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SQUARING CIRCUIT 

FIELD 

2 
apparent from the description and drawings, and from the 
claims. For example, hardware-based squaring circuits, such 
as those described here, can accommodate the increasing 
demand for cryptography hardware support in low power, 
high-speed mobile devices. 

DESCRIPTION OF THE DRAWINGS 

The present disclosure is directed to a squaring technique 
that can be implemented as a circuit or as a software 
algorithm, and more particularly, a squaring technique that 
uses an arbitrary radix number system. 

BACKGROUND 
FIG. 1 is a schematic diagram of an example landscape 

10 that includes a device with a squaring circuit in communi
cation with a network. 

FIG. 2 is a schematic block diagram of an example 
squaring circuit in accordance with the present disclosure. 

Squaring is an arithmetic operation used in many digital 
systems. Squaring circuits can be used for digital signal 
processing applications, such as image compression, pattern 
recognition, and others. Squaring is also used as an atomic 
computation for some cryptography algorithms. Squaring 
~ircuit architecture is also commonly incorporated in graph
ICS processors. Several general purpose multiplier circuit 
designs have also been proposed based on squaring of input 
operands. 

FIGS. 3A-3C are example diagrams of a squaring circuit 
15 operating on a six bit string using a two bit substring. 

FIGS. 4A-4B are example diagrams of a squaring circuit 
operating on a six bit string using a three bit substring. 

FIG. SA is an example of a portion of a process flow 
diagram for squaring an input value in accordance with the 

20 present disclosure. 

SUMMARY 

Certain aspects of the present disclosure pertain to meth
ods, circuit elements, and computer program products for 25 

squaring a value. A fixed-point value with a fixed word size 
and a substring size for substrings of the fixed-point value 
can be identified, wherein the fixed-point value comprises a 
binary bit string. A square of the fixed-point value can be 
determined using the fixed point value, the substring size, 30 

and least significant bits of the fix-point value equal to the 
substring size. 

In some implementations, a square can be determined by 
iteratively determining squares of substrings of the fixed
point value using least significant bits of each operand equal 35 

to the substring size and the substring of the fixed-point 
value, wherein the operand in each iteration comprises a 
portion of the previous operand, wherein the operand is 
formed by decatenating the previous operand least signifi-
cant bits equal to the substring size. 40 

In some implementations, determining a square of a fixed 
point value can include identifying the fixed-point value as 
an operand. A substring of the operand can be determined as 
the least significant bits of the operand where the substring 
is of a specified substring size. The substring can be decaten- 45 

tated from the operand to form a word. The substring can be 
squared using the word, the substring, and the substring size. 
The square of the substring can be added to a result. If a 
length of the word is greater than zero, the word can be 
identified as the operand and the determining, decatenating, 50 

squaring, and adding steps can be executed. If the length of 
the word and substring is zero, one more iteration is under
taken to account for non-zero residual values, and the result 
is identified as the square of the fix-point value. 

In some implementations, the following expansion can be 55 

calculated: 

FIG. SB is an example of another portion of the process 
flow diagram for squaring an input value in accordance with 
the present disclosure. 

DETAILED DESCRIPTION 

The present disclosure describes an iterative squaring 
technique that produces a 2 nm-bit length result, a 2

, based 
on an input operand (often referred to as a squarand) a of 
nm-bits in length. The circuit produces 2m bits of the output 
a 2 during each iterative step. By considering an m-bit 
grouping within the squarand a as representing a single 
radix-2m digit, the circuit can be considered a digit-serial 
implementation that produces two m-bit digits per iteration. 

This digit-serial architecture may allow for a tradeoff 
between bit-serial and parallel architectures by allowing for 
the digit to be represented by m bits. Because 2m bits of the 
result are computed in each iterative step, varying m can 
yield more or less parallelism while inversely affecting 
required circuit area. Thus, a minimal or otherwise reduced 
area circuit can be realized when m is small (bit-serial for the 
case m=l) and a large parallel circuit results at the other 
extreme when m is set to the wordsize of the squarand. 
Designers may be able to choose an appropriate value of m 
such that performance requirements are met while minimiz
ing or otherwise reducing the amount of circuitry required. 

Arithmetically, the technique assumes the squarand is 
represented as a higher-radix digit string where each digit is 
represented by an m-bit substring. Furthermore, the tech
nique may yield two digits of output squared value during 
each iterative step; hence, a total of 2m bits of the squared 
result are computed at each iterative step. 

FIG. 1 is a schematic diagram of an example landscape 
100 that includes a device 102 having a squaring module 106 
in accordance with the present disclosure in communication 
with a network 104. The device 102 may be any type of 
computing device, such as a personal computer, a touch 
sc_reen terminal, a workstation, a network computer, kiosks, 
Wireless data ports, wireless or wireline phones, smart-

where A is the word, ~ is the radix, the substring size is 
log2 [~], and b is the substring value minus ~/2. 

60 phones, personal data assistants (PDAs ), one or more pro
cessors within these or other devices, or any other suitable 
processing device, to execute operations associated with 
squaring algorithms. For example, device 102 may be a 
PDA operable to wirelessly connect with a network 104. In 

The details of one or more embodiments of the disclosure 
~re set forth in the accompanying drawings and the descrip
tiOn below. Other features, objects, and advantages will be 

65 another example, client 102 may be a laptop or tablet 
computer that includes an input device, such as a keypad, 
touch screen, mouse, or other device that can accept infor-



US 9,684,489 B2 
3 

mation, and an output device that conveys information, 
including digital data, visual information, or graphical user 
interface. Device 102 may also be a server that can execute 
operations using input data received from other devices and 
can send results of operations to other devices across net
work 104. 

4 
Digits are restricted to the natural numbers when ~:dO, 

and are members of the set: 

For the case where ~> 10, alternative single characters are 
used to represent a digit such as the characters "A" through 
"F" for the case of ~=16. 

Where necessary for clarity, digit strings are subscripted 

10 
by the radix ~ of the particular number system being used, 

The device 102 includes a squaring module 106. The 
squaring module 106 (described in more detail in FIG. 2) 
receives as an input a squarand a 108 and a value m 110 that 
indicates the substring bit length for the squaring operation. 
The squaring module 106 outputs a result a 2 112. The 
squarand 108 and the substring bit length 110 may be 
received locally through an input device of device 102, or 
may be received from a device across network 104. The 

15 
result 112 may be displayed to a user of device 102 on a local 
display or graphical user interface. In some implementa
tions, the result 112 can be transmitted to another device 
across network 104. 

Network 104 facilitates wireless or wireline communica-
20 

tion between device 102 and other devices. Network 104 
may be all or a portion of an enterprise or secured network. 
In another example, network 104 may be a VPN between 
device 102 and other devices across a wireline or wireless 
link. Such an example wireless link may be via 802.11a, 

25 
802.11b, 802.11g, 802.11n, 802.20, WiMax, and many oth
ers. The wireless link may also be via cellular technologies 
such as 3GPP GSM, UMTS, LTE, etc. While illustrated as 
a single or continuous network, network 104 may be logi
cally divided into various sub-nets or virtual networks 
without departing from the scope of this disclosure, so long 

30 

as at least portion of network 104 may facilitate communi
cations between senders and recipients of requests and 
results. In other words, network 104 encompasses any 
internal and/or external network, networks, sub-network, or 

35 
combination thereof operable to facilitate communications 
between various computing components in system 100. 
Network 104 may communicate, for example, Internet Pro
tocol (IP) packets, Frame Relay frames, Asynchronous 
Transfer Mode (ATM) cells, voice, video, data, and other 
suitable information between network addresses. Network 
104 may include one or more local area networks (LANs), 
radio access networks (RANs), metropolitan area networks 
(MANs), wide area networks (WANs), all or a portion of the 
global computer network known as the Internet, and/or any 

45 
other communication system or systems at one or more 
locations. 

40 

The following notation may be used in the description of 
the digit-serial fixed-point squaring algorithm: 

~ represents the radix or base of a number system. ~ may 
50 

be in the set of natural numbers, ~EN. 
The 'radix polynomial' form of a value a is written as an 

n-term polynomial of the form: 

a=[an-1 an-2 · · · a2 a1 aolfl· 
LSD(a,k) and MSD(a,k) are operators that yield k least 

significant or most significant digits, respectively, in the 
digit string representing a value a. LSD( a, 1) represents the 
least significant digit of a, LSD(a,1)=a0 . Likewise the most 
significant digit is given as MSD( a, 1 )=an_1. 

{A,B,C} denotes concatenation of the content of registers 
A, B, and C which can be of any size and whose individual 
sizes may differ. 

SHL(A,k,B) denotes the operation of shifting the content 
of register A to the left by k bits and setting the least 
significant k bits to the content of register B. A can be of any 
size greater than or equal to the size of B and B must be of 
size k. 

SHR(A,k,B) denotes the operation of shifting the content 
of register A to the right by k bits and setting the most 
significant k bits of A to the content of register B. A can be 
of any size greater than or equal to the size of B and B must 
be of size k. 

A.,_B denotes the operation of setting the content of 
register A with that of register B. A and B can be the same 
size in some implementations. 

The radix-~ value A is defined as A=a-a0 . Expressed as 
a positional n-digit string: 

Thus, A can be formed by replacing LSD( a, 1 )=a0 with the 
zero digit [Ok or as: 

A~{ SHR([ a-0] ~,1, [OJ ~),[0] ~}. 

The present disclosure describes a circuit and algorithm 
such that the choice of radix ~ allows for a trade-off in logic 
circuit area versus throughput performance in the computa
tion of a 2 when a is represented as a binary bit string. 
Higher values of ~ allow more bits to be produced per 
iterative step in the resulting representation of a 2. A tradeoff 
occurs in that the amount of computation or logic required 
at each iterative step increases for higher radix values. 

In the basis of the algorithm as stated here, it is assumed 
that the squarand is of the form of a binary bit string. 
Intermediate computations can be efficiently implemented 
when the radix ~ is in the form ~=2m where m is a positive 

A value a can also be represented in the radix-~ number 
system in the form of a positional string of n characters 
denoted by a=[an_1 an_2 ... a2 a1 a0 ]. For clarity, the 
character strings denoting the positional digit representa
tions of a value a may be enclosed by square brackets. The 
digits a, are the coefficients of the radix-polynomial form and 
their position within the string inherently denotes the expo
nent of the radix ~· 

55 integer m2:2. Efficiency results since ~=2m allows each 
higher radix digit in the string representing a to be equiva
lent to an m-bit substring within a. a, in terms of a 
higher-radix digit string, is simply the concatenation of the 
disjoint m-bit substrings of a in binary form where LSD( a, 

Each character a, in a positional string representing a 
value is referred to as a "digit" regardless of the radix of the 
number system. Binary digits may alternatively be referred 
to as "bits." 

60 1) is the least significant m bits, the subsequent next sig
nificant higher-radix digit is represented by the next group of 
m bits to the left of LSD( a, 1 ), and so on. 

For convenience in specifYing the basis of the algorithm, 
Equation (1) can be written with the restriction that ~=2m 

65 and some of the individual terms on the right-hand side of 
the equation can be denoted as T1, T2, and T3 . a 2 can be 
written as: 
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(1) 

The terms T u T 2 , and T 3 are explicitly defined as follows: 

T1 =(~)2Qn+(~)\ 

T2 = 2(A + ~)b; 

The idea behind the algorithm may be to compute terms 
T 1 , T 2 and T 3 during each iterative step and accumulate them 
with the previous result. Subsequent iterations use A/~ from 
the (A/~)2 term in Equation (1) as a squarand. The subse
quent operand A/~ for each iterative step is a digit string 
containing one less digit than the squarand in the previous 
step indicating that the iterative algorithm requires O(n/m) 
iterations to complete. The 22

m shifting factor of the first 
term in Equation (1) illustrates the fact that two digits (2m 
length bitstrings) are produced at each step and they repre
sent digits in a 2 that are produced in the order of the lesser 
significant digits first. 

Several observations may be used to more efficiently 
implement the computation of the three terms T 1 , T 2 , and T 3 

in the squaring algorithm. First, the term AI~ may be 
efficiently obtained by shifting the digit string representing 
a one position to the right and discarding a0 , A/~=[an_ 1 
an_2 ... a2 a1] 13 • Second, values that are multiplied by a factor 
of ~=2km may be easily obtained by shifting the value to left 
by km bit positions and inserting a radix-~ zero digit place 
holder [0] 13 for the vacated least significant digits. Third, the 
term ~/2 is always of the form of a single radix-~ digit. 
Expressed as an m-bit binary string ~/2=[10 ... 0]2 . Finally, 
the term (~/2)2 is always of the form of two radix-~ digits 
with the most significant digit of value ~/4 and the least 
significant digit of value zero. Hence, expressed as a 2m-bit 
binary string, (~/2)2=[010 ... 0]2 . 

Term T 1 can be computed in a single operation. Making 
use of the first and second observations, the value (A/~)22m 

6 
higher-valued radix ~ is used that is not an integral power of 
two since this can be considered a "fractional digit shift," if 
~>'2m. 

The final step in the formation of term T 2 involves the 
5 multiplication of2(A+~/2)=[an_ 1 an_2 . .. a2 a1 (~/2)] 13 by the 

signed single radix-2m digit of b=a0-~2. Because b is a 
single digit value, this multiplication may be accomplished 
with a minimal or reduced amount of computation or 
circuitry as compared to a general purpose multiply opera-

10 tion or circuit. Clearly, as the value m is increased resulting 
in a higher valued radix, 2m, both computational complexity 
and overall algorithm throughput may increase. The actual 
implementation of the multiplication by b may be dependent 
upon the value m and may be carefully considered for a 

15 given realization of the algorithm. Relatively small values of 
m generally allow for a simple logic circuit or lookup table 
to be used. 

Term T3=b2 relies on the computation of the square of the 
residual value b. The implementation of this computation 

20 may also be dependent upon the size of m, which dictates the 
number of bits required to represent a radix-2m digit. For 
smaller values of m, the direct calculation of b2 can be very 
efficiently implemented as a small combinational logic cir
cuit or through a lookup table. As m increases, the compu-

25 tation ofb2 becomes more complex and other methods may 
be employed. 

For large values of m, the computation of T3 b2 can be 
accomplished in parallel with the computation of the other 
two terms T 1 and T 2 since accumulation ofT 1 + T 2 + T 3 with 

30 overall result can occur at the end of each iterative step. 
After terms T 1 , T 2 , and T 3 are formulated, they are 

summed together and accumulated with the previous result. 
The accumulation takes into account the process of multi
plying subsequent iterative operands by 22

m and the fact that 
35 two independent radix-~ digits (or, 2m bits) of the final 

result are produced at each iterative step. This can be 
implemented in a variety of ways, including using registers. 
The size of the register may be 2 nm bits where n is the 
number of radix-~ digits representing a and m denotes the 

40 radix. The final operation of each iterative step of the 
algorithm is to shift the result register 2m bits to the right and 
insert the 2m least significant bits ofT 1 + T 2 + T 3 into the most 
significant positions of the shifted result register. Insertion of 
the two radix-2m digits in the most significant portion of the 

45 result register instead of performing a multi-bit left shift 
before adding them to the previously accumulated result 
allows the algorithm to be implemented without the need for 
an inclusion of a multi-bit left shift operation or the use of 

is obtained by forming the digit string [an_ 1 an_2 ... a2 

a100] . Furthermore, based on the fourth observation, T3= 
50 (~/2)~ can always be expressed as two radix-2m digits (2m 

bits) denoted as [q1q0 ] 13 • Thus, T1 is obtained by forming the 
string [an_ 1 an_2 . .. a2 a1 q1 q0 ] 13 • From the fourth observa
tion, q1=~/4 and q0 =0 so that (~/2)2=[q1 q0] 13=[(~/4)0] 13 • 
Thus, the digit string representation for T1 is [an_ 1 an_2 ... 

a barrel shifting circuit in a hardware realization. 
The algorithm uses an iteration index i to determine if all 

digits of the squarand have been produced. For an n-digit 
radix-a squarand, the squared result consists of 2n digits. 
Because two digits are produced per iterative step, the index 
i ranges from zero to (n/2)-1. Initially, when i=O, a is the 

55 original squarand. During intermediate computations, when 
O<i<n/2, the algorithm iterates and sets the intermediate 
squarand a=A/~. In the final iterative step, the squarand 
argument becomes a=O; however, this step is performed to 
account for circumstances when the residual b is not zero-

a2 a1 (~/4)0] 13 • 

60 valued. 

Term T2 is computed by first forming a digit string 
representing 2(A+~/2) and then multiplying this string with 
the single radix-~ digit b. Relying on the first, second, and 
third observations, A=an_ 1 an_2 ... a2 a1 Ok and ~/2 may be 
represented as a single unsigned radix-2m digit (m-bit 
string). Therefore, (A+~/2)=[an_ 1 an_2 ... a2 a1 ~/2]. To 
account for the multiplicative factor of 2, the (A+~/2)=[ an_ 1 

an_2 ... a2 a 1 (~/2)k digit string is then shifted by one bit 
position to the left resulting in 2(A+~/2). The multiplicative 65 

factor 2 would in general be implemented through the use of 
an addition operation, 2(A+~/2)=(A+~/2)+(A+~/2), when a 

Any given implementation of the algorithm should 
include careful consideration of the mauner in which the 
signed digit b is represented. When explicitly represented 
using a radix-complement or a signed-magnitude form, m+1 
bits are required to account for the sign. Furthermore, 
depending upon the definition of the residual, b can take on 
integer values in either of the ranges [-(~/2),(~/2-1)] (as is 
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the case in this formulation) or [ -(~/2)+ 1 ,(~/2)]. However, 
because there is a one-to-one relationship between the a0 and 
b values (since b=a0-~/2), them-bit string representing a0 

can be used as an encoding for the corresponding b value. 
The algorithm formulated in the previous section makes 

use of several registers. For succinctness, the registers used 
within the algorithm statement are defined in Table 1, shown 
below: 

TABLE 1 

Registers Used in Squaring Algorithm 

name size (bits) content 

AB (n- l)m Ali) 
R 2nm a2 

log2(nlm) iteration matrix 
B ill residual b encoded as 

LSD(a, 1) 
ACC 2 nm Tl + T2 + T3 
T1 2 nm Tl 
T2 2 nm T2 
T3 2 nm T3 
B2 ill 1312 
B4 2m (1)12)2 ~ (1)214) ~ [(1)14)0]~ 

8 
The example algorithm shown above can undergo n/m 
iterations producing 2m bits of a 2 during each iterative step. 
Therefore, the algorithm has temporal complexity equiva
lent to O(n/m). In terms of required computational 
resources, the algorithm requires circuitry to perform shift
ing, bit-string concatenation, 2 nm-bit operand addition, 
mx2 nm-bit multiplication, and m-bit operand squaring. 
While 2 nm-bit operand addition operations are required in 
STEPs 4 and 6, it is noted that a single 2 nm-bit addition 

10 circuit can be used since these sums may be formed sequen
tially allowing for reuse of the single 2 nm-bit adder. The 
multiplication and single-digit squaring operations can be 
implemented in a variety of forms although it is noted that 
due to the relatively small size of the operands (m bits) very 

15 compact and fast circuits such as lookup tables are a 
practical choice. 

FIG. 2 is a schematic block diagram of an example 
squaring module 106 in accordance with the present disclo
sure. Squaring module 106 can be a hardware circuit com-

20 posed of analog and digital circuitry. Digital circuitry 
includes transistor-based logic circuits and components. In 
some implementations, squaring module 106 can be imple
mented as a software algorithm. Squaring module 106 can 
receive as an input the operand a 202, which is a value to 
be squared (squarand). In this example circuit, a synchro
nous digital logic circuit uses a quaternary radix, ~=22=4. 

A statement of the algorithm is given below. Intermediate 25 

locations within the algorithm are denoted by labels in the 
form "STEP k." The labels are included for convenience in 
referring to certain portions of the algorithm and they also 
indicate clock boundaries in that the results of STEP k-1 are 
registered before computation occurs in STEP k. As an 
example, the T2~{AB,B2} operation of STEP 3 must 
complete before the T2~SHL(T2,1 ,[0]2) operation of STEP 

The operand 202 is received by a multiplexer circuit 204. 
The computation T3~bxb in STEP 3 above uses a multi
plexer based lookup structure. A 4:1 multiplexer with 2m-bit 

30 data paths and an m-bit control signal chooses among the 
appropriate squared values of b. The squared values b2 that 
drive the multiplexer data inputs are pre-computed before 
implementation of the circuitry and are either hardwired or 
stored in registers. Alternatively, a small nonvolatile 

4 can proceed. Breaking up the computation of term T2 into 
multiple intermediate registered operations is an example of 
pipelining the datapath and allows for the overall circuit 
clock speed to be increased. The steps are described below: 

INPUT: 
a: nm-bit fixed-point squarand 
m: log2(i3)-bit value, indicates working radix 2m 

OUTPUT: 
a 2 : 2nm-bit value in register R 
STEP 1: 

i~o 

R~o 

B2~[10 ... 0b 
B4~[010 ... 0b 
AB~a 

STEP 2: 
B~LSD(AB,m) 

AB~SHR(AB,m,[O .. Ob) 
STEP 3: 

T1 ~{ AB,B4,[0 .. 0b} 
T2~{AB,B2} 

T3~bxb 

STEP 4: 
T2~SHL(T2,1,[0b) 

ACC~Tl+T3 

STEP 5: 
T2~T2xb 

STEP 6: 

!* iteration index *I 
!* initialize result register *I 
I* m-bits witb MSB~l *I 
I* 2m-bits witb MSBs~Ol *I 
I* squarand value *I 

I* encode b as LSD(AB,l) *I 
I* MS squarand digits *I 

I* form T1, m LSbs~O *I 
I* form A+i)l2 *I 
!* compute single digit square, 
uses a0 in B *I 

I* form 2(A+i)l2) *I 
I* form T 1+T3 *I 

I* form 2(A+i)l2)b, uses a0 in B *I 

ACC~ACC+T2 I* form T 1+T2+T3 *I 
STEP 7: 

R~SHR(R,2m,LSD(ACC,2)) I* update result *I 
i~i+l 

STEP 8: 
if (i~n/m) 

HALT 
else 

GO TO STEP 2 

!* increment iteration counter *I 

!* check iteration cmmt *I 
!* computation complete *I 

35 memory such as a ROM or flash circuit, or a volatile 
memory such as SRAM or DRAM, could be used with the 
B register contents driving the address lines and all possible 
b2 values stored in the memory. Register B drives the control 
lines of the multiplexer and represents the residual value b. 

40 It is noted that B actually contains the least significant digit 
at as an encoded value forb since b=a,-~/2. To clarify this 
encoding, Table 2 contains all values of b and the corre
sponding a, that serves as them-bit encoded representation 
of b for the radix-4 quaternary case. 

45 

50 

55 

TABLE 2 

Encoded Values of b for Radix-4 Number System 

a, b Encoded b in Register B 

0 -2 [OOb 
-1 [Olb 

2 0 [lOb 
[llb 

The computation of T2~ T2xb in STEP 5 of the algorithm 
is accomplished by using a 4:1 multiplexer as a simple 
lookup structure with data paths of size 2 nm and an m-bit 
control signal driven by the content of register B. The idea 

60 behind this circuit is similar to that of the T3~bxb com
putation in STEP 3 with the important difference that the 
possible T2xb values are computed during each iterative 
step rather than being precomputed and stored before circuit 
operation. Fortunately, these values are easily and efficiently 

65 computed since, for the quaternary implementation, they 
consist of the value 2(A+~/2) multiplied by only one of 
bE{-2, -1, 0, 1}. Thus, a negated version of2(A+~/2)=-[2 
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(A+~/2)] and a single-bit left-shifted shifted version of 
-[2(A+~/2)] are used as well as 2(A+~/2) and [0 ... 0] to 
drive the data inputs of the multiplexer. FIG. 4 contains a 
diagram of this subcircuit. 

The output of the multiplexer 204 is received by combi- 5 

national logic 206. Combinational logic 206 includes several 
outputs: one output is coupled to the input of the multiplexer 
204. The other outputs of combinational logic 206 are 
coupled to an adder array 208. Each of the multiplexer 204, 
the combinational logic 206, and the adder array 208 also 10 

include as inputs control signals from a clocked synchronous 
controller (not shown). 

The combinational logic 206 may be implemented based 
on simplifications in the formation of the intermediate terms 
T1 , T2 , and T3 , and their various sums. These simplifications 15 

exploit the choice of using ~=4 as an implicit operand radix 
and allow for the computation of the intermediate terms T 1 , 

T 2 , and T 3 to be implemented with a reduced and simplified 
set of register transfer level (RTL) operations. 

A single quaternary digit [ ak]4 can, in general, be written 20 

as a two-bit binary string [b2k+ 1 b2k] 2 where {b,E JB,} and 
JB, ={ 0,1}. Using this definition, various intermediate terms 
and their sums can be evaluated for different cases of the 
least significant digit of the squarand, a0 E{0, 1, 2, 3}. Term 
T 1 is independent of the value of a0 and is always a bit string 25 

of length 2n+2 expressed as: 

Tl[an-lan-2· · · a2al10]4=[b2n-lb2n-2b2n-3b2n-4 · · · 
bsb4 b3b2 0100b 

Case 1 30 
a0 =[0]4 resulting in the residual b=[ -2]4 , thus T 3 =b2= 

[10]4 =[0100h Term T2 can be expressed as: 

10 

= [OO ... OOh 

Combining the terms: 

Case 4 
a0 =[3]4 resulting in the residual b=[1]4 , thus T3 =b2= 

[01]4 =[0001h Term T2 can be expressed as: 

For this case, the sum T 2 + T 3 can be formed directly and it 
is subsequently combined with term T 1 using the addition 
circuit. T 2 + T 3 is formed as: 

35 
Table 3 below contains a summary of the results of the 
intermediate terms and their various sums in terms of values 
of the least significant digit of the operand at each iterative 
step. 

Combining the terms: 

= [0 ... 0]4 

= [00 ... OOh 

Case 2 
a0 =[1]4 resulting in the residual b=[ -1]4 , thus T 3 =b2= 

[01]4 =[0001h Term T2 can be expressed as: 

Combining the terms: 

Case 3 

[b2n-lb2n-2 ... b,b20100h
T1 + T2 + T, = 

[Ob2n-1b2n-2 ... b,b2lOOh + [0001h 

= [Ob2n-1b2n-2 ... b,b2001h 

a0 =[2]4 resulting in the residual b=[0]4 , thus T3 =b2= 
[00]4 =[0000h Term T 2 can be expressed as: 

40 

45 

50 

LS 
D(a4 , 1) 

0 

2 

TABLE 3 

Radix-4 Optimizations 

Intermediate 
Terrn 

Tl+T2+T3 
Tl+T2+T3 

Value 

[O ... Ob 
[Ob2n-l b2n-2 · · · b3 b2 
001b 
[b2n-l b2n-2 · · · b3 b2 
0100b 
[b2n-l b2n-2 · · · b3 b2 
0100b 
[Ob2n-l b2n-2 · · · b3 b2 
101b 

The combinational logic 206 makes use of the results in 
55 Table 3 and outputs the two 2n+2 bit values that are summed 

in the adder array 208 resulting in T 1 + T 2 + T 3 (i.e., the 
combinational logic includes two outputs: one for each input 
of the adder array). For the cases a0E{0, 1, 2}, T 1 +T 2 + T3 is 
formed directly in the combinational logic 206 and is input 

60 to the adder array 208 on the leftmost input bus with the 
right-most input set to the 2n+2 bit string [00 ... 00]2 . The 
adder array 208 is used for the case of a0 =3, where the 
left-most input is the bit string [b2 n_ 1 b2n_2 . .. b3 b20100] 2 

and the right-most input is [Ob2n_ 1 b2n_2 ... b3 b2 101]2 . 

65 Accumulator 210 consists of an internal accumulator 
register, an internal adder circuit, and a feedback loop that 
allows for the internal adder output to be stored in the 
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internal accumulator register. Accumulator 210 can receive 
the output of the adder array 208 where it is added to the 
previously stored value in the accumulator register and then 
stored back into the accumulator register. A right shift 
register 212 can receive the output of the accumulator. The 5 

size of the register 212 may be 2 nm bits where n is the 
number of radix-~ digits representing a and m denotes the 
radix. The final operation of each iterative step of the 
algorithm is to shift the result register 2m bits to the right and 
insert the 2m least significant bits ofT 1 + T 2 + T 3 into the most 10 

significant positions of the shifted result register. Insertion of 
the two radix-2m digits in the most significant portion of the 
result register instead of performing a multi-bit left shift 
before adding them to the previously accumulated result 
allows the algorithm to be implemented without the need for 15 

an inclusion of a multi-bit left shift operation or the use of 
a barrel shifting circuit in a hardware realization. After the 
iterative steps are completed, the square a 2 214 can be 
output. 

FIGS. 3A-3C are example diagrams of a squaring circuit 20 

operating on a six bit string using a two bit substring 
corresponding to a chosen substring length of m=2 
(~=22=4). FIGS. 3A-3C show three iterations used for 
calculating a value a 2

, where a has a bit length nm=6 and 
a substring length m=2. In FIG. 3A, the right-most input bits 25 

are represented as a0 and the remaining bits as A0 . The least 
significant bits a0 include 2 bits (m=2). Because the bit 
length of a is 6, this calculation requires 0(3) iterations since 
2x3=6. The bits a0 are received into the squaring module, 
and output as b0 that includes 4 bits (2m bits) and repre- 30 

senting two output digits (shown on the right side of the 
squaring module). In FIG. 3B, the remaining 4 bits of a are 
then considered. The least significant bits are represented as 
a1 having 2 bits (m=2), and the remaining 2 bits of a are 
represented as A 1 . The value a1 is received by the squaring 35 

module, and the output b1 includes 4 bits (2m bits) repre
senting two digits of the output value a 2

. Finally, in FIG. 3C, 
the remaining bits of a are represented as a2 (which are the 
most significant bits of the original string). The value a2 

(having 2 bits) is received by the squaring module, and 40 

output as b2 , which also includes 4 bits (2m bits) represent
ing the two most significant bits of the resultant string a 2

. 

FIG. 4A-4B are example diagrams of a squaring circuit 
operating on a six bit string using a three bit substring 
corresponding to a chosen substring length of m=3 45 

(~=23=8). FIGS. 4A-4B show two iterations used for cal
culating a value a 2

, where a has a bit length nm=6 and a 
substring length m=3 since ~ is chosen to be 23

. In FIG. 4A, 
the least significant input bits are represented as a0 and the 
remaining bits as A0 . The least significant bits a0 include 3 50 

bits (m=3). Because the bit length of a is 6, this calculation 
requires 0(2) iterations since 3x2=6. The bits a0 are received 
into the squaring module, and output as c0 including 6 bits 
(2m bits) representing two digits of a 2 (shown on the right 
side of the squaring module). In FIG. 4B, the remaining 3 55 

bits of a are then considered. The most significant bits are 
represented as a1 comprised of3 bits (m=3). Again, the value 
a1 is received by the squaring module, and the output c1 

includes 6 bits (2m bits) representing two digits of the output 
value a 2

. 

12 
FIG. SA is an example of a portion of a process flow 

diagram SOO for squaring an input value in accordance with 
the present disclosure. The example process flow described 
here is applicable for m=2. An input operand a and a 
substring size mare received (S02). The input operand may 
be identified as a binary digit string, a (S04). The least 
significant digit (LSD) substring, a, of the substring size m 
can be determined (S06). The LSD substring can be decat
enated from binary digit string to form a word, A (S08). A 
radix ~ is determined as 2m (S10). A residual value, b, is 
determined, as b=a-~/2 (S12). T 1 is determined as (A/~) 
22

m +(~/2)2 (S14). 
FIG. SB is an example of another portion of the process 

flow diagram SSO for squaring an input value in accordance 
with the present disclosure. Continuing from step S14, T 2 is 
determined as 2(A+~/2)b (S16). T3 is determined as b2 (S18). 
The value a 2 can be determined as (A/~)2 22m+T1+T2 +T3 

(S20). The resulting value a 2 can be concatenated with 
previous results, if any, as the most significant digit having 
bit length 2m (S22). A determination may be made as to 
whether the length of A is greater than the substring size m 
(S24). If A is less than or equal to m, then the process can 
iterate one additional time to account for a non-zero residual 
value and then terminates (S26). If the size of A is greater 
than m, then A can be identified as a word A and as the binary 
digit string, a (S28). Then, the process follows back to point 
(X) S30, which connects prior to point S06 of FIG. SA. The 
process then continues until it terminates based on the 
condition at point S24. 

A number of implementations have been described. Nev
ertheless, it will be understood that various modifications 
may be made including portions or the entirety of the 
implementation in software form. Accordingly, other imple
mentations are within the scope of the following claims. 

What is claimed is: 
1. An apparatus comprising: 
a squaring circuit configured to: 

identifY a fixed-point value with a fixed word size and 
a substring size for substrings of the fixed-point 
value, wherein the fixed-point value comprises a 
string of digits and an initial operand; 

for an initial iteration, determine a square of least 
significant digits of the initial operand; 

for each subsequent iteration: 
determine an operand for that iteration by decatenating 

least significant digits from an operand in a previous 
iteration, wherein a length of the least significant 
digits from the operand of the previous iteration is 
equal to the substring size; and 

determine a square using the least significant digits of 
the operand for that iteration and the substring size; 
and 

concatenate the squares from each iteration to estimate 
a square of the fixed-point value. 

2. The apparatus of claim 1, wherein each digit in the 
string of digits is in base 2. 

* * * * * 


