
c12) United States Patent
Thornton et al.

(54) SQUARING CIRCUIT

(75) Inventors: Mitchell A. Thornton, Dallas, TX
(US); Saurabh Gupta, Dallas, TX (US)

(73) Assignee: Southern Methodist University,
Dallas, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 247 days.

(21) Appl. No.: 13/601,709

(22) Filed: Aug. 31, 2012

(65)

(51)

(52)

(58)

(56)

Prior Publication Data

US 2014/0067893 Al Mar. 6, 2014

Int. Cl.
G06F 71544
G06F 71552
U.S. Cl.

(2006.01)
(2006.01)

CPC G06F 71544 (2013.01); G06F 71552
(2013.01); G06F 2207/5523 (2013.01)

Field of Classification Search
CPC G06F 2207/5523; G06F 7/552
USPC 708/490, 606, 620, 625
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,642,306 A * 6/1997 Mennemeier eta!. 708/625
6,260,056 B1 * 7/2001 Dalal 708/606

OTHER PUBLICATIONS

Vladimir Risojevic, eta!., "A Simple Pipelined Squaring Circuit for
DSP," ICCD '11 Proceedings of the 2011 IEEE 29th International
Conference on Computer Design, ISBN: 978-1-4577-1953-0, 2011,
pp. 162-167.

111111 111
US009684489B2

(10) Patent No.:
(45) Date of Patent:

US 9,684,489 B2
Jun.20,2017

E. Chaniotakis, eta!., "Long Number Bit-Serial Squarers" Proceed
ings of the 171

h IEEE Symposium on Computer Arithmetic
(ARITH'05), Jun. 2005, 8 pages.
Tien Chi Chen, "A Binary Multiplication Scheme Based on Squar
ing" IEEE Transactions on Computers, vol. C-20, No.6, Jun. 1971,
pp. 678-680.
Luigi Dadda, "Squarers for Binary Numbers In Serial Form" IEEE
Symposium on Computer Arithmetic, Jun. 4-6, 1985, 10 pages.
Satyendra R. Datla, et al., "A Low Power High Performance
Radix-4 Approximate Squaring Circuit" 201

h IEEE International
Conference on Application-Specific Systems, Architectures and
Processors, Jul. 2009, pp. 91-97.
D. De Caro, et a!., "Parallel Squarer Using Booth-Folding Tech
nique" Electronics Letters, vol. 37, No. 6, Mar. 15, 2001, pp.
346-347.
Fengqi Yu et a!., "Multirate Digital Squarer Architectures" IEEE
International Conference on Electronics, Circuits and Systems, vol.
1, Sep. 2001, pp. 177-180.
Paolo Ienne, et al., "Bit-Serial Mutlipliers and Squarers" IEEE
Transactions on Computers, vol. 43, No. 12, Dec. 1994, pp. 1445-
1450.
Jason Moore, eta!., "A Low Power Radix-4 Dual Recoded Integer
Squaring Implementation for Use in Design of Application Specific
Arithmetic Circuits" Asilomar Conference on Signals, Systems, and
Computers, Oct. 2008, pp. 1819-1822.

(Continued)

Primary Examiner- Andrew Caldwell
Assistant Examiner- Calvin M Brien
(74) Attorney, Agent, or Firm- Fish & Richardson P.C.

(57) ABSTRACT

Methods, apparatuses, and computer program products for
squaring an operand include identifying a fixed-point value
with a fixed word size and a substring size for substrings of
the fixed-point value, wherein the fixed-point value com
prises a binary bit string. A square of the fixed-point value
can be determined using the fixed point value, the substring
size, and least significant bits of the fixed-point value equal
to the substring size.

2 Claims, 6 Drawing Sheets

Output(o:2)214

(56) References Cited

OTHER PUBLICATIONS

US 9,684,489 B2
Page 2

K.Z. Pekmestzi, et al., "Long Unsigned Numbers Systolic Serial

Multipliers and Squarers" IEEE Transactions on Circuits and Sys
tems II: Analog and Digital Signal Processing, vol. 48, No. 3, Mar.
2001, pp. 316-321.
Johnny Pihl, eta!., "A Multiplier and Squarer Generator for High
Performance DSP Applications" IEEE 391

h Midwest Symposium on
Circuits and Systems, Aug. 1996, pp. 109-112.
James E. Stine, eta!., "FreePDK: An Open-Source Variation-Aware
Design Kit" IEEE International Conference on Microelectronic
Systems Education (MSE'07) Jun. 2-4, 2007, 2 pages.
Antonio G.M. Strollo, et a!., "Booth Folding Encoding for High
Performance Squarer Circuits" IEEE Transactions on Circuits and
Systems-II Analog and Digital Signal Processing, vol. 50, No. 5,
May 2003, pp. 250-254.
Jae-tack Yoo, et a!. "A Fast Parallel Squarer Based on Divide-and
Conquer" IEEE Journal of Solid-State Circuits, vol. 32, No. 6, Jun.
1997, pp. 909-912.
Behrooz Parhami, Computer Arithmetic Algorithms and Hardware
Designs, Oxford University Press, ISBN-0-19-512583-5, 2000, 17
pages.
D. Michael Miller, et al., "Multiple-Valued Logic Applications"
Multiple Valued Logic: Concepts and Representations, Morgan &
Claypool Publishers, ISBN-10-1598291904, 2008, 25 pages.
William Stallings, Cryptography and Network Security Principles
and Practices, Prentice-Hall, Fourth Edition, 2006, 27 pages.
Peter Kornerup, et al., "Finite Precision Number Systems and
Arithmetic", Encyclopedia of Mathematics and Its Applications,
Cambridge University Press, ISBN-978-0-521-76135, 2010, 66
pages.

* cited by examiner

U.S. Patent Jun.20,2017 Sheet 1 of 6 US 9,684,489 B2

FIGURE 1

DEVICE 102

106

/ j108 /112

a --~>1 sQuARING I
m ~ MODULE_ a----31-> et

2

\..- 110

NETWORK 104

U.S. Patent Jun.20,2017 Sheet 2 of 6 US 9,684,489 B2

FIGURE 2

Input Operand (a) 202

Multiplexer 204

Combinational Logic 206

Adder Array 208

2m-bit Right Shift Register 21.2

U.S. Patent

nrn = 6 (a bit length)
m = 2 (substring)

nm ==6
m ,z

I I I I I
l. ___ T ___ _j L ___ r __ ../

Al al

nm == 6

m==2.

Jun.20,2017 Sheet 3 of 6 US 9,684,489 B2

FIGURE 3A

FIGURE 3B

FIGURE3C

I I I I I I I I I I I I I
~__]

ho

lllll [1111 Ill
~

b,
!

llfllliiiJ[J]
~

Uz ~

I J SQUARING I t '-------7trl MODULE _

U.S. Patent Jun. 20,2017 Sheet 4 of 6 US 9,684,489 B2

nm = 5
m = 3

I I I I I I I
~~

FIGURE 4A

I I I I I I I I I I I I I
'

Ao ao .,

'-----~J SQUARING 111---------'Cf
--~ MODULE _

FIGURE 4B
nm "'6
m oc3

a1

.__I ----?>!)r SQUARING 1 l MODULE J

lllflllllll[]

U.S. Patent Jun.20,2017 Sheet 5 of 6

Figure SA

Receive Input Operand
And Substring Size m

Identify Input Operand as
Binary Digit String, a

1...,..

Determine Least Significant
Digit Substring, a, of
Substring Size m

Decatenate Binary Digit String With

502

504

506

Least Significant Digit Substring to 508
Form Word, A

Determine Radix,~' As Two to
Power of Substring Size

Determine Residual Value, r, as

~ a- /z

Determine TPas

(;) pn + (~)'

Continue

510

512

514

US 9,684,489 B2

X

530

U.S. Patent Jun.20,2017

Determine T2 as

2(A + ~)r

Determine T3 as
rz

Concatenate Result with a2

Iterate Once More

Sheet 6 of 6

516

518

520

And Terminate 526

Figure SB

US 9,684,489 B2

US 9,684,489 B2
1

SQUARING CIRCUIT

FIELD

2
apparent from the description and drawings, and from the
claims. For example, hardware-based squaring circuits, such
as those described here, can accommodate the increasing
demand for cryptography hardware support in low power,
high-speed mobile devices.

DESCRIPTION OF THE DRAWINGS

The present disclosure is directed to a squaring technique
that can be implemented as a circuit or as a software
algorithm, and more particularly, a squaring technique that
uses an arbitrary radix number system.

BACKGROUND
FIG. 1 is a schematic diagram of an example landscape

10 that includes a device with a squaring circuit in communi
cation with a network.

FIG. 2 is a schematic block diagram of an example
squaring circuit in accordance with the present disclosure.

Squaring is an arithmetic operation used in many digital
systems. Squaring circuits can be used for digital signal
processing applications, such as image compression, pattern
recognition, and others. Squaring is also used as an atomic
computation for some cryptography algorithms. Squaring
~ircuit architecture is also commonly incorporated in graph
ICS processors. Several general purpose multiplier circuit
designs have also been proposed based on squaring of input
operands.

FIGS. 3A-3C are example diagrams of a squaring circuit
15 operating on a six bit string using a two bit substring.

FIGS. 4A-4B are example diagrams of a squaring circuit
operating on a six bit string using a three bit substring.

FIG. SA is an example of a portion of a process flow
diagram for squaring an input value in accordance with the

20 present disclosure.

SUMMARY

Certain aspects of the present disclosure pertain to meth
ods, circuit elements, and computer program products for 25

squaring a value. A fixed-point value with a fixed word size
and a substring size for substrings of the fixed-point value
can be identified, wherein the fixed-point value comprises a
binary bit string. A square of the fixed-point value can be
determined using the fixed point value, the substring size, 30

and least significant bits of the fix-point value equal to the
substring size.

In some implementations, a square can be determined by
iteratively determining squares of substrings of the fixed
point value using least significant bits of each operand equal 35

to the substring size and the substring of the fixed-point
value, wherein the operand in each iteration comprises a
portion of the previous operand, wherein the operand is
formed by decatenating the previous operand least signifi-
cant bits equal to the substring size. 40

In some implementations, determining a square of a fixed
point value can include identifying the fixed-point value as
an operand. A substring of the operand can be determined as
the least significant bits of the operand where the substring
is of a specified substring size. The substring can be decaten- 45

tated from the operand to form a word. The substring can be
squared using the word, the substring, and the substring size.
The square of the substring can be added to a result. If a
length of the word is greater than zero, the word can be
identified as the operand and the determining, decatenating, 50

squaring, and adding steps can be executed. If the length of
the word and substring is zero, one more iteration is under
taken to account for non-zero residual values, and the result
is identified as the square of the fix-point value.

In some implementations, the following expansion can be 55

calculated:

FIG. SB is an example of another portion of the process
flow diagram for squaring an input value in accordance with
the present disclosure.

DETAILED DESCRIPTION

The present disclosure describes an iterative squaring
technique that produces a 2 nm-bit length result, a 2

, based
on an input operand (often referred to as a squarand) a of
nm-bits in length. The circuit produces 2m bits of the output
a 2 during each iterative step. By considering an m-bit
grouping within the squarand a as representing a single
radix-2m digit, the circuit can be considered a digit-serial
implementation that produces two m-bit digits per iteration.

This digit-serial architecture may allow for a tradeoff
between bit-serial and parallel architectures by allowing for
the digit to be represented by m bits. Because 2m bits of the
result are computed in each iterative step, varying m can
yield more or less parallelism while inversely affecting
required circuit area. Thus, a minimal or otherwise reduced
area circuit can be realized when m is small (bit-serial for the
case m=l) and a large parallel circuit results at the other
extreme when m is set to the wordsize of the squarand.
Designers may be able to choose an appropriate value of m
such that performance requirements are met while minimiz
ing or otherwise reducing the amount of circuitry required.

Arithmetically, the technique assumes the squarand is
represented as a higher-radix digit string where each digit is
represented by an m-bit substring. Furthermore, the tech
nique may yield two digits of output squared value during
each iterative step; hence, a total of 2m bits of the squared
result are computed at each iterative step.

FIG. 1 is a schematic diagram of an example landscape
100 that includes a device 102 having a squaring module 106
in accordance with the present disclosure in communication
with a network 104. The device 102 may be any type of
computing device, such as a personal computer, a touch
sc_reen terminal, a workstation, a network computer, kiosks,
Wireless data ports, wireless or wireline phones, smart-

where A is the word, ~ is the radix, the substring size is
log2 [~], and b is the substring value minus ~/2.

60 phones, personal data assistants (PDAs), one or more pro
cessors within these or other devices, or any other suitable
processing device, to execute operations associated with
squaring algorithms. For example, device 102 may be a
PDA operable to wirelessly connect with a network 104. In

The details of one or more embodiments of the disclosure
~re set forth in the accompanying drawings and the descrip
tiOn below. Other features, objects, and advantages will be

65 another example, client 102 may be a laptop or tablet
computer that includes an input device, such as a keypad,
touch screen, mouse, or other device that can accept infor-

US 9,684,489 B2
3

mation, and an output device that conveys information,
including digital data, visual information, or graphical user
interface. Device 102 may also be a server that can execute
operations using input data received from other devices and
can send results of operations to other devices across net
work 104.

4
Digits are restricted to the natural numbers when ~:dO,

and are members of the set:

For the case where ~> 10, alternative single characters are
used to represent a digit such as the characters "A" through
"F" for the case of ~=16.

Where necessary for clarity, digit strings are subscripted

10
by the radix ~ of the particular number system being used,

The device 102 includes a squaring module 106. The
squaring module 106 (described in more detail in FIG. 2)
receives as an input a squarand a 108 and a value m 110 that
indicates the substring bit length for the squaring operation.
The squaring module 106 outputs a result a 2 112. The
squarand 108 and the substring bit length 110 may be
received locally through an input device of device 102, or
may be received from a device across network 104. The

15
result 112 may be displayed to a user of device 102 on a local
display or graphical user interface. In some implementa
tions, the result 112 can be transmitted to another device
across network 104.

Network 104 facilitates wireless or wireline communica-
20

tion between device 102 and other devices. Network 104
may be all or a portion of an enterprise or secured network.
In another example, network 104 may be a VPN between
device 102 and other devices across a wireline or wireless
link. Such an example wireless link may be via 802.11a,

25
802.11b, 802.11g, 802.11n, 802.20, WiMax, and many oth
ers. The wireless link may also be via cellular technologies
such as 3GPP GSM, UMTS, LTE, etc. While illustrated as
a single or continuous network, network 104 may be logi
cally divided into various sub-nets or virtual networks
without departing from the scope of this disclosure, so long

30

as at least portion of network 104 may facilitate communi
cations between senders and recipients of requests and
results. In other words, network 104 encompasses any
internal and/or external network, networks, sub-network, or

35
combination thereof operable to facilitate communications
between various computing components in system 100.
Network 104 may communicate, for example, Internet Pro
tocol (IP) packets, Frame Relay frames, Asynchronous
Transfer Mode (ATM) cells, voice, video, data, and other
suitable information between network addresses. Network
104 may include one or more local area networks (LANs),
radio access networks (RANs), metropolitan area networks
(MANs), wide area networks (WANs), all or a portion of the
global computer network known as the Internet, and/or any

45
other communication system or systems at one or more
locations.

40

The following notation may be used in the description of
the digit-serial fixed-point squaring algorithm:

~ represents the radix or base of a number system. ~ may
50

be in the set of natural numbers, ~EN.
The 'radix polynomial' form of a value a is written as an

n-term polynomial of the form:

a=[an-1 an-2 · · · a2 a1 aolfl·
LSD(a,k) and MSD(a,k) are operators that yield k least

significant or most significant digits, respectively, in the
digit string representing a value a. LSD(a, 1) represents the
least significant digit of a, LSD(a,1)=a0 . Likewise the most
significant digit is given as MSD(a, 1)=an_1.

{A,B,C} denotes concatenation of the content of registers
A, B, and C which can be of any size and whose individual
sizes may differ.

SHL(A,k,B) denotes the operation of shifting the content
of register A to the left by k bits and setting the least
significant k bits to the content of register B. A can be of any
size greater than or equal to the size of B and B must be of
size k.

SHR(A,k,B) denotes the operation of shifting the content
of register A to the right by k bits and setting the most
significant k bits of A to the content of register B. A can be
of any size greater than or equal to the size of B and B must
be of size k.

A.,_B denotes the operation of setting the content of
register A with that of register B. A and B can be the same
size in some implementations.

The radix-~ value A is defined as A=a-a0 . Expressed as
a positional n-digit string:

Thus, A can be formed by replacing LSD(a, 1)=a0 with the
zero digit [Ok or as:

A~{ SHR([a-0] ~,1, [OJ ~),[0] ~}.

The present disclosure describes a circuit and algorithm
such that the choice of radix ~ allows for a trade-off in logic
circuit area versus throughput performance in the computa
tion of a 2 when a is represented as a binary bit string.
Higher values of ~ allow more bits to be produced per
iterative step in the resulting representation of a 2. A tradeoff
occurs in that the amount of computation or logic required
at each iterative step increases for higher radix values.

In the basis of the algorithm as stated here, it is assumed
that the squarand is of the form of a binary bit string.
Intermediate computations can be efficiently implemented
when the radix ~ is in the form ~=2m where m is a positive

A value a can also be represented in the radix-~ number
system in the form of a positional string of n characters
denoted by a=[an_1 an_2 ... a2 a1 a0]. For clarity, the
character strings denoting the positional digit representa
tions of a value a may be enclosed by square brackets. The
digits a, are the coefficients of the radix-polynomial form and
their position within the string inherently denotes the expo
nent of the radix ~·

55 integer m2:2. Efficiency results since ~=2m allows each
higher radix digit in the string representing a to be equiva
lent to an m-bit substring within a. a, in terms of a
higher-radix digit string, is simply the concatenation of the
disjoint m-bit substrings of a in binary form where LSD(a,

Each character a, in a positional string representing a
value is referred to as a "digit" regardless of the radix of the
number system. Binary digits may alternatively be referred
to as "bits."

60 1) is the least significant m bits, the subsequent next sig
nificant higher-radix digit is represented by the next group of
m bits to the left of LSD(a, 1), and so on.

For convenience in specifYing the basis of the algorithm,
Equation (1) can be written with the restriction that ~=2m

65 and some of the individual terms on the right-hand side of
the equation can be denoted as T1, T2, and T3 . a 2 can be
written as:

US 9,684,489 B2
5

(1)

The terms T u T 2 , and T 3 are explicitly defined as follows:

T1 =(~)2Qn+(~)\

T2 = 2(A + ~)b;

The idea behind the algorithm may be to compute terms
T 1 , T 2 and T 3 during each iterative step and accumulate them
with the previous result. Subsequent iterations use A/~ from
the (A/~)2 term in Equation (1) as a squarand. The subse
quent operand A/~ for each iterative step is a digit string
containing one less digit than the squarand in the previous
step indicating that the iterative algorithm requires O(n/m)
iterations to complete. The 22

m shifting factor of the first
term in Equation (1) illustrates the fact that two digits (2m
length bitstrings) are produced at each step and they repre
sent digits in a 2 that are produced in the order of the lesser
significant digits first.

Several observations may be used to more efficiently
implement the computation of the three terms T 1 , T 2 , and T 3

in the squaring algorithm. First, the term AI~ may be
efficiently obtained by shifting the digit string representing
a one position to the right and discarding a0 , A/~=[an_ 1
an_2 ... a2 a1] 13 • Second, values that are multiplied by a factor
of ~=2km may be easily obtained by shifting the value to left
by km bit positions and inserting a radix-~ zero digit place
holder [0] 13 for the vacated least significant digits. Third, the
term ~/2 is always of the form of a single radix-~ digit.
Expressed as an m-bit binary string ~/2=[10 ... 0]2 . Finally,
the term (~/2)2 is always of the form of two radix-~ digits
with the most significant digit of value ~/4 and the least
significant digit of value zero. Hence, expressed as a 2m-bit
binary string, (~/2)2=[010 ... 0]2 .

Term T 1 can be computed in a single operation. Making
use of the first and second observations, the value (A/~)22m

6
higher-valued radix ~ is used that is not an integral power of
two since this can be considered a "fractional digit shift," if
~>'2m.

The final step in the formation of term T 2 involves the
5 multiplication of2(A+~/2)=[an_ 1 an_2 . .. a2 a1 (~/2)] 13 by the

signed single radix-2m digit of b=a0-~2. Because b is a
single digit value, this multiplication may be accomplished
with a minimal or reduced amount of computation or
circuitry as compared to a general purpose multiply opera-

10 tion or circuit. Clearly, as the value m is increased resulting
in a higher valued radix, 2m, both computational complexity
and overall algorithm throughput may increase. The actual
implementation of the multiplication by b may be dependent
upon the value m and may be carefully considered for a

15 given realization of the algorithm. Relatively small values of
m generally allow for a simple logic circuit or lookup table
to be used.

Term T3=b2 relies on the computation of the square of the
residual value b. The implementation of this computation

20 may also be dependent upon the size of m, which dictates the
number of bits required to represent a radix-2m digit. For
smaller values of m, the direct calculation of b2 can be very
efficiently implemented as a small combinational logic cir
cuit or through a lookup table. As m increases, the compu-

25 tation ofb2 becomes more complex and other methods may
be employed.

For large values of m, the computation of T3 b2 can be
accomplished in parallel with the computation of the other
two terms T 1 and T 2 since accumulation ofT 1 + T 2 + T 3 with

30 overall result can occur at the end of each iterative step.
After terms T 1 , T 2 , and T 3 are formulated, they are

summed together and accumulated with the previous result.
The accumulation takes into account the process of multi
plying subsequent iterative operands by 22

m and the fact that
35 two independent radix-~ digits (or, 2m bits) of the final

result are produced at each iterative step. This can be
implemented in a variety of ways, including using registers.
The size of the register may be 2 nm bits where n is the
number of radix-~ digits representing a and m denotes the

40 radix. The final operation of each iterative step of the
algorithm is to shift the result register 2m bits to the right and
insert the 2m least significant bits ofT 1 + T 2 + T 3 into the most
significant positions of the shifted result register. Insertion of
the two radix-2m digits in the most significant portion of the

45 result register instead of performing a multi-bit left shift
before adding them to the previously accumulated result
allows the algorithm to be implemented without the need for
an inclusion of a multi-bit left shift operation or the use of

is obtained by forming the digit string [an_ 1 an_2 ... a2

a100] . Furthermore, based on the fourth observation, T3=
50 (~/2)~ can always be expressed as two radix-2m digits (2m

bits) denoted as [q1q0] 13 • Thus, T1 is obtained by forming the
string [an_ 1 an_2 . .. a2 a1 q1 q0] 13 • From the fourth observa
tion, q1=~/4 and q0 =0 so that (~/2)2=[q1 q0] 13=[(~/4)0] 13 •
Thus, the digit string representation for T1 is [an_ 1 an_2 ...

a barrel shifting circuit in a hardware realization.
The algorithm uses an iteration index i to determine if all

digits of the squarand have been produced. For an n-digit
radix-a squarand, the squared result consists of 2n digits.
Because two digits are produced per iterative step, the index
i ranges from zero to (n/2)-1. Initially, when i=O, a is the

55 original squarand. During intermediate computations, when
O<i<n/2, the algorithm iterates and sets the intermediate
squarand a=A/~. In the final iterative step, the squarand
argument becomes a=O; however, this step is performed to
account for circumstances when the residual b is not zero-

a2 a1 (~/4)0] 13 •

60 valued.

Term T2 is computed by first forming a digit string
representing 2(A+~/2) and then multiplying this string with
the single radix-~ digit b. Relying on the first, second, and
third observations, A=an_ 1 an_2 ... a2 a1 Ok and ~/2 may be
represented as a single unsigned radix-2m digit (m-bit
string). Therefore, (A+~/2)=[an_ 1 an_2 ... a2 a1 ~/2]. To
account for the multiplicative factor of 2, the (A+~/2)=[an_ 1

an_2 ... a2 a 1 (~/2)k digit string is then shifted by one bit
position to the left resulting in 2(A+~/2). The multiplicative 65

factor 2 would in general be implemented through the use of
an addition operation, 2(A+~/2)=(A+~/2)+(A+~/2), when a

Any given implementation of the algorithm should
include careful consideration of the mauner in which the
signed digit b is represented. When explicitly represented
using a radix-complement or a signed-magnitude form, m+1
bits are required to account for the sign. Furthermore,
depending upon the definition of the residual, b can take on
integer values in either of the ranges [-(~/2),(~/2-1)] (as is

US 9,684,489 B2
7

the case in this formulation) or [-(~/2)+ 1 ,(~/2)]. However,
because there is a one-to-one relationship between the a0 and
b values (since b=a0-~/2), them-bit string representing a0

can be used as an encoding for the corresponding b value.
The algorithm formulated in the previous section makes

use of several registers. For succinctness, the registers used
within the algorithm statement are defined in Table 1, shown
below:

TABLE 1

Registers Used in Squaring Algorithm

name size (bits) content

AB (n- l)m Ali)
R 2nm a2

log2(nlm) iteration matrix
B ill residual b encoded as

LSD(a, 1)
ACC 2 nm Tl + T2 + T3
T1 2 nm Tl
T2 2 nm T2
T3 2 nm T3
B2 ill 1312
B4 2m (1)12)2 ~ (1)214) ~ [(1)14)0]~

8
The example algorithm shown above can undergo n/m
iterations producing 2m bits of a 2 during each iterative step.
Therefore, the algorithm has temporal complexity equiva
lent to O(n/m). In terms of required computational
resources, the algorithm requires circuitry to perform shift
ing, bit-string concatenation, 2 nm-bit operand addition,
mx2 nm-bit multiplication, and m-bit operand squaring.
While 2 nm-bit operand addition operations are required in
STEPs 4 and 6, it is noted that a single 2 nm-bit addition

10 circuit can be used since these sums may be formed sequen
tially allowing for reuse of the single 2 nm-bit adder. The
multiplication and single-digit squaring operations can be
implemented in a variety of forms although it is noted that
due to the relatively small size of the operands (m bits) very

15 compact and fast circuits such as lookup tables are a
practical choice.

FIG. 2 is a schematic block diagram of an example
squaring module 106 in accordance with the present disclo
sure. Squaring module 106 can be a hardware circuit com-

20 posed of analog and digital circuitry. Digital circuitry
includes transistor-based logic circuits and components. In
some implementations, squaring module 106 can be imple
mented as a software algorithm. Squaring module 106 can
receive as an input the operand a 202, which is a value to
be squared (squarand). In this example circuit, a synchro
nous digital logic circuit uses a quaternary radix, ~=22=4.

A statement of the algorithm is given below. Intermediate 25

locations within the algorithm are denoted by labels in the
form "STEP k." The labels are included for convenience in
referring to certain portions of the algorithm and they also
indicate clock boundaries in that the results of STEP k-1 are
registered before computation occurs in STEP k. As an
example, the T2~{AB,B2} operation of STEP 3 must
complete before the T2~SHL(T2,1 ,[0]2) operation of STEP

The operand 202 is received by a multiplexer circuit 204.
The computation T3~bxb in STEP 3 above uses a multi
plexer based lookup structure. A 4:1 multiplexer with 2m-bit

30 data paths and an m-bit control signal chooses among the
appropriate squared values of b. The squared values b2 that
drive the multiplexer data inputs are pre-computed before
implementation of the circuitry and are either hardwired or
stored in registers. Alternatively, a small nonvolatile

4 can proceed. Breaking up the computation of term T2 into
multiple intermediate registered operations is an example of
pipelining the datapath and allows for the overall circuit
clock speed to be increased. The steps are described below:

INPUT:
a: nm-bit fixed-point squarand
m: log2(i3)-bit value, indicates working radix 2m

OUTPUT:
a 2 : 2nm-bit value in register R
STEP 1:

i~o

R~o

B2~[10 ... 0b
B4~[010 ... 0b
AB~a

STEP 2:
B~LSD(AB,m)

AB~SHR(AB,m,[O .. Ob)
STEP 3:

T1 ~{ AB,B4,[0 .. 0b}
T2~{AB,B2}

T3~bxb

STEP 4:
T2~SHL(T2,1,[0b)

ACC~Tl+T3

STEP 5:
T2~T2xb

STEP 6:

!* iteration index *I
!* initialize result register *I
I* m-bits witb MSB~l *I
I* 2m-bits witb MSBs~Ol *I
I* squarand value *I

I* encode b as LSD(AB,l) *I
I* MS squarand digits *I

I* form T1, m LSbs~O *I
I* form A+i)l2 *I
!* compute single digit square,
uses a0 in B *I

I* form 2(A+i)l2) *I
I* form T 1+T3 *I

I* form 2(A+i)l2)b, uses a0 in B *I

ACC~ACC+T2 I* form T 1+T2+T3 *I
STEP 7:

R~SHR(R,2m,LSD(ACC,2)) I* update result *I
i~i+l

STEP 8:
if (i~n/m)

HALT
else

GO TO STEP 2

!* increment iteration counter *I

!* check iteration cmmt *I
!* computation complete *I

35 memory such as a ROM or flash circuit, or a volatile
memory such as SRAM or DRAM, could be used with the
B register contents driving the address lines and all possible
b2 values stored in the memory. Register B drives the control
lines of the multiplexer and represents the residual value b.

40 It is noted that B actually contains the least significant digit
at as an encoded value forb since b=a,-~/2. To clarify this
encoding, Table 2 contains all values of b and the corre
sponding a, that serves as them-bit encoded representation
of b for the radix-4 quaternary case.

45

50

55

TABLE 2

Encoded Values of b for Radix-4 Number System

a, b Encoded b in Register B

0 -2 [OOb
-1 [Olb

2 0 [lOb
[llb

The computation of T2~ T2xb in STEP 5 of the algorithm
is accomplished by using a 4:1 multiplexer as a simple
lookup structure with data paths of size 2 nm and an m-bit
control signal driven by the content of register B. The idea

60 behind this circuit is similar to that of the T3~bxb com
putation in STEP 3 with the important difference that the
possible T2xb values are computed during each iterative
step rather than being precomputed and stored before circuit
operation. Fortunately, these values are easily and efficiently

65 computed since, for the quaternary implementation, they
consist of the value 2(A+~/2) multiplied by only one of
bE{-2, -1, 0, 1}. Thus, a negated version of2(A+~/2)=-[2

US 9,684,489 B2
9

(A+~/2)] and a single-bit left-shifted shifted version of
-[2(A+~/2)] are used as well as 2(A+~/2) and [0 ... 0] to
drive the data inputs of the multiplexer. FIG. 4 contains a
diagram of this subcircuit.

The output of the multiplexer 204 is received by combi- 5

national logic 206. Combinational logic 206 includes several
outputs: one output is coupled to the input of the multiplexer
204. The other outputs of combinational logic 206 are
coupled to an adder array 208. Each of the multiplexer 204,
the combinational logic 206, and the adder array 208 also 10

include as inputs control signals from a clocked synchronous
controller (not shown).

The combinational logic 206 may be implemented based
on simplifications in the formation of the intermediate terms
T1 , T2 , and T3 , and their various sums. These simplifications 15

exploit the choice of using ~=4 as an implicit operand radix
and allow for the computation of the intermediate terms T 1 ,

T 2 , and T 3 to be implemented with a reduced and simplified
set of register transfer level (RTL) operations.

A single quaternary digit [ak]4 can, in general, be written 20

as a two-bit binary string [b2k+ 1 b2k] 2 where {b,E JB,} and
JB, ={ 0,1}. Using this definition, various intermediate terms
and their sums can be evaluated for different cases of the
least significant digit of the squarand, a0 E{0, 1, 2, 3}. Term
T 1 is independent of the value of a0 and is always a bit string 25

of length 2n+2 expressed as:

Tl[an-lan-2· · · a2al10]4=[b2n-lb2n-2b2n-3b2n-4 · · ·
bsb4 b3b2 0100b

Case 1 30
a0 =[0]4 resulting in the residual b=[-2]4 , thus T 3 =b2=

[10]4 =[0100h Term T2 can be expressed as:

10

= [OO ... OOh

Combining the terms:

Case 4
a0 =[3]4 resulting in the residual b=[1]4 , thus T3 =b2=

[01]4 =[0001h Term T2 can be expressed as:

For this case, the sum T 2 + T 3 can be formed directly and it
is subsequently combined with term T 1 using the addition
circuit. T 2 + T 3 is formed as:

35
Table 3 below contains a summary of the results of the
intermediate terms and their various sums in terms of values
of the least significant digit of the operand at each iterative
step.

Combining the terms:

= [0 ... 0]4

= [00 ... OOh

Case 2
a0 =[1]4 resulting in the residual b=[-1]4 , thus T 3 =b2=

[01]4 =[0001h Term T2 can be expressed as:

Combining the terms:

Case 3

[b2n-lb2n-2 ... b,b20100h
T1 + T2 + T, =

[Ob2n-1b2n-2 ... b,b2lOOh + [0001h

= [Ob2n-1b2n-2 ... b,b2001h

a0 =[2]4 resulting in the residual b=[0]4 , thus T3 =b2=
[00]4 =[0000h Term T 2 can be expressed as:

40

45

50

LS
D(a4 , 1)

0

2

TABLE 3

Radix-4 Optimizations

Intermediate
Terrn

Tl+T2+T3
Tl+T2+T3

Value

[O ... Ob
[Ob2n-l b2n-2 · · · b3 b2
001b
[b2n-l b2n-2 · · · b3 b2
0100b
[b2n-l b2n-2 · · · b3 b2
0100b
[Ob2n-l b2n-2 · · · b3 b2
101b

The combinational logic 206 makes use of the results in
55 Table 3 and outputs the two 2n+2 bit values that are summed

in the adder array 208 resulting in T 1 + T 2 + T 3 (i.e., the
combinational logic includes two outputs: one for each input
of the adder array). For the cases a0E{0, 1, 2}, T 1 +T 2 + T3 is
formed directly in the combinational logic 206 and is input

60 to the adder array 208 on the leftmost input bus with the
right-most input set to the 2n+2 bit string [00 ... 00]2 . The
adder array 208 is used for the case of a0 =3, where the
left-most input is the bit string [b2 n_ 1 b2n_2 . .. b3 b20100] 2

and the right-most input is [Ob2n_ 1 b2n_2 ... b3 b2 101]2 .

65 Accumulator 210 consists of an internal accumulator
register, an internal adder circuit, and a feedback loop that
allows for the internal adder output to be stored in the

US 9,684,489 B2
11

internal accumulator register. Accumulator 210 can receive
the output of the adder array 208 where it is added to the
previously stored value in the accumulator register and then
stored back into the accumulator register. A right shift
register 212 can receive the output of the accumulator. The 5

size of the register 212 may be 2 nm bits where n is the
number of radix-~ digits representing a and m denotes the
radix. The final operation of each iterative step of the
algorithm is to shift the result register 2m bits to the right and
insert the 2m least significant bits ofT 1 + T 2 + T 3 into the most 10

significant positions of the shifted result register. Insertion of
the two radix-2m digits in the most significant portion of the
result register instead of performing a multi-bit left shift
before adding them to the previously accumulated result
allows the algorithm to be implemented without the need for 15

an inclusion of a multi-bit left shift operation or the use of
a barrel shifting circuit in a hardware realization. After the
iterative steps are completed, the square a 2 214 can be
output.

FIGS. 3A-3C are example diagrams of a squaring circuit 20

operating on a six bit string using a two bit substring
corresponding to a chosen substring length of m=2
(~=22=4). FIGS. 3A-3C show three iterations used for
calculating a value a 2

, where a has a bit length nm=6 and
a substring length m=2. In FIG. 3A, the right-most input bits 25

are represented as a0 and the remaining bits as A0 . The least
significant bits a0 include 2 bits (m=2). Because the bit
length of a is 6, this calculation requires 0(3) iterations since
2x3=6. The bits a0 are received into the squaring module,
and output as b0 that includes 4 bits (2m bits) and repre- 30

senting two output digits (shown on the right side of the
squaring module). In FIG. 3B, the remaining 4 bits of a are
then considered. The least significant bits are represented as
a1 having 2 bits (m=2), and the remaining 2 bits of a are
represented as A 1 . The value a1 is received by the squaring 35

module, and the output b1 includes 4 bits (2m bits) repre
senting two digits of the output value a 2

. Finally, in FIG. 3C,
the remaining bits of a are represented as a2 (which are the
most significant bits of the original string). The value a2

(having 2 bits) is received by the squaring module, and 40

output as b2 , which also includes 4 bits (2m bits) represent
ing the two most significant bits of the resultant string a 2

.

FIG. 4A-4B are example diagrams of a squaring circuit
operating on a six bit string using a three bit substring
corresponding to a chosen substring length of m=3 45

(~=23=8). FIGS. 4A-4B show two iterations used for cal
culating a value a 2

, where a has a bit length nm=6 and a
substring length m=3 since ~ is chosen to be 23

. In FIG. 4A,
the least significant input bits are represented as a0 and the
remaining bits as A0 . The least significant bits a0 include 3 50

bits (m=3). Because the bit length of a is 6, this calculation
requires 0(2) iterations since 3x2=6. The bits a0 are received
into the squaring module, and output as c0 including 6 bits
(2m bits) representing two digits of a 2 (shown on the right
side of the squaring module). In FIG. 4B, the remaining 3 55

bits of a are then considered. The most significant bits are
represented as a1 comprised of3 bits (m=3). Again, the value
a1 is received by the squaring module, and the output c1

includes 6 bits (2m bits) representing two digits of the output
value a 2

.

12
FIG. SA is an example of a portion of a process flow

diagram SOO for squaring an input value in accordance with
the present disclosure. The example process flow described
here is applicable for m=2. An input operand a and a
substring size mare received (S02). The input operand may
be identified as a binary digit string, a (S04). The least
significant digit (LSD) substring, a, of the substring size m
can be determined (S06). The LSD substring can be decat
enated from binary digit string to form a word, A (S08). A
radix ~ is determined as 2m (S10). A residual value, b, is
determined, as b=a-~/2 (S12). T 1 is determined as (A/~)
22

m +(~/2)2 (S14).
FIG. SB is an example of another portion of the process

flow diagram SSO for squaring an input value in accordance
with the present disclosure. Continuing from step S14, T 2 is
determined as 2(A+~/2)b (S16). T3 is determined as b2 (S18).
The value a 2 can be determined as (A/~)2 22m+T1+T2 +T3

(S20). The resulting value a 2 can be concatenated with
previous results, if any, as the most significant digit having
bit length 2m (S22). A determination may be made as to
whether the length of A is greater than the substring size m
(S24). If A is less than or equal to m, then the process can
iterate one additional time to account for a non-zero residual
value and then terminates (S26). If the size of A is greater
than m, then A can be identified as a word A and as the binary
digit string, a (S28). Then, the process follows back to point
(X) S30, which connects prior to point S06 of FIG. SA. The
process then continues until it terminates based on the
condition at point S24.

A number of implementations have been described. Nev
ertheless, it will be understood that various modifications
may be made including portions or the entirety of the
implementation in software form. Accordingly, other imple
mentations are within the scope of the following claims.

What is claimed is:
1. An apparatus comprising:
a squaring circuit configured to:

identifY a fixed-point value with a fixed word size and
a substring size for substrings of the fixed-point
value, wherein the fixed-point value comprises a
string of digits and an initial operand;

for an initial iteration, determine a square of least
significant digits of the initial operand;

for each subsequent iteration:
determine an operand for that iteration by decatenating

least significant digits from an operand in a previous
iteration, wherein a length of the least significant
digits from the operand of the previous iteration is
equal to the substring size; and

determine a square using the least significant digits of
the operand for that iteration and the substring size;
and

concatenate the squares from each iteration to estimate
a square of the fixed-point value.

2. The apparatus of claim 1, wherein each digit in the
string of digits is in base 2.

* * * * *

