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SQUARING CIRCUIT 

FIELD 

[0001] The present disclosure is directed to a squaring tech 
nique that can be implemented as a circuit or as a software 
algorithm, and more particularly, a squaring technique that 
uses an arbitrary radix number system. 

BACKGROUND 

[0002] Squaring is an arithmetic operation used in many 
digital systems. Squaring circuits can be used for digital 
signal processing applications, such as image compression, 
pattern recognition, and others. Squaring is also used as an 
atomic computation for some cryptography algorithms. 
Squaring circuit architecture is also commonly incorporated 
in graphics processors. Several general purpose multiplier 
circuit designs have also been proposed based on squaring of 
input operands. 

SUMMARY 

[0003] Certain aspects of the present disclosure pertain to 
methods, circuit elements, and computer program products 
for squaring a value. A ?xed-point value With a ?xed Word 
siZe and a substring siZe for substrings of the ?xed-point value 
can be identi?ed, Wherein the ?xed-point value comprises a 
binary bit string. A square of the ?xed-point value can be 
determined using the ?xed point value, the sub string siZe, and 
least signi?cant bits of the ?x-point value equal to the sub 
string siZe. 
[0004] In some implementations, a square can be deter 
mined by iteratively determining squares of substrings of the 
?xed-point value using least signi?cant bits of each operand 
equal to the substring siZe and the substring of the ?xed-point 
value, Wherein the operand in each iteration comprises a 
portion of the previous operand, Wherein the operand is 
formed by decatenating the previous operand least signi?cant 
bits equal to the substring siZe. 
[0005] In some implementations, determining a square of a 
?xed point value can include identifying the ?xed-point value 
as an operand. A substring of the operand can be determined 
as the least signi?cant bits of the operand Where the substring 
is of a speci?ed substring siZe. The substring can be decaten 
tated from the operand to form a Word. The substring can be 
squared using the Word, the substring, and the substring siZe. 
The square of the substring can be added to a result. If a length 
of the Word is greater than Zero, the Word can be identi?ed as 
the operand and the determining, decatenating, squaring, and 
adding steps can be executed. If the length of the Word and 
substring is Zero, one more iteration is undertaken to account 
for non-Zero residual values, and the result is identi?ed as the 
square of the ?x-point value. 
[0006] In some implementations, the folloWing expansion 
can be calculated: 

[0007] WhereA is the Word, [3 is the radix, the substring siZe 
is log2 [[3], and b is the substring value minus [3/2. 
[0008] The details of one or more embodiments of the 
disclosure are set forth in the accompanying draWings and the 
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description beloW. Other features, objects, and advantages 
Will be apparent from the description and draWings, and from 
the claims. For example, hardWare-based squaring circuits, 
such as those described here, can accommodate the increas 
ing demand for cryptography hardWare support in loW poWer, 
high-speed mobile devices. 

DESCRIPTION OF THE DRAWINGS 

[0009] FIG. 1 is a schematic diagram of an example land 
scape that includes a device With a squaring circuit in com 
munication With a netWork. 

[0010] FIG. 2 is a schematic block diagram of an example 
squaring circuit in accordance With the present disclosure. 
[0011] FIGS. 3A-3C are example diagrams of a squaring 
circuit operating on a six bit string using a tWo bit substring. 
[0012] FIGS. 4A-4B are example diagrams of a squaring 
circuit operating on a six bit string using a three bit substring. 
[0013] FIG. 5A is an example ofa portion ofa process How 
diagram for squaring an input value in accordance With the 
present disclosure. 
[0014] FIG. 5B is an example of another portion of the 
process How diagram for squaring an input value in accor 
dance With the present disclosure. 

DETAILED DESCRIPTION 

[0015] The present disclosure describes an iterative squar 
ing technique that produces a 2nm-bit length result, (x2, based 
on an input operand (often referred to as a squarand) or of 
nm-bits in length. The circuit produces 2m bits of the output 
0&2 during each iterative step. By considering an m-bit group 
ing Within the squarand 0t as representing a single radix-2'" 
digit, the circuit can be considered a digit-serial implementa 
tion that produces tWo m-bit digits per iteration. 
[0016] This digit-serial architecture may alloW for a 
tradeoff betWeen bit-serial and parallel architectures by 
alloWing for the digit to be represented by m bits. Because 2m 
bits of the result are computed in each iterative step, varying 
m can yield more or less parallelism While inversely affecting 
required circuit area. Thus, a minimal or otherWise reduced 
area circuit can be realiZed When m is small (bit-serial for the 
case mIl) and a large parallel circuit results at the other 
extreme When m is set to the WordsiZe of the squarand. 
Designers may be able to choose an appropriate value of m 
such that performance requirements are met While minimiZ 
ing or otherWise reducing the amount of circuitry required. 
[0017] Arithmetically, the technique assumes the squarand 
is represented as a higher-radix digit string Where each digit is 
represented by an m-bit substring. Furthermore, the tech 
nique may yield tWo digits of output squared value during 
each iterative step; hence, a total of 2m bits of the squared 
result are computed at each iterative step. 
[0018] FIG. 1 is a schematic diagram of an example land 
scape 100 that includes a device 102 having a squaring mod 
ule 106 in accordance With the present disclosure in commu 
nication With a netWork 104. The device 102 may be any type 
of computing device, such as a personal computer, a touch 
screen terminal, a Workstation, a netWork computer, kiosks, 
Wireless data ports, Wireless or Wireline phones, smart 
phones, personal data assistants (PDAs), one or more proces 
sors Within these or other devices, or any other suitable pro 
cessing device, to execute operations associated With 
squaring algorithms. For example, device 102 may be a PDA 
operable to Wirelessly connect With a netWork 104. In another 
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example, client 102 may be a laptop or tablet computer that 
includes an input device, such as a keypad, touch screen, 
mouse, or other device that can accept information, and an 
output device that conveys information, including digital 
data, visual information, or graphical user interface. Device 
102 may also be a server that can execute operations using 
input data received from other devices and can send results of 
operations to other devices across netWork 104. 

[0019] The device 102 includes a squaring module 106. 
The squaring module 106 (described in more detail in FIG. 2) 
receives as an input a squarand 0t 108 and a value In 110 that 
indicates the substring bit length for the squaring operation. 
The squaring module 106 outputs a result 0&2 112. The 
squarand 108 and the substring bit length 110 may be 
received locally through an input device of device 1 02, or may 
be received from a device across netWork 104. The result 112 
may be displayed to a user of device 102 on a local display or 
graphical user interface. In some implementations, the result 
112 can be transmitted to another device across netWork 104. 

[0020] Network 104 facilitates Wireless or Wireline com 
munication betWeen device 102 and other devices. Network 
104 may be all or a portion of an enterprise or secured net 
Work. In another example, netWork 104 may be a VPN 
betWeen device 102 and other devices across a Wireline or 
Wireless link. Such an example Wireless link may be via 
802.1la, 802.1lb, 802.11g, 802.1ln, 802.20, WiMax, and 
many others. The Wireless link may also be via cellular tech 
nologies such as 3GPP GSM, UMTS, LTE, etc. While illus 
trated as a single or continuous netWork, netWork 104 may be 
logically divided into various sub-nets or virtual netWorks 
Without departing from the scope of this disclosure, so long as 
at least portion of netWork 104 may facilitate communica 
tions betWeen senders and recipients of requests and results. 
In other Words, netWork 104 encompasses any internal and/or 
external netWork, netWorks, sub-netWork, or combination 
thereof operable to facilitate communications betWeen vari 
ous computing components in system 100. NetWork 104 may 
communicate, for example, Internet Protocol (IP) packets, 
Frame Relay frames, Asynchronous Transfer Mode (ATM) 
cells, voice, video, data, and other suitable information 
betWeen netWork addresses. NetWork 104 may include one or 
more local area netWorks (LANs), radio access netWorks 
(RANs), metropolitan area netWorks (MANs), Wide area net 
Works (WANs), all or a portion of the global computer net 
Work knoWn as the Internet, and/ or any other communication 
system or systems at one or more locations. 

[0021] The folloWing notation may be used in the descrip 
tion of the digit-serial ?xed-point squaring algorithm: 
[0022] [3 represents the radix or base of a number system. [3 
may be in the set of natural numbers, [3EN. 
[0023] The ‘radix polynomial’ form of a value a is Written 
as an n-term polynomial of the form: 

[0024] A value 0t can also be represented in the radix-[3 
number system in the form of a positional string of n charac 
ters denoted by 0t:[an_l an_2 . . . a2 a1 a0]. For clarity, the 
character strings denoting the positional digit representations 
of a value 0t may be enclosed by square brackets. The digits al 
are the coef?cients of the radix-polynomial form and their 
position Within 

[0025] 
radix [3. 

the string inherently denotes the exponent of the 
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[0026] Each character al- in a positional string representing 
a value is referred to as a “digit” regardless of the radix of the 
number system. Binary digits may alternatively be referred to 
as “bits.” 

[0027] Digits are restricted to the natural numbers When 
[3510, and are members of the set: 

[0028] For the case Where [3>l0, alternative single charac 
ters are used to represent a digit such as the characters “A” 
through “E” for the case of [3:16. 
[0029] Where necessary for clarity, digit strings are sub 
scripted by the radix [3 of the particular number system being 
used, 0t:[an_l an_2 . . . a2a1aO]B. 
[0030] LSD(0t,k) and MSD(0t,k) are operators that yield k 
least signi?cant or most signi?cant digits, respectively, in the 
digit string representing a value 0t. LSD(0t,l) represents the 
least signi?cant digit of 0t, LSD(0t,l):aO. LikeWise the most 
signi?cant digit is given as MSD(0t,l):an_ 1. 
[0031] {A,B,C} denotes concatenation of the content of 
registers A, B, and C Which can be of any siZe and Whose 
individual siZes may differ. 
[0032] SHL(A,k,B) denotes the operation of shifting the 
content of registerA to the left by k bits and setting the least 
signi?cant k bits to the content of register B. A can be of any 
siZe greater than or equal to the siZe of B and B must be of siZe 
k. 
[0033] SHR(A,k,B) denotes the operation of shifting the 
content of registerA to the right by k bits and setting the most 
signi?cant k bits of A to the content of register B. A can be of 
any siZe greater than or equal to the siZe of B and B must be 
of siZe k. 
[0034] AeB denotes the operation of setting the content of 
registerA With that of register B. A and B can be the same siZe 
in some implementations. 
[0035] The radix-[3 value A is de?ned as A:ot—ao. 
Expressed as a positional n-digit string: 

[0036] Thus, A can be formed by replacing LSD(0t,l):aO 
With the Zero digit [0]l3 or as: 

[0037] The present disclosure describes a circuit and algo 
rithm such that the choice of radix [3 alloWs for a trade-off in 
logic circuit area versus throughput performance in the com 
putation of 0&2 When 0t is represented as a binary bit string. 
Higher values of [3 alloW more bits to be produced per iterative 
step in the resulting representation of (x2. A tradeoff occurs in 
that the amount of computation or logic required at each 
iterative step increases for higher radix values. 
[0038] In the basis of the algorithm as stated here, it is 
assumed that the squarand is of the form of a binary bit string. 
Intermediate computations can be e?iciently implemented 
When the radix [3 is in the form [3:2'" Where m is a positive 
integer mz2. E?iciency results since [3:2’" alloWs each higher 
radix digit in the string representing 0t to be equivalent to an 
m-bit substring Within 0t. 0t, in terms of a higher-radix digit 
string, is simply the concatenation of the disjoint m-bit sub 
strings of 0t in binary form Where LSD(0t,l) is the least 
signi?cant m bits, the subsequent next signi?cant higher 
radix digit is represented by the next group of m bits to the left 
of LSD(0t,l), and so on. 
[0039] For convenience in specifying the basis of the algo 
rithm, Equation (1) can be Written With the restriction that 
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[3:2'" and some of the individual terms on the right-hand side 
of the equation can be denoted as T1, T2, and T3. 0&2 can be 
Written as: 

[0040] 
follows: 

The terms T1, T2, and T3 are explicitly de?ned as 

her/o1 
B . 

T2 = 2(A + 5)b, 
T2 = b2 

[0041] The idea behind the algorithm may be to compute 
terms T1, T2 and T3 during each iterative step and accumulate 
them With the previous result. Subsequent iterations use A/ [3 
from the (A/[3)2 term in Equation (1) as a squarand. The 
subsequent operandA/ [3 for each iterative step is a digit string 
containing one less digit than the squarand in the previous 
step indicating that the iterative algorithm requires O(n/m) 
iterations to complete. The 22'" shifting factor of the ?rst term 
in Equation (1) illustrates the fact that tWo digits (2m length 
bitstrings) are produced at each step and they represent digits 
in (x2 that are produced in the order of the lesser signi?cant 
digits ?rst. 
[0042] Several observations may be used to more e?i 
ciently implement the computation of the three terms T1, T2, 
and T3 in the squaring algorithm. First, the term A/ [3 may be 
e?iciently obtained by shifting the digit string representing 0t 
one position to the right and discarding a0, 
[0043] A/[3:[an_l an_2 . . . a2 al]|5. Second, values that are 
multiplied by a factor of [3:2k'" may be easily obtained by 
shifting the value to left by km bit positions and inserting a 
radix-[3 Zero digit place holder [0]l3 for the vacated least 
signi?cant digits. Third, the term [3/2 is alWays of the form of 
a 

[0044] single radix-[3 digit. Expressed as an m-bit binary 
string [3/2:[l0 . . . 0]2. Finally, the term ([3/2)2 is alWays of the 
form of tWo radix-[3 digits With the most signi?cant digit of 
value [3/ 4 and the least signi?cant digit of value Zero. Hence, 
expressed as a 2m-bit binary string, ([3/2)2:[0l0 . . . 0]2. 

[0045] Term Tl can be computed in a single operation. 
Making use of the ?rst and second observations, the value 
(A/[3)22'" is obtained by forming the digit string [an_l an_2 . . 
. a2 al00]|5. Furthermore, based on the fourth observation, 
T3:([3/2)2 can alWays be expressed as tWo radix-2'" digits (2m 
bits) denoted as [q1qO]|5. Thus, T1 is obtained by forming the 
string 

[0046] [an_l an_2 . . .a2 a1 ql qO]B. From the fourth obser 

0]B. Thus, the digit string representation for T1 is [an_l 
an_2 . . . a2 a1([3/4)0]B. 

[0047] Term T2 is computed by ?rst forming a digit string 
representing 2(A+[3/2) and then multiplying this string With 
the single radix-[3 digit b. Relying on the ?rst, second, and 
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third observations, A:an_l an_2 . . . a2 a1 0]|5and [3/2 may be 
represented as a single unsigned radix-2'" digit (m-bit string). 
Therefore, (A+[3/2):[an_l an_2 . . . a2 a1 [3/2]. To account for 
the multiplicative factor of 2, the (A+[3/2):[an_l an_2 . . . a2 
a l([3/ 2)]l5 digit string is then shifted by one bit position to the 
left resulting in 2(A+ [3/ 2). The multiplicative factor 2 Would 
in general be implemented through the use of an addition 
operation, 2(A+[3/2):(A+[3/2)+(A+[3/2), When a higher-val 
ued radix [3 is used that is not an integral poWer of tWo since 
this can be considered a “fractional digit shift,” if [3#’". 
[0048] The ?nal step in the formation of term T2 involves 
the multiplication of 
[0049] 2(A+[3/2):[an_l an_2 . . . a2 a1([3/2)]l5 by the signed 
single radix-2'" digit of b:ao—[32. Because b is a single digit 
value, this multiplication may be accomplished With a mini 
mal or reduced amount of computation or circuitry as com 
pared to a general purpose multiply operation or circuit. 
Clearly, as the value m is increased resulting in a higher 
valued radix, 2'", both computational complexity and overall 
algorithm throughput may increase. The actual implementa 
tion of the multiplication by b may be dependent upon the 
value m and may be carefully considered for a given realiZa 
tion of the algorithm. Relatively small values of m generally 
alloW for a simple logic circuit or lookup table to be used. 
[0050] Term T3:b2 on relies the computation of the square 
of the residual value b. The implementation of this computa 
tion may also be dependent upon the siZe of m, Which dictates 
the number of bits required to represent a radix-2'" digit. For 
smaller values of m, the direct calculation of b2 can be very 
e?iciently implemented as a small combinational logic cir 
cuit or through a lookup table. As m increases, the computa 
tion of b2 becomes more complex and other methods may be 
employed. 
[0051] For large values of m, the computation of T3b2 can 
be accomplished in parallel With the computation of the other 
tWo terms T1 and T2 since accumulation of T1+T2+T3 With 
overall result can occur at the end of each iterative step. 

[0052] After terms T1, T2, and T3 are formulated, they are 
summed together and accumulated With the previous result. 
The accumulation takes into account the process of multiply 
ing sub sequent iterative operands by 22'" and the fact that tWo 
independent radix-[3 digits (or, 2m bits) of the ?nal result are 
produced at each iterative step. This can be implemented in a 
variety of Ways, including using registers. The siZe of the 
register may be 2nm bits Where n is the number of radix-[3 
digits representing 0t and m denotes the radix. The ?nal opera 
tion of each iterative step of the algorithm is to shift the result 
register 2m bits to the right and insert the 2m least signi?cant 
bits of T1+T2+T3 into the most signi?cant positions of the 
shifted result register. Insertion of the tWo radix-2'" digits in 
the most signi?cant portion of the result register instead of 
performing a multi-bit left shift before adding them to the 
previously accumulated result alloWs the algorithm to be 
implemented Without the need for a inclusion of a multi-bit 
left shift operation or the use of a barrel shifting circuit in a 
hardWare realiZation. 
[0053] The algorithm uses an iteration index i to determine 
if all digits of the squarand have been produced. For an n-di git 
radix-0t squarand, the squared result consists of 2n digits. 
Because tWo digits are produced per iterative step, the index 
i ranges from Zero to (n/2)—l. Initially, When iIO, 0t is the 
original squarand. During intermediate computations, When 
0<i<n/2, the algorithm iterates and sets the intermediate 
squarand (FA/ [3. In the ?nal iterative step, the squarand argu 
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ment becomes (F0; however, this step is performed to 
account for circumstances When the residual b is not Zero 
valued. 
[0054] Any given implementation of the algorithm should 
include careful consideration of the manner in Which the 
signed digit b is represented. When explicitly represented 
using a radix-complement or a signed-magnitude form, m+l 
bits are required to account for the sign. Furthermore, 
depending upon the de?nition of the residual, b can take on 
integer values in either of the ranges [—([3/2),([3/2—l)] (as is 
the case in this formulation) or [—([3/2)+l,([3/2)]. HoWever, 
because there is a one-to-one relationship betWeen the a0 and 
b values (since b:ao—[3/ 2), the m-bit string representing aO can 
be used as an encoding for the corresponding b value. 
[0055] The algorithm formulated in the previous section 
makes use of several registers. For succinctness, the registers 
used Within the algorithm statement are de?ned in Table 1, 
shown beloW: 

TABLE 1 

Registers Used in Squaring Algorithm 

name size (bits) content 

AB (11 — l)m N5 

i lo g2 (n/m) iteration matrix 
B m residual b encoded as 

LSD(ot, 1) 
ACC 2nm Tl + T2 + T3 

B2 In /2 

B4 2H1 ([5/2)2 = 052/4) = [05/0016 

[0056] A statement of the algorithm is given beloW. Inter 
mediate locations Within the algorithm are denoted by labels 
in the form “STEP k.” The labels are included for convenience 
in referring to certain portions of the algorithm and they also 
indicate clock boundaries in that the results of 
[0057] STEP k-l are registered before computation occurs 
in STEP k. As an example, the T2+{AB,B2} operation of 
STEP 3 must complete before the T2+SHL(T2,1,[0]2) 
operation of STEP 4 can proceed. Breaking up the computa 
tion of term T2 into multiple intermediate registered opera 
tions is an example of pipelining the datapath and alloWs for 
the overall circuit clock speed to be increased. The steps are 
described beloW: 

INPUT: 
0t: nm-bit ?xed-point squarand 
m: log2([5)—bit value, indicates Working radix 2'" 

OUTPUT: 
0L2: 2nm-bit value in register R 
STEP 1: 

i<—0 /* iteration index */ 
R<—0 /* initialize result register */ 
B2<—[l0...0]2 /* m-bits With MSB=1 */ 
B4<—[0l0...0]2 /* 2m-bits With MSBs=0l */ 
AB<—OL /* squarand value */ 

/* MS squarand digits */ 

/* form T1, In LSbs=0 */ 
/* form A+[5/2 */ 
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-continued 

T3<—b><b /* compute single digit square, 
uses a0 in B */ 

STEP 4: 

T2<—SHL(T2,l,[0]2) /* form 2(A+[5/2) */ 
ACC<—T1+T3 /* form Tl+T3 */ 

STEP 5: 

T2<—T2><b /* form 2(A+[5/2)b, uses aO in B */ 

STEP 6: 

ACC<—ACC+T2 /* form Tl+T2+T3 */ 
STEP 7: 

R<—SHR(R,2m,LSD(ACC,2)) /* update result */ 
i<—i+l /* increment iteration counter */ 

STEP 8: 

if (i=n/m) /* check iteration count */ 
HALT /* computation complete */ 

else 

GO TO STEP 2 

[0058] The example algorithm shoWn above can undergo 
n/m iterations producing 2m bits of 0&2 during each iterative 
step. Therefore, the algorithm has temporal complexity 
equivalent to O(n/m). In terms of required computational 
resources, the algorithm requires circuitry to perform shift 
ing, bit-string concatenation, 2nm-bit operand addition, 
m><2nm-bit multiplication, and m-bit operand squaring. 
While 2nm-bit operand addition operations are required in 
STEPs 4 and 6, it is noted that a single 2nm-bit addition circuit 
can be used since these sums may be formed sequentially 
alloWing for reuse of the single 2nm-bit adder. The multipli 
cation and single-digit squaring operations can be imple 
mented in a variety of forms although it is noted that due to the 
relatively small siZe of the operands (m bits) very compact 
and fast circuits such as lookup tables are a practical choice. 

[0059] FIG. 2 is a schematic block diagram of an example 
squaring module 106 in accordance With the present disclo 
sure. Squaring module 106 can be a hardWare circuit com 

posed of analog and digital circuitry. Digital circuitry 
includes transistor-based logic circuits and components. In 
some implementations, squaring module 106 can be imple 
mented as a softWare algorithm. Squaring module 106 can 
receive as an input the operand 0t 202, Which is a value to be 
squared (squarand). In this example circuit, a synchronous 
digital logic circuit uses a quaternary radix, [3:22:4. The 
operand 202 is received by a multiplexer circuit 204. The 
computation T3eb><b in STEP 3 above uses a multiplexer 
based lookup structure. A 4:1 multiplexer With 2m-bit data 
paths and an m-bit control signal chooses among the appro 
priate squared values of b. The squared values b2 that drive the 
multiplexer data inputs are pre-computed before implemen 
tation of the circuitry and are either hardWired or stored in 
registers. Alternatively, a small nonvolatile memory such as a 
ROM or ?ash circuit, or a volatile memory such as SRAM or 

DRAM, could be used With the B register contents driving the 
address lines and all possible b2 values stored in the memory. 
Register B drives the control lines of the multiplexer and 
represents the residual value b. It is noted that B actually 
contains the least signi?cant digit at as an encoded value for 
b since b:al.—[3/ 2. To clarify this encoding, Table 2 contains all 
values of b and the corresponding al- that serves as the m-bit 
encoded representation of b for the radix-4 quaternary case. 
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TABLE 2 

Encoded Values of b for Radix-4 Number System 

i Encoded b in Register B 

[0060] The computation of T2+T2><b in STEP 5 of the 
algorithm is accomplished by using a 4:1 multiplexer as a 
simple lookup structure With data paths of size 2mm and an 
m-bit control signal driven by the content of register B. The 
idea behind this circuit is similar to that of the T3eb><b 
computation in STEP 3 With the important difference that the 
possible T2><b values are computed during each iterative step 
rather than being precomputed and stored before circuit 
operation. Fortunately, these values are easily and ef?ciently 
computed since, for the quaternary implementation, they con 
sist of the value 2(A+[3/2) multiplied by only one of 

[0061] bE{-2,—l,0,l Thus, a negated version of 2(A+[3/ 
2):— [2 (A+[3/ 2)] and a single-bit left-shifted shifted version of 
—[2(A+ [3/2)] are used as Well as 2(A+ [3/2) and [0 . . .0] to drive 
the data inputs of the multiplexer. FIG. 4 contains a diagram 
of this subcircuit. 

[0062] The output of the multiplexer 204 is received by 
Combinational logic 206. Combinational logic 206 includes 
several outputs: one output is coupled to the input of the 
multiplexer 204. The other outputs of Combinational logic 
206 are coupled to an adder array 208. Each of the multiplexer 
204, the Combinational logic 206, and the adder array 208 also 
include as inputs control signals from a clocked synchronous 
controller (not shoWn). 
[0063] The Combinational logic 206 may be implemented 
based on simpli?cations in the formation of the intermediate 
terms T1, T2, and T3, and their various sums. These simpli? 
cations exploit the choice of using [3:4 as an implicit operand 
radix and alloW for the computation of the intermediate terms 
T1, T2, and T3 to be implemented With a reduced and simpli 
?ed set of register transfer level (RTL) operations. 

[0064] A single quaternary digit [ak]4 can, in general, be 
Written as a tWo-bit binary string [b2k+lb2k]2 Where {bl-E181 } 
and 1B» :{0,l Using this de?nition, various intermediate 
terms and their sums can be evaluated for different cases of 
the least signi?cant digit of the squarand, aOE{0,l,2,3}. Term 
T 1 is independent of the value of a0 and is alWays a bit string 
of length 2n+2 expressed as: 

[0065] Case 1: aO:[0]4 resulting in the residual b:[—2]4, 
thus T3:b2:[l0]4:[0l00]2. Term T2 can 
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[0066] Combining the terms: 

lanilani2 1121111014 — 
T1 + T2 + T3 : 

[116141116142 ‘121112014 + —l10l4 

= [0 0]4 

= [00 00]2 

[0067] Case 2: ao:[l]4 resulting in the residual b:[—l]4, 
thus T3:b2:[0l]4:[000l]2. Term T2 can be expressed as: 

[0068] Combining the terms: 

lb2nilb2ni2 bsbzoloolz — 
T1 + T2 + T3 = 

[obzmlbzm2 b3b2lOO]2 + [0001]2 

=[0b2,,,1b2,,,2 b3b2OO1]2 

[0069] Case 3: ao:[2]4 resulting in the residual b:[0]4, thus 
T3:b2:[00]4:[0000]2. Term T2 can be expressed as: 

= [00. . .00]2 

[0070] Combining the terms: 

[0071] Case 4: ao:[3]4 resulting in the residual b:[ l ]4, thus 
T3:b2:[0l]4:[000l]2. Term T2 can be expressed as: 

[0072] For this case, the sum T2+T3 can be formed directly 
and it is subsequently combined With term T 1 using the addi 
tion circuit. T2+T3 is formed as: 
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[0073] Table 3 below contains a summary of the results of 
the intermediate terms and their various sums in terms of 
values of the least signi?cant digit of the operand at each 
iterative step. 

TABLE 3 

Radix-4 Optimi ations 

LS Intermediate 
D(0t4, 1) Term Value 

0 T1 + T2 + T3 [0...0]2 
1 T1 + T2 + T3 [Obblil bbk2 . . .b3 b2 

001]2 
2 T1+ T2 + T3 [b2,,,1b2,,,2. . .b3 b2 

0100]2 
3 T1 [bail b2ni2 - - - b3 b2 

0100]2 
3 T2 + T3 [0b2,,,1b2,,,2. . .b3 b2 

101]2 

[0074] The combinational logic 206 makes use of the 
results in Table 3 and outputs the tWo 2n+2 bit values that are 
summed in the adder array 208 resulting in T1+T2+T3 (i.e., 
the combinational logic includes tWo outputs: one for each 
input ofthe adder array). For the cases aOE{0, l ,2}, T1+T2+T3 
is formed directly in the combinational logic 206 and is input 
to the adder array 208 on the leftmost input bus With the 
right-most input set to the 2n+2 bit string [00 . . . 00]2. The 
adder array 208 is used for the case of ao:3, Where the left 
most input is the bit string [b2n_ l b2n_2 . . .b3 b20100]2 and the 
right-most input is [0b2n_l b2n_2 . . .b3 b2l0l]2. 
[0075] Accumulator 210 consists of an internal accumula 
tor register, an internal adder circuit, and a feedback loop that 
alloWs for the internal adder output to be stored in the internal 
accumulator register. Accumulator 210 can receive the output 
of the adder array 208 Where it is added to the previously 
stored value in the accumulator register and then stored back 
into the accumulator register. A right shift register 212 can 
receive the output of the accumulator. The siZe of the register 
212 may be 2nm bits Where n is the number of radix-[3 digits 
representing 0t and m denotes the radix. The ?nal operation of 
each iterative step of the algorithm is to shift the result register 
2m bits to the right and insert the 2m least signi?cant bits of 
T1+T2+T3 into the most signi?cant positions of the shifted 
result register. Insertion of the tWo radix-2'" digits in the most 
signi?cant portion of the result register instead of performing 
a multi-bit left shift before adding them to the previously 
accumulated result alloWs the algorithm to be implemented 
Without the need for a inclusion of a multi-bit left shift opera 
tion or the use of a barrel shifting circuit in a hardWare 
realiZation. After the iterative steps are completed, the square 
0&2 214 can be output. 

[0076] FIGS. 3A-3C are example diagrams of a squaring 
circuit operating on a six bit string using a tWo bit substring 
corresponding to a chosen substring length of m:2 ([3:22:4). 
FIGS. 3A-3C shoW three iterations used for calculating a 
value (x2, Where 0t has a bit length nm:6 and a substring 
length m:2. In FIG. 3A, the right-most input bits are repre 
sented as a0 and the remaining bits as A0. The least most 
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signi?cant bits aO include 2 bits (m:2). Because the bit length 
of 0t is 6, this calculation requires 0(3) iterations since 2><3:6. 
The bits aO are received into the squaring module, and output 
as bO that includes 4 bits (2mbits) and representing tWo output 
digits (shoWn on the right side of the squaring module). In 
FIG. 3B, the remaining 4 bits of 0t are then considered. The 
least most signi?cant bits are represented as a 1 having 2 bits 
(m:2), and the remaining 2 bits of 0t are represented as A1. 
The value a 1 is received by the squaring module, and the 
output b 1 includes 4 bits (2m bits) representing tWo digits of 
the output value (x2. Finally, in FIG. 3C, the remaining bits of 
0t are represented as a2 (Which are the most signi?cant bits of 
the original string). The value a2 (having 2 bits) is received by 
the squaring module, and output as b2, Which also includes 4 
bits (2m bits) representing the tWo most signi?cant bits of the 
resultant string (x2. 

[0077] FIG. 4A-4B are example diagrams of a squaring 
circuit operating on a six bit string using a three bit substring 
corresponding to a chosen substring length of m:3 ([3:23:8). 
FIGS. 4A-4B shoW tWo iterations used for calculating a value 
(x2, Where 0t has a bit length nm:6 and a substring length m:3 
since [3 is chosen to be 23. In FIG. 4A, the least signi?cant 
input bits are represented as a0 and the remaining bits as A0. 
The least signi?cant bits aO include 3 bits (m:3). Because the 
bit length of 0t is 6, this calculation requires O(2) iterations 
since 3><2:6. The bits aO are received into the squaring mod 
ule, and output as cO including 6 bits (2m bits) representing 
tWo digits of 0&2 (shown on the right side of the squaring 
module). In FIG. 4B, the remaining 3 bits of 0t are then 
considered. The most signi?cant bits are represented as al 
comprised of 3 bits (m:3). Again, the value a 1 is received by 
the squaring module, and the output c 1 includes 6 bits (2m 
bits) representing tWo digits of the output value (x2. 

[0078] FIG. 5A is an example ofa portion ofa process How 
diagram 500 for squaring an input value in accordance With 
the present disclosure. The example process How described 
here is applicable for m:2. An input operand 0t and a sub 
string size m are received (502). The input operand may be 
identi?ed as a binary digit string, 0t (504). The least signi? 
cant digit (LSD) substring, a, of the substring size m can be 
determined (506). The LSD substring can be decatenated 
from binary digit string to form a Word, A (508). A radix [3 is 
determined as 2'" (510). A residual value, b, is determined, as 
b:0t—[3/2 (512 (512). T1 is determined as 

[0079] FIG. 5B is an example of another portion of the 
process How diagram 550 for squaring an input value in 
accordance With the present disclosure. Continuing from step 
514, T2 is determined as 2(A+[3/2)b (516). T3 is determined as 
b2 (518). The value (x2 can be determined as (A/[3)2 22’"+Tl+ 
T2+T3 (520). The resulting value (x2 can be concatenated With 
previous results, if any, as the most signi?cant digit having bit 
length 2m (522). A determination may be made as to Whether 
the length of A is greater than the substring size In (524). If A 
is less than or equal to m, then the process can iterate one 
additional time to account for a non-Zero residual value and 
then terminates (526). If the siZe of A is greater than m, then 
A can be identi?ed as a WordA and as the binary digit string, 
0t (528). Then, the process folloWs back to point (X) 530, 
Which connects prior to point 506 of FIG. 5A. The process 
then continues until it terminates based on the condition at 
point 524. 
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[0080] A number of implementations have been described. 
Nevertheless, it Will be understood that various modi?cations 
may be made including portions or the entirety of the imple 
mentation in software form. Accordingly, other implementa 
tions are Within the scope of the following claims. 

1. A method for squaring a value, comprising; 
identifying a ?xed-point value With a ?xed Word siZe and a 

substring siZe for substrings of the ?xed-point value, 
Wherein the ?xed-point value comprises a binary bit 
siring; and 

determining a square of the ?xed-point value using the 
?xed point value, the substring siZe, and least signi?cant 
bits of the ?x-point value equal to the substring siZe. 

2. The method of claim 1, Wherein determining the square 
comprises: 

iteratively determining squares of substrings of the ?xed 
point value using least signi?cant oils of each operand 
equal to the substring siZe and the substring of the ?xed 
point value, Wherein the operand in each iteration com 
prises a portion of the previous operand, Wherein the 
operand is formed by decatenating the previous operand 
least signi?cant bits equal to the substring siZe. 

3. The method of claim 1, Wherein determining the square 
includes: 

identifying the ?xed-point valise as an operand; 
determining a substring of the operand as least signi?cant 

bits of the operand Where the sub-string is of a speci?ed 
substring siZe; 

decatenating the substring from the operand to form a 
Word; 

squaring the substring using the Word, the substring, and 
the substring siZe; 

add the square of the substring to a result; 
if a length of the Word is greater than Zero, identifying the 
Word as the operand and executing the determining, 
decatenating, squaring, and adding steps; and 

if the length of the Word and sub string is Zero iterating once 
more to account for non-Zero residual values, and iden 
tifying the result as the square of the ?x-point value. 

4. (canceled) 
5. An apparatus comprising: 
one or more hardWare circuit elements, the hardWare cir 

cuit, elements con?gured to: 
identify a ?xed-point value With a ?xed, Word siZe and a 

substring siZe for substrings of the ?xed-point value, 
Wherein the ?xed-point value comprises a binary bit 
string; and 

determine a square of the ?xed-point value using the 
?xed point value, the substring siZe, and least signi? 
cant bits of the ?x-point value equal to the substring 
siZe. 

6. The apparatus of claim 5, Wherein the circuit elements 
are con?gured to determine the square by iteratively deter 
mining squares of substrings of the ?xed-point value using 
least signi?cant bits of each operand equal to the substring 
siZe and the substring of the ?xed-point value, Wherein the 
operand in each iteration comprises a portion of the previous 
operand, Wherein the operand is formed by decatenating the 
previous operand least signi?cant bits equal to the substring 
siZe. 

7. The apparatus of claim 5, Wherein the circuit dements are 
further con?gured to determine the square by: 
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identifying the ?xed-point value as an operand; 
determining a substring of the operand as least signi?cant 

bits of the operand Where the substring is of a speci?ed 
substring siZe; 

determining the sub string from the operand to form a Word; 
squaring the substring using the Word, the substring, and 

the substring siZe; 
add the square of the substring to a result; 
if a length of the Word is greater than Zero, identifying the 
Word as the operand and executing the determining, 
decatenating, squaring, and adding steps: and 

if the length of the Word and sub string is Zero iterating once 
more to account for non-Zero residual values, and iden 
tifying the result as the square of the ?x-point value. 

8. (canceled) 
9. A computer program product stored on a tangible, non 

transitory storage medium comprising instructions for squar 
ing a value operable When executed to perform operation, the 
operations comprising: 

identifying a ?xed-point value With a ?xed Word siZe and a 
substring siZe for substrings of the ?xed-point value, 
Wherein the ?xed-point value comprises a binary bit 
string; and 

determining a square of the ?xed-point value using the 
?xed point value, the substring siZe, and least signi?cant 
bits of the ?x-point value equal to the substring siZe. 

10. The computer program product of claim 9, Wherein 
determining the square comprises: 

iteratively determining squares of substrings of the ?xed 
point value using least signi?cant bits of each operand 
equal to the substring siZe and the substring of the ?xed 
point value, Wherein the operand in each iteration com 
prises a portion of the previous operand, Wherein the 
operand is formed by decatenating the previous operand 
least signi?cant bits equal to the substring siZe. 

11. The computer program product of claim 9, Wherein 
determining the square includes; 

identifying the ?xed-point value as an operand; 
determining a substring of the operand as least signi?cant 

bits of the operand Where the substring is of a speci?ed 
substring siZe; 

decatenating the substring from the operand to form a 
Word; 

squaring the substring using the Word, the substring, and 
the substring siZe; 

add the square of the substring to a result; 
if a length, of the Word is greater than Zero, identifying the 
Word as the operand and executing the determining, 
decatenating, squaring, and adding steps; and 

if the length of the Word and sub string is Zero iterating once 
more to account for non-Zero residual values, and iden 
tifying the result as the square of the ?x-point value. 

12. (canceled) 
13. The method of claim 3, Wherein squaring the substring 

comprises calculating the folloWing; 

WhereA is the Word, [3 is the radix, the substring siZe is log2 
[[3], and b is the substring value minus [3/2. 
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14. The apparatus of claim 7, wherein squaring the sub 
string comprises calculating the following: 

Where A is the Word, [3is the radix, the substring siZe is log2 
[[3], and b is the substring Value minus [3/2. 

15. The computer program product of claim 11, Wherein 
squaring the substring comprises calculating the folloWing: 

Where A is the Word, [3 is the radix, the substring siZe is log2 
[[3], and b is the substring Value minus [3/2. 

* * * * * 
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