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Abstract— A collection of “unmanned aerial systems” (UAS) are 
wirelessly networked and each is equipped with an antenna, 
receiver and other components resulting in a cooperative 
wireless sensor array that can be used for determining RF 
emitter location estimates. Because each UAS is independently 
mobile and cooperates with other array elements, the geometry 
of the wireless sensor array can change in a dynamic manner 
thus allowing for enhanced accuracy of emitter location 
estimates through subsequent measurements and iterative 
location estimate updates. UAS local timing sources and 
enhanced localization approaches enable time-based emitter 
location techniques based upon “time-of-arrival” (TOA) or 
“time-difference-of-arrival” (TDOA) measurements. Sensor 
localization errors are bounded due to the presence of individual 
UAS LIDAR ranging subsystems, and the use of new local time 
source technology likewise bounds the emitter location 
accuracies due to timing errors. After a review of time-based 
emitter location methods, two time-based geolocation methods 
are chosen for this investigation: a multilateration technique 
and the “Location On a Conic Axis” (LOCA) method. 
Simulation results predict the accuracy of emitter location 
estimates versus varying levels of realistic error in array 
element positioning and time measurements. A study of array 
size versus emitter location accuracy is also included. The 
simulation results are compared with the theoretical emitter 
location accuracy in the presence of the error sources, the 
Cramér-Rao Lower Bound (CRLB). 
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1. INTRODUCTION 

In modern sensing systems across multiple domains, 
networked “unmanned aerial systems” (UAS) are becoming 
more common. A collection of UAS with the capability to 
establish a “wireless ad hoc network” (WANET) results in a 

cooperative wireless sensor array with a dynamic geometry 
reconfiguration capability that can be deployed to measure 
the position of an RF emitter of interest. As an example 
application, a search and rescue mission might require the 
ability to obtain the geolocation estimate of an emergency 
transponder beacon whose location was previously unknown.  

It is highly desirable to obtain an estimate of a sensed 
emitter’s location that is accurate and requires as few 
measurements and computations as possible. This is 
particularly true when the emitter of interest is transmitting 
signals of very short time duration. It is well-known that an 
array’s collective Field of View (FOV) with respect to a 
transmitter location greatly affects emitter location estimates, 
particularly for time-based emitter location algorithms that 
are sensitive to the relative geometry of the sensor array and 
its orientation to the emitter. This motivates the use of a 
cooperative wireless sensor array since it can be enabled to 
dynamically reconfigure its array geometry such that iterative 
measurements cause the emitter location estimate to 
converge to the true emitter location more quickly and with 
fewer measurements. A primary motivating factor for 
choosing a time-based emitter location methodology is the 
challenge in implementing phase coherence among the array 
receivers. 

The agility and adaptability of a UAS network configured as 
a cooperative wireless sensor array also offers additional 
desirable characteristics. When the array is comprised of 
relatively small UAS (sUAS), search areas that are not 
possible to navigate with larger fixed-wing aircraft or 
satellite-based systems, such as confined spaces within a 
building, underground tunnels, caves, or beneath a foliage 
canopy, can be practically accessed by the sUAS array. Also, 
the UAS-based sensor array can operate in hazardous areas 
such as hostile and radiation- or chemically-contaminated 
spaces that would otherwise not be accessible for a system 
requiring human operators aboard. 

Although the UAS-based wireless sensor array provides 
significant advantages in comparison to fixed array systems 
that may require the presence of human operators, there are 
technical challenges in designing such a system. One such 
challenge is that each of the multiple individual sensor 
apertures is coupled to a different RF receiver, and the 
apertures are not typically phase coherent since 
synchronization of the receivers’ local oscillators (LO) is 
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difficult to achieve and maintain. The carrying capacity of 
each UAS can limit the overall allowed payload weight and 
may require the use of lightweight and less effective onboard 
assets. Space and weight limitations also restrict the power 
capacity of onboard batteries, thereby reducing the amount of 
time that the array can operate before a recharging cycle is 
required.  

In view of these advantages and challenges, the implemented 
wireless sensor array emitter geolocation techniques should 
depend on simple and low-power computations while also 
completing as quickly as possible. Certain other methods of 
emitter geolocation, such as those that depend upon received 
signal phase differences or other coherency requirements, 
such as phase interferometric or cyclostationary approaches, 
are often impractical to implement. These observations 
motivate us to consider time-based emitter location 
approaches that are well-known to have sensitivity to the 
array geometry and can thus take advantage of the dynamic 
reconfiguration capability of the array. 

“Time of Arrival” and “Time Difference of Arrival” 
(TOA/TDOA) emitter location methods depend upon 
solutions of analytical geometry equations in two- or three-
dimensions that are defined by the relative positions of the 
sensor locations and the emitter of interest. In such 
approaches, emitter location accuracy can be very sensitive 
to the overall geometry of the array in relation to the true 
emitter location. The range of the emitter with respect to the 
sensors is obtained as the product of the timing measurements 
with the signal propagation speed, typically, the speed of 
light, 𝑐. Due to the large magnitude of electromagnetic signal 
propagation speed, large changes in the emitter location 
estimates can occur due to relatively small sensor timing 
errors or localization errors. For this reason, we are 
particularly concerned with the effect of these two error 
sources in a UAS array.  

While the local UAS clock sources may be fairly stable and 
of high frequency through the use of small atomic clocks and 
accurate frequency multiplication circuitry, the challenge of 
clock signal synchronization among the array sensors can 
nevertheless induce timing inaccuracies. Clearly, high-
frequency local clock sources are desired to provide as much 
resolution as possible, and low-drift and jitter are equally 
important to reduce emitter location estimates due to local 
timing source inaccuracies. 

In the cooperative UAS scenario described here, the UAS 
positions may be known via the use of the relatively accurate 
Global Positioning System (GPS) or other navigational 
systems; however, the UAS comprising the sensor array are 
individually hovering during the time that TOA/TDOA 
values are obtained and thus induce a localization error 
source we term as “hover drift.” Other small sensor 
positioning errors due to variations in environmental factors, 
such as wind gusts, can cause further degradation in sensor 
localization. Furthermore, in some environments, GPS may 
be unavailable requiring an alternative sensor localization 
approach.  

We are motivated to consider the UAS-based cooperative 
wireless array since the accuracy of emitter location estimates 
can be partially mitigated using emerging sensor and 
subsystem technologies that bound the error sources. 
Specifically, in terms of sensor localization error, we 
consider the case wherein each UAS incorporates an on-
board LIDAR subsystem that permits fine-grained 
measurements of sensor positioning, such as that described in 
[1]. Texas Instruments has developed a compact LIDAR 
solution [2] that permits a ranging accuracy of 1cm at 100m, 
which is a significant improvement over GPS [3]. For this 
reason, the positional error of each UAS can be bounded by 
2cm. Likewise, in terms of local timing source errors, the 
emergence of small portable “Chip Scale Atomic Clocks” 
(CSAC) can provide a basis for a local timing source that is 
of high resolution and offers low drift and jitter rates [4], [5]. 
Even without the presence of timing source synchronization 
methods, the use of a CSAC-based local timing source allows 
for a free-running timing source that is synchronized at pre-
mission time only. Thus, a CSAC-based timing source serves 
as a reasonable approach to obtain accurate emitter location 
estimates over limited mission durations. To better 
characterize the use of such a timing source, we provide 
simulations that predict the degradation in emitter location 
accuracy for various levels of timing inaccuracy. 

The observations regarding sensor location and local clock 
source inaccuracies, combined with the use of emerging and 
recent technology advances, motivates us to analyze the 
sensitivity and resultant accuracy of the emitter location 
estimates assuming the presence of the aforementioned 
technology within the UAS sensor array.  

We analyze and describe the impact of these error sources for 
a cooperative UAS emitter geolocation array using 
TOA/TDOA methods assuming that error sources are 
bounded through the use of recent technology. First, we 
summarize candidate TOA/TDOA-based emitter location 
techniques to provide context and to justify our choice of 
emitter location algorithms. Next, we define timing and 
sensor localization error models and provide simulation 
results that include the error models. We also formulate and 
compute the “Cramér-Rao Lower Bound” (CRLB) for 
emitter location errors that include the presence of the timing 
and localization inaccuracies to provide an absolute measure 
of emitter location accuracy. For the simulation analysis, we 
justify and choose both a TOA-based multilateration and the 
TDOA-based “Location On a Conic Axis” (LOCA) emitter 
location algorithm for our wireless sensor array and compare 
their effectiveness via simulations. 

 
2. TIMING-BASED GEOLOCATION ALGORITHMS 

A brief summary of timing-based emitter location approaches 
is provided as context and to justify our choices for the 
detailed analysis and simulation efforts. The techniques are 
described in terms of geometrical concepts. We consider 
ideal conditions for the description of the emitter location 
algorithms and address non-ideal conditions in a later section. 
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Specifically, it is initially assumed that emitter and receiver 
antennas are omnidirectional within an isotropic wireless 
channel and that signal propagation speeds, 𝑐, are constant. 
Thus, the underlying geometric principle supporting time-
based emitter location algorithms is the resulting spherically-
shaped wavefront of the emitter signal as given by the Friis 
free-space signal power distribution relationship. 

In the ideal case, a TOA measurement, 𝑡𝑖, is related to the 
positions of the 𝑖𝑡ℎ sensor, 𝑠𝑖, located as a point in three-
dimensional space at coordinates (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) and an emitter 
similarly located at (𝑥, 𝑦, 𝑧) as described in (1)  

 𝑡𝑖 =
1

𝑐
√(𝑥 − 𝑥𝑖)

2 + (𝑦 − 𝑦𝑖)
2 + (𝑧 − 𝑧𝑖)

2. (1) 

A TDOA measurement, 𝜏𝑖, corresponding to two sensors, 𝑠𝑖, 
and 𝑠𝑗 is a difference of the two sensors’ TOA measurements 
and is relative to a particular sensor often referred to as the 
“reference” or “anchor” sensor since the arithmetic 
subtraction operator is non-commutative. If sensor 𝑠𝑗 is 
designated the reference or anchor sensor, then the TDOA 
measurement attributed to the sensor pair (𝑠𝑖 , 𝑠𝑗) is expressed 
as 

 𝜏𝑖 = 𝑡𝑖 − 𝑡𝑗. (2) 

 

Hyperbolic Range Difference Geolocation 

A single TDOA value obtained from a pair of sensors at 
different locations defines a hyperbolic curve with foci 
coincident to the locations of the sensors and wherein the 
emitter location is coincident with a point on the hyperbolic 
curve in a plane defined by the sensor and emitter coordinates 
that defines a curve of constant TDOA value. Therefore, one 
method for estimating an emitter location is to use two or 
more distinct pairs of sensors to likewise obtain two or more 
distinct hyperbolic curves. Since each hyperbolic curve is 
coincident with a point representing the position of the 
emitter of interest, the point at which the hyperbolas intersect 
defines a unique emitter location estimate. The computational 
cost for determining the intersection points of two or more 
hyperbolic curves is significant.  

Non-zero timing, sensor localization, and other inaccuracies 
are always present; therefore, the set of points computed as 
hyperbolic curve intersections will differ in location. 
Typically, multiple sensor pairs are deployed to yield 
multiple TDOA measurements curves that allow for further 
refining the accuracy of the emitter location through 
combining all the intersection points. For example, the 
emitter location estimate can be determined as the point that 
is as close as possible to all intersection points in a least 
squared error (LSE) sense. 

Lateration-based Geolocation 

Lateration-based techniques are based upon finding multiple 
emitter range estimates for a set of sensors. Each range 
estimate can be geometrically considered as the radius of a 
circle in two-dimensional space, or a sphere in three-
dimensional space. The emitter location can then be obtained 
by computing the intersection points of the circles/spheres. 
Because the range estimates are calculated from TOA 
measurements, this family of methods is sometimes referred 
to as “TOA,” “circular” or “spherical” techniques. 

In the ideal case, a single point of intersection would result, 
and only two TOA values would be required. Practically, due 
to the presence of measurement inaccuracies and noise, two 
TOA measurements result in circles/spheres that do not 
intersect, that have two intersection points, or that have a 
“volume” of space for the three-dimensional case. Typically, 
at least three sensors are deployed. Trilateration, or locating 
with 𝑛 = 3 sensors, and multilateration, 𝑛 > 3, has been 
implemented across many domains and continues to be a 
popular and well-studied topic for range-based localization in 
wireless networks [6], [7], [8], [9]. For the case of 
trilateration, three overlapping circles/spheres can yield a 
small area/volume of common intersection or null 
intersection. Several approaches for reducing these cases to a 
single emitter location point estimate have been proffered. 
For example, one technique involves forming a triangle at 
each radius point and computing the center of the resulting 
planar triangle defined by the radius points. The advantage of 
this method is that an emitter location fix can be obtained 
regardless of whether the circles/spheres intersect. 

The ability to generate and use a plurality of received signal 
time stamps across many mobile UAS sensors provides the 
ability to continuously locate and refine an emitter location 
more effectively than traditional methods. Multilateration 
systems employ four or more sensors and appropriate 
methods are used to determine the best-fit emitter location 
from the resulting multilateral estimates. 

In a trilateration approach, the TOA of the emitter signal, 𝑡𝑖, 
received by the 𝑖𝑡ℎ sensor, 𝑠𝑖, defines a sphere with a radius 
equivalent to the range, 𝑟𝑖, of the emitter with respect to the 
𝑖𝑡ℎ sensor. Squaring both sides of (1), expanding, and 
rearranging yields an expression containing the squared 
range, 𝑟𝑖2 = 𝑐2𝑡𝑖

2, of the emitter to the 𝑖𝑡ℎ sensor: 

 𝑐2𝑡𝑖
2(𝑡) − 𝑥𝑖

2 − 𝑦𝑖
2 − 𝑧𝑖

2 = 
 𝑥2 + 𝑦2 + 𝑧2 − 2𝑥𝑖𝑥 − 2𝑦𝑖𝑦 − 2𝑧𝑖𝑧. (3) 

Determining the coordinates of the emitter, (𝑥, 𝑦, 𝑧), requires 
solving an over-specified system of 𝑛 + 1 equations obtained 
from 𝑛 independent TOA measurements. To determine a 
solution in three dimensions, at least four sensors are required 
to perform trilateration. An improved emitter location 
estimate can be obtained with multilateration where 𝑛 > 3 
TOA measurements are used.  
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It was shown in [10] that the series of equations for all sensors 
can be expressed in matrix representation as 

[
 
 
 
 
1 −2𝑥1

1 −2𝑥2

−2𝑦1 −2𝑧1

−2𝑦2 −2𝑧2

1
⋮

−2𝑥3

⋮
1 −2𝑥𝑛

−2𝑦3

⋮
−2𝑧3

⋮
−2𝑦𝑛 −2𝑧𝑛]

 
 
 
 

[

𝑥2 + 𝑦2 + 𝑧2

𝑥
𝑦
𝑧

] = 

 

[
 
 
 
 
𝑐2𝑡1

2(𝑡) − 𝑥1
2 − 𝑦1

2 − 𝑧1
2

𝑐2𝑡2
2(𝑡) − 𝑥2

2 − 𝑦2
2 − 𝑧2

2

𝑐2𝑡3
2(𝑡) − 𝑥3

2 − 𝑦3
2 − 𝑧3

2

⋮
𝑐2𝑡𝑛

2(𝑡) − 𝑥𝑛
2 − 𝑦𝑛

2 − 𝑧𝑛
2]
 
 
 
 

.  (4) 

Although the matrix and vector components are quadratic, (4) 
is in the form of a linear equation, 𝐀𝑖𝐱 = 𝐛𝑖 , where matrix 𝐀 
is formed from the sensor locations and vector 𝐛 contains the 
ranges of the emitter to each sensor. A variety of methods can 
be employed to solve the over-specified system in (4) as may 
be found in the literature. The emitter location, (𝑥, 𝑦, 𝑧), is 
contained within the solution vector, 𝐱T = [𝑥0 𝑥 𝑦 𝑧]. 
It is noted that the solution to (4) contains an inherent 
constraint that 𝑥0 = 𝑥2 + 𝑦2 + 𝑧2 that is useful for 
ambiguity resolution in determining the emitter location 
within 𝐱. A common method to solve for 𝐱 is to use the 
pseudo-inverse of 𝐀 to provide a minimized 𝐿2 norm solution 
that results in the LSE solution,  

 𝐱  = (𝐀T𝐀)−1𝐀T𝐛. (5) 

For the multilateration case, a common solution approach is 
to solve an initial system of four equations with three TOA 
measurements as a starting point for a “Recursive Least 
Squares” (RLS) approach by adding each additional TOA 
measurement and corresponding sensor location to iteratively 
refine the emitter location estimate. 

Lateration-based geolocation can also be employed with 
TDOA measurements by choosing a reference sensor, 𝑠1, to 
serve as a “reference” or “anchor” by defining a local 
coordinate system such that the origin is at the location of the 
anchor sensor [10]. This effectively converts each sensor’s 
TOA into a TDOA with respect to the anchor sensor. 
Equation (3) simplifies for the anchor sensor and the range, 
𝑟1, of the emitter with respect to the anchor as 

 𝑐𝑡1 = √x2 + 𝑦2 + 𝑧2. (6) 

Following the approach in [11], [12], we square each non-
anchor sensor range, 𝑟𝑖 = 𝑐𝑡𝑖, and subtract from the reference 
sensor range 

(𝑐𝑡𝑖)
2 − (𝑐𝑡1)

2 = (𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 + (𝑧𝑖 − 𝑧)2 + 
 (𝑥1 − 𝑥)2 + (𝑦1 − 𝑦)2 + (𝑧1 − 𝑧)2.  (7) 

The lefthand side of (7) can be rewritten as 

 ( 𝑐𝑡𝑖)
2 − ( 𝑐𝑡1)

2 = (𝑐𝜏𝑖)
2 − 2𝑡𝑐𝜏𝑖, (8) 

where the TDOA of sensor 𝑠𝑖 with respect to the anchor 
sensor is denoted as 𝜏𝑖. Expanding the righthand side of (7) 
and combining with (8) results in 

𝑐𝜏𝑖
2 − 𝑥1

2 − 𝑦1
2 − 𝑧1

2 − 𝑥𝑖
2 − 𝑦𝑖

2 − 𝑧𝑖
2 = −2(𝑥1 + 𝑥𝑖)𝑥 

 −2(𝑦1 + 𝑦𝑖)𝑦 − 2(𝑧1 + 𝑧𝑖)𝑧 + 2𝑐𝜏𝑖√x2 + 𝑦2 + 𝑧2.  (9) 

Equation (9) is expressed in matrix form as 

[
 
 
 
 

2𝑐𝜏2

2𝑐𝜏3

2𝑐𝜏4

⋮

−2(𝑥1 + 𝑥2)

−2(𝑥1 + 𝑥3)

−2(𝑥1 + 𝑥4)
⋮

2𝑐𝜏𝑛−1 −2(𝑥1 + 𝑥𝑛−1)

−2(𝑦1 + 𝑦2)

−2(𝑦1 + 𝑦3)

−2(𝑦1 + 𝑦4)
⋮

−2(𝑧1 + 𝑧2)

−2(𝑧1 + 𝑧3)

−2(𝑧1 + 𝑧4)
⋮

−2(𝑦1 + 𝑦𝑛−1) −2(𝑧1 + 𝑧𝑛−1)]
 
 
 
 

[

√x2 + 𝑦2 + 𝑧2

𝑥
𝑦
𝑧

] = 

 

[
 
 
 
 
 

𝑐𝜏2
2 − 𝑥1

2 − 𝑦1
2 − 𝑧1

2 − 𝑥2
2 − 𝑦2

2 − 𝑧2
2

𝑐𝜏3
2 − 𝑥1

2 − 𝑦1
2 − 𝑧1

2 − 𝑥3
2 − 𝑦3

2 − 𝑧3
2

𝑐𝜏4
2 − 𝑥1

2 − 𝑦1
2 − 𝑧1

2 − 𝑥4
2 − 𝑦4

2 − 𝑧4
2

⋮
𝑐𝜏𝑛−1

2 − 𝑥1
2 − 𝑦1

2 − 𝑧1
2 − 𝑥𝑛−1

2 − 𝑦𝑛−1
2 − 𝑧𝑛−1

2 ]
 
 
 
 
 

. (10) 

Equation (10) is now a linear equation in a similar form to (4) 
and may be solved in a variety of ways including those using 
the pseudo-inverse and RLS as described in [10]. 

 
Location On a Conic Axis 

Schmidt [13], [14] developed an approach known as 
“Location On a Conic Axis” (LOCA) that uses the TDOA of 
sensor triads to find a straight line corresponding to a conic 
section axis. TDOA values are converted to range differences 
that define conic sections wherein the emitter is located at one 
of the foci and is known to be at a point on a line that is 
coincident with the conic major axis. In the case of LOCA, 
the sensor locations are points on the conic and the foci define 
the emitter location, which is the opposite scenario of 
hyperbolic geolocation. All conic sections may be considered 
as defining two foci. In the case of an ellipse or hyperbola, 
the two foci occupy different and distinct locations. In the 
case of a circle, the two foci may be considered as being co-
located at the same point, and in the case of a parabola, one 
of the two foci may be considered as having a location that is 
infinitely distant from the other. Figure 1 contains a diagram 
of the situation wherein the sensors lie along an ellipse with 
the emitter being positioned at one of the two distinct focal 
points.  

If the sensor array comprises a total of three elements, the 
emitter location is computed as a conic section focal point. 
Since hyperbolas and ellipses have two foci, an ambiguous 
emitter location point results, and some means must be used 
for determining which foci corresponds to the actual emitter 
location estimate. When the sensor array comprises four or 
more sensors, the emitter location can be computed by 
considering the intersections of all pairs of lines that define 
the unique conic axes. Typically, a LSE approach is 
employed to estimate the emitter location based upon all 
points formed by intersecting conic axis lines.  

The conic axis is derived using (1) in the form of the range of 
sensor 𝑠𝑖 to the emitter, 

  𝑟𝑖 = √(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 + (𝑧 − 𝑧𝑖)
2. (11) 
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Figure 1. LOCA Positioning finds the Emitter at the 
focus of an ellipse formed by the range differences of the 

three Sensors to the Emitter.  

We define the difference in two ranges of the emitter with 
respect to sensors 𝑠𝑖 and 𝑠𝑗 as ∆𝑟𝑖𝑗, 

 ∆𝑟𝑖𝑗 = 𝑟𝑗 − 𝑟𝑖, (12) 

and the absolute range, 𝑎𝑖 , of each sensor, 𝑠𝑖, with respect to 
the origin of the coordinate system origin as 

 𝑎𝑖 = √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2. (13) 

We further define Σ as the sum of the range differences as 

 Σ =  ∆𝑟𝑖𝑗 + ∆𝑟𝑗𝑘 + ∆𝑟𝑘𝑖 . (14) 

Using a triad of sensors, (𝑠1, 𝑠2, 𝑠3), the conic axis can be 
calculated using the range differences as expressed in (12). In 
three-dimensions, the resulting (15) is expressed in the form 
of the plane equation, 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = 𝐷: 

 

[𝑥1∆23 + 𝑥2∆21 + 𝑥3(∆12 − Σ)]𝑥 +
[𝑦1∆23 + 𝑦2∆21 + 𝑦3(∆12 − Σ)]𝑦 +
[𝑧1∆23 + 𝑧2∆21 + 𝑧3(∆12 − Σ)]𝑧 =

1

2
[∆12∆23∆31 + 𝑎1

2∆23 + 𝑎2
2∆31 + 𝑎3

2(∆12 − Σ)] 

. (15) 

When only three sensors are utilized, an ambiguity can arise 
when the resulting conic is an ellipse or hyperbola since only 
one of the two different focal points is the actual position of 
the emitter. If the conic is a circle or parabola, no ambiguity 
results. The particular form of the conic resulting from the 
relative positioning of the sensors and emitter can be 
determined by computing its eccentricity, 𝑒𝑐𝑐. If 𝑒𝑐𝑐 = {0,1}, 
the conic is a circle or a parabola respectively and there is no 
ambiguity. If 0 < 𝑒𝑐𝑐 < 1, the conic is an ellipse and if 𝑒𝑐𝑐 >
1, the conic is a hyperbola. It is noted that the case of all 
sensors lying along a line can be viewed as a conic section 
with both foci at infinity and is a degenerate case that is 
incompatible with the LOCA method. With more than three 
properly located sensors, ambiguities can be resolved 
mathematically by including another sensor such that a 

second independent triad can be formed to compute a second 
conic thus allowing intersections of the axes of the two conics 
to be calculated [14]. For the two-dimensional case, two 
triads (four sensors) are necessary to find this intersection, 
whereas for the three-dimensional case, since (15) results in 
the equation of a plane, three triads (at least five sensors) are 
necessary to find the intersection point. There are (𝑛

3
) triads 

that can be formed from a set of 𝑛 sensors. In matrix form, all 
combinations of triads can be represented as 

 

[
 
 
 
 
𝐴123

𝐴124

⋮
𝐴𝑖𝑗𝑘

⋮

𝐵123

𝐵124

⋮
𝐵𝑖𝑗𝑘

⋮

𝐶123

𝐶124

⋮
𝐶𝑖𝑗𝑘

⋮ ]
 
 
 
 

[
𝑥
𝑦
𝑧
] ≈

[
 
 
 
 
𝐷123

𝐷124

⋮
𝐷𝑖𝑗𝑘

⋮ ]
 
 
 
 

,  (16) 

where the 𝐴, 𝐵, 𝐶, and 𝐷 elements are formed from (15). The 
(𝑥, 𝑦, 𝑧) solution to this system of equations, which is the 
location of the emitter, can be determined with a weighted 
least squares approach. To perform this computation, each of 
the 𝐴𝑖𝑗𝑘, 𝐵𝑖𝑗𝑘, 𝐶𝑖𝑗𝑘, 𝐷𝑖𝑗𝑘 elements in (16) are divided by their 

respective √𝐴𝑖𝑗𝑘
2 + 𝐵𝑖𝑗𝑘

2 + 𝐶𝑖𝑗𝑘
2 prior to solving (17)  

 

[
 
 
 
 
 
 
 

𝐴123

√𝐴123
2+𝐵123

2+𝐶123
2

𝐴124

√𝐴124
2+𝐵124

2+𝐶124
2

⋮
𝐴𝑖𝑗𝑘

√𝐴𝑖𝑗𝑘
2+𝐵𝑖𝑗𝑘

2+𝐶𝑖𝑗𝑘
2

⋮

𝐵123

√𝐴123
2+𝐵123

2+𝐶123
2

𝐵124

√𝐴124
2+𝐵124

2+𝐶124
2

⋮
𝐵𝑖𝑗𝑘

√𝐴𝑖𝑗𝑘
2+𝐵𝑖𝑗𝑘

2+𝐶𝑖𝑗𝑘
2

⋮

𝐶123

√𝐴123
2+𝐵123

2+𝐶123
2

𝐶124

√𝐴124
2+𝐵124

2+𝐶124
2

⋮
𝐶𝑖𝑗𝑘

√𝐴𝑖𝑗𝑘
2+𝐵𝑖𝑗𝑘

2+𝐶𝑖𝑗𝑘
2

⋮ ]
 
 
 
 
 
 
 

[
𝑥
𝑦
𝑧
] ≈ 

 

[
 
 
 
 
 
 
 

𝐷123

√𝐴123
2+𝐵123

2+𝐶123
2

𝐷124

√𝐴124
2+𝐵124

2+𝐶124
2

⋮
𝐷𝑖𝑗𝑘

√𝐴𝑖𝑗𝑘
2+𝐵𝑖𝑗𝑘

2+𝐶𝑖𝑗𝑘
2

⋮ ]
 
 
 
 
 
 
 

 . (17) 

 
3. GEOLOCATION INACCURACY SOURCES 

This section describes some of the dominant error sources 
present in the cooperative wireless sensor array comprised of 
UAS equipped with individual antennas, RF receivers, local 
positioning means, high-resolution timers, WANET 
interfaces and computing subsystems. 

In the previous Section the location of each sensor, 𝑠𝑖, is 
modeled as its true location with three-dimensional 
coordinates (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖). Practical emitter location systems 
such as those described in this paper always operate with 
measurement inaccuracies associated with sensor 
localization. Thus, a better model for the current location of 
each sensor, 𝑠𝑖, is to consider the coordinates,(�̂�𝑖 , �̂�𝑖 , �̂�𝑖), that 
include error terms, (𝜀𝑥, 𝜀𝑦, 𝜀𝑧), as given in (18): 

 �̂�𝑖 =  𝑥𝑖 + 𝜀𝑥𝑖 , �̂�𝑖 =  𝑦𝑖 + 𝜀𝑦𝑖, �̂�𝑖   =  𝑧𝑖 + 𝜀𝑧𝑖. (18) 

Sensor2 

Emitter Location 
Ellipse Focus) 

Sensor1 

Sensor 3 
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Assuming the signal propagation velocity, 𝑐, is constant in a 
particular environment, the emitter range is dependent on the 
accuracy of the emitter-to-sensor propagation time. It would 
be preferable if the local UAS clock sources within the 
wireless array network could operate in a synchronous 
manner at precise and equal frequencies with minimal drift to 
enable phase coherency among the array elements; however, 
this is a difficult condition to achieve and is not considered to 
be an option in this study. Even when the local UAS clocks 
are synchronized prior to the emitter location mission, the 
presence of clock drift and jitter will affect timing accuracy 
and would thereby cause degradation in RF emitter 
localization estimates. The sensor TOA measurement can be 
modeled as the true TOA, 𝑡𝑖, with a corresponding error term, 
𝜀𝑡𝑖, as 

  �̂�𝑙 =  𝑡𝑖 + 𝜀𝑡𝑖. (19) 

If each UAS comprised a GPS receiver as a means of a local 
clock source, the provided GPS time reference signal is 
accurate to 30ns [3]. However, when GPS is unavailable 
within the dynamic environment of a UAS mission, or, if the 
UAS are not equipped with GPS receivers, the utilization of 
a WANET clock synchronization method would be desirable 
to mitigate clock error. It is shown in [15] and [16] that, with 
a wideband receiver, it is possible to measure propagation 
time at sub-nanosecond accuracy using off-the-shelf IEEE 
802.11 Wi-Fi network interface cards. The use of 
Ultrawideband (UWB) in [17] was shown to achieve sub-
nanosecond accuracy. The application of such an approach to 
the cooperative wireless sensor network described here could 
result in a clock synchronization accuracy approaching 1ns. 
Another significant advancement in local timing sources is 
the emergence of “Chip Scale Atomic Clocks” (CSAC) that 
provide highly stable and accurate timing sources with a 
small form factor [4], [5], [18], [19]. The use of a CSAC with 
a companion high-accuracy frequency multiplier such as an 
LC-based “voltage- or current-controlled oscillator” 
(VCO/ICO) should allow a local clock source of 1 GHz with 
a highly stable characteristic to be deployed on each UAS. 
Each CSAC-based timing source could be augmented with 
synchronization methods or used in a free-running approach 
for limited mission lifetimes. Our simulation results contain 
a range of local UAS clock error levels that include both these 
higher-accuracy conditions as well as more degraded or 
larger local clock errors so that all of these possibilities are 
included for consideration. 

Other error sources and measurement inaccuracies can 
additionally affect the accuracy of the emitter location 
estimates. The assumption of constant signal propagation 
velocity neglects atmospheric refraction effects. 
Additionally, signal fading effects due to Rayleigh scattering 
and the presence of multipath may affect location accuracies. 
Multipath is of particular concern when the sensor array is 
deployed within a dense urban environment that may consist 
of large metallic structures such as the steel frames of large 
buildings. The UAS-based wireless system considered here 
is assumed to be operational in the far-field but at relatively 

short ranges to the emitters, thus, the multipath effects are 
probably the more dominant contributors among this group. 
The incorporation of dynamically updated signal propagation 
speed and the use of models that predict multipath effects 
such as a Rician propagation model could be optionally 
included in the sensor array if sufficient WANET bandwidth 
and a reliable means for estimating the signal propagation 
characteristics were present. In this study, we assume that 
these resources are not present. It is likewise assumed that the 
detected and received RF transmissions of each sensor are at 
sufficiently high-power levels such that variations in antenna 
gain patterns are negligible and that all sensors receive 
transmitted emitter signals at sufficiently high “Signal-to-
Noise” (SNR) levels. For these reasons, we only focus on 
array element localization and local measurement timing 
errors. 

Another significant source of inaccuracy is related to the 
ability of each sensor to accurately identify the same 
instantaneously received signal features when obtaining a 
TOA measurement by assigning a local time stamp to the 
same portion of the received signal by each sensor array 
element. This issue has been addressed in depth in past work. 
For communications signals, correlation calculations are 
generally used to find time-stamping signal locations [20], 
[21], [22], [23], [24]. Whereas for pulsed signals, rising or 
falling edges are typically used [25], [26] to more accurately 
determine TOA signal time stamps. It is assumed that this 
“time stamping” error source is relatively small in 
comparison to the error contributions due to the case where 
local UAS timing sources are asynchronous with respect to 
one another. That is, it is assumed that any timing errors due 
to misaligned time stamping of received signal artifacts 
among individual sensor array elements is much less than the 
local UAS clock period. Thus, inaccuracies due to this error 
source may be considered as being contained within the 
timing error models employed in our analyses. 

 
4. CRAMÉR-RAO LOWER BOUND FOR SENSOR 

POSITION AND CLOCK TIMING ERRORS 
In consideration of the dominant error sources due to sensor 
localization caused by UAS hover drift and the fact that local 
clock sources with errors are present within each UAS, we 
model the cooperative wireless sensor array network and 
simulate the resulting emitter location accuracy with these 
error sources present using different timing-based emitter 
location algorithms. Specifically, we consider both 
multilateration and LOCA emitter location techniques in our 
models. 

To provide a unified basis in evaluating the emitter location 
accuracy of the sensor array, we also derive and compute the 
Cramér-Rao Lower Bound (CRLB) to evaluate the 
theoretically possible emitter location accuracy due to 
varying amounts of the dominant sources of error and 
measurement inaccuracy. 
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The CRLB is a measure of the minimal variance that can be 
achieved by an unbiased estimator. The positions of the UAS 
are known to a certain accuracy characterized by the standard 
deviations of the location estimates, (𝜎𝑥𝑖 , 𝜎𝑦𝑖 , 𝜎𝑧𝑖). Likewise, 
the local timing errors within each UAS are modeled with a 
standard deviation statistic denoted as 𝜎𝑡𝑖. The measurement 
errors are modeled as Gaussian “Random Variables” (RV), 
following the approaches in [27], [28], [29], [30] with a 
likelihood function of: 

 𝑝(�̂�𝑙|𝐱) =  
1

√2𝜋𝜎𝑖
𝑒

−
1

2𝜎𝑖
2(�̂�𝑙−𝜏𝑖(𝐱))

2

. (20) 

With respect to TOA measurements, we assume that the 
variance of a single measurement is dependent on the 
variance 𝜎𝑖

2 of the single sensor 𝑠𝑖. For TDOA approaches, 
[29] and others show that the use of the common reference or 
anchor sensor, 𝑠1, correlates the measurements so that the 
variance of a single measurement is the sum of the variance 
of the two sensors, 𝜎𝑖

2 + 𝜎1
2, as characterized by the 

corresponding {𝑛 − 1} × {𝑛 − 1} covariance matrix: 

 𝑹𝑇𝐷𝑂𝐴 =

[
 
 
 
𝜎2

2 + 𝜎1
2

𝜎1
2

⋮
𝜎1

2

𝜎1
2

𝜎3
2 + 𝜎1

2

⋮
𝜎1

2

⋯
⋯
⋱
⋯

𝜎1
2

𝜎1
2

⋮
𝜎𝑛

2 + 𝜎1
2]
 
 
 
. (21) 

The CRLB is determined by calculating the inverse of the 
Fisher Information Matrix (FIM), 𝐉, expressed as 

 𝐉 = 𝐸{∇𝐱 ln 𝑝(�̂�𝑙|𝐱) (∇𝐱 ln 𝑝(�̂�𝑙|𝐱))T},

𝜎𝑖
2 ≥ 𝐉−1 . (22) 

𝐸{∙} denotes the expected value operator of a RV. Under the 
assumption that the errors are modeled with a Gaussian RV, 
a constant covariance matrix results [29]. The elements of the 
FIM can be determined as  

 

𝐉𝑖𝑗 = (
𝜕𝜏(𝐱)

𝜕𝑥𝑖
)

T

𝐑𝑇𝐷𝑂𝐴
−1 (

𝜕𝜏(𝐱)

𝜕𝑥𝑗
) ,

𝜕𝜏(𝐱)

𝜕𝑥𝑖
=

[
 
 
 
 
 
𝜕𝜏2(𝐱)

𝜕𝑥𝑖

𝜕𝜏3(𝐱)

𝜕𝑥𝑖

⋮
𝜕𝜏𝑛(𝐱)

𝜕𝑥𝑖 ]
 
 
 
 
 

. (23) 

For receiver localization errors, the FIM becomes 

 𝐉𝜏 =  

[
 
 
 
 
𝜕𝜏2

𝜕𝑥

𝜕𝜏3

𝜕𝑥
𝜕𝜏2

𝜕𝑦

𝜕𝜏3

𝜕𝑦

𝜕𝜏2

𝜕𝑧

𝜕𝜏3

𝜕𝑧

⋯
𝜕𝜏𝑛

𝜕𝑥

⋯
𝜕𝜏𝑛

𝜕𝑦

⋯
𝜕𝜏𝑛

𝜕𝑧 ]
 
 
 
 

𝐑𝑇𝐷𝑂𝐴
−1

[
 
 
 
 
 
𝜕𝜏2

𝜕𝑥

𝜕𝜏2

𝜕𝑦

𝜕𝜏2

𝜕𝑧

𝜕𝜏3

𝜕𝑥

𝜕𝜏3

𝜕𝑦

𝜕𝜏3

𝜕𝑧

⋮ ⋮ ⋮
𝜕𝜏𝑛

𝜕𝑥

𝜕𝜏𝑛

𝜕𝑦

𝜕𝜏𝑛

𝜕𝑧 ]
 
 
 
 
 
T

. (24) 

The FIM can be evaluated in the temporal (time) domain or 
in the spatial (range) domain depending on the error terms of 
the covariance matrix. The conversion to the range domain is 
obtained by multiplying 𝐑𝑇𝐷𝑂𝐴

−1 with the square of the 

signal propagation speed, 𝑐2. In the following analysis, the 
receiver location error contributions are analyzed in the range 
domain using (6) and (11). 

For timing errors, [17], [29], [30] identified the primary 
contributing factor for calculating the CRLB of a TDOA 
estimate to be the bandwidth, 𝐵, of the received signal and 
the received signal SNR𝑖  at sensor 𝑠𝑖, via the relationship: 

 𝜎𝑖
2 ≥

𝑐2

𝐵2∗SNR𝑖
. (25) 

Following [29], we consider the factors carrier frequency, 
bandwidth, integration time, propagation velocity, etc. to be 
incorporated into the constant, 𝑎. Note that the received 
signal SNR𝑖  at the 𝑖𝑡ℎ sensor element is not considered within 
the constant, 𝑎, in our analysis since we assume that SNR𝑖  
exceeds a threshold value. That is, we assume that the 
received signal is at a sufficiently high SNR to enable emitter 
location estimation such that 𝑎 need not comprise a 
contribution due to SNR𝑖 . Because the SNR𝑖  of the emitter at 
𝑠𝑖 is inversely proportional to the range by 1

𝑟2, an ideal lower 
threshold for the distance, 𝑟0, for an optimal SNR0 is used to 
determine the SNR𝑖 , by: 

 SNR𝑖 = SNR0
𝑟0

2

𝑟𝑖
2. (26) 

The associated variance is then: 

 𝜎𝑖
2(𝑟) ≥

𝑎

SNR0
∗

𝑟𝑖
2

𝑟0
2. (27) 

As an example of this effect, we assume a signal bandwidth, 
𝐵, and corresponding SNR0 that result in a worst case, or 
maximum value, for the standard deviation, 𝜎, to be 
approximately 1ns at the maximum range. Figure 2 shows the 
improvement of 𝜎 for increasing SNR where the minimum 𝜎 
is determined by the SNR at 𝑟0.  

Following [29], because the variance is range-dependent and 

 

Figure 2. Standard Deviation of local timing inaccuracy 
as a function of SNR. 
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no longer constant, its term in the likelihood function, and 
therefore the FIM, is not reduced. The TDOA sensor pair 
𝜎𝑖

2 + 𝜎1
2 variance term is: 

 𝜎𝑖
2 + 𝜎1

2 =
𝑎(𝑟𝑖

2+𝑟1
2)

𝑟0
2SNR0

, (28) 

with a standard deviation, 𝜎𝑖1, given by 

 𝜎𝑖1 = √𝜎𝑖
2 + 𝜎1

2 =
√𝑎(𝑟𝑖

2+𝑟1
2)

𝑟0√SNR0
. (29) 

The FIM in (22) takes the form 

 𝐉𝑖𝑗 =  (
𝜕𝜏(𝐱)

𝜕𝑥𝑖
)
T

𝐑(𝐱)−1 𝜕𝜏(𝐱)

𝜕𝑥𝑗
+

1

2
𝑡𝑟 (𝐑(𝐱)−1 (

𝜕𝜎𝑖1

𝜕𝑥𝑖
)
T
𝐑(𝐱)−1 𝜕𝜎𝑖1

𝜕𝑥𝑗
), (30) 

with a parameter-dependent FIM Jacobian of  

 𝜕σi1

𝜕𝐱
=

√𝑎(𝐫i+𝐫1)

𝑟0√SNR0(𝑟𝑖
2+𝑟1

2)
. (31) 

Using the FIMs in (24) and (30), as substituted into (22), 
allows for the computation of the TDOA CRLB that 
encompasses inaccuracies due to array element localization 
error and local timing variances, respectively. Considering 
the LOCA emitter location technique, the analysis considers 
a combination of sensor triads instead of using a single 
reference or anchor sensor; thus, the covariance matrix in 
(21) evolves to the cases for considering the individual sensor 
triads. There is an expected processing gain as the number of 
sensors is increased since the result is dependent on the 
intersection of all the resulting planes. Our analysis is based 
on a least squares method to reduce the TDOA and LOCA 
results; however, many approaches exist to improve the 
TDOA accuracy through other processing methods or 
specialized geometries [31]. 

 
5. SIMULATIONS 

Models are formulated wherein sensor networks of fixed-
location UAS are used to determine the location of a small, 
stationary emitter transmitting a 5GHz signal. In these 
simulations, the transit time of sensed signals to each UAS 
receiver is used to find the emitter ranges, and the solution 
algorithms in (4) and (17) calculate the emitter location. The 
geometry assumed all sensors to be in the far-field of the 
stationary emitter, and the simulations varied the number of 
receivers and varied the locations of the sensors and emitter. 
The receivers are randomly distributed within a range of 
200m from the emitter, following a uniform distribution, for 
100 unique geometries. The reference or anchor sensor is 
always placed at the origin, as shown in Figure 3 for a 
geometry of five sensors. While a primary motivation for 
deploying a cooperative and wireless sensor array to locate 
emitters is due to the ability to dynamically reconfigure the 
array geometry and to improve emitter location accuracy 
through subsequent measurements, we choose to consider the 
case where only a single emitter location estimate is 
performed at each simulated time instance to capture worst- 

 
Figure 3. Example sensor geometry for five UAS sensors 

case behavior. Iteratively updating the emitter location 
estimate by including subsequent measurements will greatly 
improve system accuracy, particularly when new geometries 
are used that enhance the new FOV in relation to the previous 
FOV. 

The true location of the emitter is randomly selected for 100 
unique geometries. The number of receivers varies from 5 to 
25 to show the improvement in emitter location with 
increasing array size. We use Monte Carlo simulations with 
10,000 runs (i.e., 100 emitter geometries with 100 sensor 
geometries each) for our analysis. The same geometry, both 
in terms of quantities and locations, of each run was 
processed with both the LOCA and TDOA algorithms to 
avoid geometry bias in the comparisons of the two emitter 
location techniques. The RMS error distribution of the error-
free solutions for each of the TDOA and LOCA algorithms is 
provided in Figure 4 and, as is expected, Figure 5 indicates 
that the error values improve in a roughly logarithmic manner 
with increasing sensor quantities. Although it is certainly 
dependent upon the specific mission objectives, it is generally 
observed that array sizes of five to ten sensors should be 
sufficient for most applications. 

 
Figure 4. Histogram of RMS error of TDOA and LOCA 

algorithms with no induced error. 
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Figure 5. RMS error of TDOA and LOCA algorithms 
with no induced error for increasing sensor quantities. 

 
6. RESULTS 

Unless otherwise noted in the description of the simulation 
results, we assume that the local sensor timing sources are 
initially synchronized prior to mission initiation. We then set 
the timing source inaccuracy to have a standard deviation of 
1ns due to the justifications previously described. Likewise, 
due to the use of local sensor LIDAR ranging, the locations 
of each sensor are assumed to be known within an accuracy 
of 2cm. Localization and timing errors are incorporated in a 
manner consistent with the assumptions that result in (18) and 
(19). More specifically, the errors are modeled as Gaussian-
distributed RVs with respect to the sensor range values that 
are used in the emitter location algorithm. These simulation 
results are then compared to the CRLB results to obtain an 
estimate of overall performance. 

The sensor position inaccuracy is varied versus increasing 
sensor array size using the signal parameters discussed in 
Section 5. Figure 6 illustrates the impact of an increasing 
sensor positioning error and shows how the error of the 
emitter location estimate increases as sensor positioning error 
increases. If the sensors are localized with an intra-array 
method such as LIDAR, then the localization error has an 
upper-bound to the accuracy from that sensor positioning 
method, which is 2cm in this case. The availability of 
practical LIDAR ranging subsystems within individual 
sensor elements greatly impacts the viability and practicality 
of using a collection of UAS to serve as a cooperative 
wireless sensor array for the purpose of estimating an RF 
emitter location since it provides an upper bound on array 
element localization error. Figure 7 contains simulation 
results in the form of RMS emitter range error due to sensor 
positioning errors, on a logarithmic scale, versus varying 
numbers of sensor array elements for a given array geometry. 
Specifically, the range error in Figure 7 is the RMS Euclidean 
distance from the true emitter location to the estimated 
emitter location for each measurement. 

 

 
Figure 6. Log RMS localization error of LOCA 

algorithm with increasing sensor positioning error, 
upper-bounded by in-network sensor positioning 

accuracy. 
 

 
Figure 7. RMS error of TDOA and LOCA algorithms 
with induced sensor positioning error for increasing 

sensor quantities. 

For the multilateration technique (referred to as “TDOA 
Location” in Figure 7), the overall absolute error in emitter 
location range is much higher than the CRLB, while the same 
error for LOCA is much closer to the CRLB. As expected, 
the impact of sensor positioning decreased with more sensors 
and as also expected, the RMS emitter location range error 
varies and depends upon array geometry. Although a variety 
of different randomly-selected array geometries are analyzed, 
only a single representative example is included in this paper. 
There is a noticeable accuracy improvement for LOCA as the 
number of sensors increases, whereas for the multilateration, 
or TDOA algorithm, the induced errors diminish the 
processing gains found with increasing sensor quantities 
when the array size exceeds eight sensors. 

The local sensor timing error is also simulated for increasing 
numbers of array elements using the same geometries and 
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signal parameters as discussed in Section 5. Figure 8 contains 
mean RMS emitter location error, on a logarithmic scale, due 
to local sensor timing offsets versus an increasing sensor 
array size. Consistent with the results due to sensor 
localization inaccuracies, the multilateration, or TDOA, error 
is significantly higher than the CRLB, whereas the LOCA 
error is significantly closer to the CRLB. Again, there is an 
accuracy improvement with LOCA as the number of sensors 
increases, whereas the TDOA error remains nearly constant. 
Therefore, we reach the same conclusion that, although 
highly dependent upon mission parameters, an array size in 
excess of eight sensors provides largely diminishing 
increases in emitter location accuracy.  

Local sensor element timing inaccuracies and their result on 
emitter location accuracy is simulated for several different 
values of timing accuracy using the LOCA method and are 
provided in Figure 9.  

 
Figure 8. RMS error of TDOA and LOCA algorithms 

with induced local timing inaccuracy for increasing 
sensor quantities. 

 

 
Figure 9. RMS error of LOCA algorithms with varying 
induced local timing inaccuracy for increasing sensor 
quantities. 

It is concluded that the cooperative use of increasing numbers 
of sensors in the UAS network can overcome the local timing 
inaccuracies to a certain extent if the previously assumed 1ns 
bound on timing errors is not achievable in a geometry. As 
shown in Figure 2, as the overall mean range of the UAS 
array position to that of the true emitter location decreases, 
the received signal SNR𝑖  at each sensor increases. If 
available, the utilization of array clock synchronization 
methods decreases the emitter location error, and the emitter 
location resolution will increase. In this case, since local 
timing source synchronization is likely an expensive 
operation, a larger array size with less accurate timing 
sources can be used to obtain an initial emitter location 
estimate. Next, a timing source synchronization operation 
among a smaller subset of array elements can be used to 
obtain a subsequent emitter location estimate that is more 
accurate and that could potentially be acquired in a closer 
range to the emitter position. Furthermore, the initial emitter 
location estimate could be used to select the subset of array 
elements to be synchronized, a new geometry for those 
elements, and even the choice of an alternative emitter 
location algorithm to be used for subsequent measurements. 

 
7. CONCLUSION 

We are motivated to consider the use of a cooperative 
wireless sensor array comprised of a collection of UAS that 
contain onboard assets permitting them to operate as an 
emitter location system. Our primary motivation is due to the 
fact that the array geometry can be dynamically updated and 
reconfigured for subsequent iterative emitter location 
measurements thus potentially providing a large advantage in 
comparison to conventional fixed-array systems. Another 
major motivation for the use of a collection of UAS as an 
emitter location system is the availability and practicality of 
including other onboard sensors and subsystems such as 
LIDAR ranging and accurate local timing sources that allow 
for measurement accuracies to be bounded. The example that 
is investigated here is the use of LIDAR ranging to bound 
sensor localization errors. 

As a preliminary investigation into the viability of this 
approach, we focus on analysis of the dominant error sources 
within the system. We justify our selection of the dominant 
error sources through inclusion of a summary of several error 
sources and how these errors can be minimized or mitigated. 
Specifically, these include errors due to local timing 
measurements and array element positioning errors. These 
dominant error sources are analyzed through the use of the 
theoretical lower bound on accuracy using the CRLB and in 
terms of the use of multilateration and LOCA emitter location 
algorithms.  

Our analysis also includes an investigation into the required 
number of sensor array elements, and we conclude that, 
although specific mission parameters may affect the choice 
of element numbers, a network of more than eight elements 
tends to provide diminishing improvements in terms of 
emitter location for most mission profiles. Due to difficulties 
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in local timing source synchronization, we also focus on 
timing-based emitter location algorithms here and provide a 
brief summary of their functionality. We also describe how 
timing error can be bounded through the use of a variety of 
techniques ranging from the use of UWB methods for very 
small error bounding, to the use of GPS for an increased error 
bound, and up to the use of sources that are merely 
synchronized during the pre-mission preparation and then run 
freely during the mission’s lifetime. 

We conclude that such a system is viable and practical, 
particularly with the inclusion of fused data from other 
sensors to provide bounds on timing and sensor element 
localization. To obtain worst case estimates of the impact of 
these error sources with respect to emitter location, we 
analyzed emitter location accuracy for a single measurement 
for a single geometry without the inclusion of iteratively 
updating the emitter location estimate through subsequent 
measurements versus increasing numbers of array elements. 
In the future, we will incorporate the iterative update of the 
emitter location estimate through subsequent measurements 
including consideration of dynamic array geometry 
repositioning. We also intend to add the contributions of 
other error sources and investigate the use of machine 
learning methods for a variety of tasks including array 
repositioning, changing the UAS orientation in-place by its 
rotation, choosing the number and identifying the sensors for 
subsequent measurements, and choosing processing 
parameters and hyperparameters for subsequent 
measurements – including the adaptive choice of alternative 
emitter location algorithms. 
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