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Abstract— The Southern Methodist University-Darwin Deason 
Institute for Cybersecurity (SMU-DDI) Cyber Autonomy Range 
(CAR) addresses the incorporation of increased resiliency, 
reliability, and cyber security of the autonomous systems (AS) 
cyberinfrastructure; an issue with widespread concern and broad 
impact on society.   The advances of data science and Machine 
Learning/Artificial Intelligence (ML/AI) methods coupled with 
their integration into autonomous subsystems is an enabling trend 
that supports AS maturity.  Likewise, these same aspects of ML/AI 
present entirely new aspects of cyber security, many of which have 
only been analyzed in a preliminary sense or for special cases.   The 
ML/AI aspects of cyber security are critically important, with 
significant ramifications in human safety and well-being. The 
CAR is a collaborative facility that supports the assessment of AS 
when faced with cyber threats by assessing their attack surface, 
vulnerability, and their degree of resistance to such threats.  It is 
instrumented to simulate and/or emulate the external 
environment of an AS and can subject the AS to a variety of 
controlled cyber-attacks.  Because the decision-making 
capabilities of many AS are based upon data-driven ML/AI-
enabled technologies, the threat surface surrounding ML/AI 
subsystems is of particular concern.  The CAR is especially 
configured to investigate and simulate (or emulate) cyber-attacks 
on ML/AI-equipped subsystems; particularly ML/AI subsystems 
that depend upon data sources derived from sensor suites or other 
data sources.   
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I. INTRODUCTION  

The purpose of the newly formed SMU-DDI Cyber 

Autonomy Range (CAR) is to perform security research to 

enable success of advanced AI and ML in autonomy 

applications.  Of all the various aspects of autonomy security, 

adversarial attack is one of the most interesting because of the 

surprisingly large errors generated from imperceptibly small 

input deviations.  Adversarial attack of deep learning networks 

is a serious issue since it represents a weakness that could 

prevent the widespread deployment of deep learning and hinder 

overall productivity progress.  Research community interest in 

adversarial attack is evidence by the fact that the 2014 

Goodfellow paper “Explaining and harnessing adversarial 

examples” [1] has been cited 13,368 times at the time of this 

writing.  The adversarial attack panda example image appears 

on 178 websites. 

In Section II we show examples of how adversarial attack on 

deep learning systems have been shown to be possible across 

many autonomy application domains.  Many different attack and 

defense methods have been developed.  It is now well-known 

that it is imperative to address adversarial attack when designing 

any autonomous system that uses deep learning.  Section III 

gives examples of new approaches which enable robustness, 

explainability, fairness, and verification across the machine 

learning lifecycle of specification, design, training, design time 

testing, and runtime assurance.   

II. ADVERSARIAL ATTACK 

Use of deep learning in an autonomous system increases the 

attack surface because adversarial threats enter through sensing 

apertures as shown in Figure 1.  Adversarial attacks are not just 

limited to the external camera and LIDAR sensors but could also 

be performed on internal sensors which are used for engine, 

transmission, brake control and diagnostics, as well as cabin 

functions such as mapping, onboard communications, 

infotainment systems and voice recognition.   

Liang et al. [2] provides a table of common attack techniques 

including Fast Gradient Sign Method originally published by 

Goodfellow.  

Mun et al. [3] has shown black-box audio adversarial attack 

which could be used to alter voice commands.  Rathore et al. has 

shown universal adversarial, attacks and defenses on time series.  

Rathore et al. [4] has shown universal adversarial attack on deep 

learning-based prognostics including various mission critical 

state-of-the-art automated Prognostics and Health management 

(PHM) systems based on deep learning-based solutions. 

Zhong et al. has shown how shadows can be used to trigger 

adversarial attacks of traffic signs [5]. 

Bendelac et al. has developed a long-wave device capable of 

generating adversarial attack patterns [6].  MITRE has also 

established a baseline evaluation methodology for adversarial 

attack [7]. 

. 

  

20
22

 IE
EE

 A
pp

lie
d 

Im
ag

er
y 

Pa
tte

rn
 R

ec
og

ni
tio

n 
W

or
ks

ho
p 

(A
IP

R
) |

 9
78

-1
-6

65
4-

77
29

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
A

IP
R

57
17

9.
20

22
.1

00
92

22
8

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 06,2023 at 22:42:46 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

Figure 1 External Sensor Attack; 2. External Communications Attack, 3. Internal Sensor Attack; 4. Internal Communications Attack; 5 Internal   
Computer System Attack

Exposure of internal and external communication links increases 

the attack surface shown in Figure 1.  SMU-DDI has developed 

automotive Controller Area Network (CAN) bus cryptographic 

protection methods to prevent internal communications 

spoofing [8].  External communications are protected using 

hardware root-of-trust based cryptographic key generator which 

can use the special quantum high entropy True Random Number 

Generator (TRNG) chip, also developed by SMU-DDI [9], [10].  

The high entropy chip supports rapid and frequent key rotation. 

Figure 2 shows SMU-DDI CAR research results of adversarial 

attack before and after applying defenses using the Adversarial 

Robustness Toolbox using 10 iterations in adversary with 

projected gradient descent [11].   Attackers can fool networks 

because they know the network was trained with gradient 

descent. Many aircraft and ground mobile autonomous vehicle 

(AV) systems use Simultaneous and Location and Mapping 

(SLAM) for path planning and obstacle avoidance. Ikram et al. 

2022, have shown visual SLAM is prone to a targeted attack by 

placing 2D adversarial patches in places which prevent SLAM 

loop closure. Recently, 3D-adversarial objects have been shown 

to enable adversarial 2D attack from any camera sensor angle 

and 3D-printed objects have been shown to fool 3D sensors.   

Fooling of 3D recognition networks has also been achieved 

by spoofing the received 3D point cloud data by attacking the 

communication link connecting the autonomous vehicle (AV) to 

its sensors. 

Adversarial backdoor poisoning can be hidden using 

steganographic techniques and activated by the attacker at will.  

In the backdoor attack, an attacker injects images pasted with 

the trigger into the training set and changes their labels to the 

target label. The model trained on the backdoor training set will 

show a normal classification performance on clean images. 

However, when images containing the trigger arrive, the model 

will incorrectly output the target label.  Xue, et al. has shown 

how to embed the triggers using steganographic techniques 

which make them imperceptible and difficult to detect [12]. 

A more overt method of poisoning a training set is create 

fake data.  All the images of armored troop carriers shown in 

Figure 3 are fake.  They were generated by stable diffusion [14].  

Stable diffusion is a text-to-image generation program based on 

a latent diffusion model.  Figure 4 shows a real armored troop 

carrier in the visible and the radar spectrum. 
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Figure 2 Adversarial attack before and after denoising defense.  Defense was only successful for the Fire Truck. 

 

 

Figure 3 None of these images were real.  They were generated by stable diffusion using variants of the prompt “Armored troop carrier”.  
Stable Diffusion credit to Rombach et al.  [14]

 

 

Figure 4 Left: Bronetransporter BTR-60 photo credit:  By Billy Hill, 
https://commons.wikimedia.org/wiki/File:BTR60PB_NVA.JPG; 
https://creativecommons.org/licenses/by/3.0/legalcode);   Right: 

BTR-60 in the MSTAR dataset [13] 

White et al. [15] describes using Synthetic Aperture Radar 

(SAR) for aerial UAV SLAM-based GPS-denied navigation.  

They use deep learning ResNet50 network and a transfer 

learning technique to compare distorted SAR image to a 

reference SAR image to estimate position and velocity errors. 

Peng, et al. [16] showed how adversarial attack on deep 

learning-based SAR Automatic Target Recognition (ATR). The 

evaluations included the following eight DNN models: 

ResNet50, Alex Net, VGG11, DenseNet121, MobileNetV2, 

AConvNet, ShuffleNetV2, and Squeeze Net.  When the ATR 

was trained using ResNet50 they achieved an average fooling 

ratio of 69.2% over ten different targets.  The average fooling 

ratio success over all ten targets shown in Figure 5,  and all eight 
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ATR networks was 64%.  In some cases, the fooling ratio was 

as high as 100%. 

 

Figure 5  Peng, et al. [16]  report fooling ratios up to 100 % for 
eight different popular deep network for above SAR targets.  SAR 

images from: The Air Force Moving and Stationary Target 
Recognition Database. https://www.sdms.afrl.af.mil [13] 

Adversarial defenses can be categorized as model 

optimization, data optimization, or use of an additional network 

[2].  Model optimization approaches include defensive 

distillation, gradient regularization, gradient masking, defensive 

dropout.  Data optimization includes Adversarial training, 

feature compression, input reconstruction.  Techniques using 

additional networks for detection of adversarial attack, in some 

cases, also enable capability for explainability. 

III. SUMMARY AND FUTURE DIRECTIONS 

AFRL Technical Report  “Leveraging Symbolic 

Representations for Safe and Assured Learning” [17] describes 

advances in symbolic system testing and verification applied to 

a high fidelity F-16 model.  In the last stage of the project, 

mechanisms for learning symbolic policies were automatically 

discovered by treating neural network detected and  named 

entities as program variables.   

DARPA Assured Neuro Symbolic Learning and Reasoning 

(ANSR) [18] defends against attackers guiding data driven 

learning with symbolic space operations as illustrated in Figure 

6.    An important advantage of neuro-symbolic techniques is 

improved explainability and better ability to apply formal 

verification techniques.  

 

 

 

Figure 6 DARPA illustration of Assured Nero-symbolic learning [18] 

 

SMU-DDI Cyber Autonomy Range is dedicated to similar 

future research to enable expanded resiliency, explainability, 

and trust to enable success of future automated systems; 

particularly in the presence of ML/AI-based cyber-attacks.    
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