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DETECTING MALICIOUS SOFTWARE 
USING SENSORS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a Continuation of U.S. patent appli
cation Ser. No. 15/812,663, filed Nov. 14, 2017, which is 
incorporated herein by reference in its entirety. 

BACKGROUND 

Effective defense against a ransomware attack is typically 

2 
Like reference symbols in the various drawings indicate 

like elements. 

DETAILED DESCRIPTION 

The present disclosure is directed to a system and method 
for detecting ransomware in an infected host ( e.g., computer, 
mobile device) during the initiation of its payload execution. 
In these instances, data streams from on-board sensors in the 

10 host can be monitored and ransomware infections can be 
detecting using these data streams and predefined criteria. In 
this sense, a physical side channel can be used where the 
victim's files are not directly monitored. The behavior of the 
victim machine is monitored and onboard sensor-provided a multi-tiered or layered approach. Detection of the malware 

when downloading to the victim computer is an outer 
defense, and if possible, can prevent the ransomware from 
ever entering the system. This defense attempts to prevent an 
attack vector from penetrating a victims host computer. 
Packet signature monitoring via an intrusion detection sys
tem (IDS) or file signature monitoring via a local antivirus 20 

software program can provide this capability, but only if 
these methods are capable of recognizing the malware 
through knowledge of the data signatures. While this 
defense is a desirable, it is notoriously difficult to prevent 
infection with previously unknown ransom ware versions, or 25 

so-called zero-day attacks. 

15 data is used as side-channel information that can indicate 
when an encryption operation is occurring. In other words, 
encryption detection depends upon the use of small yet 
distinguishable changes in the physical state of a system as 
reported through onboard sensor-provided data. In some 
implementations, monitoring can be accomplished through a 
background process that is loaded at boot time and thus 
continuously monitors the system for suspicious behavior. 
Once this suspicious behavior is detected, the user can be 
alerted and the suspicious processes can be suspended. The 
central difference between this approach and other previous 
approaches is that this approach uses secondary effects to 

In the case of zero-day ransomware, data signatures and 
other corresponding characteristics are unknown by defini
tion. Furthermore, the increasing presence of polymorphic 
malware is causing signature-based approaches to become 30 

less effective than they once were. 

detect the presence of malware rather than a direct effect, 
such as measuring increases in file entropy. 

In some implementations, a feature vector can be formu
lated consisting of various sensor outputs that is coupled 
with a detection criterion for the binary states of ransom ware 
present versus normal operation. In this instances, previ
ously unknown or zero-day versions of ransomware are 
vulnerable since no a priori knowledge of the malware, such 

SUMMARY 

In some implementations, a method includes retrieving 
data from multiple sensors in a computing device, and the 
multiple sensors comprise different types of sensors. The 
sensor data is analyzed based on a predictive model, and the 
predictive model is trained to detect malware. Initiation of 
malware is determined based on the analysis. In response to 
the determination, the malware is terminated. 

The details of one or more embodiments of the invention 
are set forth in the accompanying drawings and the descrip
tion below. Other features, objects, and advantages of the 
invention will be apparent from the description and draw
ings, and from the claims. 

DESCRIPTION OF DRAWINGS 

FIG. 1 is an example computing device including sensors 
for detecting ransomware. 

FIG. 2 is an example confusion matrix representing 
machine state versus ransomware detection model predic
tion for a Window machine. 

FIG. 3A is a plot of encryption activity versus time for a 
Window machine. 

FIG. 3B is a plot of ransomware detection model predic
tion versus time for a Window machine. 

35 as a data signature, is required. Experimental results from a 
system which underwent testing with 16 different test con
figurations comprised of different simulated system loads 
unknown to the model and different AES encryption meth
ods used during a simulated ransomware attack showed an 

40 average true positive prediction rate of 98.82% and an 
average false positive prediction rate of 1.57% for predic
tions made once every second about the state of the system 
under test. 

FIG. 1 illustrates an example computing device 100 for 
45 detecting ransom where in accordance with one or more 

implementations of the present disclosure. In some imple
mentations, the computing device 100 uses sensor data to 
detect initiation of encryption of data. In the illustrated, the 
computing device 100 includes a sensor-monitoring module 

50 102 communicably coupled to sensors 104a-e to detect 
operating conditions of the device 100. As illustrated, the 
sensors 104a-e include a current sensor 104a, a temperature 
sensor 104b, RPM sensor 104c, a voltage sensor 104d, and 
a power sensor 104e. The computing device 100 may 

55 include the same, some, or different sensors to detect mal
ware ( e.g., ransomware) without departing from the scope of 
the disclosure. 

FIG. 4 is a confusion matrix representing actual machine 
state versus ransomware detection model prediction for an 60 

Apple machine. 

In general, the computing device 100 includes sensors 
l04a-e to monitor the state of internal hardware compo
nents. These sensors 104a-e can, in some implementations, 
continuously or periodically gather and supply sensor data 

FIG. SA is a plot of encryption activity versus time for an 
Apple machine. 

FIG. 5B is a plot of ransomware detection model predic
tion versus time for an Apple machine. 

FIG. 6 is a flowchart illustrating an example method for 
detecting ransomware. 

that is communicated with other devices and subsystems to 
substantially maintain the device 100 within specific oper
ating specifications. If sensor data reveals that a device 

65 component is approaching a boundary for a recommended 
value of an operational specification, safety mechanisms can 
be engaged to correct the internal environment and prevent 
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TABLE I-continued or othenvise reduce malfunctions. For example, ,vhen the 

data from the temperature sensor 104b of, for example. a 
computer's central processing unit (CPU) begins to increase, APPLE \!ACBOOK INTER:\'AL SE:\'SORS AND READl:\'GS 

a signal can he sent lo the Cl'lJ cooling frm. This signal 
causes the Lin tu either become' ,1cti\ c or to increase the· L111 s 
speed in nrder to cool the ( 'l'l ! .. \dditionally, the scns<>rs 
104a-e can provide input lo other subsystems such as 
internal po,ver management units. PMU s, to conserYe power 
usage. 

SMC CPI .\ l'R(lXIMITY ITl·.Ml'I R \II Rl·.I: 
SMC I.I.I I l'.\I M RI-.ST ITI-.Ml'l·R.\l lRl·I: 
SMC MAI:\' HEAT SINK 2 [TEMPERATCRE]: 
SMC MAI:\' LOGIC BOARD [TE!\!PERATURE]: 
SMC PLATFOR.Vl CONTROLLER HCB CHIP 

10 TEMPER.-\ITRE [TEMPERATURE]: Typically. computing-device components are frequently 
designed to be compact in size through the use of transistors 
with lcature' si/ing ollen in the 1rnnrnneter scale . .\s ,1 dirccl 
result, whe'ne'\ e'r computations be'c·,,me more complex. mnre 
stress in placTd on the components. This increased stress 
occurs because a large number of transistors are frequently 15 

switching in a circuit that correspondingly cause an increase 
in dynamic power consumption and, in turn, more heat 
dissipation especially during hem y computational activity. 
Thus, rnonitnring the side channels ol'lhe computing de, ice 
I 00 with the' e'mhedded sensors I 0-fo-e that measure "per- 2i, 
ating conditions such as temperature. power consumptinn, 
and battery, ultage levels can indicate the type ofprucessing 
that is undenvay on a computer at a given time. As a result, 
monitoring a computer's side chaimels through periodic 
observations of sensor output data can, in some implemen- 25 

tations, indicate when a resource-hem·y task, such as encryp
tion, is occurring. Since rnnsom,v,l!'e' utilil'.es encrypti"n in 
its payload [() deny its victims c1c·c·css to their files. tre'mis to 
emerge in rcg,ml to how a computer behaves while under 
ransomware anack based on analyzing data from a comput- 30 

er's side channel sensor data. 
Conventional computers are comprised of the same set of 

basic internal devices to enable their operation. Hmwver, 
manufacturers 1rn.1y choose to me different and/or rn1ique 
sets or comp"ncnls for their vari"m computer models. I )uc ,s 
to this vari,1tinn among different product models. corre
sponding differences among the readings of the internal 
onboard sensors can occur when they are queried. In the 
illustrated implementation, the sensor-monitoring module 
102 can include any software. hardware, and/or finmvare 40 

configured to access sensor data (e.g .. main memory power 
usage). ]<'or ex,1111plc, the sensor-monitoring module I 02 c,1n 
be accessed sensor data vic1 the comm,md line ;imVor 
through calls tn the opcrnting system and interpret the 
onboard sensor data. During experimentation, the Hard\\are 45 

Monitor and the Open Hardware Monitor applications ,wre 
used to prmide information from systems running Apple's 
OSX® ai1d Microsoft's Windmvs E operating systems. As an 
example oflarge number of available on-board sensors. a list 
or the 5') sensms and their readings rrom an Apple \\Lie- sii 

bookm• is pn" ided below in Table 1. 

TABLE 1 

SMC SSD BAY [TEMPERATURE]: 
SMC srn TF\[PFRATURF A [TF\[PFR.\TIJRF]: 
SMC SSll II \ll'i'RAl'IIRI·. ll lTI \11'1 R \IIIRl·I: 
SMC WI\'\< \RI> ITl·.Ml'l·.RAIIRI I: 
S111:111 lh11,.:r: l1 '-1.:!0z451 (I) ITIJv!Pl·R.\l l RLI: 
13atte1y 1 Cell 1 [\'OLTAGE]: 
Battery 1 Cell:' [VOLTAGE]: 
Battery 1 \ olt:1ge [VOLTAGE]: 
SMC CPL' CORE [\!OLTAGE]: 
SMC CPL' SCPPLY 1 [\!OLTAGE]: 
SMC DC !:\'PCT [VOI.TAGEl: 
SMC l'O\\TR s1:!'l'I.Y/IL\l'Tl·.RY l\.()JT\(il·.\: 
SMC SSll SI l'l'I.Y l\.()[:J'Vil·.I: 
SMC WI \'\<.\RI> l\.()[:J'Vil·.I: 
llallcry 1 (11rrc111 \ClJRRl:NTI: 
SMC 5 V Sl1 LI:\'E [CURRENT]: 
SMC BACKLIGHT [CURRENT]: 
SMC MAI:\' HEAT SINK 2 [TEMPER.-\TCRE]: 
SMC MAI:\' LOGIC BOARD [TE!\!PER.-\TURE]: 
SMC PLATFOR.Vl CONTROLLER HCB CHIP 
TFMl'l·.R.\TI .RF ITl:MPJ:RAl'Ulfr I: 
SMC SSll I\ \Y ITl·.Ml'l·.RAl'lllfr.l: 
SMC SSI l 11 \11'1·.RAl'I IRI· A ITl-\11'1R.\1'111n.1: 
SMC SSU I l.\ll'l·.RAl'lJRI·. ll \Tl.\11'1.R.\llJRI·.\: 
SMC WLAT\ C\Jill [TEMPERA!LRl:J: 
Smart Batten· bq:'0z451 (1) [TEMPER.-\TCRE]: 
Battery 1 Cell 1 [VOLTAGE]: 
Battery 1 Cell:' [VOLTAGE]: 
Battery 1 \ olt:1ge [VOLTAGE]: 
SMC CP\' CORF [\!OLTAGF]: 
SMC Cl'f SfTl'I.Y 1 I\TlI:rMil·I: 
SMC I>< l'\l'I I l\.()[:J'Vil·.I: 
SMC l'<>\IIR S\'l'l'I.Y/llAl'Tl·.RY I\ (ll.l.\(il·.I: 
SMC SSIJ Sl.l'l'I.Y [VOIT\(il-.J: 
SMC WLA:\' CARD [VOLTAGE]: 
Battery 1 C1ment [CURRENT]: 
SMC 5 V Sl1 LI:\'E [CURRENT]: 
SMC BACKLIGHT [CURRENT]: 
SMC BATTERY CURRENT [CURRE:\'Tl: 
SMC cr1· CORf [CTJRRfNTl: 
SMC CPI lll<dl Sllll·. ICIIRRl·.NI I: 
SMC Cl'f SI 1'1'1 .Y I !Cl IRRl·.NTI: 
SMC CPI \ R\I SUl'l'I.Y 2 \ClJRRI.'\ I I: 
SMC DC !:\'PCT [CURRENT]: 
SMC DDR3 \!E\10RY 1.35 V Ll:\'E [CCRRENT]: 
SMC DDR3 \!Ev!ORY S3 LINE [CCRRE:\'T]: 
SMC DISCRETE BATTERY [CURRE:\'T]: 
SMC LCD PA:\'EL [CURRENT]: 
SMC PO\\T.R SFPPI.Y/BATTERY [C\'RRFNT]: 
SMC SSll Sf l'l'I.Y IClfRRl·.NTI: 
SMC WI \'\<.\RI> ICIIRRl·.NTI: 
SMC s \. '" 1.1'\I•. ll'OWl·.RI: 
SMC BACKLIGHT [l'UWJiRJ: 
SMC CPL' CORE [POWER]: 
SMC CPL' HIGH SIDE [POWER]: 

APPLE \L-\CBOOK INTERNAL SE:\'SORS AND READl:\'GS 55 SMC CPL' SCPPLY 1 [POWER]: 

Apple Macbook Scnser 

SMART llisk \1'1'1.1. SSIJ Sll11l2XI· 
I 1,s2s l411S I I'' I I l·\ll'l·RAl'I IRl·.1: 
SMC AIR ll\l I·. I 111:Ml'l:RAJ'I.JRl·.1: 
SMC BATTERY [TEMPERATURE]: 
SMC BATTERY CHARGER PROXIMITY 
[TEMPERATCRE]: 
SMC BATTERY POSITION 2 [TEMPERATCRE]: 
SMC BATTERY POSITION 3 [TEMPERATCRE]: 
SMC CAMIJ, \ PROXIMITY ITHv!PI R \Inn:1: 

Value 

I. 
8-.8 F. 

Ill.:' F. 

8-.8 F. 
8-.8 F. 
113 F 

] 1111.4 

SMC CPL' \'R.\l SUPPLY 2 [POWER]: 
SMC DDR3 \TF\10RY 1.35 V 1.1:\'F [PO\YFR]: 
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ing (ML) techniques. In these instances, the sensor-moni
toring module 102 trains models using a large amount of 
data gathered and processed from an experimental environ
ment. The sensor-monitoring module 102 can use the sensor 
data, such as that provided in Table 1, to form a feature 
vector that differentiates between the binary machine states 

6 
if attack_count>threshold: 

under_attack=True 

of "normal operation" versus "ransomware payload execu
tion" (i.e., unauthorized encryption activity). Instead of 
relying one type of sensor data, the feature vector can 
combine multiple types of sensor data. In response to the 10 

sensor-data feature vector indicating a specific state of 
encryption, the sensor-monitoring module 102 can issue 
alerts and suspend the corresponding encryption processes. 

FIGS. 2-5 illustrate example results for testing conducted 
on two different computing devices. Testing was conducted 
on two computing devices, one rumiing Apple OSX® and 
the other running Microsoft Windows®. Specifically, the 
Apple OSX machine was a Macbook Air with a 1.3 GHz 
Intel® i5 processor and 4 GB of main memory and the 
Windows® machine was an Intel® i7 processor with 32 GB 
of main memory. 

Training data was collected on both computing devices 
and the data was used to generate a prediction model for 
each computing device. The new encryption detection 
method was tested utilizing a ransomware simulation testing 
script written in Python. The size of the directory and the 
method of encryption were selected by randomly picking a 

In some instances, the sensor-monitoring module 102 can 
use a simple logistic regression approach as the ML classi- 15 

fication algorithm to discriminate between the binary states 
of "normal operation" versus "ransomware payload execu
tion." Other alternative classification algorithms can be used 
without departing from the scope of the disclosure. In 
addition, the feature vector may be refined using techniques 20 

such as Principal Component Analysis (PCA), Linear Dis
criminant Analysis (LDA), and others. In some implemen
tations, the sensor-monitoring module 102 can train the 
prediction models using different methods of encryption 
such as Electronic Code Book, Cipher-Block Chaining, 25 

Cipher FeedBack, XOR encryption, and others. 

number between 1 and 100. All values of 60 and below 
caused encryption of the small directory, all values from 61 
to 90 encrypted the medium directory, and all values from 91 
to 100 encrypted the large directory. The particular encryp
tion method used was randomly selected among the four 
types we implemented in our experiments. 

After a particular directory has been encrypted, the script 
waits a random amount of time before performing additional 
encryption. The amount of time it waits is proportional to the 
size of the directory it previously encrypted. After encrypt-

In some aspects of operations, the sensor-monitoring 
module 102 receives a training set of hardware sensor data. 
The hardware sensor data can include data when how the 
sensors behave on the host computer under normal operating 
conditions as well data when a covert encryption process is 
executed. After the sensor training data has been retrieved, 
the sensor-monitoring module 102 can perform logistic 
regression to fit the model to the training data. Due to the 
slight variation between the components of each computer, 
the resulting ransomware detection model may be different 
for different devices. Once determined, the sensor-monitor-
ing module 102 can use the model to classify the state of the 
computing device 100 whenever the hardware sensors are 
routinely polled. If the model predicts that a suspicious 
encryption process is executing, the sensor-monitoring mod
ule 102 can notify the user and suspend or terminate the 
suspicious process. In some implementations, the detection 
algorithm can run as a background process to allow normal 
usage of the system. A pseudocode version of the detection 
algorithm is provided below. 

// load model from binary file 
model=load(' ./model.pk!') 
attack_count=0 
previous_prediction=0 
under_attack=False 
// check sensor data and make prediction 
while True 

data=monitor.read_sensors( ) 
prediction=model.predict( data) 
// determine action based on current and 
// previous data 
if prediction: 

attack_count+=l 
else 

if previous_prediction==0: 
attack_count=0 
under_attack=False 

previous_prediction=data 
// set condition to under attack if positive 
predictions 
// increase above threshold 

ing a small directory, a random amount of time between 1 
and 60 seconds is selected, a time between 5 and 10 minutes 
is selected for the medium directory, and a time between 15 

30 and 30 minutes is selected for the large directory. The script 
also randomly selects a value between 5 and 15 and waits for 
an hour and a half after encrypting that many gigabytes of 
data. Randonmess and wait times are utilized in order to 
simulate the attempts made by an adversary to avoid detec-

35 tion of ransomware payload execution. During the encryp
tion process, the script searches for files by recursively 
starting from a given path. Files that have extensions match
ing a list of common user file types are read and their data 
is encrypted. After encryption the data is copied over the 

40 existing data in the original file. After testing the Windows® 
machine for 5 hours 94.2% of sensor polls were accurately 
predicted as either "under attack" or "no attack". The 
confusion matrix in FIG. 2 shows the relationship between 
the predictions made by the model and the actual state of the 

45 computing device. During the periods the script was per
forming encryption 98.1 % of polling predictions correctly 
identified a state of under attack. During the periods, the 
script was not performing encryption 92.5% of polling 

50 

predictions correctly identified a state of no attack. 
1.9% of the checks that occurred during periods of 

encryption incorrectly predicted that there was no attack 
(i.e., a false negative error) while 7 .5% of periods with no 
encryption incorrectly predicted that there was an attack 
(i.e., a false positive error). The classification method was 

55 tuned in a conservative fashion to focus more upon the 
reduction of false negative errors than the case of false 
positives as the former error type is assumed to be more 
critical than the latter. 

The overall accuracy of the encryption detection method 
60 is illustrated in FIG. 3. The uppermost graph, (a), of the 

figure represents the actual periods of encryption or "truth 
data" while the plot on the bottom, (b ), represents the actual 
predicted periods of encryption. These graphs depict the 
machine state on the vertical axis with zero indicating 

65 normal operation and one indicating under attack. The 
horizontal axes depict time. The Apple computing device 
was tested by only encrypting the large directory after a 
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random wait period between 30 and 60 minutes over a 
6-hour period. This method gives a clear indication of how 
well the new detection method can detect periods of high 
volume encryption. The confusion matrix in FIG. 4 shows 
the relationship between the predictions made by the model 
and the actual state of the computing device. 

8 

After testing the Apple machine, 98.2% of the sensor polls 
resulted in accurate predictions. During the periods the 
script was actually performing an encryption operation, 
99.7% of the polling predictions correctly identified a state 
of "under attack." During the periods the script was not 
performing encryption, 97.7% of polling predictions cor
rectly identified a state of "no attack." A false negative rate 

that follows generally describes method 600 in the context 
of the other figures in this description. However, it will be 
understood that method 600 may be performed, for example, 
by any suitable system, environment, software, and hard
ware, or a combination of systems, environments, software, 
and hardware, as appropriate. For example, method 200 can 
be performed by the example computing system 100 illus
trated in FIG. 1. In some implementations, various steps of 
method 600 can be run in parallel, in combination, in loops, 

10 or in any order. 
The method 600 begins at step 602 where sensor data is 

collected during normal operations. For example, the sensor
monitoring module 102 can retrieve sensor data during of 0.27% of the checks that occurred during periods of 

encryption incorrectly predicted that there was no attack 
while a false positive error rate of 2.3% of observations with 
no encryption incorrectly predicted that there was an attack. 
FIG. 5 shows the periods of actual encryption in the upper
most portion, (a), and periods of predicted encryption in the 
lower portion, (b ). As in FIG. 3, the vertical axes depict 
machine state and the horizontal axes depict time. 

15 normal operations. Ransomware encryption is simulated at 
step 604, and the sensor data is retrieved during that simu
lation at step 606. Next, at step 608, a predictive model is 
trained using both data sets. Once trained, sensor data of the 
computing device is monitored, at step 610, using the trained 

20 predictive model and sensor data to detect ransomware 
encryption. At step 612, initiation of ransomware encryption 
is detected using the trained predictive model and sensor 
data. At step 614, the encryption is at least suspended. 

Upon further analysis of the results, most periods of false 
positive predictions occurred directly after a correct attack 
prediction. This can be observed in FIG. 5 which contains 
false positive periods after the second and fourth encryption 25 

periods. Implementing additional testing and filtering tech
niques that more closely scrutinize predictions being made 
for a short period directly following a positive prediction 
period can result in increased overall accuracy. In some 
implementations, temporal or history data regarding past 30 

recent predictions may be included in the analysis. 
Legitimate encryption can be accounted using white

listing or other methods that notify the detection process that 
legitimate encryption operations are in process. For 
example, system registry data can be used to label processes 35 

that employ legitimate encryption and the ransomware 
detection process can be augmented to verify if a detection 
is the result of a legitimate process or not before a state of 
"ransomware payload execution" is declared. 

In some implementations, experimental ransomware 40 

detection algorithm can use a simple polling or sampling 
method wherein the operational phase of the detection 
method would periodically query the sensors to obtain 
readings. This approach suffers from potential aliasing prob
lems, particularly if the malware payload were to be imple- 45 

mented in short bursts or use some other form of intelligence 
about the state of the victim system before encryption is 
executed. In some implementations, the schedule sensor 
queries can be an event-based technique. In these instances, 
error rates can be reduced while also reducing the average 50 

computational overhead since ransomware payload execu
tion is a relatively rare event. 

The method can be applicable to both previously known 
as well as zero-day instances of ransomware that employ 
encryption in the payload. The detection method results in 55 

very low, if any, data loss since encryption detection can 
occur very early in the timespan of the malicious encryption 
activity. For example, the data loss may be less than 5%, 1 %, 
or 0.1%. The method is based upon monitoring on-board, 
hardware sensor data streams rather than characteristics of 60 

the targeted data. The new technique may not include 
modification to hosting computer systems because most 
computing devices include pre-existing physical sensors, 
supporting circuitry, and access to the sensor readings. 

FIG. 6 is a flow diagram illustrating an example method 65 

600 of analyzing a partial software program, according to an 
implementation. For clarity of presentation, the description 

A number of embodiments of the invention have been 
described. Nevertheless, it will be understood that various 
modifications may be made without departing from the spirit 
and scope of the invention. Accordingly, other embodiments 
are within the scope of the following claims. 

What is claimed is: 
1. A non-transitory computer readable medium storing 

instructions to cause a processor of a computing device to 
perform operations comprising: 

a) simulating execution of a malware in the computing 
device; 

b) while the simulation of malware is executed by the 
computing device, obtaining sensor data from multiple 
sensors in the computing device, wherein the multiple 
sensors comprise different types of sensors to monitor 
an operating condition of internal hardware compo
nents of the computing device, the multiple sensors 
residing in a side channel separate from the processor 
of the computing device, and the obtained sensor data 
reflective of the operating condition of the internal 
hardware components while the simulation of malware 
is executed by the computing device, wherein the 
obtained sensor data obtained while the simulation of 
malware is executed by the computing device is dif
ferent from sensor data obtained while the computing 
device is not executing the simulation of malware; 

c) training a predictive model to detect malware using the 
obtained sensor data to detect execution of a malware 
target process by the computing device; 

d) after training the predictive model, obtaining sensor 
data from multiple sensors in the computing device 
during a normal operation of the computing device; 

e) analyzing the obtained sensor data retrieved during the 
normal operation based on the predictive model; 

f) determining execution of malware in response to ana
lyzing the obtained sensor data retrieved during the 
normal operation based on the predictive model; and 

g) in response to the determination, terminating the mal
ware. 

2. The non-transitory computer readable medium of claim 
1, wherein the operations do not comprise behavioral analy
sis to determine the execution of malware. 
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3. The non-transitory computer readable medium of claim 
1, wherein the operations do not comprise behavioral analy
sis to determine the execution of the malicious target pro-
cess. 

10 
15. The method of claim 14, wherein the method does not 

comprise conducting behavioral analysis to determine the 
execution of malware. 

16. The method of claim 14, wherein the method does not 
comprise conducting behavioral analysis to determine the 
execution of the malicious target process. 

4. The non-transitory computer readable medium of claim 
1, wherein the malware comprises ransomware, data stealing 
malware, spyware, adware, a trojan, a worm, a rootkit, a 
keylogger, a screen scraper, a bot, or a combination thereof. 

5. The non-transitory computer readable medium of claim 
1, wherein the predictive model comprises a feature vector 
determined using machine learning. 

17. The method of claim 14, wherein the malware com
prises ransomware, data stealing malware, spyware, adware, 
a trojan, a worm, a rootkit, a keylogger, a screen scraper, a 

10 bot, or a combination thereof. 

6. The non-transitory computer readable medium of claim 
5, wherein the feature vector is determined using a single 
machine learning model. 15 

18. The method of claim 14, wherein the predictive model 
comprises a feature vector determined using machine learn
ing. 

19. The method of claim 18, wherein the feature vector is 
determined using a single machine learning model. 7. The non-transitory computer readable medium of claim 

5, wherein the feature vector is determined using a collection 
of machine learning models. 

8. The non-transitory computer readable medium of claim 
1, wherein the multiple sensors comprise a sensor for at least 
one of a main memory power, voltage, current, or tempera
ture. 

20. The method of claim 18, wherein the feature vector is 
determined using a collection of machine learning models. 

21. The method of claim 14, wherein the multiple sensors 
20 comprise a sensor for at least one of a main memory power, 

voltage, current, or temperature. 

9. The non-transitory computer readable medium of claim 
1, wherein the determination comprises a binary prediction. 

10. The non-transitory computer readable medium of 25 

claim 1, wherein the malicious target process comprises a 
file input/output (PO) process. 

22. The method of claim 14, wherein the determination 
comprises a binary prediction. 

23. The method of claim 14, wherein the malicious target 
process comprises a file input/output (I/0) process. 

24. The method of claim 14, wherein the malicious target 
process comprises a network input/output (I/0) process. 

25. The method of claim 14, wherein the malicious target 
process comprises a virtualization process. 

11. The non-transitory computer readable medium of 
claim 1, wherein the malicious target process comprises a 
network input/output (I/0) process. 

12. The non-transitory computer readable medium of 
claim 1, wherein the malicious target process comprises a 
virtualization process. 

30 26. The method of claim 14, wherein the malicious target 

13. The non-transitory computer readable medium of 
claim 1, wherein the malicious target process comprises data 35 

exfiltration. 
14. A method comprising: 
a) simulating execution of a malware in a computing 

device; 
b) while the simulation of malware is executed by the 40 

computing device, obtaining sensor data from multiple 
sensors in the computing device, wherein the multiple 
sensors comprise different types of sensors to monitor 
an operating condition of internal hardware compo
nents of the computing device, the multiple sensors 45 

residing in a side channel separate from the processor 
of the computing device, and the obtained sensor data 
reflective of the operating condition of the internal 
hardware components while the simulation of malware 
is executed by the computing device, wherein the 50 

obtained sensor data obtained while the simulation of 
malware is executed by the computing device is dif
ferent from sensor data obtained while the computing 
device is not executing the simulation of malware; 

c) training a predictive model to detect malware using the 55 

obtained sensor data to detect execution of a malicious 
target process by the computing device; 

d) after training the predictive model, obtaining sensor 
data from multiple sensors in the computing device 
during a normal operation of the computing device; 

e) analyzing the obtained sensor data retrieved during the 
normal operation based on the predictive model; 

60 

f) determining execution of malware in response to ana
lyzing the obtained sensor data retrieved during the 
normal operation based on the predictive model; and 65 

g) in response to the determination, terminating the ma!-
ware. 

process comprises data exfiltration. 
27. An integrated circuit configured to perform operations 

comprising: 
a) simulating execution of a malware in a computing 

device; 
b) while the simulation of malware is executed by the 

computing device, obtaining sensor data from multiple 
sensors in the computing device, wherein the multiple 
sensors comprise different types of sensors to monitor 
an operating condition of internal hardware compo-
nents of the computing device, the multiple sensors 
residing in a side channel separate from the processor 
of the computing device, and the obtained sensor data 
reflective of the operating condition of the internal 
hardware components while the simulation of malware 
is executed by the computing device, wherein the 
obtained sensor data obtained while the simulation of 
malware is executed by the computing device is dif
ferent from sensor data obtained while the computing 
device is not executing the simulation of malware; 

c) training a predictive model to detect malware using the 
obtained sensor data to detect execution of a malware 
target process by the computing device; 

d) after training the predictive model, obtaining sensor 
data from multiple sensors in the computing device 
during a normal operation of the computing device; 

e) analyzing the obtained sensor data retrieved during the 
normal operation based on the predictive model; 

f) determining execution of malware in response to ana
lyzing the obtained sensor data retrieved during the 
normal operation based on the predictive model; and 

g) in response to the determination, terminating the mal
ware. 

28. The integrated circuit of claim 27, wherein the opera
tions do not comprise behavioral analysis to determine the 
execution of malware. 
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29. The integrated circuit of claim 27, wherein the opera
tions do not comprise behavioral analysis to determine the 
execution of the malicious target process. 

30. The integrated circuit of claim 27, wherein the mal
ware comprises ransomware, data stealing malware, spy
ware, adware, a trojan, a worm, a rootkit, a keylogger, a 
screen scraper, a bot, or a combination thereof. 

31. The integrated circuit of claim 27, wherein the pre
dictive model comprises a feature vector determined using 
machine learning. 

32. The integrated circuit of claim 31, wherein the feature 
vector is determined using a single machine learning model. 

33. The integrated circuit of claim 31, wherein the feature 
vector is determined using a collection of machine learning 
models. 

10 

15 

12 
c) training a predictive model to detect malware using the 

obtained sensor data to detect execution of a malware 
target process by the computing device; 

d) after training the predictive model, obtaining sensor 
data from multiple sensors in the computing device 
during a normal operation of the computing device; 

e) analyzing the obtained sensor data retrieved during the 
normal operation based on the predictive model; 

f) determining execution of malware in response to ana
lyzing the obtained sensor data retrieved during the 
normal operation based on the predictive model; and 

g) in response to the determination, terminating the ma!-
ware. 

41. The computing device of claim 40, wherein the 
operations do not comprise behavioral analysis to determine 
the execution of malware. 

34. The integrated circuit of claim 27, wherein the mul
tiple sensors comprise a sensor for at least one of a main 
memory power, voltage, current, or temperature. 

35. The integrated circuit of claim 27, wherein the deter
mination comprises a binary prediction. 

42. The computing device of claim 40, wherein the 
operations do not comprise behavioral analysis to determine 

20 the execution of the malicious target process. 
36. The integrated circuit of claim 27, wherein the mali

cious target process comprises a file input/output (I/O) 
process. 

37. The integrated circuit of claim 27, wherein the mali
cious target process comprises a network input/output (I/O) 25 

process. 
38. The integrated circuit of claim 27, wherein the mali

cious target process comprises a virtualization process. 

43. The computing device of claim 40, wherein the 
malware comprises ransomware, data stealing malware, 
spyware, adware, a trojan, a worm, a rootkit, a keylogger, a 
screen scraper, a bot, or a combination thereof. 

44. The computing device of claim 40, wherein the 
predictive model comprises a feature vector determined 
using machine learning. 

45. The computing device of claim 44, wherein the feature 
vector is determined using a single machine learning model. 39. The integrated circuit of claim 27, wherein the mali

cious target process comprises data exfiltration. 
40. A computing device comprising circuitry configured 

to perform operations comprising: 

30 46. The computing device of claim 44, wherein the feature 

a) simulating execution of a malware in the computing 
device; 

b) while the simulation of malware is executed by the 35 

computing device, obtaining sensor data from multiple 
sensors in the computing device, wherein the multiple 
sensors comprise different types of sensors to monitor 
an operating condition of internal hardware compo
nents of the computing device, the multiple sensors 40 

residing in a side channel separate from the processor 
of the computing device, and the obtained sensor data 
reflective of the operating condition of the internal 
hardware components while the simulation of malware 
is executed by the computing device, wherein the 45 

obtained sensor data obtained while the simulation of 
malware is executed by the computing device is dif
ferent from sensor data obtained while the computing 
device is not executing the simulation of malware; 

vector is determined using a collection of machine learning 
models. 

47. The computing device of claim 40, wherein the 
multiple sensors comprise a sensor for at least one of a main 
memory power, voltage, current, or temperature. 

48. The computing device of claim 40, wherein the 
determination comprises a binary prediction. 

49. The computing device of claim 40, wherein the 
malicious target process comprises a file input/output (I/O) 
process. 

50. The computing device of claim 40, wherein the 
malicious target process comprises a network input/output 
(I/O) process. 

51. The computing device of claim 40, wherein the 
malicious target process comprises a virtualization process. 

52. The computing device of claim 40, wherein the 
malicious target process comprises data exfiltration. 

* * * * * 
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