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CONTROL SYSTEM ANOMALY DETECTION 
USING NEURAL NETWORK CONSENSUS 

CROSS-REFERENCE TO RELATED APPLICATIONS 

[001] This application claims the benefit of U.S. Provisional Application No. 63/211,281, filed 

June 16, 2021, and U.S. Provisional Application No. 63/275,759, filed November 4, 2021, which 

are hereby incorporated by reference in their entireties. 

BACKGROUND 

[002] Control systems provide transportation, essential utilities, and manufacturing of goods to 

the masses. It is critical that controlled processes within these systems are executed correctly and 

according to schedule. Monitoring the system's performance during their operation is important 

for maintaining their reliability and availability. 

SUMMARY 

[003] Many control systems, including those in industrial and manufacturing facilities, rely on 

computer controlled electro-mechanical frameworks (e.g., industrial control system (ICS)). These 

frameworks coordinate industrial operations between protocols, connections, and devices in the 

control system, so they can be executed properly and on schedule. Further, these various 

components are generally interoperable due to the emergence of standardized computer interfaces 

and networking protocols that support control system implementations. Thus, it may be the case 

that the control system demonstrates state-like behavior that characterizes its overall 

functionality. However, often times the protocols employed may be open communication 

protocols or the software may be open source, which may increase the risk of cyberattacks. 

Further, the components in the control system may be supplied by various vendors and often 

have large state spaces with high complexity (e.g., cycling states), thus making it impractical to 

capture the complete behavior of the control system. Thus, critical processes may be disrupted, 

resulting in damage to essential utilities, without detection. 

[0041 Detecting anomalies in a control system may help to increase its safety, reliability, and 

resilience. An automated anomaly detection may be achieved using machine learning/artificial 

intelligence (ML) algorithms, such as neural networks, that analyze the overall health of the 

components in a control system and predict the states of the components. The ML algorithms 

may consider patterns in data related to network traffic as well data from equipment ( e.g., sensor 

data), and the states may be classified taking into account random deviations that may occur. If 

the control system is functioning properly, the state classified should match or be reasonably 
1 
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similar (i.e., consensus from the two models is achieved). However, when faulty equipment or 

processing errors cause unexpected behavior in the system, the classification may diverge, 

causing loss of consensus. Because the system diverges from normal behavior, this classification 

can also be described as anomaly detection. 

[005] In one aspect, disclosed herein are computer-implemented methods for control system 

anomaly detection comprising: receiving input data comprising: sensor data from equipment in 

the control system; and network data from a network in communication with the control system; 

normalizing distributions of the sensor data and the network data; checking time alignment 

between the sensor data to the network data; selecting a time window for accumulating the sensor 

data and the network data; feeding the sensor data into a first neural network comprising a 

behavior classifier of the equipment of the control system to output a first classified state of the 

control system; feeding the network data into a second neural network comprising a network 

traffic classifier to output a second classified state of the control system; and comparing the first 

and the second classified states for consensus for system anomaly detection, wherein 

accumulation of differences in classified states in a given time interval above a threshold 

indicates occurrence of an anomaly. In some embodiments, the control system comprises an 

industrial control system, distributed control system (DCS), supervisory control and data 

acquisition (SCAD A) system, embedded control system, or a combination thereof ln some 

embodiments, the control system comprises a general purpose computer. In some embodiments, 

the industrial control system comprises one or more of programmable logic controllers, remote 

terminal units, intelligent electronic devices, engineering workstations, human machine 

interfaces, data historians, communication gateways, and front-end processors. In some 

embodiments, the control system employs one or more network communication protocols. In 

further embodiments, the one or more network communication protocols comprise standard 

network communication protocols, non-standard network communication protocols, or a 

combination thereof. In still further embodiments, the standard network communication protocols 

comprise process field bus (Profibus), process field net (Profinet), highway addressable remote 

transducer (HART), distributed network protocol (DNP3), Modbus, open platform 

communication (OPC), building automation and control networks (BACnet), common industrial 

protocol (CIP), or ethernet for control automation technology (EtherCAT). In some embodiments, 

the sensor data comprises time series data. ln some embodiments, the sensor data is obtained 

from a standalone sensor or an integrated sensor. ln further embodiments, the integrated sensor is 

part of a control device comprising an actuator. In some embodiments, the network data 
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comprises packet data, metadata, or a combination thereof. In further embodiments, the packet 

data comprises a packet's header, payload, trailer, or any combination thereof. In still further 

embodiments, the packet data from the packet's payload comprises bit streams. In some 

embodiments, normalizing distributions of the sensor data and the network data comprises 

adjusting the distributions' mean, variance, higher-ordered moments, or a combination thereof. In 

some embodiments, the method comprises resampling the sensor data, the network data, or a 

combination thereof for the time alignment between the sensor data and network data. In further 

embodiments, the resampling results in the sensor data and the network data having a same 

number of samples. In further embodiments, the resampling comprises downsampling. In further 

embodiments, the resampling comprises upsampling. In further embodiments, the resampling 

comprises unsampling. In some embodiments, the method comprises windowing to adjust the 

time window for accumulating the sensor data, the network data, or a combination thereof. In 

fmiher embodiments, the windowing accounts for delays in the network data, the sensor data, or 

a combination thereof. In some embodiments, one or both of the first neural network and the 

second neural network are deep neural networks. In further embodiments, the deep neural 

networks comprise convolutional layers such that one or both of the first neural network and the 

second neural network are convolutional neural networks. In still further embodiments, the 

convolutional neural networks comprise convolutional layers, pooling layers, flattening layers, 

dropout layers, and dense layers. In still further embodiments, the convolutional layers comprise 

1D, 2D, or 3D convolutional layers. In still further embodiments, the pooling layers comprise 

maximum pooling layers, minimum pooling layers, average pooling layers, or a combination 

thereof. In still further embodiments, the convolutional neural networks have hyperparameters 

that are empirically chosen based on patterns in the network of the control system. In still further 

embodiments, the convolutional neural networks are supervised for training to identify one or 

both of the first classified state and the second classified state. In some embodiments, the 

comparing the first and the second classified states for consensus for system anomaly detection is 

unsupervised for detecting the differences between the first and the second classified states. In 

some embodiments, the threshold is an average discrepancy rate between the first and the second 

classified state. In further embodiments, the threshold is dynamically changed over time. In some 

embodiments, the anomaly is due to attacks on at least one of the equipment in the control system 

and the network of the control system. 

l006J In another aspect, disclosed herein are computer-implemented systems for control system 

anomaly detection comprising: at least one logic element configured to perform operations on 
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sensor data from equipment in the control system and network data from a network in the control 

system the operations comprising: a normalization operation to normalize distributions of the 

sensor data and the network data; a checking operation to check time alignment between the 

sensor data and the network data; and a selection operation to select a time window for 

accumulating the sensor data and the network data; a first neural network comprising a behavior 

classifier of the equipment of the control system for outputting a first classified state of the 

control system from the sensor data; a second neural network comprising a network traffic 

classifier for outputting a second classified state of the control system from the network data; and 

a discrepancy aggregator for comparing the first and the second classified state for consensus for 

control system anomaly detection, wherein accumulation of differences in the classified states in 

a given time interval above a threshold indicates occurrence of an anomaly. In some 

embodiments, the computer-implemented system comprises at least one processor, a memory, 

and instructions executable by at least one processor. In some embodiments, the computer­

implemented system comprises a general purpose computer. In some embodiments, the at least 

one logic element comprises a programmable logic controller (PLC), programable logic array 

(PLA), programmable array logic (PAL), generic logic array (GLA), complex programmable 

logic decide (CPLD), field programable gate array (FPGA), or application-specific integrated 

circuit (ASIC). In some embodiments, the at least one logic element is implemented on a general 

purpose computer. In some embodiments, the control system comprises an industrial control 

system, distributed control system (DCS), supervisory control and data acquisition (SCADA) 

system, embedded system, or a combination thereof. In further embodiments, the industrial 

control system comprises one or more of programmable logic controllers, remote terminal units, 

intelligent electronic devices, engineering workstations, human machine interfaces, data 

historians, communication gateways, and front-end processors. In some embodiments, the control 

system employs one or more network communication protocols. In further embodiments, the one 

or more network communication protocols comprise standard network communication protocols, 

non-standard network communication protocols, or a combination thereof. In still further 

embodiments, the standard network communication protocols comprise process field bus 

(Profibus), process field net (Profinet), highway addressable remote transducer (HART), 

distributed network protocol (DNP3), Modbus, open platform communication (OPC), building 

automation and control networks (BACnet), common industrial protocol (CIP), or ethernet for 

control automation technology (EtherCAT). In some embodiments, the sensor data comprises 

time series data. In some embodiments, the sensor data is obtained from a standalone sensor or an 
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integrated sensor. In further embodiments, the integrated sensor is part of a control device 

comprising an actuator. In some embodiments, the network data comprises packet data, metadata, 

or a combination thereof. In further embodiments, the packet data comprises a packet's header, 

payload, trailer, or a combination thereof. In still further embodiments ,the packet data from the 

packet's payload comprises bit streams. In some embodiments, the normalization operation 

comprises adjusting the distribution's mean, variance, higher-ordered moments, or a combination 

thereof. In some embodiments, the at least one logic element is configured to pertorm a 

resampling operation of the sensor data, the network data, or a combination thereof for the time 

alignment between the network data and the sensor data. In further embodiments, the resampling 

operation results in the sensor data and the network data having a same number of samples. In 

further embodiments, the resampling operation comprises downsampling. In further 

embodiments, the resampling operation comprises upsampling. In further embodiments, the 

resampling operation comprises unsampling. In some embodiments, the at least one logic 

element is configured to perform a windowing operation to adjust the time windows for 

accumulating the sensor data, the network data, or a combination thereof. In further 

embodiments, the windowing operation accounts for delays in the network data, sensors data, or 

a combination thereof. In some embodiments, one or both of the first neural network and the 

second neural network are deep neural networks. In further embodiments, the deep neural 

networks comprise convolutional layers such that one or both of the first neural network and the 

second neural network are convolutional neural networks. In still further embodiments, the 

convolutional neural networks comprise convolutional layers, pooling layers, flattening layers, 

dropout layers, and dense layers. In still further embodiments, the convolutional layers comprise 

1D, 2D, or 3D convolutional layers. In still further embodiments, the pooling layers comprise 

maximum pooling layers, minimum pooling layers, average pooling layers, or a combination 

thereof. In further embodiments, the convolutional neural networks have hyperparameters that 

are empirically chosen based on patterns in the network of the control system. In further 

embodiments, the convolutional neural networks are supervised for training to identify the 

classified states. In some embodiments, the threshold is an average discrepancy rate between the 

first and the second classified state. In further embodiments, the threshold is dynamically 

changed over time. In some embodiments, the anomaly is due to attacks on at least one of the 

equipment in the control system and the network of the control system. 

l007J In another aspect, disclosed herein are platforms for control system anomaly detection 

comprising: an apparatus comprising at least one logic element for performing operations on 
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sensor data from equipment in the control system and network data from a network in 

communication with the control system; and a discrepancy aggregator for control system 

anomaly detection; and a cloud computing resource communicably coupled to the apparatus and 

comprising a first neural network and a second neural network; wherein the operations comprise: 

a nonnalization operation to nonnalize distributions of the sensor data and the network data; a 

checking operation to check time alignment between the sensor data and the network data; and a 

selection operation to select a time window for accumulating the sensor data and the network 

data; wherein the first neural network comprises a behavior classifier of the equipment of the 

control system outputting a first classified state of the control system from the sensor data from 

the operations; wherein the second neural network comprises a network traffic classifier 

outputting a second classified state of the control system from the network data from the 

operations; wherein the discrepancy aggregator compares the first and the second classified state 

for consensus for control system anomaly detection; and wherein accumulation of differences in 

the classified states in a given time interval above a threshold indicates occurrence of an 

anomaly. In some embodiments, the apparatus comprising at least one logic element comprises at 

least one processor, a memory, and instructions executable by at least one processor. In some 

embodiments, the at least one logic element comprises a programmable logic controller (PLC), 

programable logic array (PLA), programmable array logic (PAL), generic logic array (GLA), 

complex programmable logic decide (CPLD), field programable gate array (FPGA), or 

application-specific integrated circuit (ASIC). In some embodiments, the control system 

comprises an industrial control system, distributed control system (DCS), supervisory control and 

data acquisition (SCAD A) system, embedded system, or a combination thereof. In some 

embodiments, the industrial control system comprises one or more of programmable logic 

controllers, remote terminal units, intelligent electronic devices, engineering workstations, 

human machine interfaces, data historians, communication gateways, and front-end processors. 

In some embodiments, the control system employs one or more network communication 

protocols. In further embodiments, the one or more network communication protocols comprise 

standard network communication protocols, non-standard network communication protocols, or a 

combination thereof. In still further embodiments, the standard network communication protocols 

comprise process field bus (Profibus), process field net (Profinet), highway addressable remote 

transducer (HART), distributed network protocol (DNP3), Modbus, open platform 

communication (OPC), building automation and control networks (BACnet), common industrial 

protocol (CIP), or ethernet for control automation technology (EtherCAT). In some embodiments, 
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the sensor data comprises time series data. In some embodiments, the sensor data is obtained 

from a standalone sensor or an integrated sensor. In further embodiments, the integrated sensor is 

part of a control device comprising an actuator. In some embodiments, the network data 

comprises packet data, metadata, or a combination thereof. In further embodiments, the packet 

data comprises a packet's header, payload, trailer, or a combination thereof. In still further 

embodiments, the packet data from the packet's payload comprises bit streams. In some 

embodiments, the normalization operation comprises adjusting the distribution's mean, variance, 

higher-ordered moments, or a combination thereof. In some embodiments, the operations 

comprise a resampling operation of the sensor data, the network data, or a combination thereof 

for the time alignment between the network data and the sensor data. In further embodiments, the 

resampling operation results in the sensor data and the network data having a same number of 

samples. In further embodiments, the resampling operation comprises downsampling. In further 

embodiments, the resampling operation comprises upsampling. In fmiher embodiments, the 

resampling operation comprises unsampling. In some embodiments, the operations comprise a 

windowing operation to adjust the time windows for accumulating the sensor data, the network 

data, or a combination thereof In further embodiments, the windowing operation accounts for 

delays in the network data, sensors data, or a combination thereof In some embodiments, one or 

both of the first neural network and the second neural network are deep neural networks. In 

further embodiments, the deep neural networks comprise convolutional layers such that one or 

both of the first neural network and the second neural network are convolutional neural networks. 

In still further embodiments, the convolutional neural networks comprise convolutional layers, 

pooling layers, flattening layers, dropout layers, and dense layers. In still further embodiments, 

the convolutional layers comprise ID, 2D, or 3D convolutional layers. In still further 

embodiments, the pooling layers comprise maximum pooling layers, minimum pooling layers, 

average pooling layers, or a combination thereof. In still further embodiments, the convolutional 

neural networks have hyperparameters that are empirically chosen based on patterns in the 

network of the control system. In still further embodiments, the convolutional neural network is 

supervised for training to identify the first and the second classified states. In some embodiments, 

the threshold is an average discrepancy rate between the first and the second classified state. In 

further embodiments, the threshold is dynamically changed over time. In some embodiments, the 

anomaly is due to attacks on at least one of the equipment in the control system and the network 

of the control system. 
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[008] In another aspect, disclosed herein are computer-implemented methods of training neural 

networks for control system anomaly detection comprising: collecting input data comprising 

sensor data from equipment in the control system and network data from a network in 

communication with the control system; preprocessing the sensor data and the network data to 

output preprocessed sensor data and preprocessed network data, the preprocessing comprising: 

normalizing to adjust distributions of the sensor data and the network data; checking the sensor 

data and the network data for time alignment; and selecting a time window for accumulating the 

sensor data and the network data; creating training sets comprising a first training set comprising 

the preprocessed sensor data and a second training set comprising the preprocessed network data; 

and training a first neural network comprising a behavior classifier of the equipment of the 

control system with the first training set to output a first classified state; and training a second 

neural network comprising a network traffic classifier with the second training set to output a 

second classified state. In various embodiments, the method is implemented on a general purpose 

computer, a server, a cluster of servers, a distributed computing platform, or a cloud computing 

platform. In some embodiments, the network data comprises packet data, metadata, or a 

combination thereof. In further embodiments, the packet data comprises a packet's header, 

payload, trailer, or a combination thereof. In still further embodiments, the packet data from the 

packet's payload comprises bit streams. In some embodiments, normalizing comprises adjusting 

the distribution's mean, variance, higher-ordered moments, or a combination thereof. In some 

embodiments, the preprocessing comprises resampling for the time alignment of the sensor data, 

the network data, or a combination thereof. In further embodiments, the resampling results in the 

sensor data and the network data having a same number of samples. In fmiher embodiments, 

resampling comprises downsampling, upsampling, or unsampling. In some embodiments, the 

preprocessing comprises windowing to adjust the time windows for accumulating the sensor 

data, the network data, or a combination thereof In further embodiments, the windowing 

accounts for delays in the network data, the sensor data, or a combination thereof In some 

embodiments, one or both of the first neural network and the second neural network are deep 

neural networks. In fmiher embodiments, the deep neural networks comprise convolutional 

layers such that one or both of the first neural network and the second neural network are 

convolutional neural networks. In still further embodiments, the convolutional neural networks 

comprise convolutional layers, pooling layers, flattening layers, dropout layers, and dense layers. 

In still further embodiments, the convolutional layers comprise ID, 2D, or 3D. In still further 

embodiments, the pooling layers comprise maximum pooling layers, minimum pooling layers, 
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average pooling layers, or a combination thereof. In still further embodiments, the convolutional 

neural networks have hyperparameters empirically chosen based on patterns in the network of the 

control system. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[009] A better understanding of the features and advantages of the present subject matter will be 

obtained by reference to the following detailed description that sets forth illustrative 

embodiments and the accompanying drawings of which: 

[010] Fig. 1 shows a non-limiting example of a computing device; in this case, a device with 

one or more processors, memory, storage, and a network interface; 

[011] Fig. 2 shows a non-limiting example of a block diagram of a generic ICS feedback loop; 

[012] Fig. 3 shows a non-limiting example of a multi-view classification system for a control 

system; in this case, for an ICS; 

[013] Fig. 4 shows a non-limiting example of an architecture for an ICS testbed; in this case, for 

a l\1ITM attack; 

[014] Fig. 5 shows a non-limiting example of a dual-CNN architecture; 

[015] Figs. 6A-6D show raw data obtained from a trial during an MITM attack; 

[016] Figs. 7 A-7C show confusion matrices for the raw sensor and packet data; 

[017] Figs. 8A-8C show classifier outputs tracking the difference between classified states; 

[018] Fig. 9 shows precision-recall curve (PRC) of the classifier performances; and 

[019] Fig. 10 shows a distribution of total prediction errors before anomaly detection. 

DETAILED DESCRIPTION 

[020] Described herein, in certain embodiments, are computer-implemented methods for 

control system anomaly detection comprising: receiving input data comprising: sensor data from 

equipment in the control system; and network data from a network in communication with the 

control system; normalizing distributions of the sensor data and the network data; checking time 

alignment between the sensor data to the network data; selecting a time window for accumulating 

the sensor data and the network data; feeding the sensor data into a first neural network 

comprising a behavior classifier of the equipment of the control system to output a first classified 

state of the control system; feeding the network data into a second neural network comprising a 
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network traffic classifier to output a second classified state of the control system; and comparing 

the first and the second classified states for consensus for system anomaly detection, wherein 

accumulation of differences in classified states in a given time interval above a threshold 

indicates occurrence of an anomaly. 

[021] Also described herein, in certain embodiments, are computer-implemented systems for 

control system anomaly detection comprising: at least one logic element configured to perform 

operations on sensor data from equipment in the control system and network data from a network 

in the control system the operations comprising: a normalization operation to normalize 

distributions of the sensor data and the network data; a checking operation to check time 

alignment between the sensor data and the network data; and a selection operation to select a 

time window for accumulating the sensor data and the network data; a first neural network 

comprising a behavior classifier of the equipment of the control system for outputting a first 

classified state of the control system from the sensor data; a second neural network comprising a 

network traffic classifier for outputting a second classified state of the control system from the 

network data; and a discrepancy aggregator for comparing the first and the second classified state 

for consensus for control system anomaly detection, wherein accumulation of differences in the 

classified states in a given time interval above a threshold indicates occurrence of an anomaly. 

[022] Also described herein, in certain embodiments, are platfonns for control system anomaly 

detection comprising: an apparatus comprising at least one logic element for perfonning 

operations on sensor data from equipment in the control system and network data from a network 

in communication with the control system; and a discrepancy aggregator for control system 

anomaly detection; and a cloud computing resource communicably coupled to the apparatus and 

comprising a first neural network and a second neural network; wherein the operations comprise: 

a nonnalization operation to nonnalize distributions of the sensor data and the network data; a 

checking operation to check time alignment between the sensor data and the network data; and a 

selection operation to select a time window for accumulating the sensor data and the network 

data; wherein the first neural network comprises a behavior classifier of the equipment of the 

control system outputting a first classified state of the control system from the sensor data from 

the operations; wherein the second neural network comprises a network traffic classifier 

outputting a second classified state of the control system from the network data from the 

operations; wherein the discrepancy aggregator compares the first and the second classified state 

for consensus for control system anomaly detection; and wherein accumulation of differences in 

the classified states in a given time interval above a threshold indicates occurrence of an 
10 
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anomaly. 

1023] Also described herein, in certain embodiments, are computer-implemented methods of 

training neural networks for control system anomaly detection comprising: collecting input data 

comprising sensor data from equipment in the control system and network data from a network in 

communication with the control system; preprocessing the sensor data and the network data to 

output preprocessed sensor data and preprocessed network data, the preprocessing comprising: 

normalizing to adjust distributions of the sensor data and the network data; checking the sensor 

data and the network data for time alignment; and selecting a time window for accumulating the 

sensor data and the network data; creating training sets comprising a first training set comprising 

the preprocessed sensor data and a second training set comprising the preprocessed network data; 

and training a first neural network comprising a behavior classifier of the equipment of the 

control system with the first training set to output a first classified state; and training a second 

neural network comprising a network traffic classifier with the second training set to output a 

second classified state. 

Certain definitions 

[024] Unless otherwise defined, all technical terms used herein have the same meaning as 

commonly understood by one of ordinary skill in the art to which the present subject matter 

belongs. 

[0251 As used in this specification and the appended claims, the singular forms "a," "an," and 

"the" include plural references unless the context clearly dictates otherwise. Any reference to 

"or" herein is intended to encompass "and/or" unless otherwise stated. 

[026] Reference throughout this specification to "some embodiments," "further embodiments," 

or "a particular embodiment," means that a particular feature, structure, or characteristic 

described in connection with the embodiment is included in at least one embodiment. Thus, the 

appearances of the phrase "in some embodiments," or "in further embodiments," or "in a 

particular embodiment" in various places throughout this specification are not necessarily all 

referring to the same embodiment. Furthermore, the particular features, structures, or 

characteristics may be combined in any suitable manner in one or more embodiments. 

[027] As used herein, the term "control system'' may generally refer to a framework to 

coordinate operations between components, such as protocols, connections, and devices, in a 

system. In some embodiments, the operations may be executed with one or more logic elements. 
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In various embodiments, the control system comprises an industrial control system (ICS), 

distributed control system (DCS), supervisory control and data acquisition (SCADA) system, 

embedded system, or a combination thereof. In some embodiments, the control system comprises 

a general purpose computing system with one or more network connections such as the Internet, 

Bluetooth, and the like, wherein the general purpose computing system is controlled by user 

input or by application programs running on the general purpose computing system. In further 

embodiments, the general purpose computing system comprises an edge device such as a desktop 

or a notebook, tablet, smartphone, or other portable computing device. In futher embodiments, 

the general purpose computing system comprises a server or server cluster interconnected to a 

combination of local components and remote components via one or more network connections. 

[028] As used herein, the term "neural network" may generally refer to a computational 

network composed of nodes. The nodes of the neural network may be connected as layers or 

graphs. In some embodiments, the neural network comprises an algorithm designed for solving a 

specific problem. In some embodiments, the neural network may comprise a generalizable 

algorithm to solve a range of problems. In some embodiments, the neural network may "learn" 

how to solve one or more problems. 

[029] As used herein, the term "classified state" or "classified states" may generally refer to a 

state(s) of a component(s) in a control system or in communication with a control system. The 

state may be determined based on values, ranges, or patterns detected in physical measurements 

of components in the control system or in communication with the control system. In some 

embodiments, the states may be determined by a ML algorithm for classification or clustering. In 

some cases, the ML algorithm may be a neural network. 

[030] As used herein, the term "discrepancy aggregator" may generally refer to a computational 

framework comprising at least one logic element for comparing classified states of components 

of a control system. In some embodiments, the discrepancy aggregator may accumulate errors ( or 

difference) between classified states for a given time period if the classified states of the 

components in the control system lack consensus. In some embodiments, the accumulation of 

errors may be compared to a threshold. If the accumulation of errors is greater than the threshold, 

an anomaly may be identified in the control system. 

[031] As used herein, the term "anomaly" or "anomalies" may generally refer to abnormal 

behavior in one or more components in a control system or in communication with the control 

system. Abnormal behavior may comprise of irregular values, ranges, or patterns detected in 
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physical measurements of components in the control system or in communication with the 

control system. In some embodiments, the anomaly may comprise of faulty components due to 

wearing of components over time or due to an accident. In some embodiments, the anomaly may 

be indicative of a cyberattack. 

Computing system 

[032] Referring to Fig. 1, a block diagram is shown depicting an exemplary machine that 

includes a computer system 100 (e.g., a processing or computing system) within which a set of 

instructions can execute for causing a device to perform or execute any one or more of the 

aspects and/or methodologies for static code scheduling of the present disclosure. The 

components in Fig. 1 are examples only and do not limit the scope of use or functionality of any 

hardware, software, embedded logic component, or a combination of two or more such 

components implementing particular embodiments. 

[033] Computer system 100 may include one or more processors 101, a memory 103, and a 

storage 108 that communicate with each other, and with other components, via a bus 140. The 

bus 140 may also link a display 132, one or more input devices 133 (which may, for example, 

include a keypad, a keyboard, a mouse, a stylus, etc.), one or more output devices 134, one or 

more storage devices 135, and various tangible storage media 136. All of these elements may 

interface directly or via one or more interfaces or adaptors to the bus 140. For instance, the 

various tangible storage media 136 can interface with the bus 140 via storage medium interlace 

126. Computer system 100 may have any suitable physical form, including but not limited to one 

or more integrated circuits (ICs), printed circuit boards (PCBs), mobile handheld devices (such as 

mobile telephones or PDAs), laptop or notebook computers, distributed computer systems, 

computing grids, or servers. 

[034] Computer system 100 includes one or more processor(s) 101 (e.g., central processing 

units (CPUs), general purpose graphics processing units (GPGPUs), or quantum processing units 

(QPUs)) that carry out functions. Processor(s) 101 optionally contains a cache memory unit 102 

for temporary local storage of instructions, data, or computer addresses. Processor(s) 101 are 

configured to assist in execution of computer readable instructions. Computer system 100 may 

provide functionality for the components depicted in Fig. 1 as a result of the processor(s) 101 

executing non-transitory, processor-executable instructions embodied in one or more tangible 

computer-readable storage media, such as memory 103, storage 108, storage devices 135, and/or 

storage medium 136. The computer-readable media may store software that implements 
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particular embodiments, and processor(s) 101 may execute the software. Memory 103 may read 

the software from one or more other computer-readable media (such as mass storage device(s) 

135, 136) or from one or more other sources through a suitable interface, such as network 

interface 120. The software may cause processor(s) 101 to carry out one or more processes or one 

or more steps of one or more processes described or illustrated herein. Carrying out such 

processes or steps may include defining data structures stored in memory 103 and modifying the 

data structures as directed by the software. 

[035] The memory 103 may include various components ( e.g., machine readable media) 

including, but not limited to, a random access memory component (e.g., RAM 104) (e.g., static 

RAM (SRAM), dynamic RAl\1 (DRAM), ferroelectric random access memory (FRAM), phase­

change random access memory (PRAM), etc.), a read-only memory component (e.g., ROM 105), 

and any combinations thereof. ROM 105 may act to communicate data and instructions 

unidirectionally to processor(s) 101, and RAM 104 may act to communicate data and instructions 

bidirectionally with processor(s) 101. ROM 105 and RAM 104 may include any suitable tangible 

computer-readable media described below. In one example, a basic input/output system 106 

(BIOS), including basic routines that help to transfer information between elements within 

computer system 100, such as during start-up, may be stored in the memory 103. 

[036] Fixed storage 108 is connected bidirectionally to processor(s) 101, optionally through 

storage control unit 107. Fixed storage 108 provides additional data storage capacity and may 

also include any suitable tangible computer-readable media described herein. Storage 108 may be 

used to store operating system 109, executable(s) 110, data 111, applications 112 (application 

programs), and the like. Storage 108 can also include an optical disk drive, a solid-state memory 

device ( e.g., flash-based systems), or a combination of any of the above. Information in storage 

108 may, in appropriate cases, be incorporated as virtual memory in memory 103. 

[037] In one example, storage device(s) 135 may be removably interfaced with computer 

system 100 (e.g., via an external port connector (not shown)) via a storage device interface 125. 

Particularly, storage device(s) 135 and an associated machine-readable medium may provide 

non-volatile and/or volatile storage of machine-readable instructions, data structures, program 

modules, and/or other data for the computer system 100. In one example, software may reside, 

completely or partially, within a machine-readable medium on storage device(s) 135. In another 

example, software may reside, completely or partially, within processor(s) 101. 

[038] Bus 140 connects a wide variety of subsystems. Herein, reference to a bus may 
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encompass one or more digital signal lines serving a common function, where appropriate. Bus 

140 may be any of several types of bus structures including, but not limited to, a memory bus, a 

memory controller, a peripheral bus, a local bus, and any combinations thereof, using any of a 

variety of bus architectures. As an example and not by way of limitation, such architectures 

include an Industry Standard Architecture (ISA) bus, an Enhanced ISA (EISA) bus, a Micro 

Channel Architecture (MCA) bus, a Video Electronics Standards Association local bus (VLB), a 

Peripheral Component Interconnect (PCI) bus, a PCI-Express (PCI-X) bus, an Accelerated 

Graphics Port (AGP) bus, Hyperiransport (HIX) bus, serial advanced technology attachment 

(SAIA) bus, and any combinations thereof. 

10391 Computer system 100 may also include an input device 133. In one example, a user of 

computer system 100 may enter commands and/or other information into computer system 100 

via input device(s) 133. Examples of an input device(s) 133 include, but are not limited to, an 

alpha-numeric input device ( e.g., a keyboard), a pointing device ( e.g., a mouse or touchpad), a 

touchpad, a touch screen, a multi-touch screen, a joystick, a stylus, a gamepad, an audio input 

device ( e.g., a microphone, a voice response system, etc.), an optical scanner, a video or still 

image capture device (e.g., a camera), and any combinations thereof. In some embodiments, the 

input device is a Kinect, Leap Motion, or the like. Input device(s) 133 may be interfaced to bus 

140 via any of a variety of input interfaces 123 ( e.g., input interface 123) including, but not 

limited to, serial, parallel, game port, USB, FIREWIRE, THUNDERBOLT, or any combination 

of the above. 

[040] In particular embodiments, when computer system 100 is connected to network 130, 

computer system 100 may communicate with other devices, specifically mobile devices and 

enterprise systems, distributed computing systems, cloud storage systems, cloud computing 

systems, and the like, connected to network 130. Communications to and from computer system 

100 may be sent through network interface 120. For example, network interface 120 may receive 

incoming communications (such as requests or responses from other devices) in the form of one 

or more packets (such as Internet Protocol (IP) packets) from network 130, and computer system 

100 may store the incoming communications in memory 103 for processing. Computer system 

100 may similarly store outgoing communications (such as requests or responses to other 

devices) in the form of one or more packets in memory 103 and communicated to network 130 

from network interface 120. Processor(s) 101 may access these communication packets stored in 

memory 103 for processing. 
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[041] Examples of the network interface 120 include, but are not limited to, a network interface 

card, a modem, and any combination thereof. Examples of a network 130 or network segment 

130 include, but are not limited to, a distributed computing system, a cloud computing system, a 

wide area network (WAN) ( e.g., the Internet, an enterprise network), a local area network (LAN) 

(e.g., a network associated with an office, a building, a campus or other relatively small 

geographic space), a telephone network, a direct connection between two computing devices, a 

peer-to-peer network, and any combinations thereof. A network, such as network 130, may 

employ a wired and/or a wireless mode of communication. In general, any network topology may 

be used. 

10421 Information and data can be displayed through a display 132. Examples of a display 132 

include, but are not limited to, a cathode ray tube (CRT), a liquid crystal display (LCD), a thin 

film transistor liquid crystal display (TFT-LCD), an organic liquid crystal display (OLED) such 

as a passive-matrix OLED (PMOLED) or active-matrix OLED (AMOLED) display, a plasma 

display, and any combinations thereof. The display 132 can interface to the processor(s) 101, 

memory 103, and fixed storage 108, as well as other devices, such as input device(s) 133, via the 

bus 140. The display 132 is linked to the bus 140 via a video interface 122, and transport of data 

between the display 132 and the bus 140 can be controlled via the graphics control 121. In some 

embodiments, the display is a video projector. 

[043] In addition to a display 132, computer system 100 may include one or more other 

peripheral output devices 134 including, but not limited to, an audio speaker, a printer, a storage 

device, and any combinations thereof. Such peripheral output devices may be connected to the 

bus 140 via an output interface 124. Examples of an output interface 124 include, but are not 

limited to, a serial port, a parallel connection, a USB port, a FIREWIRE port, a 

THUNDERBOLT port, and any combinations thereof. 

[044] In addition or as an alternative, computer system 100 may provide functionality as a result 

of logic hardwired or otherwise embodied in a circuit, which may operate in place of or together 

with software to execute one or more processes or one or more steps of one or more processes 

described or illustrated herein. Reference to software in this disclosure may encompass logic, and 

reference to logic may encompass software. Moreover, reference to a computer-readable medium 

may encompass a circuit (such as an IC) storing software for execution, a circuit embodying 

logic for execution, or both, where appropriate. The present disclosure encompasses any suitable 

combination of hardware, software, or both. 
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[045] Those of skill in the art will appreciate that the various illustrative logical blocks, 

modules, circuits, and algorithm steps described in connection with the embodiments disclosed 

herein may be implemented as electronic hardware, computer software, or combinations of both. 

To clearly illustrate this interchangeability of hardware and software, various illustrative 

components, blocks, modules, circuits, and steps have been described above generally in terms of 

their functionality. 

[046] The various illustrative logical blocks, modules, and circuits described in connection with 

the embodiments disclosed herein may be implemented or performed with a general purpose 

processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a 

field programmable gate array (FPGA) or other programmable logic device, discrete gate or 

transistor logic, discrete hardware components, or any combination thereof designed to perform 

the functions described herein. A general purpose processor may be a microprocessor, but in the 

alternative, the processor may be any conventional processor, controller, microcontroller, or state 

machine. A processor may also be implemented as a combination of computing devices, e.g., a 

combination of a DSP and a microprocessor, a plurality of microprocessors, one or more 

microprocessors in conjunction with a DSP core, or any other such configuration. 

[047] The steps of a method or algorithm described in connection with the embodiments 

disclosed herein may be embodied directly in hardware, in a software module executed by one or 

more processor( s ), or in a combination of the two. A software module may reside in RAM 

memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard 

disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An 

exemplary storage medium is coupled to the processor such the processor can read information 

from, and write information to, the storage medium. In the alternative, the storage medium may 

be integral to the processor. The processor and the storage medium may reside in an ASIC. The 

ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may 

reside as discrete components in a user terminal. 

[048] In accordance with the description herein, suitable computing devices include, by way of 

non-limiting examples, server computers, desktop computers, laptop computers, notebook 

computers, sub-notebook computers, netbook computers, netpad computers, set-top computers, 

media streaming devices, handheld computers, Internet appliances, mobile smartphones, tablet 

computers, personal digital assistants, and vehicles. Those of skill in the art will also recognize 

that select televisions, video players, and digital music players with optional computer network 
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connectivity are suitable for use in the system described herein. Suitable tablet computers, in 

various embodiments, include those with booklet, slate, and conve11ible configurations, known to 

those of skill in the art. 

[049] In some embodiments, the computing device includes an operating system configured to 

perform executable instructions. The operating system is, for example, software, including 

programs and data, which manages the device's hardware and provides services for execution of 

applications. Those of skill in the art will recognize that suitable server operating systems 

include, by way of non-limiting examples, FreeBSD, OpenBSD, NetBSD'ID, Linux, Apple1ID Mac 

OS X ServeriK\ Oracle1K1 SolarisiK1

, Windows ServeriK\ and NovelliK1 NetWare@1 . Those of skill in the 

art will recognize that suitable personal computer operating systems include, by way of non­

limiting examples, Microsoft@Windows@, Apple@Mac OS x@, UNIX@, and UNIX-like 

operating systems such as GNU/Linux@. In some embodiments, the operating system is provided 

by cloud computing. Those of skill in the art will also recognize that suitable mobile smartphone 

operating systems include, by way of non-limiting examples, Nokia@ Symbian@ OS, Apple® 

iOS®, Research In Motion® BlackBerry OS'®, Google® At1droid®, Microsoft@ Windows Phone@ 

OS, Microsoft® Windows Mobile@J OS, LinuxlRJ' and Palm® Webos@J_ Those of skill in the art 

will also recognize that suitable media streaming device operating systems include, by way of 

non-limiting examples, Apple TV@, Rokuis1 , Boxee@, Google TVID, Google Chromecast@, 

A • IRl dS ® s IRl mazon Fire~, an amsung Home ync-. 

Non-transitory computer readable storage medium 

[050] In some embodiments, the platfom1s, systems, media, and methods disclosed herein 

include one or more non-transitory computer readable storage media encoded with a program 

including instructions executable by the operating system of an optionally networked computing 

device. In further embodiments, a computer readable storage medium is a tangible component of 

a computing device. In still further embodiments, a computer readable storage medium is 

optionally removable from a computing device. In some embodiments, a computer readable 

storage medium includes, by way of non-limiting examples, CD-ROMs, DVDs, flash memory 

devices, solid state memory, magnetic disk drives, magnetic tape drives, optical disk drives, 

distributed computing systems including cloud computing systems and services, and the like. In 

some cases, the program and instructions are permanently, substantially permanently, semi­

permanently, or non-transitorily encoded on the media. 

Computer program 
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[051] In some embodiments, the platforms, systems, media, and methods disclosed herein 

include at least one computer program, or use of the same. A computer program includes a 

sequence of instructions, executable by one or more processor( s) of the computing device's CPU, 

written to perform a specified task Computer readable instructions may be implemented as 

program modules, such as functions, objects, Application Programming Interfaces (APis), 

computing data structures, and the like, that perform particular tasks or implement particular 

abstract data types. In light of the disclosure provided herein, those of skill in the art will 

recognize that a computer program may be written in various versions of various languages. 

[052] The functionality of the computer readable instructions may be combined or distributed as 

desired in various environments. In some embodiments, a computer program comprises one 

sequence of instructions. In some embodiments, a computer program comprises a plurality of 

sequences of instructions. In some embodiments, a computer program is provided from one 

location. In other embodiments, a computer program is provided from a plurality oflocations. In 

various embodiments, a computer program includes one or more software modules. In various 

embodiments, a computer program includes, in part or in whole, one or more web applications, 

one or more mobile applications, one or more standalone applications, one or more web browser 

plug-ins, extensions, add-ins, or add-ons, or combinations thereof. 

Web application 

[053] In some embodiments, a computer program includes a web application. In light of the 

disclosure provided herein, those of skill in the art will recognize that a web application, in 

various embodiments, utilizes one or more software frameworks and one or more database 

systems. In some embodiments, a web application is created upon a software framework such as 

Microsoft@ .NET or Ruby on Rails (RoR). In some embodiments, a web application utilizes one 

or more database systems including, by way of non-limiting examples, relational, non-relational, 

object oriented, associative, XML, and document oriented database systems. In further 

embodiments, suitable relational database systems include, by way of non-limiting examples, 

Microsoft® SQL Server, mySQLTM, and Oracle@. Those of skill in the art will also recognize that 

a web application, in various embodiments, is written in one or more versions of one or more 

languages. A web application may be written in one or more markup languages, presentation 

definition languages, client-side scripting languages, server-side coding languages, database 

query languages, or combinations thereof. In some embodiments, a web application is written to 

some extent in a markup language such as Hypertext Markup Language (HTML), Extensible 
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Hypertext Markup Language (XHTML), or eXtensible Markup Language (XML). In some 

embodiments, a web application is written to some extent in a presentation definition language 

such as Cascading Style Sheets (CSS). In some embodiments, a web application is written to 

some extent in a client-side scripting language such as Asynchronous JavaScript and XML 

(AJAX), Flash® ActionScript, JavaScript, or Silverlight®. In some embodiments, a web 

application is written to some extent in a server-side coding language such as Active Server 

Pages (ASP), ColdFusion@, Perl, Java TM, JavaServer Pages (JSP), Hypertext Preprocessor (PHP), 

PythonTM, Ruby, Tel, Smalltalk, WebDNA ®, or Groovy. In some embodiments, a web 

application is written to some extent in a database query language such as Structured Query 

Language (SQL). In some embodiments, a web application integrates enterprise server products 

such as IBM(ID Lotus Domino@)_ In some embodiments, a web application includes a media player 

element In various further embodiments, a media player element utilizes one or more of many 

suitable multimedia technologies including, by way of non-limiting examples, Adobe([(' Flash@, 

HTML 5, Apple1
ll:i QuickTimeID, Microsofflli Silverlight'll\ Java™, and Unity'ID. 

Mobile application 

[054] In some embodiments, a computer program includes a mobile application provided to a 

mobile computing device. In some embodiments, the mobile application is provided to a mobile 

computing device at the time it is manufactured. In other embodiments, the mobile application is 

provided to a mobile computing device via the computer network described herein. 

[055] In view of the disclosure provided herein, a mobile application is created by techniques 

known to those of skill in the art using hardware, languages, and development environments 

known to the art. Those of skill in the art will recognize that mobile applications are written in 

several languages. Suitable programming languages include, by way of non-limiting examples, 

C, C++, C#, Objective-C, Java TM, JavaScript, Pascal, Object Pascal, PythonTM, Ruby, VB.NET, 

WML, and XHTML/HTML with or without CSS, or combinations thereof. 

[056] Suitable mobile application development environments are available from several 

sources. Commercially available development environments include, by way of non-limiting 

examples, AirplaySDK, alcheMo, Appcelerator@, Celsius, Bedrock, Flash Lite, .NET Compact 

Framework, Rhomobile, and WorkLight Mobile Platform. Other development environments are 

available without cost including, by way of non-limiting examples, Lazarus, MobiFlex, MoSync, 

and PhoneGap. Also, mobile device manufacturers distribute software developer kits including, 
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by way of non-limiting examples, iPhone and iPad (iOS) SDK, Android™ SDK, BlackBerryig1 

SDK, BREW SDK, Palm® OS SDK, Symbian SDK, webOS SDK, and Windows® Mobile SDK. 

l057J Those of skill in the art will recognize that several commercial forums are available for 

distribution of mobile applications including, by way of non-limiting examples, Applesi App 

Store, Google@J Play, Chrome WebStore, BlackBerry® App World, App Store for Palm devices, 

App Catalog for webOS, Windows@ Marketplace for Mobile, Ovi Store for Nokia® devices, 

Samsung@ Apps, and NintendoID DSi Shop. 

Standalone application 

[058] In some embodiments, a computer program includes a standalone application, which is a 

program that is run as an independent computer process, not an add-on to an existing process, 

e.g., not a plug-in. Those of skill in the art will recognize that standalone applications are often 

compiled. A compiler is a computer program(s) that transforms source code written in a 

programming language into binary object code such as assembly language or machine code. 

Suitable compiled programming languages include, by way of non-limiting examples, C, C++, 

Objective-C, COBOL, Delphi, Eiffel, Java™, Lisp, Python™, Visual Basic, and VB .NET, or 

combinations thereof. Compilation is often performed, at least in part, to create an executable 

program. In some embodiments, a computer program includes one or more executable complied 

applications. 

Software modules 

[059] In some embodiments, the platforms, systems, media, and methods disclosed herein 

include software, server, and/or database modules, or use of the same. In view of the disclosure 

provided herein, software modules are created by techniques known to those of skill in the art 

using machines, software, and languages known to the art. The software modules disclosed 

herein are implemented in a multitude of ways. In various embodiments, a software module 

comprises a file, a section of code, a programming object, a programming structure, a distributed 

computing resource, a cloud computing resource, or combinations thereof. In further various 

embodiments, a software module comprises a plurality of files, a plurality of sections of code, a 

plurality of programming objects, a plurality of programming structures, a plurality of distributed 

computing resources, a plurality of cloud computing resources, or combinations thereof. In 

various embodiments, the one or more software modules comprise, by way of non-limiting 

examples, a web application, a mobile application, a standalone application, and a distributed or 

cloud computing application. In some embodiments, software modules are in one computer 
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program or application. In other embodiments, software modules are in more than one computer 

program or application. In some embodiments, software modules are hosted on one machine. In 

other embodiments, software modules are hosted on more than one machine. In further 

embodiments, software modules are hosted on a distributed computing platform such as a cloud 

computing platform. In some embodiments, software modules are hosted on one or more 

machines in one location. In other embodiments, software modules are hosted on one or more 

machines in more than one location. 

Databases 

[060] In some embodiments, the platforms, systems, media, and methods disclosed herein 

include one or more databases, or use of the same. In view of the disclosure provided herein, 

those of skill in the art will recognize that many databases are suitable for storage and retrieval of 

control system information. In various embodiments, suitable databases include, by way of non­

limiting examples, relational databases, non-relational databases, object-oriented databases, 

object databases, entity-relationship model databases, associative databases, XML databases, 

document oriented databases, and graph databases. Further non-limiting examples include SQL, 

PostgreSQL, MySQL, Oracle, DB2, Sybase, and MongoDB. In some embodiments, a database is 

Internet-based. In further embodiments, a database is web-based. In still further embodiments, a 

database is cloud computing-based. In a particular embodiment, a database is a distributed 

database. In other embodiments, a database is based on one or more local computer storage 

devices. 

Control Systems 

[061] A control system may comprise a framework to coordinate operations between protocols, 

connections, and devices, so they may be executed properly and on schedule. In some 

embodiments, the operations may be executed with one or more logic elements comprising a 

programmable logic controller (PLC), programable logic array (PLA), programmable array logic 

(PAL), generic logic array (GLA), complex programmable logic decide (CPLD), field 

programable gate array (FPGA), or application-specific integrated circuit (ASIC). The control 

system may comprise one or more network communication protocols that may be standard 

network communication protocols, non-standard network communication protocols, or a 

combination thereof. In some embodiments, the standard network communication protocols are 

process field bus (Profibus), process field net (Profinet), highway addressable remote transducer 

(HART), distributed network protocol (DNP3), Modbus, open platform communication (OPC), 
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building automation and control networks (BACnet), common industrial protocol (CIP), or 

ethernet for control automation technology (EtherCAT). In some embodiments, the control 

system may be an industrial control system (ICS), distributed control system (DCS), supervisory 

control and data acquisition (SCAD A) system, embedded system, or a combination thereof. 

[062] In some embodiments, where the control systems may include industrial and 

manufacturing facilities (i.e., an ICS), the control system may support production and processing 

objectives on a mass-scale. An ICS may comprise one or more of PLCs, remote terminal units, 

intelligent electronic devices, engineering workstations, HMI, data historians, communication 

gateways, and front-end processors. In some embodiments, an ICS may have different 

controllable states as steps of a process, and may use an open communication protocol ( e.g., 

Modbus for ICS networks). Further, the open communication protocol, such as Modbus, may not 

be encrypted at any point during the communication, thus increasing the likelihood of an attack. 

For example, A generic ICS feedback control loop is exemplary illustrated in Fig. 1. 

[063] An ICS feedback loop may generally comprise a human-machine interface (HMI) 205. 

The HMI 205 may be a user interface (e.g., GUI) that connects a person to one or more 

components (e.g., equipment, network, etc.) in the ICS. The HMI 205 may send a query to a 

programmable logic controller (PLC) 210 regarding the state or function of components in the 

ICS, and the PLC 210 may send a response back to the HMI 205, which may be displayed on the 

user interface. In some embodiments, the PLC 210 may send status information regarding 

components of the ICS to the HMI 205. In some embodiments, the PLC 210 may implement 

control strategies using a system comprising a microprocessor for managing components in the 

ICS. 

[064] In some cases, the components may be a physical device 215, such as equipment in the 

ICS. In some cases, the equipment may be on-site or remote. In some examples, the PLC 210 

may control a physical device 215 or a plurality thereof, such as control motors, valves, switches, 

etc. In some examples, the PLC 210 may control a physical device 215 based on measurements 

obtained from sensors 220, which may determine when and how the physical device 215 should 

operate. In some cases, the measurements may be physical measurements obtained from sensors 

220, such as pressure, volume, temperature, humidity, torque, vacuum, motion, etc. In some 

cases, the sensor 220 may be a standalone sensor or an integrated sensor. In some examples, the 

integrated sensor may be part of a control device comprising an actuator. In further embodiments, 

the PLC 210 may receive commands for the physical device 215 to perform functions (e.g., pump 
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actuation, stirrer operation, conveyor belt operation, etc.) from the HMI 205. 

1065] Safety, reliability, and resilience to cyberattacks may be key attributes for the successful 

operation of an res. These attributes may be threatened due to an increase in attack surfaces due 

to IOI devices, difiiculties in pe1forming patch updates to components in the res from 

downtime and vendor varieties, or an accumulation of small errors over time that may result in 

larger failures. An anomaly detection system for recognizing threats, such as those described 

herein, may increase the likelihood of the successful operation of an res. In some embodiments, 

data obtained related to the res may be used for anomaly recognition. In some cases, the data 

may be obtained from one or more sources, such as components of the res or communicably 

coupled to the ICS (e.g., data from a network, such as Modbus commands, sensor data, etc.). In 

some cases, the data from one or more sources may be analyzed and compared to previous data 

for anomalies. For example, a pressure sensor may have a normal operating range, and a pressure 

value outside that range may be flagged as an anomaly. In a further example, network traffic 

patterns may be analyzed, and an unusually high or low traffic pattern may be flagged as an 

anomaly. In some cases, the data from multiple sources may be analyzed and compared to one 

another for anomalies. In some examples, having two different models (i.e., ML algorithms) 

predict the state of multiple sources may help identify miscommunication errors and the 

occurrence of an anomaly. For example, sensor data and network traffic patterns may be 

analyzed and compared to one another to better assess when an anomaly has occurred. The 

anomaly detection as described herein, by way of non-limiting example, for an ICS, may be 

performed with a classification system employing ML techniques. In some embodiments, the 

classification system may employ neural networks. 

Classification System for a Control System 

[066] An architecture comprising neural networks may be used for predicting the states of 

components for a control system. The states may be predicted by the neural networks using 

classification of behavioral patterns of components in the control system (e.g., 'FAST', 'SLOW', 

'ON', 'OFF', etc.). The classification may be compared to past classifications or may be 

compared to other components in the control system for multi-view classification in order to 

identify the occurrence of an anomaly. 

[067] An example of a multi-view classification system for a control system, in this case, by 

way of non-limiting example, for an ICS, is illustrated in Fig. 3. First, raw data 305 may be 

obtained from components in the control system or in communication with the control system. 

24 



WO 2022/265923 PCT/US2022/032934 

Raw data 305 may comprise of one or more inputs from components as described herein. In 

some embodiments, the raw data 305 may comprise sensor data from equipment in the control 

system (e.g., accelerometer or gyrometer in an ICS). In alternative embodiments, the sensor data 

may be obtained from equipment in an embedded system (e.g., glucose sensors in an insulin 

pump, sensors in a pacemaker, etc.). In some embodiments, the raw data 305 may comprise 

network data from a network in communication with the control system. The network data may 

comprise packet data, metadata, or a combination thereof. In some cases, the packet data may 

comprise a packet's header, payload, trailer, or any combination thereof. In some further cases, 

the packet data from the packet's payload may comprise bit streams. In some embodiments, the 

network data may comprise of interarrival times, which may be referred to as packet time deltas 

or the first difference. In such embodiments, each packet may contain a timestamp for when it 

arrives to the ICS or a component of the ICS, and taking the difference between two adjacent 

timestamps may yield the amount of time between each packet arrival. The interarrival times (or 

time between packet arrivals) may change (e.g., increase or decrease) during a change in the state 

of a control system, which may then return to a baseline interarrival time. Thus, in such 

embodiments, interarrival times may be used for detecting anomalous state changes. 

[068] Preprocessing may be performed on the raw data 305 using at least one logic element, as 

described herein. ln some embodiments, the multi-view classification, as exemplary illustrated in 

Fig. 3, may preprocess data for time period 310, in which the time period of the raw data 305 

may be adjusted. In some cases, preprocessing may comprise of normalizing distributions of one 

or more inputs of the raw rate 305 (e.g., the sensor data and the network data). In some examples, 

a normalizing operation may adjust a distributions' mean, variance, higher-ordered moments, or 

a combination thereof. In some cases, preprocessing may comprise of checking time alignment 

between one or more inputs of the raw data 305 (e.g., the sensor data to the network data). In 

some examples, the checking operation may resample any one of the inputs of the raw data 305 

(e.g., as i.e., the sensor data, the netwwk data, or any combination thereof) for the time alignment 

between them. The resampling may result in the inputs of the raw data 305 having a same 

number of samples. In some examples, the resampling comprises downsampling. In some 

examples, the resampling comprises upsampling. In some examples, the resampling comprises 

unsampling. In some cases, preprocessing may comprise of selecting a time window for 

accumulating the one or more inputs of the raw data 305 (e.g., sensor data and the network data). 

ln some examples, this selection operation may comprise of windowing to adjust the time 

window for accumulating any one of the inputs of the raw data 305. In some examples, the 
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windowing accounts for delays in any one of the inputs of the raw data 305. In some 

embodiments, using a smaller time window may allow control of false positive to false negative 

ratio of the classification, which can be optimized based on the costs of a misclassification. In 

some embodiments, the size of the time window may be empirically chosen from observing the 

patterns of the raw data 305. 

[069] The data from preprocessing operations, as described herein, may be fed into one or more 

ML algorithms for identifying single or multi-stage attacks, or detecting anomalies in a control 

system. In some examples, these attacks or anomalies may be detected by analyzing packet 

streams and content from a network. In some examples, the network may use one or more 

communication protocol (e.g., the Modbus protocol). In some examples, these attack or 

anomalies may be detected from time series data of sensors. In some embodiments, the one or 

more ML algorithms may be supervised, semi-supervised, or unsupervised for training to identify 

anomalies. In some embodiments, the one or more 11L algorithms may perform classification or 

clustering to identify anomalies or attacks. In some embodiments, the one or more ML 

algorithms may comprise classical ML algorithms for performing clustering to identify outliers. 

Classical ML algorithms may comprise of algorithms that learn from existing observations (i.e., 

known features) to predict outputs. In some cases, the classical ML algorithms for performing 

clustering may be K-means clustering, mean-shift clustering, density-based spatial clustering of 

applications with noise (DBSCAN), expectation-maximization (EM) clustering (e.g., using 

Gaussian mixture models (GMM)), agglomerative hierarchical clustering, or a combination 

thereof In some embodiments, the one or more ML algorithms may comprise classical ML 

algorithms for classification. In some cases, the classical ML algorithms may comprise logistic 

regression, na1ve Bayes, K-nearest neighbors, random forests or decision trees, gradient boosting, 

support vector machines (SVMs ), or a combination thereof. In some embodiments, the one or 

more ML algorithm may employ deep learning. A deep learning algorithm may comprise of an 

algorithm that learns by extracting new features to predict outputs. The deep learning algorithm 

may comprise of layers, which may comprise a neural network. 

Neural Neflrnrks 

[070] Neural networks may comprise of connected nodes in a network, which may perform 

functions, such as transforming or translating input data. In some examples, the output from a 

given node may be passed on as input to another node. In some embodiments, the nodes in the 

network may comprise of input units, hidden units, output units, or a combination thereof. In 
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some cases, an input node may be connected to one or more hidden units. In some cases, one or 

more hidden units may be connected to an output unit The nodes may take in input and may 

generate an output based on an activation function. In some embodiments, the input or output 

may be a tensor, a matrix, a vector, an array, or a scalar. In some embodiments, the activation 

function may be a Rectified Linear Unit (ReLU) activation function, a sigmoid activation 

function, or a hyperbolic tangent activation function. In some embodiments, the activation 

function may be a Softmax activation function. The connections between nodes may further 

comprise of weights for adjusting input data to a given node (i.e., to activate input data or 

deactivate input data). In some embodiments, the weights may be learned by the neural network. 

In some embodiments, the neural network may be trained using gradient-based optimizations. In 

some cases, the gradient-based optimization may comprise of one or more loss functions. In 

some examples, the gradient-based optimization may be conjugate gradient descent, stochastic 

gradient descent, or a variation thereof (e.g., adaptive moment estimation (Adam)). In further 

examples, the gradient in the gradient-based optimization may be computed using 

backpropagation. In some embodiments, the nodes may be organized into graphs to generate a 

network (e.g., graph neural networks). In some embodiments, the nodes may be organized into 

one or more layers to generate a network ( e.g., feed forward neural networks, convolutional 

neural networks (CNNs), recurrent neural networks (RNNs), etc.). In some cases, the neural 

network may be a deep neural network comprising of more than one layer. 

[071] In some cases, the neural network may comprise one or more recurrent layer. In some 

examples, the one or more recurrent layer may be one or more long short-term memory (LSTM) 

layers or gated recurrent unit (GRU), which may perform sequential data classification and 

clustering. Thus, future predictions may be made by the one or more recurrent layers according 

to the sequence of past events since data ordering is considered. Further, the recurrent layer may 

retain or "remember" important information, while selectively "forgetting" what is not essential 

in the classification model. In some embodiments, the neural network may comprise one or more 

convolutional layers. The input and output may be a tensor representing of variables or attributes 

in a data set (i.e., features), which may be referred to as a feature map (or activation map). Thus, 

the one or more convolutional layers may be referred to as a feature extraction phase. In some 

cases, the convolutions may be one dimensional (1D) convolutions, two dimensional (2D) 

convolutions, three dimensional (3D) convolutions, or any combination thereof. In further cases, 

the convolutions may be 1D transpose convolutions, 2D transpose convolutions, 3D transpose 

convolutions, or any combination thereof In some examples, one-dimensional convolutional 
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layers may be suited for time series sensor data analysis since it may classify time series through 

parallel convolutions. In some examples, convolutional layers may be used for analyzing raw 

data in the payload of a network packet. Further, the convolutional layers may be efficient for 

detecting properties in payload bit patterns of a control system since they may follow a 

recognizable pattern (e.g., payload bit patterns in an res follow recognizable res command 

patterns). 

[072] The layers in a neural network may further comprise one or more pooling layers before or 

after a convolutional layer. The one or more pooling layers may reduce the dimensionality of the 

feature map using filters that summarize regions of the matrix. This may down sample the 

number of outputs, and thus reduce the parameters and computational resources needed for the 

neural network. In some embodiments, the one or more pooling layers may be max pooling, min 

pooling, average pooling, global pooling, norm pooling, or a combination thereof. Max pooling 

may reduce the dimensionality of the data by taking only the maximums values in the region of 

the matrix, which helps capture the significant feature. In some embodiments, the one or more 

pooling layers may be one dimensional (lD), two dimensional (2D), three dimensional (3D), or 

any combination thereof. The neural network may further comprise of one or more flattening 

layers, which may flatten the input to be passed on to the next layer. In some cases, the input 

(e.g., feature map) may be flattened by reducing it to a one-dimensional array. The flattened 

inputs may be used to output a classification of an object (e.g., binary classification of an image, 

such as cat or dog, or of a system's performance, such as normal or abnormal, or multi-class 

classification identifying hand-written digits, etc.). The neural networks may further comprise of 

one or more dropout layers. Dropout layers may be used during training of the neural network 

( e.g., to perform binary or multi-class classifications). The one or more dropout layers may 

randomly set certain weights as 0, which may set corresponding elements in the feature map as 0, 

so the neural network may avoid overfitting. The neural network may further comprise of one or 

more dense layers, which comprise a fully connected network. In the dense layer, information 

may be passed through the fully connected network to generate a predicted classification of an 

object, and the error may be calculated. In some embodiments, the error may be backpropagated 

to improve the prediction. The one or more dense layers may comprise of a Softmax activation 

function, which may convert a vector of numbers to a vector of probabilities. These probabilities 

may be subsequently used in classifications, such as classifications of states in a control system 

as described herein. ln some embodiments, the classifications of states from one or more 

components in a control system may be compared to detect the occurrence of an anomaly. 
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[073] An architecture for anomaly detection may comprise two neural networks for dual neural 

network state prediction as exemplary illustrated in Fig. 3. The neural networks may use different 

sets of features for prediction, such as those obtained from network data and sensor data. 

Although two neural networks are employed in this example, one of skill in the art will 

appreciate that any one of the ML algorithms as described herein may be used which may be 

suited for a particular input data set and desired output. One of skill in the art will also appreciate 

that more than two ML algorithms may be employed in this architecture. Further, one of skill in 

the art will appreciate that the ML algorithms as described herein may be combined or that more 

than one input data may be fed into a single ML algorithm (e.g., the network data and sensor data 

may be fed into the same algorithm). 

[074] In the dual neural network architecture illustrated in Fig. 3, the network data (e.g., 

network payload data) may be fed into a neural network comprising a network traffic classifier 

315. The neural network comprising the network traffic classifier 315 may be trained to learn 

"normal" network traffic patterns and classify the network traffic patterns in a given time period 

by comparing it to the "normal" network traffic pattern. The network traffic classifier 315 may 

use the comparison to classify the state of the network traffic pattern in a given time period (e.g., 

"FAST", "SLOW", "MEIDUM", "HALT", "OFF", "REVERSE", etc.). The output from the 

network traffic classifier 315 may comprise of a classified state, illustrated as yin Fig. 3. In 

further embodiments, the neural network may be trained to classify network data that is 

encrypted through various methods (e.g., Electronic Code Book, Cipher-Block Chaining, Cipher 

FeedBack, XOR encryption, etc.). In some embodiments, the sensor data may be fed into a 

behavioral classifier. In some cases, the sensor data may be time series data. In the case of an 

ICS, the sensor data may be time series data obtained from an accelerometer, a gyrometer, or any 

other equipment of the ICS. Further, the behavioral classifier may comprise a motor behavioral 

classifier 320. The neural network comprising the behavioral classifier ( e.g., motor behavioral 

classifier 320) may be trained to learn "normal" sensor ranges or values for a given time period, 

and classify the sensor data in a given time period by comparing it to the "normal" range or 

values. The behavioral classifier may use the comparison to classify the state of the sensor data in 

a given time period (e.g., "FAST", "SLOW", "MEIDUM", "HALT", "OFF", "REVERSE", etc.). 

The output from the behavioral classifier may comprise of another classified state, illustrated as y 
in Fig. 3. 

Discrepancy Aggregator 
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[075] The classified states, y and y from the neural networks comprising classifiers, may be 

compared to one another using a discrepancy aggregator which may comprise at least one logic 

element In some embodiments, the classified states may match (i.e., y y) or be reasonably 

similar. In such embodiments, consensus from the two neural networks is achieved and the 

classification system may return to preprocess data for time period 310 for new raw data 305. In 

some cases, the classified states may be logged, or data may be used for comparison against new 

raw data 305. In alternative embodiments, the classified states may lack consensus (i.e., y y). 

The discrepancy aggregator may then accumulate errors (or difference) for the current time 

window ( or time period) of predictions 325 (i.e., E in Fig. 3) between the classified states. The 

accumulation of errors, E, may then be compared to a threshold, T. In some embodiments, the 

threshold may be empirically chosen from observing the patterns of the raw data 305. In some 

embodiments, T as a threshold 330, may be set according to an average discrepancy rate between 

the classified states. In some embodiments, T as a threshold 330, may be dynamically changed 

over time. In some embodiments, the threshold and the time window may be inversely related 

(i.e., the greater the time window, the lower the threshold may be needed). If the accumulation of 

errors is less than the threshold (i.e., E < T), then the classification system may return to 

preprocess data for time period 310 for new raw data 305. If the accumulation of errors is greater 

than the threshold (i.e., E > T), an anomaly is identified 335. The anomaly may comprise of 

faulty or abnormal behavior of components in the control system or in communication with the 

control system, or may be indicative of a cyberattack. 

EXAMPLES 

[076] The following illustrative examples are representative of embodiments of the software 

applications, systems, and methods described herein and are not meant to be limiting in any way. 

Example 1 - Test Bed of JCS Operations 

[077] An ICS test bed to detect anomalies using packet and sensor data patterns was created 

according to the architecture illustrated Fig. 4. This test bed used two streams of data under the 

assumption that during normal operation, the patterns of command payloads would result in 

specific patterns of sensor behavior. The architecture was created for a man-in-the-middle 

(MITM) 410 attack. A MITM 410 attack may comprise of a scenario in which an attacker may 

secretly relay and alter communications between two or more sources in an ICS without their 

knowledge. The testbed comprised a MITM 410 between an HMI/PLC 405 and a switch 415. 
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[078] The set up comprised a Tolomatic industrial motor, which received commands from the 

HMI/PLC 405. The data flow in Fig. 4 was as followed; 1) the HMI/PLC 405 sent a continual 

stream of motor commands to the switch 415 (e.g., off, on, change of speed, etc), 2) the 

commands from the switch 415 were sent to a sensor controller 420 comprising an inline 

Raspberry Pi for logging purposes, 3) the sensor controller 420 forwarded messages to a motor 

425 or a sensor 430, and 4) the motor 425 and sensor 430 responded with a continual stream of 

data that was read from the motor or recorded by the sensor, which was also routed through the 

inline Raspberry Pi. Here, the sensor 430 recorded accelerometer and gyroscopic data related to 

the motor 425. The accelerometer and gyroscopic sensor data were stored as Comma Separated 

Values (CSVs) in the X, Y, and Z directions that represented the acceleration and orientation of 

the attached sensor separated in the three-dimensional space. This data was collected as a 

constant stream as the sensor controller continuously logged data from the motor at a fixed 

sample rate of 10 thousand samples per second. The gyrometer data as logged as floating-point 

values represent angular velocity as degrees per second. The accelerometer data measured the 

force on the motor in that direction in meters per second squared. In total, six sensor data streams 

are used for sensor classification. 

[079] This ICS ted bed system was constructed to communicate using Modbus packets between 

the HMVPLC 405 and the motor 425. Communication was structured such that all messages sent 

from the HMI/PLC 405 to the motor 425 resulted in a response message sent back to the 

Hl\11/PLC 405. Modbus packets within the system were therefore the Read/Write commands sent 

to the motor 425, and motor data sent back to the HMI/PLC 405. Rather than being a constant 

stream of data input, each payload arrived at different times from the sensor controller 420. The 

payload data was converted from its original byte fom1at to binary, since network data was 

preprocessed from PCAP files. Each individual data payload was about 53 bytes between Oto 

255, which were converted to binary for machine learning input changing the input width from 

53 bytes to 424 bits. 

[080] Raw data obtained from a trial during an MITM attack is shown in Figs. 6A-6D. The 

payload data was represented in its byte format in Fig. 6A, where each of the 53 bytes were 

vertically stacked and pixel color intensity represented the 0-255 value for that byte. Thus, the 

color changes represent how byte locations in some packet have static, cyclic, or random values. 

The accelerometer and gyrometer sensor data are shown in Figs. 6B and 6C, respectively, where 

a state change from the random short burst of speed and forces were observed. Fig. 6D illustrates 
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packet deltas over time, as described herein, although this data was not used to predict the res 
states in the present test case. 

l081 J Here, an error was defined as a difference between the predicted state of two CNNs, 

which classified the states of the payload or sensor data into one of six possible res states: 

'FAST', 'HALT', 'MEDIUM', 'OFF', 'REVERSE', and 'SLOW'. 

Preprocessing 

[082] Preprocessing steps were performed on the raw sensor (accelerometer and gyrometer) and 

packet data. First, normalization was performed on the accelerometer sensor data and packet 

data. Normalization was not necessary for the gyrometer sensor data since each axis was already 

centered around O with a constant standard deviation. For the accelerometer sensor data, the z­

axis was scaled down by dividing by 16767, which was the maximum value that the hardware 

sensors could read. This min-max scaling was done in order to reduce the large magnitude of 

forces in that direction to be between O and 1. The absolute values of the raw values were taken 

in order to specifically detect the magnitude of the rotational and straight-line forces. This was 

done since the direction itself was oscillatory around the axis, so the magnitude was the primary 

source of classification information. For this reason, an absolute value was used to reduce the 

neural network learning needed to find the magnitude. The payload data contained constant noise 

from a variety of packets that ping and maintain the connection. By taking a moving average of 

100 of the packet bitstreams, a constant amount of noise on the network was accounted and the 

classification was improved. 

[083] Next, time alignment between the raw data was checked, so that the sensor and packet 

data were from the same time period. The two data sets had varying amounts of data for each 

period of time because the sensor data arrived in constant intervals while the packet is arrived 

sporadically. In order to have around the same amount of data for the time period, the sensor data 

was downsampled by taking every other sensor reading. This reduction of sensor data to half its 

readings allowed payload data to be aligned to its corresponding sensor readings in time. 

[084] Finally, a time window was selected to accumulate the raw data. The packet payload 

messages sent on the network took some time to impact the res actuators, especially mechanical 

peripherals because of startup transients. This added delay between the observed state from the 

PCAP analysis and the observed state from the sensors. Further, the packet payload arrival time 

varied depending on whether an res state transition was occurring, which gave it a variable 

sampling rate. This meant each payload could not directly be correlated with a sensor output 
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because many payloads could be correlated to only a few ICS sensor changes, and vice versa. 

The timing effects could be mitigated by using a larger input size. As sample input size 

increased, the variable sampling rate and differences among sample rates became less impactful. 

100 samples of payload data and 100 samples of sensor data ( ending at the same point in time) as 

input for each CNN model was determined to be a conservative sample size that worked for the 

classification, since sensor visuals seemed to show that the state change happened over less than 

100 samples. By increasing the sample input size to the ratio of the number of samples it took to 

change states, misclassification errors were reduced to a single prediction during an ICS state 

change. 

CNN Architecture 

[085] The data from the ICS testbed was fed into a dual-CNN architecture according to the 

architecture shows in Fig. 5. The input 505 was either raw time series sensor data or bit streams 

from the payloads in packets over time. Training, validation, and testing splits were performed at 

the ratio of 70:20: 10 to ensure the model can accurately detect ICS states from payloads and 

sensors. To create the model, the Keras package was used for design and training. The model 

uses a combination of convolutional layers 510/520, max pooling layers 515/525, a flattening 

layer 530, a dropout layer 535, and a dense neural network layer 540. All activation functions 

were ReLU except for the final Softmax activation for classification in the dense layer 540. The 

loss function employed for training was cross entropy across the six possible ICS states. An 

adaptive momentum (ADAM) optimizer was employed with a learning rate of le-5 and was used 

to iteratively update the weights. The model was trained for 100 epochs and dropout (dropout 

layer 535) was used to help prevent overfitting. 

[086] The CNN models were first trained and tested on windows of 100 samples for both 

payload and sensor data streams. For the anomaly detection, the occurrence of errors ( or 

disagreements in the states) between the two CNNs were monitored. Since the trials were about 

500,000 samples each and the models predicted from 100 samples, there was be about 5000 

predictions per trial. A sliding window of size 20 was used to calculate error prediction 

percentage over time. In other words, every group of 20 predictions, produced an error rate. Figs. 

6A-6D shows the visualization of results of both the payload and gyrometer sensor classifiers, 

and the error rate per moving window of 20 predictions. The selection of a moving window error 

rate of 20 was used because, while random misclassification can occur, after around 20 

predictions the error rate was observed to be fairly low. A threshold of 18% for the error rate is 
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used to identify anomalies since the baseline error rate for a window of size 20 is around 15% for 

our models. 

Results 

ro871 The training data was analyzed using confusion matrices for the raw data to visualize the 

effectiveness of the classifiers. The raw sensor from the accelerometer and gyrometer are shown 

in Fig. 7A and Fig. 7B, respectively, and packet data is shown in Fig. 7C. The Fl scores and 

weighted averages are also shown in these figures. The best performing model used the 

gyrometer sensor data (Fig. 7B), with near perfect classification except for misclassifications for 

the 'halt' and 'off states. 

[088] The results of combining the classifier outputs for tracking the number of occurrences 

when the classified states for the gyrometer sensor data and packet data differed are shown in 

Figs. 8A-8C. When the accumulation of differences in a given time window surpassed a certain 

threshold, the anomaly was marked. A threshold of 18% worked well in flagging the anomalies. 

Figs. 8A-8C show how comparing the classified states in an unsupervised way allowed for a 

robust anomaly detection. 

[089] A precision-recall curve (PRC) was used to detect the precision to recall ratio as the 

threshold of anomaly detection was adjusted. This method revealed the degree at which the 

overall classifier performed greater than random chance. By sweeping the threshold from 0.0% to 

100. 0% of errors within a window, a diagram as shown in Fig. 9 was created where, as recall of 

anomalies increased, the false positives also increased, and precision decreased. Detecting true 

positives provides utility since this model had consistent results at detecting the baseline (true 

negative) at every threshold and had minimal false negatives. Further, to improved visualization 

through the PRC curve, emphasis on recalling true positives was important since the model had 

to be able to detect and mitigate threats before they caused permanent major failure to the ICS 

system. The calculated area under the precision-recall curve (AUPRC) is about 86% in Fig. 9. 

[090] From the precision-recall curve, the optimal threshold was taken where precision and 

recall are equal (i.e., equal error rate point or EER). At this threshold of around 0.17, the model 

was run on our test set. A confusion matrix and statistics were used to evaluate the combined, 

unsupervised anomaly detector whose performances were shown to have an Fl score: 0.89, 

Sensitivity (Recall): 0.87, and Precision: 0.88. The results were obtained by analyzing the true 

positive and false negatives from anomaly injections and false positives and true negatives from 

baseline. These results represented the strength of the classifier after it was tuned to be an 
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optimal threshold for this dataset. 

1091] For the classifier, the precision of detection reached about 0.88 and its recall about 0.87. 

Detecting this percentage of anomalies generated was quite strong because the inserted anomalies 

in the system were of relatively short duration. Though some anomalies were not detected, a 

more sustained MITM attack would eventually trigger an alarm. Overall, the classifier was robust 

to the random noise of multiple classifiers and could accurately distinguish anomalies from 

baseline data. 

[092] Another important metric was latency of prediction. For every prediction there were 100 

data points of sensor data and packets, and there was a potential anomaly flagged every 20 

predictions. Latency was defined as: latency (W • ei - ea)/s, where W was the window 

(number of samples per prediction), ei - ea were the number of predictions between the first 

error and the error where the anomaly threshold was crossed, and s was the sampling rate in 

samples per millisecond. Fig. 10 shows the delay in prediction, which were used to estimate the 

latency. For example, the median number of predictions between the first incorrect prediction 

and the anomaly (threshold crossed) was 39.5. This meant that about 3950 sensor and payload 

data were used in total before the error was confirmed. At a rate of 10 samples per milliseconds, 

395 milliseconds of sensor data passed until detection. When taking account of all timing 

information, the combined setup was fast enough to classify and compare windows of data from 

two data streams. 

Example 2 - Portable Edge General Use Device 

[093] In another example, a general purpose computing device, in the form of a handheld tablet 

that is wirelessly connected to a network, for example, the Internet is utilized. Devices such as 

handheld tablets generally comprise many different types of sensors. One type of sensor that is 

commonly contained within a handheld tablet is a gyroscope that senses orientation. Yet another 

type of sensor is embedded within the touchscreen that produces pressure readings when the 

touchscreen is interacted with by the user. Such sensors are known to be useful for a variety of 

uses, one of which is demographic classification of the user. For example, using machine 

learning algorithms, a tablet user's interactions with the touchscreen and resulting pressure 

sensor output can be used to predict certain demographic characteristics of the user. 

[094J Additionally, monitoring and analyzing Internet packets received by, and sent from, the 

tablet device can additionally yield certain information about the user, including, by way of 

example, web sites being interacted with, and the like. A machine learning algorithm can classify 
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or predict certain characteristics of the user based on characteristics of the Internet packets being 

received by and transmitted from the handheld tablet device when it is being manipulated by a 

user. Furthermore, if a malicious process is running on the handheld device, analysis of such web 

packets can enable a machine learning algorithm to classify if the tablet has malicious software, 

e.g., "malware," installed or not. 

[095] In this example, the subject matter disclosed herein, as described above, can utilize the 

two machine learning algorithms; the first algorithm processing sensor data and the second 

algorithm processing Internet packet characteristics to enhance the overall predictability and 

reliability of the prediction or classification task. The prediction or classification task, in this 

example, could be to enhance the prediction or classification of certain user demographics, 

identify if the user is utilizing a tablet while it is infected with malware, or identify if the user is 

installing and executing malware. 

[096] While preferred embodiments of the present subject matter have been shown and 

described herein, it will be obvious to those skilled in the art that such embodiments are provided 

by way of example only. Numerous variations, changes, and substitutions will now occur to 

those skilled in the art without departing from the present subject matter. It should be understood 

that various alternatives to the embodiments of the present subject matter described herein may 

be employed in practicing the present subject matter. 
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CLAIMS 

WHAT IS CLAIMED IS: 

1. A computer-implemented method for control system anomaly detection comprising: 

a) receiving input data comprising: sensor data from equipment in the control 

system; and network data from a network in communication with the control 

system; 

b) normalizing distributions of the sensor data and the network data; 

c) checking time alignment between the sensor data to the network data; 

d) selecting a time window for accumulating the sensor data and the network data; 

e) feeding the sensor data into a first neural network comprising a behavior classifier 

of the equipment of the control system to output a first classified state of the 

control system; 

f) feeding the network data into a second neural network comprising a network 

traffic classifier to output a second classified state of the control system; and 

g) comparing the first and the second classified states for consensus for system 

anomaly detection, wherein accumulation of differences in classified states in a 

given time interval above a threshold indicates occurrence of an anomaly. 

2. The method of claim I, wherein the control system comprises an industrial control 

system, distributed control system (DCS), supervisory control and data acquisition (SCADA) 

system, embedded control system, or a combination thereof. 

3. The method of claim I, wherein the control system comprises a general purpose 

computer. 

4. The method of claim I, wherein the industrial control system comprises one or more of 

programmable logic controllers, remote terminal units, intelligent electronic devices, engineering 

workstations, human machine interfaces, data historians, communication gateways, and front-end 

processors. 

5. The method of claim I, wherein the control system employs one or more network 

communication protocols. 
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6. The method of claim 5, wherein the one or more network communication protocols 

comprise standard network communication protocols. 

7. The method of claim 6, wherein the standard network communication protocols comprise 

process field bus (Profibus), process field net (Profinet), highway addressable remote transducer 

(HART), distributed network protocol (DNP3), Modbus, open platform communication (OPC), 

building automation and control networks (BACnet), common industrial protocol (CIP), or 

ethemet for control automation technology (EtherCAT). 

8. The method of claim 5, wherein the one or more network communication protocols 

comprise non-standard network communication protocols, or a combination of standard network 

communication protocols and non-standard network communication protocols. 

9. The method of claim 1, wherein the sensor data comprises time series data. 

10. The method of claim 1, wherein the sensor data is obtained from a standalone sensor or 

an integrated sensor. 

11. The method of claim 10, wherein the integrated sensor is part of a control device 

comprising an actuator. 

12. The method of claim 1, wherein the network data comprises packet data, metadata, or a 

combination thereof. 

13. The method of claim 12, wherein the packet data comprises a packet's header, payload, 

trailer, or any combination thereof 

14. The method of claim 13, wherein the packet data from the packet's payload comprises bit 

streams. 

15. The method of claim 1, wherein normalizing distributions of the sensor data and the 

network data comprises adjusting the distributions' mean, variance, higher-ordered moments, or 

a combination thereof. 

16. The method of claim 1, wherein the method comprises resampling the sensor data, the 

network data, or a combination thereof for the time alignment between the sensor data and 

network data. 

17. The method of claim 16, wherein the resampling results in the sensor data and the 

network data having a same number of samples. 

18. The method of claim 16, wherein the resampling comprises downsampling. 
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19. The method of claim 16, wherein the resampling comprises upsampling. 

20. The method of claim 16, wherein the resampling comprises unsampling. 

21. The method of claim 1, wherein the method comprises windowing to adjust the time 

window for accumulating the sensor data, the network data, or a combination thereof. 

22. The method of claim 21, wherein the windowing accounts for delays in the network data, 

the sensor data, or a combination thereof. 

23. The method of claim 1, wherein one or both of the first neural network and the second 

neural network are deep neural networks. 

24. The method of claim 23, wherein the deep neural networks comprise convolutional layers 

such that one or both of the first neural network and the second neural network are convolutional 

neural networks. 

25. The method of claim 24, wherein the convolutional neural networks comprise 

convolutional layers, pooling layers, flattening layers, dropout layers, and dense layers. 

26. The method of claim 25, wherein the convolutional layers are 1D, 2D, or 3D 

convolutional layers. 

27. The method of claim 25, wherein the pooling layers comprise maximum pooling layers, 

minimum pooling layers, average pooling layers, or a combination thereof 

28. The method of claim 24, wherein the convolutional neural networks have 

hyperparameters that are empirically chosen based on patterns in the network of the control 

system. 

29. The method of claim 24, wherein the convolutional neural networks are supervised for 

training to identify one or both of the first classified state and the second classified state. 

30. The method of claim 1, wherein the comparing the first and the second classified states 

for consensus for system anomaly detection is unsupervised for detecting the differences between 

the first and the second classified states. 

31. The method of claim 1, wherein the threshold is an average discrepancy rate between the 

first and the second classified state. 

32. The method of claim 31, wherein the threshold is dynamically changed over time. 
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33. The method of claim 1, wherein the anomaly is due to attacks on at least one of the 

equipment in the control system and the network of the control system. 

34. A computer-implemented system for control system anomaly detection comprising: 

a) at least one logic element configured to perform operations on sensor data from 

equipment in the control system and network data from a network in the control 

system the operations comprising: 

i) a normalization operation to normalize distributions of the sensor data and 

the network data; 

ii) a checking operation to check time alignment between the sensor data and 

the network data; and 

iii) a selection operation to select a time window for accumulating the sensor 

data and the network data; 

b) a first neural network comprising a behavior classifier of the equipment of the 

control system for outputting a first classified state of the control system from the 

sensor data; 

c) a second neural network comprising a network traffic classifier for outputting a 

second classified state of the control system from the network data; and 

d) a discrepancy aggregator for comparing the first and the second classified state for 

consensus for control system anomaly detection, wherein accumulation of 

differences in the classified states in a given time interval above a threshold 

indicates occurrence of an anomaly. 

35. The system of claim 34, wherein the computer-implemented system comprises at least 

one processor, a memory, and instructions executable by at least one processor. 

36. The system of claim 34, wherein the computer-implemented system comprises a general 

purpose computer. 

37. The system of claim 34, wherein the at least one logic element comprises a programmable 

logic controller (PLC), programable logic array (PLA), programmable array logic (PAL), generic 

logic array (GLA), complex programmable logic decide (CPLD), field programable gate array 

(FPGA), or application-specific integrated circuit (ASIC). 
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38. The system of claim 34, wherein the at least one logic element is implemented on a 

general purpose computer. 

39. The system of claim 34, wherein the control system comprises an industrial control 

system, distributed control system (DCS), supervisory control and data acquisition (SCADA) 

system, embedded system, or a combination thereof. 

40. The system of claim 39, wherein the industrial control system comprises one or more of 

programmable logic controllers, remote terminal units, intelligent electronic devices, engineering 

workstations, human machine interfaces, data historians, communication gateways, and front-end 

processors. 

41. The system of claim 34, wherein the control system employs one or more network 

communication protocols. 

42. The system of claim 41, wherein the one or more network communication protocols 

comprise standard network communication protocols. 

43. The system of claim 42, wherein the standard network communication protocols comprise 

process field bus (Profibus), process field net (Profinet), highway addressable remote transducer 

(HART), distributed network protocol (DNP3), Modbus, open platform communication (OPC), 

building automation and control networks (BACnet), common industrial protocol (CIP), or 

ethemet for control automation technology (EtherCAT). 

44. The system of claim 41, wherein the one or more network communication protocols 

comprise non-standard network communication protocols, or a combination of standard network 

communication protocols and non-standard network communication protocols. 

45. The system of claim 34, wherein the sensor data comprises time series data. 

46. The system of claim 34, wherein the sensor data is obtained from a standalone sensor or 

an integrated sensor. 

47. The system of claim 46, wherein the integrated sensor is part of a control device 

comprising an actuator. 

48. The system of claim 34, wherein the network data comprises packet data, metadata, or a 

combination thereof. 

49. The system of claim 48, wherein the packet data comprises a packet's header, payload, 

trailer, or a combination thereof. 
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50. The system of claim 49, wherein the packet data from the packet's payload comprises bit 

streams. 

51. The system of claim 34, wherein the normalization operation comprises adjusting the 

distribution's mean, variance, higher-ordered moments, or a combination thereof. 

52. The system of claim 34, wherein the at least one logic element is configured to perform a 

resampling operation of the sensor data, the network data, or a combination thereof for the time 

alignment between the network data and the sensor data .. 

53. The system of claim 52, wherein the resampling operation results in the sensor data and 

the network data having a same number of samples. 

54. The system of claim 52, wherein the resampling operation comprises downsampling. 

55. The system of claim 52, wherein the resampling operation comprises upsampling. 

56. The system of claim 52, wherein the resampling operation comprises unsampling. 

57. The system of claim 34, wherein the at least one logic element is configured to perform a 

windowing operation to adjust the time windows for accumulating the sensor data, the network 

data, or a combination thereof. 

58. The system of claim 57, wherein the windowing operation accounts for delays in the 

network data, sensors data, or a combination thereof. 

59. The system of claim 34, wherein one or both of the first neural network and the second 

neural network are deep neural networks. 

60. The system of claim 59, wherein the deep neural networks comprise convolutional layers 

such that one or both of the first neural network and the second neural network are convolutional 

neural networks. 

61. The system of claim 60, wherein the convolutional neural networks comprise 

convolutional layers, pooling layers, flattening layers, dropout layers, and dense layers. 

62. The system of claim 61, wherein the convolutional layers are ID, 2D, or 3D 

convolutional layers. 

63. The system of claim 61, wherein the pooling layers comprise maximum pooling layers, 

minimum pooling layers, average pooling layers, or a combination thereof. 
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64. The system of claim 60, wherein the convolutional neural networks have hyperparameters 

that are empirically chosen based on patterns in the network of the control system. 

65. The system of claim 60, wherein the convolutional neural networks are supervised for 

training to identify the classified states. 

66. The system of claim 34, wherein the threshold is an average discrepancy rate between the 

first and the second classified state. 

67. The system of claim 66, wherein the threshold is dynamically changed over time. 

68. The system of claim 34, wherein the anomaly is due to attacks on at least one of the 

equipment in the control system and the network of the control system. 

69. A platform for control system anomaly detection comprising: 

a) an apparatus comprising at least one logic element for performing operations on 

sensor data from equipment in the control system and network data from a 

network in communication with the control system; and a discrepancy aggregator 

for control system anomaly detection; and 

b) a cloud computing resource communicably coupled to the apparatus and 

comprising a first neural network and a second neural network; 

wherein the operations comprise: 

a) a normalization operation to normalize distributions of the sensor data and the 

network data; 

b) a checking operation to check time alignment between the sensor data and the 

network data; and 

c) a selection operation to select a time window for accumulating the sensor data and 

the network data; 

wherein the first neural network comprises a behavior classifier of the equipment of the 

control system outputting a first classified state of the control system from the sensor data 

from the operations; 

wherein the second neural network comprises a network traffic classifier outputting a 

second classified state of the control system from the network data from the operations; 
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wherein the discrepancy aggregator compares the first and the second classified state for 

consensus for control system anomaly detection; and wherein accumulation of differences 

in the classified states in a given time interval above a threshold indicates occurrence of 

an anomaly. 

70. The platform of claim 69, wherein the apparatus comprising at least one logic element 

comprises at least one processor, a memory, and instructions executable by at least one 

processor. 

71. The platform of claim 69, wherein the at least one logic element comprises a 

programmable logic controller (PLC), programable logic array (PLA), programmable array logic 

(PAL), generic logic array (GLA), complex programmable logic decide (CPLD), field 

programable gate array (FPGA), or application-specific integrated circuit (ASIC). 

72. The platform of claim 69, wherein the control system comprises an industrial control 

system, distributed control system (DCS), supervisory control and data acquisition (SCADA) 

system, embedded system, or a combination thereof. 

73. The platform of claim 69, ,vherein the industrial control system comprises one or more of 

programmable logic controllers, remote terminal units, intelligent electronic devices, engineering 

workstations, human machine interfaces, data historians, communication gateways, and front-end 

processors. 

74. The platform of claim 69, wherein the control system employs one or more network 

communication protocols. 

75. The platform of claim 74, wherein the one or more network communication protocols 

comprise standard network communication protocols. 

76. The platform of claim 75, wherein the standard network communication protocols 

comprise process field bus (Profibus ), process field net (Profinet), highway addressable remote 

transducer (HART), distributed network protocol (DNP3), Modbus, open platform 

communication (OPC), building automation and control networks (BACnet), common industrial 

protocol (CIP), or ethernet for control automation technology (EtherCAT). 

77. The platform of claim 74, wherein the one or more network communication protocols 

comprise non-standard network communication protocols, or a combination of standard network 

communication protocols and non-standard network communication protocols. 

78. The platform of claim 69, wherein the sensor data is time series data. 
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79. The platform of claim 69, wherein the sensor data is obtained from a standalone sensor or 

an integrated sensor. 

80. The platform of claim 79, wherein the integrated sensor is part of a control device 

comprising an actuator. 

81. The platform of claim 69, wherein the network data comprises packet data, metadata, or a 

combination thereof. 

82. The platform of claim 81, wherein the packet data comprises a packet's header, payload, 

trailer, or a combination thereof. 

83. The platform of claim 82, wherein the packet data from the packet's payload comprises 

bit streams. 

84. The platform of claim 69, wherein the normalization operation comprises adjusting the 

distribution's mean, variance, higher-ordered moments, or a combination thereof. 

85. The platform of claim 69, wherein the operations comprise a resampling operation of the 

sensor data, the network data, or a combination thereof for the time alignment between the 

network data and the sensor data. 

86. The platform of claim 85, wherein the resampling operation results in the sensor data and 

the network data having a same number of samples. 

87. The platform of claim 85, wherein the resampling operation comprises downsampling. 

88. The platform of claim 85, wherein the resampling operation comprises upsampling. 

89. The platform of claim 85, wherein the resampling operation comprises unsampling. 

90. The platform of claim 69, wherein the operations comprise a windowing operation to 

adjust the time windows for accumulating the sensor data, the network data, or a combination 

thereof 

91. The platform of claim 90, wherein the windowing operation accounts for delays in the 

network data, sensors data, or a combination thereof 

92. The platform of claim 69, wherein one or both of the first neural network and the second 

neural network are deep neural networks. 
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93. The platform of claim 92, wherein the deep neural networks comprise convolutional 

layers such that one or both of the first neural network and the second neural network are 

convolutional neural networks. 

94. The platform of claim 93, wherein the convolutional neural networks comprise 

convolutional layers, pooling layers, flattening layers, dropout layers, and dense layers. 

95. The platform of claim 94, wherein the convolutional layers are ID, 2D, or 3D 

convolutional layers. 

96. The platform of claim 94, wherein the pooling layers comprise maximum pooling layers, 

minimum pooling layers, average pooling layers, or a combination thereof. 

97. The platform of claim 93, wherein the convolutional neural networks have 

hyperparameters that are empirically chosen based on patterns in the network of the control 

system. 

98. The platform of claim 93, wherein the convolutional neural network is supervised for 

training to identify the first and the second classified states. 

99. The platform of claim 69, wherein the threshold is an average discrepancy rate between 

the first and the second classified state. 

100. The platform of claim 99, wherein the threshold is dynamically changed over time. 

101. The platform of claim 69, wherein the anomaly is due to attacks on at least one of the 

equipment in the control system and the network of the control system. 

102. A computer-implemented method of training neural networks for control system anomaly 

detection comprising: 

a) collecting input data comprising sensor data from equipment in the control system 

and network data from a network in communication with the control system; 

b) preprocessing the sensor data and the network data to output preprocessed sensor 

data and preprocessed network data, the preprocessing comprising: 

i) normalizing to adjust distributions of the sensor data and the network data; 

ii) checking the sensor data and the network data for time alignment; and 

iii) selecting a time window for accumulating the sensor data and the network 

data; 
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c) creating training sets comprising a first training set comprising the preprocessed 

sensor data and a second training set comprising the preprocessed network data; 

and 

d) training a first neural network comprising a behavior classifier of the equipment of 

the control system with the first training set to output a first classified state; and 

e) training a second neural network comprising a network traffic classifier with the 

second training set to output a second classified state. 

103. The method of claim 102, wherein the method is implemented on a general purpose 

computer, a server, a cluster of servers, a distributed computing platform, or a cloud computing 

platform. 

104. The method of claim 102, wherein the network data comprises packet data, metadata, or a 

combination thereof. 

105. The method of claim 104, wherein the packet data comptises a packet's header, payload, 

trailer, or a combination thereof. 

106. The method of claim 105, wherein the packet data from the packet's payload comprises 

bit streams. 

107. The method of claim 102, wherein normalizing comprises adjusting the distribution's 

mean, variance, higher-ordered moments, or a combination thereof. 

108. The method of claim 102, wherein the preprocessing comprises resampling for the time 

alignment of the sensor data, the network data, or a combination thereof. 

109. The method of claim 108, wherein the resampling results in the sensor data and the 

network data having a same number of samples. 

110. The method of claim 108, wherein the resampling comprises downsampling, upsampling, 

or unsampling. 

111. The method of claim I 02, wherein the preprocessing comprises windowing to adjust the 

time windows for accumulating the sensor data, the network data, or a combination thereof. 

112. The method of claim 111, wherein the windowing accounts for delays in the network 

data, the sensor data, or a combination thereof. 
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113. The method of claim 102, wherein one or both of the first neural network and the second 

neural network are deep neural networks. 

114. The method of claim 113, wherein the deep neural networks comprise convolutional 

layers such that one or both of the first neural network and the second neural network are 

convolutional neural networks. 

115. The method of claim 114, wherein the convolutional neural networks comprise 

convolutional layers, pooling layers, flattening layers, dropout layers, and dense layers. 

116. The method of claim 115, wherein the convolutional layers are lD, 2D, or 3D. 

117. The method of claim 115, wherein the pooling layers comprise maximum pooling layers, 

minimum pooling layers, average pooling layers, or a combination thereof 

118. The method of claim 114, wherein the convolutional neural networks have 

hyperparameters empirically chosen based on patterns in the network of the control system. 
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