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Abstract—As the scale of deep learning tasks continues to
expand, the generation of sufficiently large datasets has become
increasingly costly and time-consuming. In particular, resource
demands for manual annotations for computer vision tasks
such as multi-object tracking have contributed to the grow-
ing popularity of synthetic computer vision datasets created
through simulation engines. Simulations facilitate the creation
of automatically annotated datasets with complete control over
environmental variables that are typically uncontrollable in real-
world scenarios. Leveraging this control, we generate multi-
object tracking datasets isolating specific environmental variables
including subject scale, camera movement, and lighting changes.
Our evaluation focuses on the TrackFormer architecture, an
end-to-end, transformer-based solution designed for multi-object
tracking. The resulting insights into how each environmental vari-
able affects multi-object tracking performance can guide future
architectural improvements. Furthermore, our data generation
process can serve as a template for evaluating deep learning
architectures in simulated environments.

Index Terms—synthetic data, simulation, multi object tracking,
machine learning, computer vision

I. INTRODUCTION

One major challenge in computer vision, and deep learning
in general, is generating datasets of sufficient size, diversity,
and annotation quality to train complex deep learning models.
Real-world computer vision datasets can be expensive and
time consuming to create since they often require a human
annotator to manually annotate each image, sometimes on the
pixel level [41]. This challenge has given rise to synthetic com-
puter vision datasets which leverage powerful modern graphics
engines [1]–[3], [5], [9]. Graphics simulations provide sev-
eral advantages. Low cost pixel-perfect annotations can be
produced ensuring precise ground truth labeling for training
and evaluation. Moreover, simulation environments can be
tailored to specific subject domains that may be otherwise
inaccessible in the real world. Simulations can additionally
provide complete control over environmental factors such
as lighting and weather conditions that can be difficult to
maintain or reproduce.

Much of the existing and current research in synthetic data
for computer vision seeks to narrow the domain gap between

simulated worlds and the real world in terms of fidelity
and diversity [10]–[14]. However, there is an opportunity to
leverage the extra control offered by a simulated environment
to isolate and investigate the effects of certain environmental
variables on a computer vision model.

In a simulated environment, we are able to parameterize cer-
tain environmental variables to create multiple datasets across
which only a select set of variables are changed, minimizing
the impact of any confounding factors. This methodology
enables the ability to gain deeper insights on the impact
of specific environmental factors on model performance—a
challenging task for limited real-world data.

We evaluate multi-object tracking performance across a va-
riety of synthetically produced datasets using the TrackFormer
architecture [6]. TrackFormer is a trainable, end-to-end multi-
object tracking architecture that utilizes self-attention when
tracking objects from frame to frame. Although TrackFormer
has seen recent success in the MOTs challenge [15], [16],
it is unclear how well the architecture works under varying
environmental conditions. We seek to understand the resilience
and shortcomings of the TrackFormer architecture under pre-
viously unexplored conditions. These conditions are created
through the manipulation of several environmental variables
including:

• Subject scale: Proportional size of objects relative to the
screen.

• Camera movement: The transportation of the camera
from one position to another while observing a scene.

• Lighting Changes: How much the illumination of a
subject changes over time.

In existing datasets, it can be difficult to isolate these vari-
ables or find sufficient examples of each at various levels. In a
simulated environment, each can be controlled independently.
For data generation, we use common road vehicles simulated
using a custom annotation tool built in the Presagis software
suite [56], [57]. We evaluate TrackFormer performance using
standard multi-object tracking metrics such as multiple object
tracking accuracy (MOTA) and IDF1 score. [32], [53].979-8-3503-5952-7/23/$31.00 ©2023 IEEE



Fig. 1. Simulated video frame in Vega Prime with automatic annotation

II. RELATED WORK

A. Synthetic Data in Computer Vision

Advances in 3D graphics rendering and the development
of software such as Unreal Engine [55] and Unity [54] have
enabled projects such as [2], [3], [17] to provide the means
to create synthetic datasets for a variety of computer vision
tasks. The flexibility and customization of modern graphics
engines allows for the creation of datasets from a wide range
of domains and tasks such as object detection/tracking [9],
[18], [20], pose estimation [21], [22], lighting estimation [23],
[24], and robotics [25], [26].

Despite the success of synthetic data for computer vision
tasks, a domain gap between real and synthetic data persists.
Many studies (such as [1]) evaluate the effects of fidelity
and lighting on computer vision models to elucidate which
aspects of a simulation contribute to this disparity. One method
for bridging this gap is domain randomization [10], [11].
Domain randomization aims to relax contextual and photo
realism in favor of enhanced randomness and sample diversity.
Consider an object detection task on identifying cars. Rather
than creating a simulation in which a car is as photorealistic
as possible with accurate lighting, texture, movement, and
position, a domain randomization approach would involve
placing the car in random positions, orientations, and textures.
This approach exposes the network to more diverse samples of
cars and helps guide the network away from learning spurious
data artifacts that may be present in a real-world dataset in
which the diversity of subjects is more limited. While our
approach also involves adjusting simulation variables poten-
tially beyond realism, our goal is to evaluate the impact on
multi-object tracking performance rather than solely enhancing
overall model performance.

B. Multi-Object Tracking

The primary objective of multi-object tracking is to asso-
ciate object detections across video frames while maintaining
identities for objects as they move and interact with the
scene. This differs from object detection systems like the
YOLO architecture where objects are detected and identified
in a single, still frame [33]. Historically, approaches have
utilized tracking-by-detection where a two-stage architecture
is employed [34]–[37]. First, objects are detected in individ-
ual frames. Subsequently, associations between the detected
objects are established between frames in order to track
over time. While these methods have been effective, the

disconnected nature of the two stages does not allow for joint
optimization of detection and tracking.

C. TrackFormer

TrackFormer provides an end-to-end architecture that jointly
trains detection and tracking through the use of self-attention.
The architecture is based on the encoder-decoder Trans-
former [38] architecture implementing a tracking-by-attention
paradigm. The TrackFormer architecture is auto-regressive
where frames are processed by a common CNN backbone
producing frame-level features. The features are encoded with
self-attention with the Transformer encoder and queries are
decoded with the Transformer decoder. Queries are mapped
to box and class predictions using a multi-layer perceptron
(MLP).

While recent work has investigated synthetic data in multi-
object tracking [39], [40], a comprehensive analysis of the
impacts of environmental variables on TrackFormer has not
been systematically conducted. This work aims to address this
gap by leveraging synthetic data to thoroughly examine the
impacts of different variables.

III. EXPERIMENTS

The goal of this work is to evaluate TrackFormer’s per-
formance in contexts different from those in which it was
originally trained and evaluated. The results of these evalu-
ations provide insights into the strengths and weaknesses of
the TrackFormer architecture and guide future improvements
and modifications. We systematically generate datasets with
various settings to evaluate model performance under a diverse
range of environmental conditions. In order to best isolate
these environmental variables and have the most control over
our datasets, we used 3D simulation software to create syn-
thetic datasets for our evaluations. The following section will
describe the dataset generation and training methodology we
used for these experiments.

A. Synthetic Dataset Generation

In order to generate our synthetic datasets, we used the Pre-
sagis software suite, specifically Vega Prime [56] and STAGE
[57]. STAGE is a tool for simulating the behavior of a variety
of entities including ground vehicles, aircraft, and personnel
in both civilian and defense scenarios. STAGE allowed us to
create repeatable scenarios in which we could collect data. We
used two locations that are readily available in the Presagis
common database for our scenarios: (1)Camp Pendleton and
(2)Yemen environments. Vega Prime is a visualization tool
which allowed us to render a 3D visualization of our scenarios
created in STAGE. We created a custom application in Vega
Prime allowing the extraction of annotations in the form of
semantic segmentations and bounding boxes from a virtual
observer in our simulated environment (Fig. 1). To ensure
compatibility with the evaluation framework of TrackFormer,
the annotations were processed to closely align with the
MOTChallenge format [15], [16] used for TrackFormer’s
initial training and evaluation.



Fig. 2. MOTChallenge [16] frame vs. a frame from our datasets. Despite the domain differences, we achieve strong performance on our synthetic datasets.

We created twelve scenarios to serve as the base for our
experiments. These scenations consisted of two classes of
common street vehicles in various settings: a black sedan
and a white van. We chose these vehicles due to their dis-
tinctive color, size, and shape, as we wanted any variation
in performance to come from the environmental variables
rather than from a particularly difficult or inconsistent tracking
subject. The scenarios featured simple traffic movement with
our vehicles moving ∼10 meters per second, making turns
and avoiding collisions. The base scenarios from which we
would vary our environmental variables were designed to
be somewhat similar to those seen in the MOTChallenge
datasets in an attempt to maximize TrackFormer performance
in our virtual domain. All base scenarios are about 40 seconds
long, captured at 25 frames per second from a stationary
virtual camera, and each scenario features clearly visible and
illuminated objects. We captured frames at 1280x736 pixel
resolution to match model input dimensionality. From these
base scenarios, we generated a dataset of ∼11, 000 frames
which serves as our baseline dataset.

After creating our base scenarios, we developed variants
in which we carefully altered certain environmental variables.
All scenarios were configured with the same amount of visual
fidelity and detail in order to isolate environmental variables.
For this work, we chose the following environmental variables
to investigate: subject scale, camera movement, and lighting
variation.

1) Subject Scale: Subject scale refers to the size of an
object in a given image. As objects get smaller, they are
represented by fewer pixels, which means there is less in-
formation to detect them. Related work has demonstrated the
importance of subject scale in various computer vision tasks,
which motivates our choice to use it as an environmental
variable in this work [42]–[44]. We varied the subject scale
in our scenarios by progressively repositioning the camera
at increasing distances from the scene objects. We collected
data at 10 roughly exponentially increasing increments from
25 meters to 1000 meters with bounding boxes ranging from
as small as 2 px to 20,000 px, which results in a dataset of
∼100, 000 frames. An alternative approach is to directly scale

the sizes of the 3D models of the scene subjects, holding
the virtual camera position constant. However, we chose to
move the virtual camera directly to create a more realistic
background, as surrounding objects will be similarly scaled.

2) Camera Movement: Camera movement refers to the
movement of the camera relative to the rest of the scene. While
many cameras have pan-tilt-zoom capabilities which present
their own challenges for object detection and tracking tasks
[48], [49], we instead address the case in which the camera
changes locations [45]–[47]. We do not introduce any camera
jitter or instability. In our experiments, we evaluate the effects
of camera movements at 5 different speed subsets from 0 to 40
meters per second resulting in a dataset of ∼50, 000 frames.

3) Lighting Changes: Lighting changes refers to how much
the illumination of a subject changes throughout a scenario.
Lighting changes which significantly change the appearance
of an object could lead to missed or incorrect detections
reducing tracking performance. Since lighting conditions can
vary widely in a single location, especially outdoors, resilience
to lighting changes is important for many object tracking
systems [50]–[52]. In order to create datasets which include
these lighting changes, we alternated the global illumination
setting from full daytime lighting to low light conditions
mimicking dusk. We used 5 different time interval subsets
from 1 to 20 seconds between lighting changes, resulting in
a dataset of ∼50, 000 frames. To create the most drastic and
challenging effect, we made the lighting changes instant rather
than a gradual shift.

We collected data for each of these environmental variables
across our 12 base scenarios to create our three environmental
variable datasets which we used to perform our main evalua-
tion.

B. Evaluation Procedure

In our general approach to evaluating TrackFormer’s re-
silience to different environmental variables, we split our
experiments into three phases: a baseline evaluation, environ-
mental variable evaluations with no tuning, and environmen-
tal variable evaluations with tuning. Since TrackFormer was
originally trained and evaluated on real-world MOTChallenge
data, our first phase trains TrackFormer on our base scenario to



establish baseline performance on synthetic data. This initial
phase evaluates whether or not we are able to achieve strong
performance in our simulated domain. Strong baseline perfor-
mance ensures that any performance variation in the following
phases is due to the environmental variables and not poor
or inconsistent overall performance in the simulated domain.
In our second phase, we evaluate the baseline model trained
in the first phase using our environmental variable datasets.
This phase serves to evaluate the resilience of TrackFormer
to unfamiliar conditions. Finally, we tune our baseline model
with each of our environmental variable datasets and perform
the same evaluations to see whether TrackFormer is able to
adapt to those same conditions.

C. Training Procedure

We follow a similar training procedure to prior work [6].
The learning rates for the encoder-decoder were set to 0.0002
and 0.00002, respectively. We trained the baseline model for
20 epochs on the base scenarios. For each environmental
variable dataset, we tune the baseline model for an additional
20 epochs. Thus two models are created, a “baseline” and a
“tuned” model to support the investigations described in our
evaluation procedure. All training procedures were conducted
on an NVIDIA SuperPOD at the SMU high performance com-
puting center. The nodes in the center consist of 8 NVIDIA
A100 GPUs, each equipped with 80 GB of memory. In running
our experiments, we tune our models for 20 epochs spanning
approximately 36 hours.

IV. RESULTS

A. Evaluation Metrics

We evaluate our models with standard performance metrics
for multi-object tracking. In addition to conventional precision
and recall, we use the multi-object tracking specific variants:
ID precision, ID recall, and IDF1 score. These measures take
the nuances of multi-object tracking into account, such as
periods of frequent ID switching, which can cause inconsistent
values for traditional precision and recall scores [32]. We also
use multiple object tracking accuracy (MOTA) [53], which
summarizes object identification errors including mismatched
IDs, false positives, and misses, while ignoring bounding
box placement errors. Overall performance for each model is
reported using these six metrics. To investigate performance
trends with respect to environmental variables, we focus on
presentation of IDF1 and MOTA for visual clarity and because
these measures tend to capture the overall performance trends.

B. Baseline

Table I shows the evaluation results for our baseline ex-
periment. Our baseline model shows that despite working in
a completely different domain (see Fig. 2 virtual vehicles
vs. real pedestrians) we can achieve strong performance. The
capability to perform well in the synthetic domain is crucial
as it establishes a foundation to compare TrackFormer under
various synthetic conditions. We observe that most scores are
greater than 0.75, with an overall MOTA score of about 0.81.

Thus we seek to understand how environmental variations shift
these scores through our experiments.

TABLE I
BASELINE RESULTS

Model IDF1 IDP IDR Rcll Prcn MOTA
Baseline 0.784 0.760 0.810 0.941 0.882 0.812

C. Subject Scale

For our first variation, our datasets included a wide range
of subject scales. Table II shows performance across the entire
subject scale dataset for the baseline and tuned models, where
we see a notable improvement across all metrics for the tuned
model. Fig. 4 shows performance of both models in terms of
average bounding box size for each of our 10 subject scale
subsets. We see a steady drop in performance for the baseline
model, whereas the tuned model seems to have a slight knee
around 110 pixels2 in area. The tuned model actually achieves
a worse MOTA score than the tuned model for the very small
objects. It may be that tuning the model with these small
objects caused it to over-detect, leading to more false positives
and thus a negative MOTA, while the baseline model under-
detected. Given the range of subject scales present in the
dataset (Fig. 3), this performance trend is roughly what we
expected to see from this experiment. This result indicates
that TrackFormer may not generalize to datasets containing
objects of different sizes than the training set without addi-
tional tuning. Moreover, even a tuned model may not provide
sufficient performance detecting smaller objects. Thus an aim
for future research should be to investigate methods to help
increase performance when larger and smaller objects may be
present in a scene together.

TABLE II
SUBJECT SCALE RESULTS

Model IDF1 IDP IDR Rcll Prcn MOTA
Baseline 0.372 0.389 0.361 0.483 0.527 0.228
Tuned 0.624 0.620 0.627 0.684 0.676 0.368

D. Camera Movement

In our camera movement experiment, we also see a signifi-
cant improvement in performance for the tuned model vs. the
baseline model (Table III). In Fig. 5, we see a slight downward
trend in performance as the camera speed increases for both
models, however there are notable differences in the 0 to 10
m/s range. We see the baseline model experience a drop in
performance from 0 to 5 m/s, but then plateau at 10, 20,
and 40 m/s. This initial dip in performance is expected as
the base data on which the baseline model was trained was
all from a stationary camera, making the difference between
the 0 m/s subset and the 5 m/s more drastic (i.e., stationary
to non-stationary camera). For the rest of the subsets, the
differences likely stem from how much the subjects change
position between captured frames, shown in Fig. 6, as the



Fig. 3. Subset of different scales present in our subject scales dataset.

camera followed the same path in each subset, but at different
speeds. For the tuned model, we see that the tuning appears
to rectify the initial drop in performance; however, we still
see the same drop in performance after 10 m/s. This presents
itself as a potential area for improvement for the TrackFormer
architecture, as we see a similar trend for both baseline and
tuned models.

Fig. 4. MOTA and IDF1 scores vs. mean bounding box size in pixels for
baseline and tuned TrackFormer, note that the x axis is a log scale.

Fig. 5. MOTA and IDF1 scores vs. camera movement speed in m/s for
baseline and tuned TrackFormer.

TABLE III
CAMERA MOVEMENT RESULTS

Model IDF1 IDP IDR Rcll Prcn MOTA
Baseline 0.429 0.467 0.401 0.612 0.726 0.383
Tuned 0.667 0.670 0.664 0.845 0.856 0.700

Fig. 6. Difference in frames over 1 second for 5 m/s (top) and 40 m/s
(bottom).

E. Lighting Changes

For our lighting changes experiment, we expected to see
a noticeable drop in performance as the interval between
changes decreased—that is, the subjects switched between
being well- and poorly-illuminated more often. However, we
see in Fig. 7 that performance for both the baseline and
tuned models remains fairly high. We expected detections
in poor lighting conditions to be more difficult to identify.
Therefore, we anticipated a reduction in tracking performance
during poor illumination periods. However, we do not see the
clear trends we see in the other experiments with illumination
variances. This is most likely due to the backbone CNN of
the TrackFormer architecture being more resilient to lighting
conditions than we expected. We also see that the baseline
model performance is almost constant across all subsets,
whereas the tuned model experiences a dip from 1s to 5s, then
improves from 5s to 20s. This indicates that the model has
more difficulty learning these intermediate intervals, although
performance is still improved slightly over the baseline model.
It may be that the model learned to handle quick lighting



changes and long periods of different lighting conditions, but
was unable to learn to bridge the gap over the tuning period.
Despite the anomaly in the tuned model’s performance, we
see that overall lighting changes have little effect on tracking
performance.

TABLE IV
LIGHTING CHANGES RESULTS

Model IDF1 IDP IDR Rcll Prcn MOTA
Baseline 0.789 0.778 0.800 0.898 0.874 0.764
Tuned 0.879 0.877 0.882 0.937 0.932 0.896

Fig. 7. MOTA and IDF1 scores vs. lighing change interval in seconds for
untuned and tuned TrackFormer.

Fig. 8. Difference in lighting conditions for lighting changes datasets.

V. CONCLUSION

Synthetic data can be a valuable tool for evaluating a
neural network architectures. The ability to generate auto-
matic annotations and simulate various conditions allows the
creation of specific datasets to test different aspects of an
architecture. In this work we demonstrate how to apply this
synthetic-data-driven evaluation approach to the TrackFormer
architecture—testing its resilience to changes in three envi-
ronmental variables: subject scale, camera movement, and
lighting changes. We found negative performance trends when
decreasing subject scale and increasing camera movement,
which could motivate modifications and improvements to the
TrackFormer architecture.
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