In further 

In some embodiments, the control system employs one or 
more network communication protocols. In further embodi- 40 

ments, the one or more network communication protocols 
comprise standard network communication protocols, non
standard network communication protocols, or a combina
tion thereof. In still further embodiments, the standard 
network communication protocols comprise process field 45 

bus (Profibus ), process field net (Profinet ), highway address
able remote transducer (HART), distributed network proto-
col (DNP3), Modbus, open platform communication (OPC), 
building automation and control networks (BACnet), com
mon industrial protocol (CIP), or ethernet for control auto- 50 

mation technology (EtherCAT). In some embodiments, the 
sensor data comprises time series data. In some embodi
ments, the sensor data is obtained from a standalone sensor 
or an integrated sensor. In further embodiments, the inte
grated sensor is part of a control device comprising an 55 

actuator. In some embodiments, the network data comprises 
packet data, metadata, or a combination thereof. In further 
embodiments, the packet data comprises a packet's header, 
payload, trailer, or a combination thereof. In still further 
embodiments, the packet data from the packet's payload 60 

comprises bit streams. In some embodiments, the normal
ization operation comprises adjusting the distribution's 
mean, variance, higher-ordered moments, or a combination 
thereof. In some embodiments, the operations comprise a 
resampling operation of the sensor data, the network data, or 65 

a combination thereof for the time aligrnnent between the 
network data and the sensor data. In further embodiments, 

embodiments, the threshold is dynamically changed over 
time. In some embodiments, the anomaly is due to attacks on 
at least one of the equipment in the control system and the 
network of the control system. 

In another aspect, disclosed herein are computer-imple
mented methods of training neural networks for control 
system anomaly detection comprising: collecting input data 
comprising sensor data from equipment in the control sys
tem and network data from a network in communication 
with the control system; preprocessing the sensor data and 
the network data to output preprocessed sensor data and 
preprocessed network data, the preprocessing comprising: 
normalizing to adjust distributions of the sensor data and the 
network data; checking the sensor data and the network data 
for time aligrnnent; and selecting a time window for accu
mulating the sensor data and the network data; creating 
training sets comprising a first training set comprising the 
preprocessed sensor data and a second training set compris
ing the preprocessed network data; and training a first neural 
network comprising a behavior classifier of the equipment of 
the control system with the first training set to output a first 
classified state; and training a second neural network com
prising a network traffic classifier with the second training 
set to output a second classified state. In various embodi
ments, the method is implemented on a general purpose 
computer, a server, a cluster of servers, a distributed com
puting platform, or a cloud computing platform. In some 
embodiments, the network data comprises packet data, 
metadata, or a combination thereof. In further embodiments, 
the packet data comprises a packet's header, payload, trailer, 
or a combination thereof. In still further embodiments, the 
packet data from the packet's payload comprises bit streams. 
In some embodiments, normalizing comprises adjusting the 
distribution's mean, variance, higher-ordered moments, or a 
combination thereof. In some embodiments, the preprocess
ing comprises resampling for the time aligrnnent of the 
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sensor data, the network data, or a combination thereof. In 
further embodiments, the resampling results in the sensor 
data and the network data having a same number of samples. 

8 
the equipment of the control system to output a first classi
fied state of the control system; feeding the network data into 
a second neural network comprising a network traffic clas-

In further embodiments, resampling comprises downsam
pling, upsampling, or unsampling. In some embodiments, 5 

the preprocessing comprises windowing to adjust the time 
windows for accumulating the sensor data, the network data, 

sifier to output a second classified state of the control 
system; and comparing the first and the second classified 
states for consensus for system anomaly detection, wherein 
accumulation of differences in classified states in a given 
time interval above a threshold indicates occurrence of an 
anomaly. 

or a combination thereof. In further embodiments, the win
dowing accounts for delays in the network data, the sensor 
data, or a combination thereof. In some embodiments, one or 10 

both of the first neural network and the second neural 
network are deep neural networks. In further embodiments, 

Also described herein, in certain embodiments, are com-
puter-implemented systems for control system anomaly 
detection comprising: at least one logic element configured 
to perform operations on sensor data from equipment in the 
control system and network data from a network in the 

the deep neural networks comprise convolutional layers 
such that one or both of the first neural network and the 
second neural network are convolutional neural networks. In 
still further embodiments, the convolutional neural networks 
comprise convolutional layers, pooling layers, flattening 
layers, dropout layers, and dense layers. In still further 
embodiments, the convolutional layers comprise ID, 2D, or 
3D. In still further embodiments, the pooling layers com
prise maximum pooling layers, minimum pooling layers, 
average pooling layers, or a combination thereof. In still 
further embodiments, the convolutional neural networks 
have hyperparameters empirically chosen based on patterns 
in the network of the control system. 

BRIEF DESCRIPTION OF THE DRAWINGS 

A better understanding of the features and advantages of 
the present subject matter will be obtained by reference to 
the following detailed description that sets forth illustrative 
embodiments and the accompanying drawings of which: 

FIG. 1 shows a non-limiting example of a computing 
device; in this case, a device with one or more processors, 
memory, storage, and a network interface; 

FIG. 2 shows a non-limiting example of a block diagram 
of a generic ICS feedback loop; 

FIG. 3 shows a non-limiting example of a multi-view 
classification system for a control system; in this case, for an 
ICS; 

FIG. 4 shows a non-limiting example of an architecture 
for an ICS testbed; in this case, for a MITM attack; 

FIG. 5 shows a non-limiting example of a dual-CNN 
architecture; 

FIGS. 6A-6D show raw data obtained from a trial during 
an MITM attack; 

FIGS. 7 A-7C show confusion matrices for the raw sensor 
and packet data; 

FIGS. SA-SC show classifier outputs tracking the differ
ence between classified states; 

FIG. 9 shows precision-recall curve (PRC) of the classi
fier performances; and 

FIG. 10 shows a distribution of total prediction errors 
before anomaly detection. 

DETAILED DESCRIPTION 

Described herein, in certain embodiments, are computer
implemented methods for control system anomaly detection 
comprising: receiving input data comprising: sensor data 
from equipment in the control system; and network data 
from a network in communication with the control system; 
normalizing distributions of the sensor data and the network 
data; checking time aligmnent between the sensor data to the 
network data; selecting a time window for accumulating the 
sensor data and the network data; feeding the sensor data 
into a first neural network comprising a behavior classifier of 

15 control system the operations comprising: a normalization 
operation to normalize distributions of the sensor data and 
the network data; a checking operation to check time align
ment between the sensor data and the network data; and a 
selection operation to select a time window for accumulating 

20 the sensor data and the network data; a first neural network 
comprising a behavior classifier of the equipment of the 
control system for outputting a first classified state of the 
control system from the sensor data; a second neural net
work comprising a network traffic classifier for outputting a 

25 second classified state of the control system from the net
work data; and a discrepancy aggregator for comparing the 
first and the second classified state for consensus for control 
system anomaly detection, wherein accumulation of differ
ences in the classified states in a given time interval above 

30 a threshold indicates occurrence of an anomaly. 
Also described herein, in certain embodiments, are plat

forms for control system anomaly detection comprising: an 
apparatus comprising at least one logic element for perform
ing operations on sensor data from equipment in the control 

35 system and network data from a network in communication 
with the control system; and a discrepancy aggregator for 
control system anomaly detection; and a cloud computing 
resource communicably coupled to the apparatus and com
prising a first neural network and a second neural network; 

40 wherein the operations comprise: a normalization operation 
to normalize distributions of the sensor data and the network 
data; a checking operation to check time alignment between 
the sensor data and the network data; and a selection 
operation to select a time window for accumulating the 

45 sensor data and the network data; wherein the first neural 
network comprises a behavior classifier of the equipment of 
the control system outputting a first classified state of the 
control system from the sensor data from the operations; 
wherein the second neural network comprises a network 

50 traffic classifier outputting a second classified state of the 
control system from the network data from the operations; 
wherein the discrepancy aggregator compares the first and 
the second classified state for consensus for control system 
anomaly detection; and wherein accumulation of differences 

55 in the classified states in a given time interval above a 
threshold indicates occurrence of an anomaly. 

Also described herein, in certain embodiments, are com
puter-implemented methods of training neural networks for 
control system anomaly detection comprising: collecting 

60 input data comprising sensor data from equipment in the 
control system and network data from a network in com
munication with the control system; preprocessing the sen
sor data and the network data to output preprocessed sensor 
data and preprocessed network data, the preprocessing com-

65 prising: normalizing to adjust distributions of the sensor data 
and the network data; checking the sensor data and the 
network data for time alignment; and selecting a time 
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window for accumulating the sensor data and the network 
data; creating training sets comprising a first training set 
comprising the preprocessed sensor data and a second 
training set comprising the preprocessed network data; and 
training a first neural network comprising a behavior clas
sifier of the equipment of the control system with the first 
training set to output a first classified state; and training a 
second neural network comprising a network traffic classi
fier with the second training set to output a second classified 
state. 

Certain Definitions 

Unless otherwise defined, all technical terms used herein 
have the same meaning as commonly understood by one of 
ordinary skill in the art to which the present subject matter 
belongs. 

As used in this specification and the appended claims, the 
singular forms "a," "an," and "the" include plural references 
unless the context clearly dictates otherwise. Any reference 
to "or" herein is intended to encompass "and/or" unless 
otherwise stated. 

Reference throughout this specification to "some embodi
ments," "further embodiments," or "a particular embodi
ment," means that a particular feature, structure, or charac
teristic described in connection with the embodiment is 
included in at least one embodiment. Thus, the appearances 

10 
The state may be determined based on values, ranges, or 
patterns detected in physical measurements of components 
in the control system or in communication with the control 
system. In some embodiments, the states may be determined 

5 by a ML algorithm for classification or clustering. In some 
cases, the ML algorithm may be a neural network. 

As used herein, the term "discrepancy aggregator" may 
generally refer to a computational framework comprising at 
least one logic element for comparing classified states of 

10 components of a control system. In some embodiments, the 
discrepancy aggregator may accumulate errors ( or differ
ence) between classified states for a given time period if the 
classified states of the components in the control system lack 
consensus. In some embodiments, the accumulation of 

15 errors may be compared to a threshold. If the accumulation 
of errors is greater than the threshold, an anomaly may be 
identified in the control system. 

As used herein, the term "anomaly" or "anomalies" may 
generally refer to abnormal behavior in one or more com-

20 ponents in a control system or in communication with the 
control system. Abnormal behavior may comprise of irregu
lar values, ranges, or patterns detected in physical measure
ments of components in the control system or in commu
nication with the control system. In some embodiments, the 

25 anomaly may comprise of faulty components due to wearing 
of components over time or due to an accident. In some 
embodiments, the anomaly may be indicative of a cyberat
tack. of the phrase "in some embodiments," or "in further embodi

ments," or "in a particular embodiment" in various places 
throughout this specification are not necessarily all referring 30 

to the same embodiment. Furthermore, the particular fea
tures, structures, or characteristics may be combined in any 
suitable manner in one or more embodiments. 

Computing System 
Referring to FIG. 1, a block diagram is shown depicting 

an exemplary machine that includes a computer system 100 
(e.g., a processing or computing system) within which a set 
of instructions can execute for causing a device to perform 
or execute any one or more of the aspects and/or method
ologies for static code scheduling of the present disclosure. 
The components in FIG. 1 are examples only and do not 

As used herein, the term "control system" may generally 
refer to a framework to coordinate operations between 35 

components, such as protocols, connections, and devices, in 
a system. In some embodiments, the operations may be 
executed with one or more logic elements. In various 
embodiments, the control system comprises an industrial 
control system (ICS), distributed control system (DCS), 40 

supervisory control and data acquisition (SCADA) system, 
embedded system, or a combination thereof. In some 
embodiments, the control system comprises a general pur
pose computing system with one or more network connec
tions such as the Internet, Bluetooth, and the like, wherein 45 

the general purpose computing system is controlled by user 
input or by application programs running on the general 
purpose computing system. In further embodiments, the 
general purpose computing system comprises an edge 
device such as a desktop or a notebook, tablet, smartphone, 50 

or other portable computing device. In further embodiments, 

limit the scope of use or functionality of any hardware, 
software, embedded logic component, or a combination of 
two or more such components implementing particular 
embodiments. 

Computer system 100 may include one or more proces
sors 101, a memory 103, and a storage 108 that communi
cate with each other, and with other components, via a bus 
140. The bus 140 may also link a display 132, one or more 
input devices 133 (which may, for example, include a 
keypad, a keyboard, a mouse, a stylus, etc.), one or more 
output devices 134, one or more storage devices 135, and 
various tangible storage media 136. All of these elements 
may interface directly or via one or more interfaces or 
adaptors to the bus 140. For instance, the various tangible 
storage media 136 can interface with the bus 140 via storage 
medium interface 126. Computer system 100 may have any 
suitable physical form, including but not limited to one or 
more integrated circuits (I Cs), printed circuit boards (PCBs), 

the general purpose computing system comprises a server or 
server cluster interconnected to a combination of local 
components and remote components via one or more net
work connections. 

As used herein, the term "neural network" may generally 
refer to a computational network composed of nodes. The 
nodes of the neural network may be connected as layers or 
graphs. In some embodiments, the neural network comprises 
an algorithm designed for solving a specific problem. In 
some embodiments, the neural network may comprise a 
generalizable algorithm to solve a range of problems. In 
some embodiments, the neural network may "learn" how to 
solve one or more problems. 

55 mobile handheld devices (such as mobile telephones or 
PDAs), laptop or notebook computers, distributed computer 
systems, computing grids, or servers. 

As used herein, the term "classified state" or "classified 
states" may generally refer to a state( s) of a component( s) in 
a control system or in communication with a control system. 

Computer system 100 includes one or more processor(s) 
101 (e.g., central processing units (CPUs), general purpose 

60 graphics processing units (GPGPUs ), or quantum processing 
units (QPUs)) that carry out functions. Processor(s) 101 
optionally contains a cache memory unit 102 for temporary 
local storage of instructions, data, or computer addresses. 
Processor(s) 101 are configured to assist in execution of 

65 computer readable instructions. Computer system 100 may 
provide functionality for the components depicted in FIG. 1 
as a result of the processor(s) 101 executing non-transitory, 
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HyperTransport (HTX) bus, serial advanced technology 
attachment (SATA) bus, and any combinations thereof. 

Computer system 100 may also include an input device 
133. In one example, a user of computer system 100 may 

processor-executable instructions embodied in one or more 
tangible computer-readable storage media, such as memory 
103, storage 108, storage devices 135, and/or storage 
medium 136. The computer-readable media may store soft
ware that implements particular embodiments, and proces
sor(s) 101 may execute the software. Memory 103 may read 
the software from one or more other computer-readable 
media (such as mass storage device(s) 135, 136) or from one 
or more other sources through a suitable interface, such as 
network interface 120. The software may cause processor(s) 
101 to carry out one or more processes or one or more steps 
of one or more processes described or illustrated herein. 
Carrying out such processes or steps may include defining 
data structures stored in memory 103 and modifying the data 
structures as directed by the software. 

5 enter commands and/or other information into computer 
system 100 via input device(s) 133. Examples of an input 
device(s) 133 include, but are not limited to, an alpha
numeric input device ( e.g., a keyboard), a pointing device 
( e.g., a mouse or touchpad), a touchpad, a touch screen, a 

10 multi-touch screen, a joystick, a stylus, a gamepad, an audio 
input device ( e.g., a microphone, a voice response system, 
etc.), an optical scanner, a video or still image capture device 
(e.g., a camera), and any combinations thereof. In some 
embodiments, the input device is a Kinect, Leap Motion, or 

15 the like. Input device(s) 133 may be interfaced to bus 140 via 
any of a variety of input interfaces 123 ( e.g., input interface 
123) including, but not limited to, serial, parallel, game port, 
USB, FIREWIRE, THUNDERBOLT, or any combination of 
the above. 

The memory 103 may include various components (e.g., 
machine readable media) including, but not limited to, a 
random access memory component (e.g., RAM 104) (e.g., 
static RAM (SRAM), dynamic RAM (DRAM), ferroelectric 
random access memory (FRAM), phase-change random 20 

access memory (PRAM), etc.), a read-only memory com
ponent (e.g., ROM 105), and any combinations thereof. 
ROM 105 may act to communicate data and instructions 
unidirectionally to processor(s) 101, and RAM 104 may act 
to communicate data and instructions bidirectionally with 25 

processor(s) 101. ROM 105 and RAM 104 may include any 
suitable tangible computer-readable media described below. 
In one example, a basic input/output system 106 (BIOS), 
including basic routines that help to transfer information 
between elements within computer system 100, such as 30 

during start-up, may be stored in the memory 103. 
Fixed storage 108 is connected bidirectionally to proces

sor(s) 101, optionally through storage control unit 107. 
Fixed storage 108 provides additional data storage capacity 
and may also include any suitable tangible computer-read- 35 

able media described herein. Storage 108 may be used to 
store operating system 109, executable(s) 110, data 111, 
applications 112 (application programs), and the like. Stor-
age 108 can also include an optical disk drive, a solid-state 
memory device (e.g., flash-based systems), or a combination 40 

of any of the above. Information in storage 108 may, in 
appropriate cases, be incorporated as virtual memory in 
memory 103. 

In one example, storage device(s) 135 may be removably 
interfaced with computer system 100 (e.g., via an external 45 

port connector (not shown)) via a storage device interface 
125. Particularly, storage device(s) 135 and an associated 
machine-readable medium may provide non-volatile and/or 
volatile storage of machine-readable instructions, data struc
tures, program modules, and/or other data for the computer 50 

system 100. In one example, software may reside, com
pletely or partially, within a machine-readable medium on 
storage device(s) 135. In another example, software may 
reside, completely or partially, within processor(s) 101. 

Bus 140 connects a wide variety of subsystems. Herein, 55 

reference to a bus may encompass one or more digital signal 
lines serving a common function, where appropriate. Bus 
140 may be any of several types of bus structures including, 
but not limited to, a memory bus, a memory controller, a 
peripheral bus, a local bus, and any combinations thereof, 60 

using any of a variety of bus architectures. As an example 
and not by way of limitation, such architectures include an 
Industry Standard Architecture (ISA) bus, an Enhanced ISA 
(EISA) bus, a Micro Channel Architecture (MCA) bus, a 
Video Electronics Standards Association local bus (VLB), a 65 

Peripheral Component Interconnect (PCI) bus, a PCI-Ex
press (PCI-X) bus, an Accelerated Graphics Port (AGP) bus, 

In particular embodiments, when computer system 100 is 
connected to network 130, computer system 100 may com
municate with other devices, specifically mobile devices and 
enterprise systems, distributed computing systems, cloud 
storage systems, cloud computing systems, and the like, 
connected to network 130. Communications to and from 
computer system 100 may be sent through network interface 
120. For example, network interface 120 may receive 
incoming communications ( such as requests or responses 
from other devices) in the form of one or more packets ( such 
as Internet Protocol (IP) packets) from network 130, and 
computer system 100 may store the incoming communica-
tions in memory 103 for processing. Computer system 100 
may similarly store outgoing communications (such as 
requests or responses to other devices) in the form of one or 
more packets in memory 103 and communicated to network 
130 from network interface 120. Processor(s) 101 may 
access these communication packets stored in memory 103 
for processing. 

Examples of the network interface 120 include, but are 
not limited to, a network interface card, a modem, and any 
combination thereof. Examples of a network 130 or network 
segment 130 include, but are not limited to, a distributed 
computing system, a cloud computing system, a wide area 
network (WAN) (e.g., the Internet, an enterprise network), a 
local area network (LAN) ( e.g., a network associated with an 
office, a building, a campus or other relatively small geo-
graphic space), a telephone network, a direct connection 
between two computing devices, a peer-to-peer network, 
and any combinations thereof. A network, such as network 
130, may employ a wired and/or a wireless mode of com
munication. In general, any network topology may be used. 

Information and data can be displayed through a display 
132. Examples of a display 132 include, but are not limited 
to, a cathode ray tube (CRT), a liquid crystal display (LCD), 
a thin film transistor liquid crystal display (TFT-LCD), an 
organic liquid crystal display (OLED) such as a passive-
matrix OLED (PMOLED) or active-matrix OLED (AMO
LED) display, a plasma display, and any combinations 
thereof. The display 132 can interface to the processor(s) 
101, memory 103, and fixed storage 108, as well as other 
devices, such as input device(s) 133, via the bus 140. The 
display 132 is linked to the bus 140 via a video interface 122, 
and transport of data between the display 132 and the bus 
140 can be controlled via the graphics control 121. In some 
embodiments, the display is a video projector. 

In addition to a display 132, computer system 100 may 
include one or more other peripheral output devices 134 
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mobile smartphones, tablet computers, personal digital 
assistants, and vehicles. Those of skill in the art will also 
recognize that select televisions, video players, and digital 
music players with optional computer network connectivity 

including, but not limited to, an audio speaker, a printer, a 
storage device, and any combinations thereof. Such periph
eral output devices may be connected to the bus 140 via an 
output interface 124. Examples of an output interface 124 
include, but are not limited to, a serial port, a parallel 
connection, a USB port, a FIREWIRE port, a THUNDER
BOLT port, and any combinations thereof. 

5 are suitable for use in the system described herein. Suitable 
tablet computers, in various embodiments, include those 
with booklet, slate, and convertible configurations, known to 
those of skill in the art. In addition or as an alternative, computer system 100 may 

provide functionality as a result of logic hardwired or 
otherwise embodied in a circuit, which may operate in place 10 

of or together with software to execute one or more pro
cesses or one or more steps of one or more processes 
described or illustrated herein. Reference to software in this 
disclosure may encompass logic, and reference to logic may 
encompass software. Moreover, reference to a computer
readable medium may encompass a circuit (such as an IC) 
storing software for execution, a circuit embodying logic for 
execution, or both, where appropriate. The present disclo
sure encompasses any suitable combination of hardware, 
software, or both. 

In some embodiments, the computing device includes an 
operating system configured to perform executable instruc
tions. The operating system is, for example, software, 
including programs and data, which manages the device's 
hardware and provides services for execution of applica-

15 tions. Those of skill in the art will recognize that suitable 
server operating systems include, by way of non-limiting 
examples, FreeBSD, OpenBSD, NetBSD®, Linux, Apple® 
Mac OS X Server®, Oracle® Solaris®, Windows Server®, 
and Novell® NetWare®. Those of skill in the art will 

20 recognize that suitable personal computer operating systems 
include, by way of non-limiting examples, Microsoft® 
Windows®, Apple® Mac OS X®, UNIX®, and UNIX-like 
operating systems such as GNU/Linux®. In some embodi-

Those of skill in the art will appreciate that the various 
illustrative logical blocks, modules, circuits, and algorithm 
steps described in connection with the embodiments dis
closed herein may be implemented as electronic hardware, 
computer software, or combinations of both. To clearly 25 

illustrate this interchangeability of hardware and software, 
various illustrative components, blocks, modules, circuits, 
and steps have been described above generally in terms of 
their functionality. 

The various illustrative logical blocks, modules, and 30 

circuits described in connection with the embodiments dis
closed herein may be implemented or performed with a 
general purpose processor, a digital signal processor (DSP), 
an application specific integrated circuit (ASIC), a field 
programmable gate array (FPGA) or other programmable 35 

logic device, discrete gate or transistor logic, discrete hard
ware components, or any combination thereof designed to 
perform the functions described herein. A general purpose 
processor may be a microprocessor, but in the alternative, 

ments, the operating system is provided by cloud computing. 
Those of skill in the art will also recognize that suitable 
mobile smartphone operating systems include, by way of 
non-limiting examples, Nokia® Symbian® OS, Apple® 
iOS®, Research In Motion® BlackBerry OS®, Google® 
Android®, Microsoft® Windows Phone® OS, Microsoft® 
Windows Mobile® OS, Linux®, and Palm® WebOS®. 
Those of skill in the art will also recognize that suitable 
media streaming device operating systems include, by way 
of non-limiting examples, Apple TV®, Roku, Boxee®, 
Google TV®, Google Chromecast®, Amazon Fire®, and 
Samsung® HomeSync®. 
Non-Transitory Computer Readable Storage Medium 

In some embodiments, the platforms, systems, media, and 
methods disclosed herein include one or more non-transitory 
computer readable storage media encoded with a program 
including instructions executable by the operating system of 
an optionally networked computing device. In further 
embodiments, a computer readable storage medium is a 
tangible component of a computing device. In still further 
embodiments, a computer readable storage medium is 

the processor may be any conventional processor, controller, 40 

microcontroller, or state machine. A processor may also be 
implemented as a combination of computing devices, e.g., a 
combination of a DSP and a microprocessor, a plurality of 
microprocessors, one or more microprocessors in conjunc
tion with a DSP core, or any other such configuration. 45 optionally removable from a computing device. In some 

embodiments, a computer readable storage medium 
includes, by way of non-limiting examples, CD-ROMs, 
DVDs, flash memory devices, solid state memory, magnetic 
disk drives, magnetic tape drives, optical disk drives, dis-

The steps of a method or algorithm described in connec
tion with the embodiments disclosed herein may be embod-
ied directly in hardware, in a software module executed by 
one or more processor(s), or in a combination of the two. A 
software module may reside in RAM memory, flash 
memory, ROM memory, EPROM memory, EEPROM 
memory, registers, hard disk, a removable disk, a CD-ROM, 
or any other form of storage medium known in the art. An 
exemplary storage medium is coupled to the processor such 

50 tributed computing systems including cloud computing sys
tems and services, and the like. In some cases, the program 
and instructions are permanently, substantially permanently, 
semi-permanently, or non-transitorily encoded on the media. 
Computer Program 

the processor can read information from, and write infor- 55 

mation to, the storage medium. In the alternative, the storage 
medium may be integral to the processor. The processor and 

In some embodiments, the platforms, systems, media, and 
methods disclosed herein include at least one computer 
program, or use of the same. A computer program includes 
a sequence of instructions, executable by one or more 
processor(s) of the computing device's CPU, written to 

the storage medium may reside in an ASIC. The ASIC may 
reside in a user terminal. In the alternative, the processor and 
the storage medium may reside as discrete components in a 
user terminal. 

In accordance with the description herein, suitable com
puting devices include, by way of non-limiting examples, 
server computers, desktop computers, laptop computers, 
notebook computers, sub-notebook computers, netbook 
computers, netpad computers, set-top computers, media 
streaming devices, handheld computers, Internet appliances, 

60 perform a specified task. Computer readable instructions 
may be implemented as program modules, such as functions, 
objects, Application Prograniming Interfaces (APis), com
puting data structures, and the like, that perform particular 
tasks or implement particular abstract data types. In light of 

65 the disclosure provided herein, those of skill in the art will 
recognize that a computer program may be written in 
various versions of various languages. 
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The functionality of the computer readable instructions 
may be combined or distributed as desired in various envi
ronments. In some embodiments, a computer program com
prises one sequence of instructions. In some embodiments, 

16 
other embodiments, the mobile application is provided to a 
mobile computing device via the computer network 
described herein. 

In view of the disclosure provided herein, a mobile 
application is created by techniques kuown to those of skill 
in the art using hardware, languages, and development 
environments kuown to the art. Those of skill in the art will 
recognize that mobile applications are written in several 
languages. Suitable programming languages include, by 
way of non-limiting examples, C, C++, C#, Objective-C, 
Java™, JavaScript, Pascal, Object Pascal, Python™, Ruby, 
VB.NET, WML, and XHTML/HTML with or without CSS, 
or combinations thereof. 

Suitable mobile application development environments 

a computer program comprises a plurality of sequences of 5 

instructions. In some embodiments, a computer program is 
provided from one location. In other embodiments, a com
puter program is provided from a plurality of locations. In 
various embodiments, a computer program includes one or 
more software modules. In various embodiments, a com- 10 

puter program includes, in part or in whole, one or more web 
applications, one or more mobile applications, one or more 
standalone applications, one or more web browser plug-ins, 
extensions, add-ins, or add-ons, or combinations thereof. 

15 are available from several sources. Commercially available 
development environments include, by way of non-limiting 
examples, AirplaySDK, alcheMo, Appcelerator®, Celsius, 
Bedrock, Flash Lite, .NET Compact Framework, Rhomo-

Web Application 
In some embodiments, a computer program includes a 

web application. In light of the disclosure provided herein, 
those of skill in the art will recognize that a web application, 
in various embodiments, utilizes one or more software 20 

frameworks and one or more database systems. In some 
embodiments, a web application is created upon a software 
framework such as Microsoft® .NET or Ruby on Rails 
(RoR). In some embodiments, a web application utilizes one 
or more database systems including, by way of non-limiting 25 

examples, relational, non-relational, object oriented, asso
ciative, XML, and document oriented database systems. In 
further embodiments, suitable relational database systems 
include, by way of non-limiting examples, Microsoft® SQL 
Server, mySQL™, and Oracle®. Those of skill in the art will 30 

also recognize that a web application, in various embodi
ments, is written in one or more versions of one or more 
languages. A web application may be written in one or more 
markup languages, presentation definition languages, client
side scripting languages, server-side coding languages, data- 35 

base query languages, or combinations thereof. In some 
embodiments, a web application is written to some extent in 
a markup language such as Hypertext Markup Language 
(HTML), Extensible Hypertext Markup Language 
(XHTML), or eXtensible Markup Language (XML). In 40 

some embodiments, a web application is written to some 
extent in a presentation definition language such as Cascad-
ing Style Sheets (CSS). In some embodiments, a web 
application is written to some extent in a client-side scripting 
language such as Asynchronous JavaScript and XML 45 

(AJAX), Flash® ActionScript, JavaScript, or Silverlight®. 
In some embodiments, a web application is written to some 
extent in a server-side coding language such as Active 
Server Pages (ASP), ColdFusion, Perl, Java™, JavaServer 
Pages (JSP), Hypertext Preprocessor (PHP), Python™, 50 

Ruby, Tel, Smalltalk, WebDNA®, or Groovy. In some 
embodiments, a web application is written to some extent in 
a database query language such as Structured Query Lan
guage (SQL). In some embodiments, a web application 
integrates enterprise server products such as IBM® Lotus 55 

Domino®. In some embodiments, a web application 
includes a media player element. In various further embodi
ments, a media player element utilizes one or more of many 
suitable multimedia technologies including, by way of non
limiting examples, Adobe® Flash®, HTML 5, Apple® 60 

QuickTime®, Microsoft® Silverlight®, Java™, and 
Unity®. 
Mobile Application 

In some embodiments, a computer program includes a 
mobile application provided to a mobile computing device. 65 

In some embodiments, the mobile application is provided to 
a mobile computing device at the time it is manufactured. In 

bile, and WorkLight Mobile Platform. Other development 
environments are available without cost including, by way 
of non-limiting examples, Lazarus, MobiFlex, MoSync, and 
PhoneGap. Also, mobile device manufacturers distribute 
software developer kits including, by way of non-limiting 
examples, iPhone and iPad (iOS) SDK, Android™ SDK, 
BlackBerry® SDK, BREW SDK, Palm® OS SDK, Sym
bian SDK, webOS SDK, and Windows® Mobile SDK. 

Those of skill in the art will recognize that several 
commercial forums are available for distribution of mobile 
applications including, by way of non-limiting examples, 
Apple® App Store, Google® Play, Chrome WebStore, 
BlackBerry® App World, App Store for Palm devices, App 
Catalog for webOS, Windows® Marketplace for Mobile, 
Ovi Store for Nokia® devices, Samsung® Apps, and Nin
tendo® DSi Shop. 
Standalone Application 

In some embodiments, a computer program includes a 
standalone application, which is a program that is run as an 
independent computer process, not an add-on to an existing 
process, e.g., not a plug-in. Those of skill in the art will 
recognize that standalone applications are often compiled. A 
compiler is a computer program(s) that transforms source 
code written in a programming language into binary object 
code such as assembly language or machine code. Suitable 
compiled programming languages include, by way of non
limiting examples, C, C++, Objective-C, COBOL, Delphi, 
Eiffel, Java™, Lisp, Python™, Visual Basic, and VB .NET, 
or combinations thereof. Compilation is often performed, at 
least in part, to create an executable program. In some 
embodiments, a computer program includes one or more 
executable complied applications. 
Software Modules 

In some embodiments, the platforms, systems, media, and 
methods disclosed herein include software, server, and/or 
database modules, or use of the same. In view of the 
disclosure provided herein, software modules are created by 
techniques kuown to those of skill in the art using machines, 
software, and languages kuown to the art. The software 
modules disclosed herein are implemented in a multitude of 
ways. In various embodiments, a software module com
prises a file, a section of code, a programming object, a 
programming structure, a distributed computing resource, a 
cloud computing resource, or combinations thereof. In fur
ther various embodiments, a software module comprises a 
plurality of files, a plurality of sections of code, a plurality 
of programming objects, a plurality of programming struc
tures, a plurality of distributed computing resources, a 
plurality of cloud computing resources, or combinations 
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thereof. In various embodiments, the one or more software 
modules comprise, by way of non-limiting examples, a web 
application, a mobile application, a standalone application, 
and a distributed or cloud computing application. In some 
embodiments, software modules are in one computer pro
gram or application. In other embodiments, software mod
ules are in more than one computer program or application. 

18 
communication gateways, and front-end processors. In some 
embodiments, an ICS may have different controllable states 
as steps of a process, and may use an open communication 
protocol (e.g., Modbus for ICS networks). Further, the open 

5 communication protocol, such as Modbus, may not be 
encrypted at any point during the communication, thus 
increasing the likelihood of an attack. For example, A 
generic ICS feedback control loop is exemplary illustrated in 
FIG. 1. 

In some embodiments, software modules are hosted on one 
machine. In other embodiments, software modules are 
hosted on more than one machine. In further embodiments, 10 

software modules are hosted on a distributed computing 
platform such as a cloud computing platform. In some 
embodiments, software modules are hosted on one or more 
machines in one location. In other embodiments, software 
modules are hosted on one or more machines in more than 15 

An ICS feedback loop may generally comprise a human
machine interface (HMI) 205. The HMI 205 may be a user 
interface ( e.g., GUI) that connects a person to one or more 
components (e.g., equipment, network, etc.) in the ICS. The 
HMI 205 may send a query to a programmable logic 
controller (PLC) 210 regarding the state or function of 
components in the ICS, and the PLC 210 may send a one location. 

Databases 
In some embodiments, the platforms, systems, media, and 

methods disclosed herein include one or more databases, or 
use of the same. In view of the disclosure provided herein, 
those of skill in the art will recognize that many databases 
are suitable for storage and retrieval of control system 
information. In various embodiments, suitable databases 
include, by way of non-limiting examples, relational data
bases, non-relational databases, object-oriented databases, 
object databases, entity-relationship model databases, asso
ciative databases, XML databases, document oriented data
bases, and graph databases. Further non-limiting examples 
include SQL, PostgreSQL, MySQL, Oracle, DB2, Sybase, 
and MongoDB. In some embodiments, a database is Inter
net-based. In further embodiments, a database is web-based. 
In still further embodiments, a database is cloud computing
based. In a particular embodiment, a database is a distributed 
database. In other embodiments, a database is based on one 
or more local computer storage devices. 
Control Systems 

A control system may comprise a framework to coordi
nate operations between protocols, connections, and 
devices, so they may be executed properly and on schedule. 
In some embodiments, the operations may be executed with 
one or more logic elements comprising a programmable 
logic controller (PLC), programmable logic array (PLA), 
programmable array logic (PAL), generic logic array (GLA), 
complex programmable logic decide (CPLD), field pro
grammable gate array (FPGA), or application-specific inte
grated circuit (ASIC). The control system may comprise one 
or more network communication protocols that may be 
standard network communication protocols, non-standard 
network communication protocols, or a combination 
thereof. In some embodiments, the standard network com
munication protocols are process field bus (Profibus ), pro
cess field net (Profinet), highway addressable remote trans
ducer (HART), distributed network protocol (DNP3), 
Modbus, open platform communication (OPC), building 
automation and control networks (BACnet), common indus
trial protocol (CIP), or ethernet for control automation 
technology (EtherCAT). In some embodiments, the control 
system may be an industrial control system (ICS), distrib
uted control system (DCS), supervisory control and data 
acquisition (SCADA) system, embedded system, or a com
bination thereof. 

In some embodiments, where the control systems may 
include industrial and manufacturing facilities (i.e., an ICS), 
the control system may support production and processing 
objectives on a mass-scale. An ICS may comprise one or 
more of PLCs, remote terminal units, intelligent electronic 
devices, engineering workstations, HMI, data historians, 

response back to the HMI 205, which may be displayed on 
the user interface. In some embodiments, the PLC 210 may 
send status information regarding components of the ICS to 

20 the HMI 205. In some embodiments, the PLC 210 may 
implement control strategies using a system comprising a 
microprocessor for managing components in the ICS. 

In some cases, the components may be a physical device 
215, such as equipment in the ICS. In some cases, the 

25 equipment may be on-site or remote. In some examples, the 
PLC 210 may control a physical device 215 or a plurality 
thereof, such as control motors, valves, switches, etc. In 
some examples, the PLC 210 may control a physical device 
215 based on measurements obtained from sensors 220, 

30 which may determine when and how the physical device 215 
should operate. In some cases, the measurements may be 
physical measurements obtained from sensors 220, such as 
pressure, volume, temperature, humidity, torque, vacuum, 
motion, etc. In some cases, the sensor 220 may be a 

35 standalone sensor or an integrated sensor. In some examples, 
the integrated sensor may be part of a control device 
comprising an actuator. In further embodiments, the PLC 
210 may receive commands for the physical device 215 to 
perform functions (e.g., pump actuation, stirrer operation, 

40 conveyor belt operation, etc.) from the HMI 205. 
Safety, reliability, and resilience to cyberattacks may be 

key attributes for the successful operation of an ICS. These 
attributes may be threatened due to an increase in attack 
surfaces due to IOT devices, difficulties in performing patch 

45 updates to components in the ICS from downtime and 
vendor varieties, or an accumulation of small errors over 
time that may result in larger failures. An anomaly detection 
system for recognizing threats, such as those described 
herein, may increase the likelihood of the successful opera-

50 tion of an ICS. In some embodiments, data obtained related 
to the ICS may be used for anomaly recognition. In some 
cases, the data may be obtained from one or more sources, 
such as components of the ICS or communicably coupled to 
the ICS (e.g., data from a network, such as Modbus com-

55 mands, sensor data, etc.). In some cases, the data from one 
or more sources may be analyzed and compared to previous 
data for anomalies. For example, a pressure sensor may have 
a normal operating range, and a pressure value outside that 
range may be flagged as an anomaly. In a further example, 

60 network traffic patterns may be analyzed, and an unusually 
high or low traffic pattern may be flagged as an anomaly. In 
some cases, the data from multiple sources may be analyzed 
and compared to one another for anomalies. In some 
examples, having two different models (i.e., ML algorithms) 

65 predict the state of multiple sources may help identify 
miscommunication errors and the occurrence of an anomaly. 
For example, sensor data and network traffic patterns may be 
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analyzed and compared to one another to better assess when 
an anomaly has occurred. The anomaly detection as 
described herein, by way of non-limiting example, for an 
ICS, may be performed with a classification system employ
ing ML techniques. In some embodiments, the classification 5 

system may employ neural networks. 
Classification System for a Control System 

An architecture comprising neural networks may be used 
for predicting the states of components for a control system. 
The states may be predicted by the neural networks using 10 

classification of behavioral patterns of components in the 
control system (e.g., 'FAST', 'SLOW', 'ON', 'OFF', etc.). 
The classification may be compared to past classifications or 
may be compared to other components in the control system 
for multi-view classification in order to identify the occur- 15 

rence of an anomaly. 
An example of a multi-view classification system for a 

control system, in this case, by way of non-limiting example, 
for an ICS, is illustrated in FIG. 3. First, raw data 305 may 
be obtained from components in the control system or in 20 

communication with the control system. Raw data 305 may 
comprise of one or more inputs from components as 
described herein. In some embodiments, the raw data 305 
may comprise sensor data from equipment in the control 
system (e.g., accelerometer or gyrometer in an ICS). In 25 

alternative embodiments, the sensor data may be obtained 
from equipment in an embedded system ( e.g., glucose 
sensors in an insulin pump, sensors in a pacemaker, etc.). In 
some embodiments, the raw data 305 may comprise network 
data from a network in communication with the control 30 

20 
prises upsampling. In some examples, the resampling com
prises unsampling. In some cases, preprocessing may com
prise of selecting a time window for accumulating the one or 
more inputs of the raw data 305 ( e.g., sensor data and the 
network data). In some examples, this selection operation 
may comprise of windowing to adjust the time window for 
accumulating any one of the inputs of the raw data 305. In 
some examples, the windowing accounts for delays in any 
one of the inputs of the raw data 305. In some embodiments, 
using a smaller time window may allow control of false 
positive to false negative ratio of the classification, which 
can be optimized based on the costs of a misclassification. 
In some embodiments, the size of the time window may be 
empirically chosen from observing the patterns of the raw 
data 305. 

The data from preprocessing operations, as described 
herein, may be fed into one or more ML algorithms for 
identifying single or multi-stage attacks, or detecting 
anomalies in a control system. In some examples, these 
attacks or anomalies may be detected by analyzing packet 
streams and content from a network. In some examples, the 
network may use one or more communication protocol ( e.g., 
the Modbus protocol). In some examples, these attack or 
anomalies may be detected from time series data of sensors. 
In some embodiments, the one or more ML algorithms may 
be supervised, semi-supervised, or unsupervised for training 
to identify anomalies. In some embodiments, the one or 
more ML algorithms may perform classification or cluster
ing to identify anomalies or attacks. In some embodiments, 
the one or more ML algorithms may comprise classical ML 
algorithms for performing clustering to identify outliers. 
Classical ML algorithms may comprise of algorithms that 
learn from existing observations (i.e., known features) to 
predict outputs. In some cases, the classical ML algorithms 

system. The network data may comprise packet data, meta
data, or a combination thereof. In some cases, the packet 
data may comprise a packet's header, payload, trailer, or any 
combination thereof. In some further cases, the packet data 
from the packet's payload may comprise bit streams. In 
some embodiments, the network data may comprise of 
interarrival times, which may be referred to as packet time 
deltas or the first difference. In such embodiments, each 
packet may contain a timestamp for when it arrives to the 
ICS or a component of the ICS, and taking the difference 
between two adjacent timestamps may yield the amount of 
time between each packet arrival. The interarrival times ( or 
time between packet arrivals) may change ( e.g., increase or 
decrease) during a change in the state of a control system, 
which may then return to a baseline interarrival time. Thus, 
in such embodiments, interarrival times may be used for 
detecting anomalous state changes. 

35 for performing clustering may be K-means clustering, mean
shift clustering, density-based spatial clustering of applica
tions with noise (DBSCAN), expectation-maximization 
(EM) clustering ( e.g., using Gaussian mixture models 
(GMM)), agglomerative hierarchical clustering, or a com-

40 bination thereof. In some embodiments, the one or more ML 
algorithms may comprise classical ML algorithms for clas
sification. In some cases, the classical ML algorithms may 
comprise logistic regression, naive Bayes, K-nearest neigh
bors, random forests or decision trees, gradient boosting, 

45 support vector machines (SVMs ), or a combination thereof. 
In some embodiments, the one or more ML algorithm may 
employ deep learning. A deep learning algorithm may com
prise of an algorithm that learns by extracting new features 
to predict outputs. The deep learning algorithm may com-

50 prise of layers, which may comprise a neural network. 

Preprocessing may be performed on the raw data 305 
using at least one logic element, as described herein. In some 
embodiments, the multi-view classification, as exemplary 
illustrated in FIG. 3, may preprocess data for time period 
310, in which the time period of the raw data 305 may be 
adjusted. In some cases, preprocessing may comprise of 
normalizing distributions of one or more inputs of the raw 
rate 305 ( e.g., the sensor data and the network data). In some 55 

examples, a normalizing operation may adjust a distribu
tions' mean, variance, higher-ordered moments, or a com
bination thereof. In some cases, preprocessing may comprise 
of checking time aligmnent between one or more inputs of 
the raw data 305 (e.g., the sensor data to the network data). 60 

In some examples, the checking operation may resample any 
one of the inputs of the raw data 305 (e.g., as i.e., the sensor 
data, the network data, or any combination thereof) for the 
time alignment between them. The resampling may result in 
the inputs of the raw data 305 having a same number of 65 

samples. In some examples, the resampling comprises 
downsampling. In some examples, the resampling com-

Neural Networks 
Neural networks may comprise of connected nodes in a 

network, which may perform functions, such as transform
ing or translating input data. In some examples, the output 
from a given node may be passed on as input to another 
node. In some embodiments, the nodes in the network may 
comprise of input units, hidden units, output units, or a 
combination thereof. In some cases, an input node may be 
connected to one or more hidden units. In some cases, one 
or more hidden units may be connected to an output unit. 
The nodes may take in input and may generate an output 
based on an activation function. In some embodiments, the 
input or output may be a tensor, a matrix, a vector, an array, 
or a scalar. In some embodiments, the activation function 
may be a Rectified Linear Unit (ReLU) activation function, 
a sigmoid activation function, or a hyperbolic tangent acti
vation function. In some embodiments, the activation func-



US 11,546,205 B 1 
21 

tion may be a Softmax activation function. The connections 
between nodes may further comprise of weights for adjust-
ing input data to a given node (i.e., to activate input data or 
deactivate input data). In some embodiments, the weights 
may be learned by the neural network. In some embodi- 5 

ments, the neural network may be trained using gradient
based optimizations. In some cases, the gradient-based opti
mization may comprise of one or more loss functions. In 
some examples, the gradient-based optimization may be 
conjugate gradient descent, stochastic gradient descent, or a 10 

variation thereof (e.g., adaptive moment estimation 
(Adam)). In further examples, the gradient in the gradient
based optimization may be computed using backpropaga
tion. In some embodiments, the nodes may be organized into 
graphs to generate a network (e.g., graph neural networks). 15 

In some embodiments, the nodes may be organized into one 
or more layers to generate a network ( e.g., feed forward 
neural networks, convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), etc.). In some cases, the 
neural network may be a deep neural network comprising of 20 

more than one layer. 
In some cases, the neural network may comprise one or 

more recurrent layer. In some examples, the one or more 
recurrent layer may be one or more long short-term memory 
(LSTM) layers or gated recurrent unit (GRU), which may 25 

perform sequential data classification and clustering. Thus, 
future predictions may be made by the one or more recurrent 
layers according to the sequence of past events since data 
ordering is considered. Further, the recurrent layer may 
retain or "remember" important information, while selec- 30 

tively "forgetting" what is not essential in the classification 
model. In some embodiments, the neural network may 
comprise one or more convolutional layers. The input and 
output may be a tensor representing of variables or attributes 
in a data set (i.e., features), which may be referred to as a 35 

feature map ( or activation map). Thus, the one or more 
convolutional layers may be referred to as a feature extrac
tion phase. In some cases, the convolutions may be one 
dimensional (ID) convolutions, two dimensional (2D) con
volutions, three dimensional (3D) convolutions, or any 40 

combination thereof. In further cases, the convolutions may 
be ID transpose convolutions, 2D transpose convolutions, 
3D transpose convolutions, or any combination thereof. In 
some examples, one-dimensional convolutional layers may 
be suited for time series sensor data analysis since it may 45 

classify time series through parallel convolutions. In some 
examples, convolutional layers may be used for analyzing 
raw data in the payload of a network packet. Further, the 
convolutional layers may be efficient for detecting properties 
in payload bit patterns of a control system since they may 50 

follow a recognizable pattern ( e.g., payload bit patterns in an 
ICS follow recognizable ICS command patterns). 

The layers in a neural network may further comprise one 
or more pooling layers before or after a convolutional layer. 
The one or more pooling layers may reduce the dimension- 55 

ality of the feature map using filters that slllllillarize regions 
of the matrix. This may down sample the number of outputs, 
and thus reduce the parameters and computational resources 
needed for the neural network. In some embodiments, the 
one or more pooling layers may be max pooling, min 60 

pooling, average pooling, global pooling, norm pooling, or 
a combination thereof. Max pooling may reduce the dimen
sionality of the data by taking only the maximums values in 
the region of the matrix, which helps capture the significant 
feature. In some embodiments, the one or more pooling 65 

layers may be one dimensional (ID), two dimensional (2D), 
three dimensional (3D), or any combination thereof. The 

22 
neural network may further comprise of one or more flat
tening layers, which may flatten the input to be passed on to 
the next layer. In some cases, the input ( e.g., feature map) 
may be flattened by reducing it to a one-dimensional array. 
The flattened inputs may be used to output a classification of 
an object ( e.g., binary classification of an image, such as cat 
or dog, or of a system's performance, such as normal or 
abnormal, or multi-class classification identifying hand
written digits, etc.). The neural networks may further com
prise of one or more dropout layers. Dropout layers may be 
used during training of the neural network (e.g., to perform 
binary or multi-class classifications). The one or more 
dropout layers may randomly set certain weights as 0, which 
may set corresponding elements in the feature map as 0, so 
the neural network may avoid overfitting. The neural net
work may further comprise of one or more dense layers, 
which comprise a fully connected network. In the dense 
layer, information may be passed through the fully con
nected network to generate a predicted classification of an 
object, and the error may be calculated. In some embodi
ments, the error may be backpropagated to improve the 
prediction. The one or more dense layers may comprise of 
a Softmax activation function, which may convert a vector 
of numbers to a vector of probabilities. These probabilities 
may be subsequently used in classifications, such as classi
fications of states in a control system as described herein. In 
some embodiments, the classifications of states from one or 
more components in a control system may be compared to 
detect the occurrence of an anomaly. 

An architecture for anomaly detection may comprise two 
neural networks for dual neural network state prediction as 
exemplary illustrated in FIG. 3. The neural networks may 
use different sets of features for prediction, such as those 
obtained from network data and sensor data. Although two 
neural networks are employed in this example, one of skill 
in the art will appreciate that any one of the ML algorithms 
as described herein may be used which may be suited for a 
particular input data set and desired output. One of skill in 
the art will also appreciate that more than two ML algo
rithms may be employed in this architecture. Further, one of 
skill in the art will appreciate that the ML algorithms as 
described herein may be combined or that more than one 
input data may be fed into a single ML algorithm (e.g., the 
network data and sensor data may be fed into the same 
algorithm). 

In the dual neural network architecture illustrated in FIG. 
3, the network data (e.g., network payload data) may be fed 
into a neural network comprising a network traffic classifier 
315. The neural network comprising the network traffic 
classifier 315 may be trained to learn "normal" network 
traffic patterns and classify the network traffic patterns in a 
given time period by comparing it to the "normal" network 
traffic pattern. The network traffic classifier 315 may use the 
comparison to classify the state of the network traffic pattern 
in a given time period (e.g., "FAST", "SLOW", 
"MEDIUM", "HALT", "OFF", "REVERSE", etc.). The 
output from the network traffic classifier 315 may comprise 
of a classified state, illustrated as y in FIG. 3. In further 
embodiments, the neural network may be trained to classify 
network data that is encrypted through various methods 
( e.g., Electronic Code Book, Cipher-Block Chaining, Cipher 
FeedBack, XOR encryption, etc.). In some embodiments, 
the sensor data may be fed into a behavioral classifier. In 
some cases, the sensor data may be time series data. In the 
case of an ICS, the sensor data may be time series data 
obtained from an accelerometer, a gyrometer, or any other 
equipment of the ICS. Further, the behavioral classifier may 
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The set up comprised a Tolomatic industrial motor, which 
received commands from the HMI/PLC 405. The data flow 
in FIG. 4 was as followed; 1) the HMI/PLC 405 sent a 
continual stream of motor commands to the switch 415 (e.g., 

comprise a motor behavioral classifier 320. The neural 
network comprising the behavioral classifier ( e.g., motor 
behavioral classifier 320) may be trained to learn "normal" 
sensor ranges or values for a given time period, and classify 
the sensor data in a given time period by comparing it to the 
"normal" range or values. The behavioral classifier may use 
the comparison to classify the state of the sensor data in a 
given time period (e.g., "FAST", "SLOW", "MEDIUM", 
"HALT", "OFF", "REVERSE", etc.). The output from the 
behavioral classifier may comprise of another classified 
state, illustrated as y in FIG. 3. 

5 off, on, change of speed, etc), 2) the commands from the 
switch 415 were sent to a sensor controller 420 comprising 
an inline Raspberry Pi for logging purposes, 3) the sensor 
controller 420 forwarded messages to a motor 425 or a 
sensor 430, and 4) the motor 425 and sensor 430 responded 

10 with a continual stream of data that was read from the motor 

Discrepancy Aggregator 
The classified states, y and y from the neural networks 

comprising classifiers, may be compared to one another 15 
using a discrepancy aggregator which may comprise at least 
one logic element. In some embodiments, the classified 
states may match (i.e., y===y) or be reasonably similar. In 
such embodiments, consensus from the two neural networks 
is achieved and the classification system may return to 20 

preprocess data for time period 310 for new raw data 305. 

or recorded by the sensor, which was also routed through the 
inline Raspberry Pi. Here, the sensor 430 recorded acceler
ometer and gyroscopic data related to the motor 425. The 
accelerometer and gyroscopic sensor data were stored as 
Comma Separated Values (CSVs) in the X, Y, and Z direc
tions that represented the acceleration and orientation of the 
attached sensor separated in the three-dimensional space. 
This data was collected as a constant stream as the sensor 
controller continuously logged data from the motor at a fixed 
sample rate of 10 thousand samples per second. The gyrom
eter data as logged as floating-point values represent angular 
velocity as degrees per second. The accelerometer data 
measured the force on the motor in that direction in meters 
per second squared. In total, six sensor data streams are used 
for sensor classification. 

This ICS ted bed system was constructed to communicate 
using Modbus packets between the HMI/PLC 405 and the 
motor 425. Communication was structured such that all 
messages sent from the HMI/PLC 405 to the motor 425 
resulted in a response message sent back to the HMI/PLC 
405. Modbus packets within the system were therefore the 
Read/Write commands sent to the motor 425, and motor data 
sent back to the HMI/PLC 405. Rather than being a constant 
stream of data input, each payload arrived at different times 
from the sensor controller 420. The payload data was 
converted from its original byte format to binary, since 
network data was preprocessed from PCAP files. Each 
individual data payload was about 53 bytes between O to 
255, which were converted to binary for machine learning 
input changing the input width from 53 bytes to 424 bits. 

Raw data obtained from a trial during an MITM attack is 
shown in FIGS. 6A-6D. The payload data was represented 
in its byte format in FIG. 6A, where each of the 53 bytes 
were vertically stacked and pixel color intensity represented 

In some cases, the classified states may be logged, or data 
may be used for comparison against new raw data 305. In 
alternative embodiments, the classified states may lack con
sensus (i.e., y!==y). The discrepancy aggregator may then 25 

accumulate errors (or difference) for the current time win
dow ( or time period) of predictions 325 (i.e., E in FIG. 3) 
between the classified states. The accumulation of errors, E, 
may then be compared to a threshold, T. In some embodi
ments, the threshold may be empirically chosen from 30 

observing the patterns of the raw data 305. In some embodi
ments, T as a threshold 330, may be set according to an 
average discrepancy rate between the classified states. In 
some embodiments, T as a threshold 330, may be dynami
cally changed over time. In some embodiments, the thresh- 35 

old and the time window may be inversely related (i.e., the 
greater the time window, the lower the threshold may be 
needed). If the accumulation of errors is less than the 
threshold (i.e., E<T), then the classification system may 
return to preprocess data for time period 310 for new raw 40 

data 305. If the accumulation of errors is greater than the 
threshold (i.e., E>T), an anomaly is identified 335. The 
anomaly may comprise of faulty or abnormal behavior of 
components in the control system or in communication with 

45 the 0-255 value for that byte. Thus, the color changes 
represent how byte locations in some packet have static, 
cyclic, or random values. The accelerometer and gyrometer 
sensor data are shown in FIGS. 6B and 6C, respectively, 
where a state change from the random short burst of speed 

the control system, or may be indicative of a cyberattack. 

EXAMPLES 

The following illustrative examples are representative of 
embodiments of the software applications, systems, and 
methods described herein and are not meant to be limiting in 
any way. 

Example I-Test Bed of ICS Operations 

An ICS test bed to detect anomalies using packet and 
sensor data patterns was created according to the architec
ture illustrated FIG. 4. This test bed used two streams of data 
under the assumption that during normal operation, the 
patterns of command payloads would result in specific 
patterns of sensor behavior. The architecture was created for 

50 and forces were observed. FIG. 6D illustrates packet deltas 
over time, as described herein, although this data was not 
used to predict the ICS states in the present test case. 

Here, an error was defined as a difference between the 
predicted state of two CNN s, which classified the states of 

55 the payload or sensor data into one of six possible ICS states: 
'FAST', 'HALT', 'MEDIUM', 'OFF', 'REVERSE', and 
'SLOW'. 
Preprocessing 

Preprocessing steps were performed on the raw sensor 
60 (accelerometer and gyrometer) and packet data. First, nor

malization was performed on the accelerometer sensor data 
and packet data. Normalization was not necessary for the 
gyrometer sensor data since each axis was already centered 
around O with a constant standard deviation. For the accel-

a man-in-the-middle (MITM) 410 attack. A MITM 410 
attack may comprise of a scenario in which an attacker may 
secretly relay and alter communications between two or 
more sources in an ICS without their knowledge. The 65 

testbed comprised a MITM 410 between an HMI/PLC 405 
and a switch 415. 

erometer sensor data, the z-axis was scaled down by divid
ing by 16767, which was the maximum value that the 
hardware sensors could read. This min-max scaling was 
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The CNN models were first trained and tested on win
dows of 100 samples for both payload and sensor data 
streams. For the anomaly detection, the occurrence of errors 
( or disagreements in the states) between the two CNN s were 

done in order to reduce the large magnitude of forces in that 
direction to be between 0 and 1. The absolute values of the 
raw values were taken in order to specifically detect the 
magnitude of the rotational and straight-line forces. This was 
done since the direction itself was oscillatory around the 
axis, so the magnitude was the primary source of classifi
cation information. For this reason, an absolute value was 
used to reduce the neural network learning needed to find the 
magnitude. The payload data contained constant noise from 
a variety of packets that ping and maintain the connection. 
By taking a moving average of 100 of the packet bitstreams, 

5 monitored. Since the trials were about 500,000 samples each 
and the models predicted from 100 samples, there was be 
about 5000 predictions per trial. A sliding window of size 20 
was used to calculate error prediction percentage over time. 
In other words, every group of 20 predictions, produced an 

10 error rate. FIGS. 6A-6D shows the visualization of results of 

a constant amount of noise on the network was accounted 
and the classification was improved. 

Next, time alignment between the raw data was checked, 15 
so that the sensor and packet data were from the same time 
period. The two data sets had varying amounts of data for 
each period of time because the sensor data arrived in 
constant intervals while the packet is arrived sporadically. In 
order to have around the same amount of data for the time 20 

period, the sensor data was downsampled by taking every 
other sensor reading. This reduction of sensor data to half its 
readings allowed payload data to be aligned to its corre
sponding sensor readings in time. 

Finally, a time window was selected to accumulate the 25 

raw data. The packet payload messages sent on the network 
took some time to impact the ICS actuators, especially 
mechanical peripherals because of startup transients. This 
added delay between the observed state from the PCAP 
analysis and the observed state from the sensors. Further, the 30 

packet payload arrival time varied depending on whether an 
ICS state transition was occurring, which gave it a variable 
sampling rate. This meant each payload could not directly be 
correlated with a sensor output because many payloads 
could be correlated to only a few ICS sensor changes, and 35 

vice versa. The timing effects could be mitigated by using a 
larger input size. As sample input size increased, the variable 
sampling rate and differences among sample rates became 
less impactful. 100 samples of payload data and 100 samples 
of sensor data ( ending at the same point in time) as input for 40 

each CNN model was determined to be a conservative 

both the payload and gyrometer sensor classifiers, and the 
error rate per moving window of 20 predictions. The selec
tion of a moving window error rate of 20 was used because, 
while random misclassification can occur, after around 20 
predictions the error rate was observed to be fairly low. A 
threshold of 18% for the error rate is used to identify 
anomalies since the baseline error rate for a window of size 
20 is around 15% for our models. 
Results 

The training data was analyzed using confusion matrices 
for the raw data to visualize the effectiveness of the classi
fiers. The raw sensor from the accelerometer and gyrometer 
are shown in FIG. 7A and FIG. 7B, respectively, and packet 
data is shown in FIG. 7C. The Fl scores and weighted 
averages are also shown in these figures. The best perform
ing model used the gyrometer sensor data (FIG. 7B), with 
near perfect classification except for misclassifications for 
the 'halt' and 'off states. 

The results of combining the classifier outputs for track
ing the number of occurrences when the classified states for 
the gyrometer sensor data and packet data differed are shown 
in FIGS. SA-SC. When the accumulation of differences in a 
given time window surpassed a certain threshold, the 
anomaly was marked. A threshold of 18% worked well in 
flagging the anomalies. FIGS. SA-SC show how comparing 
the classified states in an unsupervised way allowed for a 
robust anomaly detection. 

A precision-recall curve (PRC) was used to detect the 
precision to recall ratio as the threshold of anomaly detec
tion was adjusted. This method revealed the degree at which 
the overall classifier performed greater than random chance. 
By sweeping the threshold from 0.0% to 100.0% of errors 
within a window, a diagram as shown in FIG. 9 was created 
where, as recall of anomalies increased, the false positives 

sample size that worked for the classification, since sensor 
visuals seemed to show that the state change happened over 
less than 100 samples. By increasing the sample input size 
to the ratio of the number of samples it took to change states, 
misclassification errors were reduced to a single prediction 
during an ICS state change. 
CNN Architecture 

45 also increased, and precision decreased. Detecting true posi
tives provides utility since this model had consistent results 
at detecting the baseline (true negative) at every threshold 
and had minimal false negatives. Further, to improved 
visualization through the PRC curve, emphasis on recalling The data from the ICS testbed was fed into a dual-CNN 

architecture according to the architecture shows in FIG. 5. 
The input 505 was either raw time series sensor data or bit 
streams from the payloads in packets over time. Training, 
validation, and testing splits were performed at the ratio of 
70:20: 10 to ensure the model can accurately detect ICS 
states from payloads and sensors. To create the model, the 
Keras package was used for design and training. The model 
uses a combination of convolutional layers 510/520, max 
pooling layers 515/525, a flattening layer 530, a dropout 
layer 535, and a dense neural network layer 540. All 
activation functions were ReLU except for the final Softmax 60 

activation for classification in the dense layer 540. The loss 
function employed for training was cross entropy across the 

50 true positives was important since the model had to be able 
to detect and mitigate threats before they caused permanent 
major failure to the ICS system. The calculated area under 
the precision-recall curve (AUPRC) is about 86% in FIG. 9. 

From the precision-recall curve, the optimal threshold 
55 was taken where precision and recall are equal (i.e., equal 

error rate point or EER). At this threshold of around 0.17, the 
model was run on our test set. A confusion matrix and 
statistics were used to evaluate the combined, unsupervised 

six possible ICS states. An adaptive momentum (ADAM) 
optimizer was employed with a learning rate ofl e-5 and was 
used to iteratively update the weights. The model was 65 

trained for 100 epochs and dropout (dropout layer 535) was 
used to help prevent overfitting. 

anomaly detector whose performances were shown to have 
an Fl score: 0.89, Sensitivity (Recall): 0.87, and Precision: 
0.88. The results were obtained by analyzing the true posi-
tive and false negatives from anomaly injections and false 
positives and true negatives from baseline. These results 
represented the strength of the classifier after it was tuned to 
be an optimal threshold for this dataset. 

For the classifier, the precision of detection reached about 
0.88 and its recall about 0.87. Detecting this percentage of 
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While preferred embodiments of the present subject mat
ter have been shown and described herein, it will be obvious 
to those skilled in the art that such embodiments are pro
vided by way of example only. Numerous variations, 

anomalies generated was quite strong because the inserted 
anomalies in the system were of relatively short duration. 
Though some anomalies were not detected, a more sustained 
MITM attack would eventually trigger an alarm. Overall, the 
classifier was robust to the random noise of multiple clas
sifiers and could accurately distinguish anomalies from 
baseline data. 

5 changes, and substitutions will now occur to those skilled in 
the art without departing from the present subject matter. It 
should be understood that various alternatives to the 
embodiments of the present subject matter described herein 
may be employed in practicing the present subject matter. 

Another important metric was latency of prediction. For 
every prediction there were 100 data points of sensor data 
and packets, and there was a potential anomaly flagged 10 

every 20 predictions. Latency was defined as: latency= 
(W·e,-eJ/s, where W was the window (number of samples 
per prediction), e,-ea were the number of predictions 
between the first error and the error where the anomaly 
threshold was crossed, and s was the sampling rate in 15 

samples per millisecond. FIG. 10 shows the delay in pre
diction, which were used to estimate the latency. For 
example, the median number of predictions between the first 
incorrect prediction and the anomaly (threshold crossed) 
was 39.5. This meant that about 3950 sensor and payload 20 

data were used in total before the error was confirmed. At a 
rate of 10 samples per milliseconds, 395 milliseconds of 
sensor data passed until detection. When taking account of 
all timing information, the combined setup was fast enough 
to classify and compare windows of data from two data 25 

streams. 

Example 2-Portable Edge General Use Device 

In another example, a general purpose computing device, 30 

in the form of a handheld tablet that is wirelessly connected 
to a network, for example, the Internet is utilized. Devices 
such as handheld tablets generally comprise many different 
types of sensors. One type of sensor that is commonly 
contained within a handheld tablet is a gyroscope that senses 35 

orientation. Yet another type of sensor is embedded within 
the touchscreen that produces pressure readings when the 
touchscreen is interacted with by the user. Such sensors are 
known to be useful for a variety of uses, one of which is 
demographic classification of the user. For example, using 40 

machine learning algorithms, a tablet user's interactions 
with the touchscreen and resulting pressure sensor output 
can be used to predict certain demographic characteristics of 
the user. 

What is claimed is: 
1. A computer-implemented method for control system 

anomaly detection comprising: 
a) receiving input data comprising: sensor data from 

equipment in the control system; and network data 
from a network in communication with the control 
system; 

b) normalizing distributions of the sensor data and the 
network data; 

c) checking time alignment between the sensor data to the 
network data; 

d) selecting a time window for accumulating the sensor 
data and the network data; 

e) feeding the sensor data into a first neural network 
comprising a behavior classifier of the equipment of the 
control system to output a first classified state of the 
control system; 

f) feeding the network data into a second neural network 
comprising a network traffic classifier to output a 
second classified state of the control system; and 

g) comparing the first and the second classified states for 
consensus for system anomaly detection, wherein accu
mulation of differences in classified states in a given 
time interval above a threshold indicates occurrence of 
an anomaly. 

2. The method of claim 1, wherein the control system 
comprises an industrial control system, distributed control 
system (DCS), supervisory control and data acquisition 
(SCADA) system, embedded control system, or a combina
tion thereof. 

3. The method of claim 1, wherein the control system 
comprises a general purpose computer. 

4. The method of claim 1, wherein the control system 
employs one or more standard network communication 

Additionally, monitoring and analyzing Internet packets 
received by, and sent from, the tablet device can additionally 
yield certain information about the user, including, by way 
of example, web sites being interacted with, and the like. A 
machine learning algorithm can classify or predict certain 
characteristics of the user based on characteristics of the 
Internet packets being received by and transmitted from the 
handheld tablet device when it is being manipulated by a 
user. Furthermore, if a malicious process is rumiing on the 
handheld device, analysis of such web packets can enable a 
machine learning algorithm to classify if the tablet has 
malicious software, e.g., "malware," installed or not. 

45 protocols selected from the group consisting of: process field 
bus (Profibus ), process field net (Profinet ), highway address
able remote transducer (HART), distributed network proto
col (DNP3), Modbus, open platform communication (OPC), 
building automation and control networks (BACnet), com-

In this example, the subject matter disclosed herein, as 
described above, can utilize the two machine learning algo
rithms; the first algorithm processing sensor data and the 
second algorithm processing Internet packet characteristics 

50 mon industrial protocol (CIP), and ethernet for control 
automation technology (EtherCAT). 

5. The method of claim 1, wherein the wherein the control 
system employs one or more non-standard network com
munication protocols, or a combination of standard network 

55 communication protocols and non-standard network com
munication protocols. 

6. The method of claim 1, wherein the sensor data 
comprises time series data. 

7. The method of claim 1, wherein the sensor data is 
60 obtained from a standalone sensor or an integrated sensor. 

8. The method of claim 7, wherein the integrated sensor 
is part of a control device comprising an actuator. 

to enhance the overall predictability and reliability of the 
prediction or classification task. The prediction or classifi
cation task, in this example, could be to enhance the pre
diction or classification of certain user demographics, iden
tify if the user is utilizing a tablet while it is infected with 65 

malware, or identify if the user is installing and executing 
malware. 

9. The method of claim 1, wherein the network data 
comprises packet data, metadata, or a combination thereof. 

10. The method of claim 9, wherein the packet data 
comprises a packet's header, payload, trailer, or any com
bination thereof. 
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11. The method of claim 10, wherein the packet data from 
the packet's payload comprises bit streams. 

12. The method of claim 1, wherein normalizing distri
butions of the sensor data and the network data comprises 
adjusting the distributions' mean, variance, higher-ordered 5 

moments, or a combination thereof. 
13. The method of claim 1, wherein the method comprises 

resampling the sensor data, the network data, or a combi
nation thereof for the time alignment between the sensor 
data and network data. 10 

14. The method of claim 13, wherein the resampling 
results in the sensor data and the network data having a same 
number of samples and comprises downsampling, upsam
pling, or unsampling. 

15. The method of claim 1, wherein the method comprises 15 

windowing to adjust the time window for accumulating the 
sensor data, the network data, or a combination thereof. 

16. The method of claim 15, wherein the windowing 
accounts for delays in the network data, the sensor data, or 
a combination thereof. 20 

17. The method of claim 1, wherein one or both of the first 
neural network and the second neural network are deep 
neural networks. 

18. The method of claim 17, wherein the deep neural 
networks comprise convolutional layers such that one or 25 

both of the first neural network and the second neural 
network are convolutional neural networks. 

19. The method of claim 18, wherein the convolutional 
neural networks comprise convolutional layers, pooling 
layers, flattening layers, dropout layers, and dense layers. 30 

20. The method of claim 19, wherein the convolutional 
layers are ID, 2D, or 3D convolutional layers. 

21. The method of claim 19, wherein the pooling layers 
comprise maximum pooling layers, minimum pooling lay-
ers, average pooling layers, or a combination thereof. 35 

22. The method of claim 18, wherein the convolutional 
neural networks have hyperparameters that are empirically 
chosen based on patterns in the network of the control 
system. 

23. The method of claim 18, wherein the convolutional 40 

neural networks are supervised for training to identify one or 
both of the first classified state and the second classified 
state. 

24. The method of claim 1, wherein the comparing the 
first and the second classified states for consensus for system 45 

anomaly detection is unsupervised for detecting the differ
ences between the first and the second classified states. 

25. The method of claim 1, wherein the threshold is an 
average discrepancy rate between the first and the second 
classified state. 50 

26. The method of claim 25, wherein the threshold is 
dynamically changed over time. 

27. The method of claim 1, wherein the anomaly is due to 
attacks on at least one of the equipment in the control system 
and the network of the control system. 55 

28. A computer-implemented system for control system 
anomaly detection comprising: 

a) at least one logic element configured to perform 
operations on sensor data from equipment in the control 
system and network data from a network in the control 60 

system the operations comprising: 
i) a normalization operation to normalize distributions 

of the sensor data and the network data; 
ii) a checking operation to check time alignment 

between the sensor data and the network data; and 65 

iii) a selection operation to select a time window for 
accumulating the sensor data and the network data; 

30 
b) a first neural network comprising a behavior classifier 

of the equipment of the control system for outputting a 
first classified state of the control system from the 
sensor data; 

c) a second neural network comprising a network traffic 
classifier for outputting a second classified state of the 
control system from the network data; and 

d) a discrepancy aggregator for comparing the first and 
the second classified state for consensus for control 
system anomaly detection, wherein accumulation of 
differences in the classified states in a given time 
interval above a threshold indicates occurrence of an 
anomaly. 

29. A platform for control system anomaly detection 
comprising: 

a) an apparatus comprising: at least one logic element for 
performing operations on sensor data from equipment 
in the control system and network data from a network 
in communication with the control system, and a dis
crepancy aggregator for control system anomaly detec
tion; and 

b) a cloud computing resource communicably coupled to 
the apparatus and comprising a first neural network and 
a second neural network; 

wherein the operations comprise: 
a) a normalization operation to normalize distributions of 

the sensor data and the network data; 
b) a checking operation to check time alignment between 

the sensor data and the network data; and 
c) a selection operation to select a time window for 

accumulating the sensor data and the network data; 
wherein the first neural network comprises a behavior 

classifier of the equipment of the control system out
putting a first classified state of the control system from 
the sensor data from the operations; 

wherein the second neural network comprises a network 
traffic classifier outputting a second classified state of 
the control system from the network data from the 
operations; 

wherein the discrepancy aggregator compares the first and 
the second classified state for consensus for control 
system anomaly detection; and wherein accumulation 
of differences in the classified states in a given time 
interval above a threshold indicates occurrence of an 
anomaly. 

30. A computer-implemented method of training neural 
networks for control system anomaly detection comprising: 

a) collecting input data comprising sensor data from 
equipment in the control system and network data from 
a network in communication with the control system; 

b) preprocessing the sensor data and the network data to 
output preprocessed sensor data and preprocessed net
work data, the preprocessing comprising: 
i) normalizing to adjust distributions of the sensor data 

and the network data; 
ii) checking the sensor data and the network data for 

time alignment; and 
iii) selecting a time window for accumulating the 

sensor data and the network data; 
c) creating training sets comprising a first training set 

comprising the preprocessed sensor data and a second 
training set comprising the preprocessed network data; 
and 

d) training a first neural network comprising a behavior 
classifier of the equipment of the control system with 
the first training set to output a first classified state; and 
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e) training a second neural network comprising a network 
traffic classifier with the second training set to output a 
second classified state. 

* * * * * 

32 


