
US 20140067893A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0067893 A1

Thornton et al. (43) Pub. Date: Mar. 6, 2014

(54) SQUARING CIRCUIT (52) US. Cl.
CPC G06F 7/544 (2013.01)

(76) Inventors: Mitchell A- Thornton, Dallas, TX (US); USPC 708/490
Saurabh Gupta, Dallas, TX (US)

(57) ABSTRACT

Methods, apparatuses, and computer program products for
squaring an operand include identifying a ?xed-point Value

(21) App1.No.: 13/601,709

(22) Filedi Allg- 31, 2012 With a ?xed Word siZe and a substring siZe for substrings of the
?xed-point Value, Wherein the ?xed-point Value comprises a

Publication Classi?cation binary bit string. A square of the ?xed-point Value can be
determined using the ?xed point Value, the substring siZe, and

(51) Int. Cl. least signi?cant bits of the ?X-point Value equal to the sub
G06F 7/544 (2006.01) string siZe.

Egg

Receive input (liperand
And Substring Size m 552

identify input Operand as
504

Binary Digit String, or

Determine Least Signi?cant
Digit Subsiririg, a, or’ 506
Subsiring Size in

\

Decatenate Binary Digit String With
Least Significant iliigit Substring to 508
Form Word, A

Determine Radix, {5, As Two to 519
Power of Substring Size

Determine Residuai ‘Jaiue, r, as 512

3/ (l M I 2

Determine
. r- 2

ii 2

Continue

Patent Application Publication Mar. 6, 2014 Sheet 1 0f 6 US 2014/0067893 A1

HURE 1

DEVECE gang;

SQUARENG 2
EVEQDULE Mil

\v, 110

NETWORK gig

Patent Application Publication Mar. 6, 2014 Sheet 2 0f 6 US 2014/0067893 A1

HGRE 2

input Qperand {a} 2532

Muitipiexer QQQ

Cambinatianai Lagic ggg;

Adder Array 251E

Accumuiatcsr gig

Zm-bit Right Shift Registergjg

()utput {£12} 214

Patent Application Publication Mar. 6, 2014 Sheet 3 0f 6 US 2014/0067893 A1

FEGURE 3A

F‘H’E‘l : 6 (0L bit Eength)
2 2 {substring}

L____Y........_.._..J
1 FL.» .

? bf}

{40 a0 E SQUARiNG ’ MODULE

HGURE 38
nm E 6

m »- 2

Y Y

Al 5!:
¢

SQUARENG MODULE

“m 2 5 FEGURE 3::
m = 2

‘:12 Z72

SQUARING
MGDULE

Patent Application Publication Mar. 6, 2014 Sheet 4 0f 6 US 2014/0067893 A1

FEGUE 4A

‘ SQUARiNG

MGDULE

HGURE ‘ii-B
nrn 6

m r 3

:2 SQUARiNG I
MODULE

Patent Application Publication

Figure 5A

Receive input Onerend
And Subetring Size in

identify input Operand as
Binary Digit String, <1

Determine Least Significant
iiiigit Substring, a, 0i
Substring Size m

Mar. 6, 2014 Sheet 5 0f 6

502

Decatenate Binary iliigii String With
Least Signiiica nt Digit Subsiring to
Form Weird, A

Determine Radix, B, As Two to
Power cii' Substring Size

Determine Residuai Vaiue, r, as
3 any?

Determine Ti?as

A film: 8 2 ("iii in)
Centinue

512

514

US 2014/0067893 A1

52%

Patent Application Publication

Determine T2 as
E 2(A + Jr

Determin? T3 as
‘)

TL

Determine a2 as

Concatenate Resuit with a2

Length of A Greater
Than Summing Size?

iterate Grace Mam
And Terminate

Figure 55

Mar. 6, 2014 Sheet 6 0f 6

516

522

US 2014/0067893 A1

i 530

identity Ward, A, as
Binary Digit String, Ci

Yes
528

US 2014/0067893 A1

SQUARING CIRCUIT

FIELD

[0001] The present disclosure is directed to a squaring tech
nique that can be implemented as a circuit or as a software
algorithm, and more particularly, a squaring technique that
uses an arbitrary radix number system.

BACKGROUND

[0002] Squaring is an arithmetic operation used in many
digital systems. Squaring circuits can be used for digital
signal processing applications, such as image compression,
pattern recognition, and others. Squaring is also used as an
atomic computation for some cryptography algorithms.
Squaring circuit architecture is also commonly incorporated
in graphics processors. Several general purpose multiplier
circuit designs have also been proposed based on squaring of
input operands.

SUMMARY

[0003] Certain aspects of the present disclosure pertain to
methods, circuit elements, and computer program products
for squaring a value. A ?xed-point value With a ?xed Word
siZe and a substring siZe for substrings of the ?xed-point value
can be identi?ed, Wherein the ?xed-point value comprises a
binary bit string. A square of the ?xed-point value can be
determined using the ?xed point value, the sub string siZe, and
least signi?cant bits of the ?x-point value equal to the sub
string siZe.
[0004] In some implementations, a square can be deter
mined by iteratively determining squares of substrings of the
?xed-point value using least signi?cant bits of each operand
equal to the substring siZe and the substring of the ?xed-point
value, Wherein the operand in each iteration comprises a
portion of the previous operand, Wherein the operand is
formed by decatenating the previous operand least signi?cant
bits equal to the substring siZe.
[0005] In some implementations, determining a square of a
?xed point value can include identifying the ?xed-point value
as an operand. A substring of the operand can be determined
as the least signi?cant bits of the operand Where the substring
is of a speci?ed substring siZe. The substring can be decaten
tated from the operand to form a Word. The substring can be
squared using the Word, the substring, and the substring siZe.
The square of the substring can be added to a result. If a length
of the Word is greater than Zero, the Word can be identi?ed as
the operand and the determining, decatenating, squaring, and
adding steps can be executed. If the length of the Word and
substring is Zero, one more iteration is undertaken to account
for non-Zero residual values, and the result is identi?ed as the
square of the ?x-point value.
[0006] In some implementations, the folloWing expansion
can be calculated:

[0007] WhereA is the Word, [3 is the radix, the substring siZe
is log2 [[3], and b is the substring value minus [3/2.
[0008] The details of one or more embodiments of the
disclosure are set forth in the accompanying draWings and the

Mar. 6, 2014

description beloW. Other features, objects, and advantages
Will be apparent from the description and draWings, and from
the claims. For example, hardWare-based squaring circuits,
such as those described here, can accommodate the increas
ing demand for cryptography hardWare support in loW poWer,
high-speed mobile devices.

DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is a schematic diagram of an example land
scape that includes a device With a squaring circuit in com
munication With a netWork.

[0010] FIG. 2 is a schematic block diagram of an example
squaring circuit in accordance With the present disclosure.
[0011] FIGS. 3A-3C are example diagrams of a squaring
circuit operating on a six bit string using a tWo bit substring.
[0012] FIGS. 4A-4B are example diagrams of a squaring
circuit operating on a six bit string using a three bit substring.
[0013] FIG. 5A is an example ofa portion ofa process How
diagram for squaring an input value in accordance With the
present disclosure.
[0014] FIG. 5B is an example of another portion of the
process How diagram for squaring an input value in accor
dance With the present disclosure.

DETAILED DESCRIPTION

[0015] The present disclosure describes an iterative squar
ing technique that produces a 2nm-bit length result, (x2, based
on an input operand (often referred to as a squarand) or of
nm-bits in length. The circuit produces 2m bits of the output
0&2 during each iterative step. By considering an m-bit group
ing Within the squarand 0t as representing a single radix-2'"
digit, the circuit can be considered a digit-serial implementa
tion that produces tWo m-bit digits per iteration.
[0016] This digit-serial architecture may alloW for a
tradeoff betWeen bit-serial and parallel architectures by
alloWing for the digit to be represented by m bits. Because 2m
bits of the result are computed in each iterative step, varying
m can yield more or less parallelism While inversely affecting
required circuit area. Thus, a minimal or otherWise reduced
area circuit can be realiZed When m is small (bit-serial for the
case mIl) and a large parallel circuit results at the other
extreme When m is set to the WordsiZe of the squarand.
Designers may be able to choose an appropriate value of m
such that performance requirements are met While minimiZ
ing or otherWise reducing the amount of circuitry required.
[0017] Arithmetically, the technique assumes the squarand
is represented as a higher-radix digit string Where each digit is
represented by an m-bit substring. Furthermore, the tech
nique may yield tWo digits of output squared value during
each iterative step; hence, a total of 2m bits of the squared
result are computed at each iterative step.
[0018] FIG. 1 is a schematic diagram of an example land
scape 100 that includes a device 102 having a squaring mod
ule 106 in accordance With the present disclosure in commu
nication With a netWork 104. The device 102 may be any type
of computing device, such as a personal computer, a touch
screen terminal, a Workstation, a netWork computer, kiosks,
Wireless data ports, Wireless or Wireline phones, smart
phones, personal data assistants (PDAs), one or more proces
sors Within these or other devices, or any other suitable pro
cessing device, to execute operations associated With
squaring algorithms. For example, device 102 may be a PDA
operable to Wirelessly connect With a netWork 104. In another

US 2014/0067893 A1

example, client 102 may be a laptop or tablet computer that
includes an input device, such as a keypad, touch screen,
mouse, or other device that can accept information, and an
output device that conveys information, including digital
data, visual information, or graphical user interface. Device
102 may also be a server that can execute operations using
input data received from other devices and can send results of
operations to other devices across netWork 104.

[0019] The device 102 includes a squaring module 106.
The squaring module 106 (described in more detail in FIG. 2)
receives as an input a squarand 0t 108 and a value In 110 that
indicates the substring bit length for the squaring operation.
The squaring module 106 outputs a result 0&2 112. The
squarand 108 and the substring bit length 110 may be
received locally through an input device of device 1 02, or may
be received from a device across netWork 104. The result 112
may be displayed to a user of device 102 on a local display or
graphical user interface. In some implementations, the result
112 can be transmitted to another device across netWork 104.

[0020] Network 104 facilitates Wireless or Wireline com
munication betWeen device 102 and other devices. Network
104 may be all or a portion of an enterprise or secured net
Work. In another example, netWork 104 may be a VPN
betWeen device 102 and other devices across a Wireline or
Wireless link. Such an example Wireless link may be via
802.1la, 802.1lb, 802.11g, 802.1ln, 802.20, WiMax, and
many others. The Wireless link may also be via cellular tech
nologies such as 3GPP GSM, UMTS, LTE, etc. While illus
trated as a single or continuous netWork, netWork 104 may be
logically divided into various sub-nets or virtual netWorks
Without departing from the scope of this disclosure, so long as
at least portion of netWork 104 may facilitate communica
tions betWeen senders and recipients of requests and results.
In other Words, netWork 104 encompasses any internal and/or
external netWork, netWorks, sub-netWork, or combination
thereof operable to facilitate communications betWeen vari
ous computing components in system 100. NetWork 104 may
communicate, for example, Internet Protocol (IP) packets,
Frame Relay frames, Asynchronous Transfer Mode (ATM)
cells, voice, video, data, and other suitable information
betWeen netWork addresses. NetWork 104 may include one or
more local area netWorks (LANs), radio access netWorks
(RANs), metropolitan area netWorks (MANs), Wide area net
Works (WANs), all or a portion of the global computer net
Work knoWn as the Internet, and/ or any other communication
system or systems at one or more locations.

[0021] The folloWing notation may be used in the descrip
tion of the digit-serial ?xed-point squaring algorithm:
[0022] [3 represents the radix or base of a number system. [3
may be in the set of natural numbers, [3EN.
[0023] The ‘radix polynomial’ form of a value a is Written
as an n-term polynomial of the form:

[0024] A value 0t can also be represented in the radix-[3
number system in the form of a positional string of n charac
ters denoted by 0t:[an_l an_2 . . . a2 a1 a0]. For clarity, the
character strings denoting the positional digit representations
of a value 0t may be enclosed by square brackets. The digits al
are the coef?cients of the radix-polynomial form and their
position Within

[0025]
radix [3.

the string inherently denotes the exponent of the

Mar. 6, 2014

[0026] Each character al- in a positional string representing
a value is referred to as a “digit” regardless of the radix of the
number system. Binary digits may alternatively be referred to
as “bits.”

[0027] Digits are restricted to the natural numbers When
[3510, and are members of the set:

[0028] For the case Where [3>l0, alternative single charac
ters are used to represent a digit such as the characters “A”
through “E” for the case of [3:16.
[0029] Where necessary for clarity, digit strings are sub
scripted by the radix [3 of the particular number system being
used, 0t:[an_l an_2 . . . a2a1aO]B.
[0030] LSD(0t,k) and MSD(0t,k) are operators that yield k
least signi?cant or most signi?cant digits, respectively, in the
digit string representing a value 0t. LSD(0t,l) represents the
least signi?cant digit of 0t, LSD(0t,l):aO. LikeWise the most
signi?cant digit is given as MSD(0t,l):an_ 1.
[0031] {A,B,C} denotes concatenation of the content of
registers A, B, and C Which can be of any siZe and Whose
individual siZes may differ.
[0032] SHL(A,k,B) denotes the operation of shifting the
content of registerA to the left by k bits and setting the least
signi?cant k bits to the content of register B. A can be of any
siZe greater than or equal to the siZe of B and B must be of siZe
k.
[0033] SHR(A,k,B) denotes the operation of shifting the
content of registerA to the right by k bits and setting the most
signi?cant k bits of A to the content of register B. A can be of
any siZe greater than or equal to the siZe of B and B must be
of siZe k.
[0034] AeB denotes the operation of setting the content of
registerA With that of register B. A and B can be the same siZe
in some implementations.
[0035] The radix-[3 value A is de?ned as A:ot—ao.
Expressed as a positional n-digit string:

[0036] Thus, A can be formed by replacing LSD(0t,l):aO
With the Zero digit [0]l3 or as:

[0037] The present disclosure describes a circuit and algo
rithm such that the choice of radix [3 alloWs for a trade-off in
logic circuit area versus throughput performance in the com
putation of 0&2 When 0t is represented as a binary bit string.
Higher values of [3 alloW more bits to be produced per iterative
step in the resulting representation of (x2. A tradeoff occurs in
that the amount of computation or logic required at each
iterative step increases for higher radix values.
[0038] In the basis of the algorithm as stated here, it is
assumed that the squarand is of the form of a binary bit string.
Intermediate computations can be e?iciently implemented
When the radix [3 is in the form [3:2'" Where m is a positive
integer mz2. E?iciency results since [3:2’" alloWs each higher
radix digit in the string representing 0t to be equivalent to an
m-bit substring Within 0t. 0t, in terms of a higher-radix digit
string, is simply the concatenation of the disjoint m-bit sub
strings of 0t in binary form Where LSD(0t,l) is the least
signi?cant m bits, the subsequent next signi?cant higher
radix digit is represented by the next group of m bits to the left
of LSD(0t,l), and so on.
[0039] For convenience in specifying the basis of the algo
rithm, Equation (1) can be Written With the restriction that

US 2014/0067893 A1

[3:2'" and some of the individual terms on the right-hand side
of the equation can be denoted as T1, T2, and T3. 0&2 can be
Written as:

[0040]
follows:

The terms T1, T2, and T3 are explicitly de?ned as

her/o1
B .

T2 = 2(A + 5)b,
T2 = b2

[0041] The idea behind the algorithm may be to compute
terms T1, T2 and T3 during each iterative step and accumulate
them With the previous result. Subsequent iterations use A/ [3
from the (A/[3)2 term in Equation (1) as a squarand. The
subsequent operandA/ [3 for each iterative step is a digit string
containing one less digit than the squarand in the previous
step indicating that the iterative algorithm requires O(n/m)
iterations to complete. The 22'" shifting factor of the ?rst term
in Equation (1) illustrates the fact that tWo digits (2m length
bitstrings) are produced at each step and they represent digits
in (x2 that are produced in the order of the lesser signi?cant
digits ?rst.
[0042] Several observations may be used to more e?i
ciently implement the computation of the three terms T1, T2,
and T3 in the squaring algorithm. First, the term A/ [3 may be
e?iciently obtained by shifting the digit string representing 0t
one position to the right and discarding a0,
[0043] A/[3:[an_l an_2 . . . a2 al]|5. Second, values that are
multiplied by a factor of [3:2k'" may be easily obtained by
shifting the value to left by km bit positions and inserting a
radix-[3 Zero digit place holder [0]l3 for the vacated least
signi?cant digits. Third, the term [3/2 is alWays of the form of
a

[0044] single radix-[3 digit. Expressed as an m-bit binary
string [3/2:[l0 . . . 0]2. Finally, the term ([3/2)2 is alWays of the
form of tWo radix-[3 digits With the most signi?cant digit of
value [3/ 4 and the least signi?cant digit of value Zero. Hence,
expressed as a 2m-bit binary string, ([3/2)2:[0l0 . . . 0]2.

[0045] Term Tl can be computed in a single operation.
Making use of the ?rst and second observations, the value
(A/[3)22'" is obtained by forming the digit string [an_l an_2 . .
. a2 al00]|5. Furthermore, based on the fourth observation,
T3:([3/2)2 can alWays be expressed as tWo radix-2'" digits (2m
bits) denoted as [q1qO]|5. Thus, T1 is obtained by forming the
string

[0046] [an_l an_2 . . .a2 a1 ql qO]B. From the fourth obser

0]B. Thus, the digit string representation for T1 is [an_l
an_2 . . . a2 a1([3/4)0]B.

[0047] Term T2 is computed by ?rst forming a digit string
representing 2(A+[3/2) and then multiplying this string With
the single radix-[3 digit b. Relying on the ?rst, second, and

Mar. 6, 2014

third observations, A:an_l an_2 . . . a2 a1 0]|5and [3/2 may be
represented as a single unsigned radix-2'" digit (m-bit string).
Therefore, (A+[3/2):[an_l an_2 . . . a2 a1 [3/2]. To account for
the multiplicative factor of 2, the (A+[3/2):[an_l an_2 . . . a2
a l([3/ 2)]l5 digit string is then shifted by one bit position to the
left resulting in 2(A+ [3/ 2). The multiplicative factor 2 Would
in general be implemented through the use of an addition
operation, 2(A+[3/2):(A+[3/2)+(A+[3/2), When a higher-val
ued radix [3 is used that is not an integral poWer of tWo since
this can be considered a “fractional digit shift,” if [3#’".
[0048] The ?nal step in the formation of term T2 involves
the multiplication of
[0049] 2(A+[3/2):[an_l an_2 . . . a2 a1([3/2)]l5 by the signed
single radix-2'" digit of b:ao—[32. Because b is a single digit
value, this multiplication may be accomplished With a mini
mal or reduced amount of computation or circuitry as com
pared to a general purpose multiply operation or circuit.
Clearly, as the value m is increased resulting in a higher
valued radix, 2'", both computational complexity and overall
algorithm throughput may increase. The actual implementa
tion of the multiplication by b may be dependent upon the
value m and may be carefully considered for a given realiZa
tion of the algorithm. Relatively small values of m generally
alloW for a simple logic circuit or lookup table to be used.
[0050] Term T3:b2 on relies the computation of the square
of the residual value b. The implementation of this computa
tion may also be dependent upon the siZe of m, Which dictates
the number of bits required to represent a radix-2'" digit. For
smaller values of m, the direct calculation of b2 can be very
e?iciently implemented as a small combinational logic cir
cuit or through a lookup table. As m increases, the computa
tion of b2 becomes more complex and other methods may be
employed.
[0051] For large values of m, the computation of T3b2 can
be accomplished in parallel With the computation of the other
tWo terms T1 and T2 since accumulation of T1+T2+T3 With
overall result can occur at the end of each iterative step.

[0052] After terms T1, T2, and T3 are formulated, they are
summed together and accumulated With the previous result.
The accumulation takes into account the process of multiply
ing sub sequent iterative operands by 22'" and the fact that tWo
independent radix-[3 digits (or, 2m bits) of the ?nal result are
produced at each iterative step. This can be implemented in a
variety of Ways, including using registers. The siZe of the
register may be 2nm bits Where n is the number of radix-[3
digits representing 0t and m denotes the radix. The ?nal opera
tion of each iterative step of the algorithm is to shift the result
register 2m bits to the right and insert the 2m least signi?cant
bits of T1+T2+T3 into the most signi?cant positions of the
shifted result register. Insertion of the tWo radix-2'" digits in
the most signi?cant portion of the result register instead of
performing a multi-bit left shift before adding them to the
previously accumulated result alloWs the algorithm to be
implemented Without the need for a inclusion of a multi-bit
left shift operation or the use of a barrel shifting circuit in a
hardWare realiZation.
[0053] The algorithm uses an iteration index i to determine
if all digits of the squarand have been produced. For an n-di git
radix-0t squarand, the squared result consists of 2n digits.
Because tWo digits are produced per iterative step, the index
i ranges from Zero to (n/2)—l. Initially, When iIO, 0t is the
original squarand. During intermediate computations, When
0<i<n/2, the algorithm iterates and sets the intermediate
squarand (FA/ [3. In the ?nal iterative step, the squarand argu

US 2014/0067893 A1

ment becomes (F0; however, this step is performed to
account for circumstances When the residual b is not Zero
valued.
[0054] Any given implementation of the algorithm should
include careful consideration of the manner in Which the
signed digit b is represented. When explicitly represented
using a radix-complement or a signed-magnitude form, m+l
bits are required to account for the sign. Furthermore,
depending upon the de?nition of the residual, b can take on
integer values in either of the ranges [—([3/2),([3/2—l)] (as is
the case in this formulation) or [—([3/2)+l,([3/2)]. HoWever,
because there is a one-to-one relationship betWeen the a0 and
b values (since b:ao—[3/ 2), the m-bit string representing aO can
be used as an encoding for the corresponding b value.
[0055] The algorithm formulated in the previous section
makes use of several registers. For succinctness, the registers
used Within the algorithm statement are de?ned in Table 1,
shown beloW:

TABLE 1

Registers Used in Squaring Algorithm

name size (bits) content

AB (11 — l)m N5

i lo g2 (n/m) iteration matrix
B m residual b encoded as

LSD(ot, 1)
ACC 2nm Tl + T2 + T3

B2 In /2

B4 2H1 ([5/2)2 = 052/4) = [05/0016

[0056] A statement of the algorithm is given beloW. Inter
mediate locations Within the algorithm are denoted by labels
in the form “STEP k.” The labels are included for convenience
in referring to certain portions of the algorithm and they also
indicate clock boundaries in that the results of
[0057] STEP k-l are registered before computation occurs
in STEP k. As an example, the T2+{AB,B2} operation of
STEP 3 must complete before the T2+SHL(T2,1,[0]2)
operation of STEP 4 can proceed. Breaking up the computa
tion of term T2 into multiple intermediate registered opera
tions is an example of pipelining the datapath and alloWs for
the overall circuit clock speed to be increased. The steps are
described beloW:

INPUT:
0t: nm-bit ?xed-point squarand
m: log2([5)—bit value, indicates Working radix 2'"

OUTPUT:
0L2: 2nm-bit value in register R
STEP 1:

i<—0 /* iteration index */
R<—0 /* initialize result register */
B2<—[l0...0]2 /* m-bits With MSB=1 */
B4<—[0l0...0]2 /* 2m-bits With MSBs=0l */
AB<—OL /* squarand value */

/* MS squarand digits */

/* form T1, In LSbs=0 */
/* form A+[5/2 */

Mar. 6, 2014

-continued

T3<—b><b /* compute single digit square,
uses a0 in B */

STEP 4:

T2<—SHL(T2,l,[0]2) /* form 2(A+[5/2) */
ACC<—T1+T3 /* form Tl+T3 */

STEP 5:

T2<—T2><b /* form 2(A+[5/2)b, uses aO in B */

STEP 6:

ACC<—ACC+T2 /* form Tl+T2+T3 */
STEP 7:

R<—SHR(R,2m,LSD(ACC,2)) /* update result */
i<—i+l /* increment iteration counter */

STEP 8:

if (i=n/m) /* check iteration count */
HALT /* computation complete */

else

GO TO STEP 2

[0058] The example algorithm shoWn above can undergo
n/m iterations producing 2m bits of 0&2 during each iterative
step. Therefore, the algorithm has temporal complexity
equivalent to O(n/m). In terms of required computational
resources, the algorithm requires circuitry to perform shift
ing, bit-string concatenation, 2nm-bit operand addition,
m><2nm-bit multiplication, and m-bit operand squaring.
While 2nm-bit operand addition operations are required in
STEPs 4 and 6, it is noted that a single 2nm-bit addition circuit
can be used since these sums may be formed sequentially
alloWing for reuse of the single 2nm-bit adder. The multipli
cation and single-digit squaring operations can be imple
mented in a variety of forms although it is noted that due to the
relatively small siZe of the operands (m bits) very compact
and fast circuits such as lookup tables are a practical choice.

[0059] FIG. 2 is a schematic block diagram of an example
squaring module 106 in accordance With the present disclo
sure. Squaring module 106 can be a hardWare circuit com

posed of analog and digital circuitry. Digital circuitry
includes transistor-based logic circuits and components. In
some implementations, squaring module 106 can be imple
mented as a softWare algorithm. Squaring module 106 can
receive as an input the operand 0t 202, Which is a value to be
squared (squarand). In this example circuit, a synchronous
digital logic circuit uses a quaternary radix, [3:22:4. The
operand 202 is received by a multiplexer circuit 204. The
computation T3eb><b in STEP 3 above uses a multiplexer
based lookup structure. A 4:1 multiplexer With 2m-bit data
paths and an m-bit control signal chooses among the appro
priate squared values of b. The squared values b2 that drive the
multiplexer data inputs are pre-computed before implemen
tation of the circuitry and are either hardWired or stored in
registers. Alternatively, a small nonvolatile memory such as a
ROM or ?ash circuit, or a volatile memory such as SRAM or

DRAM, could be used With the B register contents driving the
address lines and all possible b2 values stored in the memory.
Register B drives the control lines of the multiplexer and
represents the residual value b. It is noted that B actually
contains the least signi?cant digit at as an encoded value for
b since b:al.—[3/ 2. To clarify this encoding, Table 2 contains all
values of b and the corresponding al- that serves as the m-bit
encoded representation of b for the radix-4 quaternary case.

US 2014/0067893 A1

TABLE 2

Encoded Values of b for Radix-4 Number System

i Encoded b in Register B

[0060] The computation of T2+T2><b in STEP 5 of the
algorithm is accomplished by using a 4:1 multiplexer as a
simple lookup structure With data paths of size 2mm and an
m-bit control signal driven by the content of register B. The
idea behind this circuit is similar to that of the T3eb><b
computation in STEP 3 With the important difference that the
possible T2><b values are computed during each iterative step
rather than being precomputed and stored before circuit
operation. Fortunately, these values are easily and ef?ciently
computed since, for the quaternary implementation, they con
sist of the value 2(A+[3/2) multiplied by only one of

[0061] bE{-2,—l,0,l Thus, a negated version of 2(A+[3/
2):— [2 (A+[3/ 2)] and a single-bit left-shifted shifted version of
—[2(A+ [3/2)] are used as Well as 2(A+ [3/2) and [0 . . .0] to drive
the data inputs of the multiplexer. FIG. 4 contains a diagram
of this subcircuit.

[0062] The output of the multiplexer 204 is received by
Combinational logic 206. Combinational logic 206 includes
several outputs: one output is coupled to the input of the
multiplexer 204. The other outputs of Combinational logic
206 are coupled to an adder array 208. Each of the multiplexer
204, the Combinational logic 206, and the adder array 208 also
include as inputs control signals from a clocked synchronous
controller (not shoWn).
[0063] The Combinational logic 206 may be implemented
based on simpli?cations in the formation of the intermediate
terms T1, T2, and T3, and their various sums. These simpli?
cations exploit the choice of using [3:4 as an implicit operand
radix and alloW for the computation of the intermediate terms
T1, T2, and T3 to be implemented With a reduced and simpli
?ed set of register transfer level (RTL) operations.

[0064] A single quaternary digit [ak]4 can, in general, be
Written as a tWo-bit binary string [b2k+lb2k]2 Where {bl-E181 }
and 1B» :{0,l Using this de?nition, various intermediate
terms and their sums can be evaluated for different cases of
the least signi?cant digit of the squarand, aOE{0,l,2,3}. Term
T 1 is independent of the value of a0 and is alWays a bit string
of length 2n+2 expressed as:

[0065] Case 1: aO:[0]4 resulting in the residual b:[—2]4,
thus T3:b2:[l0]4:[0l00]2. Term T2 can

Mar. 6, 2014

[0066] Combining the terms:

lanilani2 1121111014 —
T1 + T2 + T3 :

[116141116142 ‘121112014 + —l10l4

= [0 0]4

= [00 00]2

[0067] Case 2: ao:[l]4 resulting in the residual b:[—l]4,
thus T3:b2:[0l]4:[000l]2. Term T2 can be expressed as:

[0068] Combining the terms:

lb2nilb2ni2 bsbzoloolz —
T1 + T2 + T3 =

[obzmlbzm2 b3b2lOO]2 + [0001]2

=[0b2,,,1b2,,,2 b3b2OO1]2

[0069] Case 3: ao:[2]4 resulting in the residual b:[0]4, thus
T3:b2:[00]4:[0000]2. Term T2 can be expressed as:

= [00. . .00]2

[0070] Combining the terms:

[0071] Case 4: ao:[3]4 resulting in the residual b:[l]4, thus
T3:b2:[0l]4:[000l]2. Term T2 can be expressed as:

[0072] For this case, the sum T2+T3 can be formed directly
and it is subsequently combined With term T 1 using the addi
tion circuit. T2+T3 is formed as:

US 2014/0067893 A1

[0073] Table 3 below contains a summary of the results of
the intermediate terms and their various sums in terms of
values of the least signi?cant digit of the operand at each
iterative step.

TABLE 3

Radix-4 Optimi ations

LS Intermediate
D(0t4, 1) Term Value

0 T1 + T2 + T3 [0...0]2
1 T1 + T2 + T3 [Obblil bbk2 . . .b3 b2

001]2
2 T1+ T2 + T3 [b2,,,1b2,,,2. . .b3 b2

0100]2
3 T1 [bail b2ni2 - - - b3 b2

0100]2
3 T2 + T3 [0b2,,,1b2,,,2. . .b3 b2

101]2

[0074] The combinational logic 206 makes use of the
results in Table 3 and outputs the tWo 2n+2 bit values that are
summed in the adder array 208 resulting in T1+T2+T3 (i.e.,
the combinational logic includes tWo outputs: one for each
input ofthe adder array). For the cases aOE{0, l ,2}, T1+T2+T3
is formed directly in the combinational logic 206 and is input
to the adder array 208 on the leftmost input bus With the
right-most input set to the 2n+2 bit string [00 . . . 00]2. The
adder array 208 is used for the case of ao:3, Where the left
most input is the bit string [b2n_ l b2n_2 . . .b3 b20100]2 and the
right-most input is [0b2n_l b2n_2 . . .b3 b2l0l]2.
[0075] Accumulator 210 consists of an internal accumula
tor register, an internal adder circuit, and a feedback loop that
alloWs for the internal adder output to be stored in the internal
accumulator register. Accumulator 210 can receive the output
of the adder array 208 Where it is added to the previously
stored value in the accumulator register and then stored back
into the accumulator register. A right shift register 212 can
receive the output of the accumulator. The siZe of the register
212 may be 2nm bits Where n is the number of radix-[3 digits
representing 0t and m denotes the radix. The ?nal operation of
each iterative step of the algorithm is to shift the result register
2m bits to the right and insert the 2m least signi?cant bits of
T1+T2+T3 into the most signi?cant positions of the shifted
result register. Insertion of the tWo radix-2'" digits in the most
signi?cant portion of the result register instead of performing
a multi-bit left shift before adding them to the previously
accumulated result alloWs the algorithm to be implemented
Without the need for a inclusion of a multi-bit left shift opera
tion or the use of a barrel shifting circuit in a hardWare
realiZation. After the iterative steps are completed, the square
0&2 214 can be output.

[0076] FIGS. 3A-3C are example diagrams of a squaring
circuit operating on a six bit string using a tWo bit substring
corresponding to a chosen substring length of m:2 ([3:22:4).
FIGS. 3A-3C shoW three iterations used for calculating a
value (x2, Where 0t has a bit length nm:6 and a substring
length m:2. In FIG. 3A, the right-most input bits are repre
sented as a0 and the remaining bits as A0. The least most

Mar. 6, 2014

signi?cant bits aO include 2 bits (m:2). Because the bit length
of 0t is 6, this calculation requires 0(3) iterations since 2><3:6.
The bits aO are received into the squaring module, and output
as bO that includes 4 bits (2mbits) and representing tWo output
digits (shoWn on the right side of the squaring module). In
FIG. 3B, the remaining 4 bits of 0t are then considered. The
least most signi?cant bits are represented as a 1 having 2 bits
(m:2), and the remaining 2 bits of 0t are represented as A1.
The value a 1 is received by the squaring module, and the
output b 1 includes 4 bits (2m bits) representing tWo digits of
the output value (x2. Finally, in FIG. 3C, the remaining bits of
0t are represented as a2 (Which are the most signi?cant bits of
the original string). The value a2 (having 2 bits) is received by
the squaring module, and output as b2, Which also includes 4
bits (2m bits) representing the tWo most signi?cant bits of the
resultant string (x2.

[0077] FIG. 4A-4B are example diagrams of a squaring
circuit operating on a six bit string using a three bit substring
corresponding to a chosen substring length of m:3 ([3:23:8).
FIGS. 4A-4B shoW tWo iterations used for calculating a value
(x2, Where 0t has a bit length nm:6 and a substring length m:3
since [3 is chosen to be 23. In FIG. 4A, the least signi?cant
input bits are represented as a0 and the remaining bits as A0.
The least signi?cant bits aO include 3 bits (m:3). Because the
bit length of 0t is 6, this calculation requires O(2) iterations
since 3><2:6. The bits aO are received into the squaring mod
ule, and output as cO including 6 bits (2m bits) representing
tWo digits of 0&2 (shown on the right side of the squaring
module). In FIG. 4B, the remaining 3 bits of 0t are then
considered. The most signi?cant bits are represented as al
comprised of 3 bits (m:3). Again, the value a 1 is received by
the squaring module, and the output c 1 includes 6 bits (2m
bits) representing tWo digits of the output value (x2.

[0078] FIG. 5A is an example ofa portion ofa process How
diagram 500 for squaring an input value in accordance With
the present disclosure. The example process How described
here is applicable for m:2. An input operand 0t and a sub
string size m are received (502). The input operand may be
identi?ed as a binary digit string, 0t (504). The least signi?
cant digit (LSD) substring, a, of the substring size m can be
determined (506). The LSD substring can be decatenated
from binary digit string to form a Word, A (508). A radix [3 is
determined as 2'" (510). A residual value, b, is determined, as
b:0t—[3/2 (512 (512). T1 is determined as

[0079] FIG. 5B is an example of another portion of the
process How diagram 550 for squaring an input value in
accordance With the present disclosure. Continuing from step
514, T2 is determined as 2(A+[3/2)b (516). T3 is determined as
b2 (518). The value (x2 can be determined as (A/[3)2 22’"+Tl+
T2+T3 (520). The resulting value (x2 can be concatenated With
previous results, if any, as the most signi?cant digit having bit
length 2m (522). A determination may be made as to Whether
the length of A is greater than the substring size In (524). If A
is less than or equal to m, then the process can iterate one
additional time to account for a non-Zero residual value and
then terminates (526). If the siZe of A is greater than m, then
A can be identi?ed as a WordA and as the binary digit string,
0t (528). Then, the process folloWs back to point (X) 530,
Which connects prior to point 506 of FIG. 5A. The process
then continues until it terminates based on the condition at
point 524.

US 2014/0067893 A1

[0080] A number of implementations have been described.
Nevertheless, it Will be understood that various modi?cations
may be made including portions or the entirety of the imple
mentation in software form. Accordingly, other implementa
tions are Within the scope of the following claims.

1. A method for squaring a value, comprising;
identifying a ?xed-point value With a ?xed Word siZe and a

substring siZe for substrings of the ?xed-point value,
Wherein the ?xed-point value comprises a binary bit
siring; and

determining a square of the ?xed-point value using the
?xed point value, the substring siZe, and least signi?cant
bits of the ?x-point value equal to the substring siZe.

2. The method of claim 1, Wherein determining the square
comprises:

iteratively determining squares of substrings of the ?xed
point value using least signi?cant oils of each operand
equal to the substring siZe and the substring of the ?xed
point value, Wherein the operand in each iteration com
prises a portion of the previous operand, Wherein the
operand is formed by decatenating the previous operand
least signi?cant bits equal to the substring siZe.

3. The method of claim 1, Wherein determining the square
includes:

identifying the ?xed-point valise as an operand;
determining a substring of the operand as least signi?cant

bits of the operand Where the sub-string is of a speci?ed
substring siZe;

decatenating the substring from the operand to form a
Word;

squaring the substring using the Word, the substring, and
the substring siZe;

add the square of the substring to a result;
if a length of the Word is greater than Zero, identifying the
Word as the operand and executing the determining,
decatenating, squaring, and adding steps; and

if the length of the Word and sub string is Zero iterating once
more to account for non-Zero residual values, and iden
tifying the result as the square of the ?x-point value.

4. (canceled)
5. An apparatus comprising:
one or more hardWare circuit elements, the hardWare cir

cuit, elements con?gured to:
identify a ?xed-point value With a ?xed, Word siZe and a

substring siZe for substrings of the ?xed-point value,
Wherein the ?xed-point value comprises a binary bit
string; and

determine a square of the ?xed-point value using the
?xed point value, the substring siZe, and least signi?
cant bits of the ?x-point value equal to the substring
siZe.

6. The apparatus of claim 5, Wherein the circuit elements
are con?gured to determine the square by iteratively deter
mining squares of substrings of the ?xed-point value using
least signi?cant bits of each operand equal to the substring
siZe and the substring of the ?xed-point value, Wherein the
operand in each iteration comprises a portion of the previous
operand, Wherein the operand is formed by decatenating the
previous operand least signi?cant bits equal to the substring
siZe.

7. The apparatus of claim 5, Wherein the circuit dements are
further con?gured to determine the square by:

Mar. 6, 2014

identifying the ?xed-point value as an operand;
determining a substring of the operand as least signi?cant

bits of the operand Where the substring is of a speci?ed
substring siZe;

determining the sub string from the operand to form a Word;
squaring the substring using the Word, the substring, and

the substring siZe;
add the square of the substring to a result;
if a length of the Word is greater than Zero, identifying the
Word as the operand and executing the determining,
decatenating, squaring, and adding steps: and

if the length of the Word and sub string is Zero iterating once
more to account for non-Zero residual values, and iden
tifying the result as the square of the ?x-point value.

8. (canceled)
9. A computer program product stored on a tangible, non

transitory storage medium comprising instructions for squar
ing a value operable When executed to perform operation, the
operations comprising:

identifying a ?xed-point value With a ?xed Word siZe and a
substring siZe for substrings of the ?xed-point value,
Wherein the ?xed-point value comprises a binary bit
string; and

determining a square of the ?xed-point value using the
?xed point value, the substring siZe, and least signi?cant
bits of the ?x-point value equal to the substring siZe.

10. The computer program product of claim 9, Wherein
determining the square comprises:

iteratively determining squares of substrings of the ?xed
point value using least signi?cant bits of each operand
equal to the substring siZe and the substring of the ?xed
point value, Wherein the operand in each iteration com
prises a portion of the previous operand, Wherein the
operand is formed by decatenating the previous operand
least signi?cant bits equal to the substring siZe.

11. The computer program product of claim 9, Wherein
determining the square includes;

identifying the ?xed-point value as an operand;
determining a substring of the operand as least signi?cant

bits of the operand Where the substring is of a speci?ed
substring siZe;

decatenating the substring from the operand to form a
Word;

squaring the substring using the Word, the substring, and
the substring siZe;

add the square of the substring to a result;
if a length, of the Word is greater than Zero, identifying the
Word as the operand and executing the determining,
decatenating, squaring, and adding steps; and

if the length of the Word and sub string is Zero iterating once
more to account for non-Zero residual values, and iden
tifying the result as the square of the ?x-point value.

12. (canceled)
13. The method of claim 3, Wherein squaring the substring

comprises calculating the folloWing;

WhereA is the Word, [3 is the radix, the substring siZe is log2
[[3], and b is the substring value minus [3/2.

US 2014/0067893 A1

14. The apparatus of claim 7, wherein squaring the sub
string comprises calculating the following:

Where A is the Word, [3is the radix, the substring siZe is log2
[[3], and b is the substring Value minus [3/2.

15. The computer program product of claim 11, Wherein
squaring the substring comprises calculating the folloWing:

Where A is the Word, [3 is the radix, the substring siZe is log2
[[3], and b is the substring Value minus [3/2.

* * * * *

Mar. 6, 2014

