US007962537B2

a2 United States Patent 10) Patent No.: US 7,962,537 B2
Matula et al. (45) Date of Patent: Jun. 14, 2011
(54) DETERMINING A TABLE OUTPUT OF A 5,963,460 A * 10/1999 Rarick ... 708/501
TABLE REPRESENTING A HIERARCHICAL 6,404,923 B1* 6/2002 Chaddha 382/224
6,581,085 B1* 6/2003 Yueetal. 708/502
g[l}gg]lf[(())l;AN INTEGER VALUED 2009/0248873 Al™* 10/2009 Johnsson 709/226
(75) Inventors: David W. Matula, Dallas, TX (US); OTHER PUBLICATIONS
Mitchell A. T.hornton, Dallas, TX (US); Bryant, Randal E., “Graph-Based Algorithms for Boolean Function
Alexandru Fit-Florea, Palo Alto, CA . C 12
US) Lun Li. Santa C1 CA (US Manipulation™ <, IEEE Trans. Comp., 35(8), 28 pages, 1986.
(US); Lun Li, Santa Clara, US) Fit-Florea, A., et al., “dddition-based exponentiation modulo 2* ”,
(73) Assignee: Southern Methodist University, Dallas, E_lecm)mcs Letters, \:‘01' 4_1’_ No..2, 2 I_)ages’ Ja_n' 20, 200_5'
TX (US) Fit-Florea, A., et al., “Additive bit-serial algorithm for discrete loga-
rithm modulo 2°”, Electronics Letters, vol.41,No. 2, 2 pages, Jan. 20,
(*) Notice: Subject to any disclaimer, the term of this 2(_)05') o)
patent is extended or adjusted under 35 Li, L., et al., “Hardware Implementation ofanzj:lddztzve Bit-Serial
Algorithm for the Discrete Logarithm Modulo 2° ”, Proceedings of
U.S.C. 154(b) by 1022 days. the IEEE Computer Society Annual Symposium on VLSI, New Fron-
. tiers in VLSI Design, 0-7695-2365-X/05, 6 pages, 2005.
(21) Appl. No.: 11/768,742 & pag
B ’ Matula, David W., et al., “Table Lookup Structures for Multiplicative
Tad- Inverses Modulo 2, Proc. 17th IEEE Symp. Comp. Arith., 8 pages,
(22) Filed: Jun. 26, 2007 2005
(65) Prior Publication Data * cited by examiner
US 2008/0005211 Al Jan. 3, 2008
Related U.S. Application Data Primary Examiner — Tan V Mai
(60) Provisional application No. 60/816,529, filed on Jun. (74) Attorney, Agent, or Firm — Baker Botts L.L.P.
26, 2006.
(51) Int.CL 57 ABSTRACT
GOGF 7/00 (2006.01) Determining a table output of a table representing a hierar-
(52) U..S. ClL ... e 708/200 chical tree for an integer valued function includes determin-
(58) lS<“1eld Ofl.Cl?,SSIﬁﬁclat}on Searclht """"" hht 708/200 ing an address from a table input. A subset of a memory is
e application file for complete scarch story. selected according to the address, where the memory repre-
(56) References Cited sents the hierarchical tree and the subset represents a subtree

U.S. PATENT DOCUMENTS

4,482,975 A * 11/1984 Kingetal. 708/272
5,179,659 A * 1/1993 Lienetal.cccoe.e. 708/650
5,274,580 A * 12/1993 Keryveletal. 708/653
5,923,888 A 7/1999 Benschop 395/750.01

of'the hierarchical tree. Bit fields are selected from the subset,
and bits are extracted from the bit fields. A table output is
determined from the extracted bits.

24 Claims, 4 Drawing Sheets

i

~—QUTPUT DLS STRING: 10101

U.S. Patent Jun. 14,2011 Sheet 1 of 4 US 7,962,537 B2

10
™ FIG. 1
QQ 2& 3& §6 ﬁo
28 PRE- ROW BIT FIELD | | POST- ﬁG
PROCESSING | L TABLE |H PROCESSING
J0CESS NG 7] seLECTOR SELECTORS | | Phoc ool

A

<—QUTPUT DLS STRING: 10101

U.S. Patent

Jun. 14, 2011

Sheet 2 of 4

US 7,962,537 B2

!
': .
: !
: !
! :
] I
1 i
,= |
L 4100 414¢ !
33_‘ | B “
a \ |
2 — :
a— ' N
ay— .
N —Tn —+
ao ‘:5" i
FIG. 6

US 7,962,537 B2

Sheet 3 of 4

Jun. 14, 2011

U.S. Patent

sm ¥ DIA
H0SS3004d | | . S1/d € 10v43
1S0d 20V HOIH
Zlp |
. . Sa13id z¢ vee
; . 40 1 193138
e J Y A
b — - T T T T
Slig ¥ 10vd.x3
[Tl e v le—QIN
. ¢ee
qove /
S3IAG ¥ Be
40 | 103138 8p
||||||||||||||||||||| | R Y
[— (s 8) >>o.;
X3ANI i8-8
BOVC -
¢ [1N0-SLig SH SLE-(192 X 952) ™
0 F\N\ vig

31907103135

d-1001731avL

ﬂoo¢m
qove

4201724

US 7,962,537 B2

Sheet 4 of 4

Jun. 14, 2011

U.S. Patent

sm S DI
H0SSI00Hd S118 ¥ 1OVHIX3
1S0d mdm [T-]+ =] v+ |« HOIH
e . S3LAG O yee
mu B . 40 | 1937138
S I ey, FE T ____ e]
SL8 2 10VHIXa
ﬁhyfstgm
aove 6e " _
e
[T]e-an
e o po — —— 'IIIIIIII-T IIIIIIIIIIII e i I —
1 (sg) mont
1037135 MO ale
X3aNI 11g-1
504
[LNO-SLig £ Syl x82l) ™~
) vm\ yig

_

H0SS300Hd-3Hd

¢le

1907 103135

dN-40071 318Vl

rJ0¥E

aove

rBOVE

US 7,962,537 B2

1
DETERMINING A TABLE OUTPUT OF A
TABLE REPRESENTING A HIERARCHICAL
TREE FOR AN INTEGER VALUED
FUNCTION

RELATED APPLICATION

This application claims benefit under 35 U.S.C. §119(e) of
U.S. Provisional Application Ser. No. 60/816,529, entitled
“DESIGN OF LOOKUP TABLE STRUCTURES FOR
INTEGER VALUED FUNCTIONS,” filed Jun. 26, 2006, by
David W. Matula et al.

TECHNICAL FIELD

This invention relates generally to the field of calculating
systems and more specifically to determining a table output of
a table representing a hierarchical tree for an integer valued
function.

BACKGROUND

Calculating integer valued functions may involve table
lookup of a table stored in memory. Known table lookup
techniques, however, fail to provide satisfactory hardware
support for certain integer valued functions. It is generally
desirable to have satisfactory hardware support for integer
valued functions.

SUMMARY OF THE DISCLOSURE

In accordance with the present invention, disadvantages
and problems associated with previous techniques for calcu-
lating integer valued functions may be reduced or eliminated.

According to one embodiment of the present invention,
determining a table output of a table representing a hierarchi-
cal tree for an integer valued function includes determining an
address from a table input. A subset of a memory is selected
according to the address, where the memory represents the
hierarchical tree and the subset represents a subtree of the
hierarchical tree. Bit fields are selected from the subset, and
bits are extracted from the bit fields. A table output is deter-
mined from the extracted bits.

Certain embodiments of the invention may provide one or
more technical advantages. A technical advantage of one
embodiment may be that a system includes hardware support
for integer valued functions. The hardware support may allow
for more efficient calculation of integer valued functions.

Another technical advantage of one embodiment may be
that the system represents a hierarchical tree for an integer
valued function. The system includes a lookup table that
stores bits representing at least a portion of the tree. The table
has subsets (such as rows). Each subset is associated with
particular lower order values of operands and stores bits rep-
resenting sub-trees corresponding to the lower order values.
The lower order values of an input operand serve as an
address to select the appropriate subset to calculate the table
output for the operand. Organizing the lookup table into such
subsets may allow for a reduced table size.

Another technical advantage of one embodiment may be
that the system performs pre-processing of the input operand
to generate table input for the table. For example, the operand
may be normalized to determine a binary exponent for the
operand. As another example, a sign bit of the operand may be
determined. Pre-processing may allow for a reduced table
size.

20

25

30

35

40

45

50

55

60

65

2

Another technical advantage of one embodiment may be
that the system performs post-processing of table output to
generate the function output. For example, the table output
may be de-normalized. As another example, conditional
complementation may be performed on the table output. Post-
processing may also allow for a reduced table size.

Another technical advantage of one embodiment may be
that one or more circuits may be used to generate the function
output. For example, a circuit may be used to select the
appropriate subset and/or generate at least a portion of the
function output.

Certain embodiments of the invention may include none,
some, or all of the above technical advantages. One or more
other technical advantages may be readily apparent to one
skilled in the art from the figures, descriptions, and claims
included herein.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and its features and advantages, reference is now made to
the following description, taken in conjunction with the
accompanying drawings, in which:

FIG. 1 illustrates one embodiment of a system for deter-
mining a table output of a table representing a hierarchical
tree for an integer valued function;

FIGS. 2 and 3 illustrate examples of hierarchical trees that
may be represented by the table of the system of FIG. 1;

FIG. 4 illustrates an example of a table lookup system that
may be used with the system of FIG. 1;

FIG. 5 illustrates another example of a table lookup system
that may be used with the system of FIG. 1; and

FIG. 6 illustrates an example of a circuit that may be used
with the system of FIG. 1.

DETAILED DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention and its advantages
are best understood by referring to FIGS. 1 through 5 of the
drawings, like numerals being used for like and correspond-
ing parts of the various drawings.

FIG. 1 illustrates one embodiment of a system 10 for deter-
mining a table output of a table representing a hierarchical
tree for an integer valued function. In the illustrated embodi-
ment, system 10 includes an input interface 20, a pre-process-
ing element 24, a row selector 28, a table 32, one or more bit
selectors 36, a post-processing element 40, and an output
interface 46.

System 10 represents a hierarchical tree for an integer
valued function that generates a function output from an input
operand. Table 32 stores bits representing at least a portion of
the tree. Table 32 may have subsets (such as rows). Each
subset is associated with lower order values of operands and
stores bits representing sub-trees corresponding to the lower
order values. The lower order values of an input operand
serves as an address to select the appropriate subset to calcu-
late the table output for the operand.

In the embodiment, input interface 20 receives an input
operand. Pre-processing element 24 generates a table input
from the input operand. For example, pre-processing element
24 may normalize the operand to determine a binary exponent
for the operand and/or may determine a sign bit of the oper-
and.

The table input includes lower order (less significant) val-
ues that serve as an address. Row selector 28 selects the subset
of'table 32 corresponding to the address. Bit field selectors 36
use higher order values to select bits from the subset, which

US 7,962,537 B2

3

are used to form the table output. In one embodiment, row
selector 28 may be implemented as a circuit that selects the
subset.

Post-processing element 40 performs additional process-
ing to yield the function output. For example, post-processing
element 40 may de-normalize the table output and/or may
perform conditional complementation on the table output.
Output interface 46 outputs the function output.

System 10 may be used to implement integer valued func-
tions that satisfy certain properties, such as the inheritance,
one-to-one correspondence, binary integer right-normaliza-
tion, and conditional complementation properties.

According to the inheritance property, for all k, the low
order k-bits of a function output depend only on the low order
k-bits of the integer argument. Functions satisfying this prop-
erty include squaring, multiplicative inverse, integer power,
discrete logarithm, and exponentiation functions, where the
functions are evaluated modulo the word size. The inherit-
ance property implies that if input integer arguments have a
common low order part of the same size, the values of the
output function also have a common low order part of the
same size (Which may or may not be the same size as the part
of'the input). The inheritance property allows for reduction of
a k-bits-in, k-bits-out lookup table from kx2* bits to
2x2%=2F+1 bits. For example, a 16-bits-in, 16-bits-out lookup
table may be reduced in size by a factor of eight.

According to the one-to-one correspondence property, dis-
tinct k-bit inputs have distinct k-bit outputs. Functions with
this property include the multiplicative inverse, discrete log
of odd integers, and the discrete log encoding of k-bit inte-
gers. The one-to-one correspondence and inheritance proper-
ties together allow for pre- and post-processing that may
reduce the table size by a factor of k.

According to the binary integer right-normalization prop-
erty, integer n=ix2”, where 1 is the odd factor and 27 is the
even-power factor. Integer valued functions can be calculated
by applying table lookup to the odd factor and then perform-
ing post-processing on the even-power factor.

According to the conditional complementation property,
the result of an operation on a conditional 2’s complement of
the input is the conditional 2’s complement of the output.
Conditional complementation applies to selected bits of the
odd factor of the normalized integer argument. This may
reduce table size by one-half or more.

The inheritance, one-to-one correspondence, binary inte-
ger right-normalization, and conditional complementation
properties allow for pre- and post-processing, which may
reduce the table size by a factor of 4k (for example, by a factor
of 64 for k=16).

A component of system 10 may include an interface, logic,
memory, and/or other suitable element. An interface receives
input, sends output, processes the input and/or output, and/or
performs other suitable operation. An interface may comprise
hardware and/or software.

Logic performs the operations of the component, for
example, executes instructions to generate output from input.
Logic may include hardware, software, and/or other logic.
Certain logic, such as a processor, may manage the operation
of'a component. Examples of a processor include one or more
computers, one or more microprocessors, one or more appli-
cations, and/or other logic.

A memory stores information. A memory may comprise
computer memory (for example, Random Access Memory
(RAM) or Read Only Memory (ROM)), mass storage media
(for example, a hard disk), removable storage media (for
example, a Compact Disk (CD) or a Digital Video Disk

20

25

30

35

40

45

50

55

60

65

4

(DVD)), database and/or network storage (for example, a
server), and/or other computer-readable medium.

Modifications, additions, or omissions may be made to
system 10 without departing from the scope of the invention.
The components of system 10 may be integrated or separated
according to particular needs. Moreover, the operations of
system 10 may be performed by more, fewer, or other mod-
ules. Additionally, operations of system 10 may be performed
using any suitable logic. As used in this document, “each”
refers to each member of a set or each member of a subset of
a set.

Modifications, additions, or omissions may be made to the
methods described herein without departing from the scope
of the invention. The method may include more, fewer, or
other steps. Additionally, steps may be performed in any
suitable order without departing from the scope of the inven-
tion.

FIGS. 2 and 3 illustrate examples of hierarchical trees that
may be represented by table 32. The examples are hierarchi-
cal trees for binary-to-DLS conversion and DLS-to-binary
conversion. The one-to-one and conditional complementa-
tion properties hold for these conversions and are evident as
symmetries in the hierarchical trees.

A k-bit integer n satisfying 0=n=2*-1 has a modular
factorization n=1(-1)"2#3°| ,z. Integer n may berepresented by
the exponent triple (s,p,e), where 0=s=1, 0=p=k, and
0=e=22_1. The exponent triple (s,p,e) may be uniquely
specified by further limiting the range of e and s, depending
on the value of p. Binary-to-discrete log transformation refers
to determining the triple (s,p,e) for a given k-bit integer n, and
discrete log-to-binary inverse transformation refers to deter-
mining the integer n for a given triple (s,p,e). In one embodi-
ment, a discrete logarithmic system (DLS) may represent
integers n by their corresponding exponent triples (s,p.e). The
transformations allow integer multiplication to be reduced to
addition of corresponding terms of the triples.

According to one embodiment, the exponent triple (s,p,e)
for a k-bit integer n may be stored as a k-bit string using
variable width fields. For 0=n=2*-1, the value of p deter-
mined by the right-shift normalization satisfies 0=p=k-1.
Value p may be represented by the (p+1)-bit value 27 right
adjusted in the k-bit field. For 0=p=2*2, exponent e satisfies
0=e=2"7"2_1. Exponent e may be stored in a (k—p—2)-bit
field left adjusted in the k-bit field.

According to the embodiment, the lengths of the fields for
e and 27 may be variable. In the embodiment, the lengths of
the fields for e and 2° may total (k—1) bits, where a bit between
the fields for e and 2 may provide sign bit information. For
example, the bit between the fields may be assigned the value
(e, xor s). Accordingly, the length of the e field may be longer
and the 2° field may be shorter when more bits are needed to
store entries of the e field than to store entries of the 27 field.
The length of the 27 field may be longer and the e field may be
shorter when more bits are needed to store entries of the 2
field than to store entries of the e field.

Any suitable table representation of one-to-one mappings
for any suitable one-to-one function may be used. According
to one embodiment, the one-to-one mapping between 5-bit
discrete log numbers comprising a 5-bit discrete log repre-
sentation and 5-bit integers may be given by TABLE 1.

US 7,962,537 B2

5
TABLE 1

Discrete Log
Number System _Partitioned DLS Bit Strings Integer Value

Standard Integer

(DLS) Encoding e ey Xors s 1(-1)"273°15, Binary Parity
00001 000 0 1 1 00001 Odd
00011 000 1 1 31 11111
00101 001 0 1 29 11101
00111 001 1 1 3 00011
01001 010 0 1 9 01001
01011 010 1 1 23 10111
01101 011 0 1 5 00101
01111 011 1 1 27 11011
10001 100 0 1 17 10001
10011 100 1 1 15 01111
10101 101 0 1 13 01101
10111 101 1 1 19 10011
11001 110 0 1 25 11001
11011 110 1 1 7 00111
11101 111 0 1 21 10101
11111 111 1 1 11 01011
00010 00 0 10 2 00010 Singly Even
00110 00 1 10 30 11110
01010 01 0 10 26 11010
01110 01 1 10 6 00110
10010 10 0 10 18 10010
10110 10 1 10 14 01110
11010 11 0 10 10 01010
11110 11 1 10 22 10110
00100 0 0 100 4 00100 Doubly Even
01100 0 1 100 28 11100
10100 1 0 100 20 10100
11100 1 1 100 12 01100
01000 0 1000 8 01000 Triply Even
11000 1 1000 24 11000
10000 10000 16 10000 Quad. Even
00000 00000 0 00000 Zero

Modifications, additions, or omissions may be made to
TABLE 1 without departing from the scope of the invention.
TABLE 1 may include more, fewer, or other fields or entries.

In TABLE 1, parsing begins from the right hand side to
determine the variable length field identifying 27=2". Zeros
are counted until the first unit bit is encountered. The next bit
is a separation bit providing the logical value se,. The
remaining leading bits are the 3-p bits of the exponent
0=e=27_1 sufficient to determine the odd factor i=|(-1)°
3¢+ For example, if DLS=10110, e=10,=2, ;, and then s=1 is
determined from e,=0 and s@e,=1. Then, I(-1)'2'3%|,,=I-
1815,=14, or byb;b,b, b,=01110.

FIG. 2 illustrates one example of a hierarchical tree 110 for
binary-to-DLS conversion. Hierarchical tree 110 includes
levels 114 of nodes 120 and branches 124. Nodes 120 repre-
sent input binary values b,, and branches 124 represent output
DLS values a,. A level 114 includes nodes 120 and branches
124 for a particular i.

In the illustrated example, binary value b,b;b,b,b,=01101
is input. Value b,=1 corresponds to a,=1; b,=0 corresponds to
a,=0; b,=1 corresponds to a,=1; b;=1 corresponds to a;=0;
and b,=0 corresponds to a,=1. That is, binary string
b,bsb,b,b,=01101 yields DLS string a,a;a,a,;a,=10101.

FIG. 3 illustrates one example of a hierarchical tree 160 for
DLS-to-binary conversion. Hierarchical tree 160 includes
levels 164 of nodes 170 and branches 174. Nodes 170 repre-
sent input binary values b,, and branches 124 represent output
DLS values a,. A level 164 includes nodes 170 and branches
174 for a particular index i. The values ot hierarchical tree 160
may be substantially similar to the values of hierarchical tree
110.

Inthe illustrated example, DLS string a,a;a,a;a,=10101 is
input. Value a,=1 corresponds to by=1; a,=0 corresponds to

35

40

45

50

55

60

65

b,=0; a,=1 corresponds to b,=1; a;=0 corresponds to b;=1;
and a,=1 corresponds to b,=0. That is, DLS string
a,a,a,a,a,=10101 yields binary value b,b;b,b,b,=01101.

FIG. 4 illustrates an example of a table lookup system 210.
Table lookup system 210 takes into account the one-to-one
correspondence and conditional complementation properties
of binary-to-DLS conversion. The one-to-one correspon-
dence property allows system 210 to omit the right children of
the hierarchical tree, thus storing only the left children. Con-
ditional complementation is performed on the table output to
make up for the omitted right children.

System 210 includes a memory 214, selectors 222 and 224,
one or more stages 240, and a post-processing element 244. In
the illustrated embodiment, system 210 receives an input
operand [a,:a,]=[a,:a, ,], which is sent to memory 214 as a
table input [a,:a,,].

Memory 214 comprises rows 218. Memory 214 stores bits
that represent a hierarchical tree. Each row 218 is associated
with lower order values and stores bits for the sub-trees cor-
responding to order the lower order values. The lower order
values serve as an address for a row 218. In the illustrated
embodiment, memory 214 represents a hierarchical tree for
table input [a,4:a,,], more specifically, the left children of the
hierarchical tree. Memory 214 has 256 rows 218, with 264
bits per row 218, where each row 218 is associated with
specific lower order values [a,:ag].

In the illustrated embodiment, system 210 includes three
stages 240a-c. The first stage 240a determines an address to
select a row 218. In the illustrated embodiment, first stage
240aq uses the low order values [a,:a,] of the table input as the
address bits. In one embodiment, the operations of first stage
240a may be performed by a circuit that uses the low order
values [a,:a,] to select the appropriate row 218.

US 7,962,537 B2

7

The second and third stages 2405-¢ determine higher order
bits for the sub-trees. Selectors 222 and 224 select bit fields
and then select the higher order bits from the bit fields. Select-
ing bits from a row 218 leaves one or more remaining bits of
the row 218, where at least one remaining bit is disposed
between two bit fields.

The second stage 2405 determines middle order bits for
middle-level sub-trees. In the illustrated embodiment, second
stage 2405 corresponds to four sub-trees between levels 8 and
9, which are represented by four bytes. Middle order values
[ag:a,] are used to select one of the four bytes. Four bits are
extracted from the selected byte. Value [a,] is used to select
one bit, and values [a, ,:a,] are used to select another bit. The
other two bits are extracted directly without selection. Thus,
four bits are selected.

The third stage 240c¢ selects high order bits for the high-
level sub-trees. In the illustrated embodiment, there are 32
sub-trees between level 8 and level 12 formed as 32 7-bit
fields. Values [ag:a,,] are used to select one of the 32 7-bit
fields. Three bits are extracted from the selected 7-bit field.
Value [a, ;] is used to select one bit from the selected field, and
values [a, ;:a,,] are used to select another bit from the selected
field. The rightmost bit is extracted directly without selection.
Thus, three bits are selected. The three stages 240 concatenate
the address bits and selected bits to yield a 15-bit output.

Post-processing element 244 performs conditional
complementation on the table output to account for the omit-
ted right children. In one embodiment, conditional comple-
mentation is performed by 16 2-bit-input XOR gates. The
corresponding bit from the result of the padding and the input
are connected to the inputs of the XOR gates. Post-processing
element 244 also pads a one to the Least Significant Bit (LSB)
position of the 15-bit output of the three stages 244.

FIG. 5 illustrates another example of a table lookup system
310. Table lookup system 310 takes into account the inherit-
ance, one-to-one correspondence binary integer right-nor-
malization, and conditional complementation properties of
binary-to-DLS conversion.

System 310 includes a pre-processing element 312, a
memory 314, selectors 322 and 324, one or more stages 340,
and a post-processing element 344. In the illustrated embodi-
ment, system 310 receives an input operand [ay:a,|=[ay:a, 4]
Pre-processing element 312 pre-processes the input operand
to yield a table input appropriate for memory 314. In one
embodiment, pre-processing element 312 pre-processes the
input operand [a,:a,,] to yield table input [a';a';:a"; ,].

In the embodiment, pre-processing element 312 deter-
mines the binary exponent p by normalizing the operand.
Pre-processing element 312 shifts right and selects a bit field
based on the operand, then shifts right in the selected bit field
and selects a next bit field based on the operand, and so on
until binary exponent p is obtained. For example, pre-pro-
cessing element 312 first shifts right 8 bits and selects the
lower 8 bit field or the higher 8 bit field based on the operand.
Next, pre-processing element 312 shift right 4 bits of the
selected 8-bit field and selects the lower 4 bit field or the
higher 4 bit field. Pre-processing element 312 continues until
the binary exponent p of the operand is obtained. Because the
binary exponent p is known, first bit a, is not needed.

In one embodiment, pre-processing element 312 also
extracts the sign bit for the operand. In the embodiment, the
sign bit is the third bita, of the normalized operand. If the sign
bit is asserted, the normalized operand is conditionally
complemented. Due to sign-symmetry, sign bit a, is not
needed. Pre-processing element 312 yields table input [a';a'5:
a'; 4], where a'; is the complement of a,, for memory 314.

5

20

25

30

35

40

45

50

55

60

65

8

Memory 314 is substantially similar to memory 214, but
has 128 rows 318, with 142 bits per row 318, where arow 318
corresponds lower order values [a';a'5:a's]. In the illustrated
embodiment, system 310 includes three stages 340a-c. First
stage 340a uses low order values [a';a';:a',] as address bits to
select a row 318. In one embodiment, the operations of first
stage 340a may be performed by a circuit that uses the low
order values to select the appropriate row 318.

The second and third stages 3405-c¢ determine higher order
bits for the sub-trees. Selectors 322 and 324 select bit fields
and then select the higher order bits from the bit fields. Select-
ing bits from a row 318 leaves one or more remaining bits of
the row 318, where at least one remaining bit is disposed
between two bit fields.

The second stage 3405 determines middle order bits for
middle-level sub-trees. In the illustrated embodiment, second
stage 3405 corresponds to sub-trees between levels 7 and 8,
which are represented by 6-bit fields. Middle order values
[a's:a';;] are used to select one of the fields. Two bits are
extracted from the selected field. Value [a',] is used to select
one bit, and values [a':a', ;] are used to select another bit.

The third stage 340c¢ selects high order bits for the high-
level sub-trees. In the illustrated embodiment, there are 16
sub-trees between level 7 and level 10 formed as 16 7-bit
bytes. Values [a'y:a',] are used to select one of 16 bytes. Four
bits are extracted from the selected byte. Value [a', 5] is used to
select one bit from the selected byte, and values [a',;:a',,] are
used to select another bit. The other two bits are extracted
directly without selection. The three stages 340 concatenate
the address bits and selected bits to yield a 13-bit output.

Post-processing element 344 processes the table output. In
one embodiment, post-processing element 344 de-normal-
izes the table output to compensate for the normalization
performed by pre-processing element 312. Post-processing
element 344 also pads bits with indices less than the power of
the input operand with zeros, and fills the bits with larger
indices with lookup values. Post-processing element 344 per-
forms conditional complementation on the table output in a
manner substantially similar to that of post-processing ele-
ment 244.

FIG. 6 illustrates an example of a circuit 400 operable to
select the appropriate table row and/or generate at least a
portion of the table output. Circuit 400 may output an n-bit
integer function value that may be used to generate an m-bit
integer function value, m>n, through table lookup. In the
embodiment, circuit 400 represents the five low order bits of
the multiplicative inverses modulo 2°.

Circuit 400 includes inputs 412, exclusive-OR gates
410a-c, AND gates 414a-c, an OR gate 418, and outputs 420
coupled as shown. Circuit 400 receives input [a,:a,] and
generates output [by:b,] from the input. The output may be
used to select a row of a table.

Certain embodiments of the invention may provide one or
more technical advantages. A technical advantage of one
embodiment may be that a system includes hardware support
for integer valued functions. The hardware support may allow
for more efficient calculation of integer valued functions.

Another technical advantage of one embodiment may be
that the system represents a hierarchical tree for an integer
valued function. The system includes a lookup table that
stores bits representing at least a portion of the tree. The table
has subsets (such as rows). Each subset is associated with
particular lower order values of operands and stores bits rep-
resenting sub-trees corresponding to the lower order values.
The lower order values of an input operand serve as an
address to select the appropriate subset to calculate the table

US 7,962,537 B2

9

output for the operand. Organizing the lookup table into such
subsets may allow for a reduced table size.

Another technical advantage of one embodiment may be
that the system performs pre-processing of the input operand
to generate table input for the table. For example, the operand
may be normalized to determine a binary exponent for the
operand. As another example, a sign bit of the operand may be
determined. Pre-processing may allow for a reduced table
size.

Another technical advantage of one embodiment may be
that the system performs post-processing of table output to
generate the function output. For example, the table output
may be de-normalized. As another example, conditional
complementation may be performed on the table output. Post-
processing may also allow for a reduced table size.

Another technical advantage of one embodiment may be
that one or more circuits may be used to generate the function
output. For example, a circuit may be used to select the
appropriate subset and/or generate at least a portion of the
function output.

While this disclosure has been described in terms of certain
embodiments and generally associated methods, alterations
and permutations of the embodiments and methods will be
apparent to those skilled in the art. Accordingly, the above
description of example embodiments does not constrain this
disclosure. Other changes, substitutions, and alterations are
also possible without departing from the spirit and scope of
this disclosure, as defined by the following claims.

What is claimed is:
1. A method for determining a table output of a table
representing a hierarchical tree, comprising:
determining, by one or more processors, an address from a
portion of a table input;
selecting, by the one or more processors, a subset of a
memory according to the address, the memory repre-
senting the hierarchical tree for an integer valued func-
tion, the subset representing a subtree of the hierarchical
tree;
selecting, by the one or more processors, a plurality of bit
fields from the subset;
extracting, by the one or more processors, a plurality ofbits
from the plurality of bit fields; and
determining, by the one or more processors, the table out-
put from the extracted bits.
2. The method of claim 1, the subset of the memory com-
prising a row of the memory.
3. The method of claim 1, further comprising:
pre-processing an input operand to yield the table input.
4. The method of claim 1, further comprising:
pre-processing an input operand to yield the table input, the
pre-processing comprising:
normalizing the input operand to determine a binary
exponent for the input operand.
5. The method of claim 1, further comprising:
pre-processing an input operand to yield the table input, the
pre-processing comprising:
determining a sign bit of the input operand.
6. The method of claim 1, wherein selecting the plurality of
bit fields from the subset further comprises:
leaving one or more remaining bits of the subset, at least
one remaining bit disposed between two bit fields of the
plurality of bit fields.
7. The method of claim 1, wherein determining the table
output from the extracted bits further comprises:
concatenating the extracted bits and the address to form the
table output.

25

30

35

40

55

60

65

10

8. The method of claim 1, further comprising:
post-processing the table output to yield a function output.
9. The method of claim 1, further comprising:
post-processing the table output to yield a function output,
the post-processing comprising:
de-normalizing the table output.

10. The method of claim 1, further comprising:

post-processing the table output to yield a function output,
the post-processing comprising:
performing conditional complementation on the table

output.

11. The method of claim 1, further comprising:

determining at least a portion of a function output using a
circuit.

12. A system for determining a table output of a table

representing a hierarchical tree, comprising:
a memory operable to store a representation of the hierar-
chical tree for an integer valued function; and
one or more stages coupled to the memory and operable to:
determine an address from a portion of a table input;
select a subset of the memory according to the address,
the subset representing a subtree of the hierarchical
tree;

select a plurality of bit fields from the subset;

extract a plurality of bits from the plurality of bit fields;
and

determine the table output from the extracted bits.

13. The system of claim 12, the subset of the memory
comprising a row of the memory.

14. The system of claim 12, further comprising:

a pre-processing element operable to pre-process an input

operand to yield the table input.

15. The system of claim 12, further comprising:

a pre-processing element operable to pre-process an input
operand to yield the table input by:
normalizing the input operand to determine a binary

exponent for the input operand.

16. The system of claim 12, further comprising:

a pre-processing element operable to pre-process an input
operand to yield the table input by:
determining a sign bit of the input operand.

17. The system of claim 12, the one or more stages further

operable to select the plurality of bit fields from the subset by:

leaving one or more remaining bits of the subset, at least

one remaining bit disposed between two bit fields of the
plurality of bit fields.

18. The system of claim 12, the one or more stages further
operable to determine the table output from the extracted bits
by:

concatenating the extracted bits and the address to form the
table output.

19. The system of claim 12, further comprising:

a post-processing element operable to post-process the
table output to yield a function output.

20. The system of claim 12, further comprising:

a post-processing element operable to post-process the
table output to yield a function output by:
de-normalizing the table output.

21. The system of claim 12, further comprising:

a post-processing element operable to post-process the
table output to yield a function output by:
performing conditional complementation on the table

output.

22. The system of claim 12, the one or more stages further
comprising:

a circuit operable to determine at least a portion of a func-

tion output.

US 7,962,537 B2

11

23. A system for determining a table output of a table
representing a hierarchical tree, comprising:

means for determining an address from a portion of a table
input;

means for selecting a subset of a memory according to the
address, the memory representing the hierarchical tree
for an integer valued function, the subset representing a
subtree of the hierarchical tree;

means for selecting a plurality of bit fields from the subset;

means for extracting a plurality of bits from the plurality of

bit fields; and
means for determining the table output from the extracted
bits.
24. A system for determining a function output of an inte-
ger valued function, comprising:
a memory operable to store a representation of a hierarchi-
cal tree for the integer valued function; and

10

12

one or more stages coupled to the memory and comprising:
a circuit operable to:
determine a circuit output from one or more input bits
of an input operand;
the one or more stages further operable to:
determine an address from a portion of a table input
generated from the input operand;
select a subset of the memory according to the address,
the subset representing a subtree of the hierarchical
tree;
select a plurality of bit fields from the subset;
extract a plurality of bits from the plurality of bit fields;
and
determine a table output from the extracted bits; and
determine the function output from the table output and
the circuit output.

#* #* #* #* #*

