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Abstract 
 

We describe several integer function properties 
which in combination allow direct lookup tables to be 
reduced in size and structure to simpler lookup trees. 
Our principal result is a novel table lookup method 
based on a mapping of a lookup tree to a row-by-
column ROM with pre and post processing logic 
substantially reducing the table size. Our lookup 
architecture allows common 16-bit integer functions 
such as multiplicative inverse, square, and the 
discrete log to be realized with table size of order 2-8 
Kbytes, in comparison to the 128 Kbyte size of an 
arbitrary 16-bits-in 16-bits-out function table.  The 
lookup methodology is illustrated with specific 
development of the 16-bit integer discrete log 
function. Implementation for both unnormalized and 
normalized indices are synthesized into standard cell 
netlists and performance and area results are given 
that demonstrate their effectiveness. 
 
1. Introduction 

This paper investigates new table lookup 
architectures to extend the range of options for table 
assisted computation in optimizing an ALU design.  
The focus is on integer function evaluation where 
recent results have identified needs for new lookup 
architectures to exploit the potential savings 
available. 
 The distinction between real and integer 
arithmetic in an ALU is conveniently described with 
reference to the multiplication of two k-bit integer 
operands. The exact product fits in a 2k-bit field. The 
real (e.g. floating point) result typically provides a 
normalized high order (approximate) part with the 
low part rounded off. The integer result is the k-bit 
low order part providing an exact result in a modular 
system with the modulus determined by the word size 
implicitly truncating the high order part. 

Integer functions determined modulo 2k for k-bit 
word results generally have properties allowing much 
smaller tables for exhaustive storage of k-bits-in k-
bits-out function evaluation than corresponding real 
valued k-bit functions. The following four properties 
of integer functions have been recently identified in 
combination to fundamentally redefine and reduce 
the size of lookup tables for exhaustive storage. For 

16-bit arguments, the advantages for integer function 
lookup can be as large as 32 to 1 or even 64 to 1, 
allowing 5 or 6 more index bits for comparable table 
size. 

 
(1) Inheritance principle: Briefly this principle states 

that the low order k-bits of the result depend only 
on the low order k-bits of the integer argument for 
all k. In practice the inheritance principle for integer 
functions means that a k-bits-in, k-bits-out lookup 
table can be reduced from a generic k×2k bits ROM 
table to a lookup tree structure of size 2×2k bits.  
This reduces table size by a factor of k/2 (e.g. 
reduction to 1/8 the size for 16-bit integers). 

(2) One-to-one correspondence: This property holds 
when distinct k-bit inputs have distinct k-bit 
outputs. This property holds for multiplicative 
inverse and the discrete log of odd integers, and is 
extended to a discrete log encoding of all k-bit 
integers as illustrated in Section 2. With the 
inheritance principle, this property allows pre- and 
post-processing logic to reduce the table size by 
another half. 

(3) Normalization (separating odd and even factors): 
Employing a right-normalized binary integer 
representation, n = i×2p (where i is the odd factor 
and 2p is the even-power factor), integer functions 
can often be determined in a separable fashion by 
applying table lookup to the argument’s odd factor 
followed by function specific post-processing 
responsive to the even-power factor. 

(4) Conditional complementation: This property states 
that the result of the operation on the conditional 
2’s complement of the input is the conditional 2’s 
complement of the output. Conditional 
complementation often applies only to selected bits 
of the odd factor of the normalized integer 
argument.  When applicable, this allows one half or 
more further table size reduction.   

 
 To fully benefit from this implicit compression, 
new table lookup procedures responsive to alternative 
“lookup tree” table architectures must be developed. 

Lookup trees were introduced with regards to the 
multiplicative inverse function for odd integers modulo 
2k in [6]. Preceding properties (1), (2), and (4) were 
shown to result in substantial table size reduction, but a 



method and architecture for efficient lookup was left 
open. The integer square function satisfies the 
inheritance principle, with argument normalization 
and appropriate conditional complementation further 
reducing the size of the lookup tree. In section 2, we 
summarize needed background on the integer 
discrete-log binary representation and a preferred 
encoding allowing the discrete logarithm to satisfy 
and benefit from all four preceding integer function 
properties. 

Our focus shifts in section 3 to the main issue of 
presenting an efficient architecture for implementing 
lookup trees for integer functions. Employing the 
discrete log function for illustration, our principal 
result is given by showing how a rectangular row-by-
column bit array similar to a ROM can be designed to 
store a lookup tree, with the details realized in the 
novel selection architecture for extracting and 
concatenating the bits of the result into the output 
register. Un-normalized and normalized argument 
versions employing various amounts of pre and post 
processing logic to effect table size reduction are 
described. Section 4 describes comparative results of 
standard cell implementations of the two versions and 
information about the cell library employed, and 
Section 5 provides a brief conclusion. 
 
2. Normalization and Discrete Log Encoding 
 Any positive integer has a unique factorization 
into odd and even-power factors, n = i×2p, which 
provides a right-normalized format for binary integer 
representation.  For integers in the “k-bit” range 
[1,2k-1], note that the 2k-2 members of the sequence 
0 1 2 2 1
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3 ,3 ,3 ,...,3

k
!

!  reduce modulo 2k to a sequence of 
distinct odd numbers covering half the odd numbers 
in [1,2k-1]. The complementary values 

2
( 1) 3

k

s e
!  for   

0 ≤ e ≤ 2k-2 - 1 cover the other half of the odd 
numbers where 

2
k•  denotes the standard residue 

modulo 2k.  For example, for k=5, the reduced 
sequence is 1,3,9,27,17,19,25,11, and the 
complementary sequence is 31,29,23,5,15,13,7,21.  
Benschop combined these observations in [2] noting 
that any integer n satisfying  
1 ≤ n ≤ 2k-1 has a “modular factorization”  

2
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k

s p en = ! .  Benschop then represents every 

(non-zero) k-bit integer by the “discrete log” 
exponent triple (s,p,e).  The triple is unique with 0 ≤ 
p ≤ k-1 employing a minimum e always in the range 
0 ≤ e ≤ 2k-2 -1. 
 Benschop left open two fundamental questions 
regarding implementation of a discrete-log number 
system (DLS). 
 

(1) Conversion: How do we implement the binary-
integer-to- ( , , )s p e  triple conversion? Specifically 
how do we efficiently implement determination of 
the ( , )s e  pair for an odd integer 

! 

i  such that 

! 

i = ("1)
s
3
e

2
k
in a scalable manner? 

(2) Encoding: How do we encode the triple ( , , )s p e  
into a word with an appropriate integer range and 
convenient scalability for variable word sizes? 
Efficient scalable iterative solutions of the integer-

to-discrete-log conversion and deconversion questions 
were presented at the algorithmic level in [1][3] with 
hardware implementation in [4][7]. In this paper we 
present two direct table lookup conversion solutions 
applicable for precisions up to 16 bits. Our solutions 
include resolution of the encoding question in a manner 
facilitating reducing the size of the table lookup 
structure with a novel lookup architecture.  

The encoding employs variable length fields for the 
encodings of p  and e  and provides a one-to-one 
“hereditary” mapping between k-bit discrete-log 
numbers and k-bit unsigned binary integers. Details and 
proofs are beyond the scope of this paper. We utilize 
example tables and figures to illustrate the encoding and 
some of its significant properties. 

The one-to-one mapping between 5-bit discrete-log 
numbers comprising a 5-bit DLS and 5-bit integers is 
given in Table 1. The DLS bit string is partitioned as 
follows to determine the three exponents p, e, and s.  

Consider the line in the table for DLS string 10110. 
The parsing begins from the right hand side determining 
the variable length field identifying 1

2 2
p
=  by counting 

zeros until the first unit bit is encountered. The next bit 
is a separation bit providing the logical value 

0
s e! . 

The remaining leading bits are the 3-p bits of the 
exponent 0 ≤  e ≤ 23-p-1 sufficient to determine the odd 
factor 

! 

i = ("1)
s
3
e

2
k
.  Thus, n = i×2p is the integer 

represented with 0 ≤ x ≤ 25-1 uniquely determined. In 
this example, e=102=210, and then s=1 is determined 
from e0=0 and 

0
1s e! = . Then 

1 1 2

3232
( 1) 2 3 18 14! = ! = , or 

! 

b
4
b
3
b
2
b
1
b
0

= 01110 . 

The conversions for odd integers in Table 1 can be 
visualized by the lookup trees illustrated in Figures 1A 
and 1B. Navigation in Figure 1A for binary-to-DLS 
conversion occurs by reading down with edge direction 
determined by the 5-bit odd integer string read right-to-
left. The DLS output string 

! 
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 is obtained 
(right-to-left) from the bits extracted from the vertices 

 



Table 1 Conversion Table from the 5-bit Discrete Log Number Encoding (DLS) to the 5-bit Integers 
Partitioned DLS Bit Strings Integer Value  Discrete Log 

Number System 
(DLS) Encoding  e  

0
  e xor s  2

p  32
( 1) 2 3s p e
!  

Standard 
Binary 

Integer  
Parity 

00001 000 0 1 1 00001 
00011 000 1 1 31 11111 
00101 001 0 1 29 11101 
00111 001 1 1 3 00011 
01001 010 0 1 9 01001 
01011 010 1 1 23 10111 
01101 011 0 1 5 00101 
01111 011 1 1 27 11011 
10001 100 0 1 17 10001 
10011 100 1 1 15 01111 
10101 101 0 1 13 01101 
10111 101 1 1 19 10011 
11001 110 0 1 25 11001 
11011 110 1 1 7 00111 
11101 111 0 1 21 10101 
11111 111 1 1 11 01011 

Odd 

00010 00 0 10 2 00010 
00110 00 1 10 30 11110 
01010 01 0 10 26 11010 
01110 01 1 10 6 00110 
10010 10 0 10 18 10010 
10110 10 1 10 14 01110 
11010 11 0 10 10 01010 
11110 11 1 10 22 10110 

Singly Even 

00100 0 0 100 4 00100 
01100 0 1 100 28 11100 
10100 1 0 100 20 10100 
11100 1 1 100 12 01100 

Doubly 
Even 

01000  0 1000 8 01000 
11000  1 1000 24 11000 Triply Even 

10000   10000 16 10000 Quad. Even 
00000   00000 0 00000 Zero 
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 Figure 1A and 1B: Lookup Trees for Odd Integer Binary to Discrete Log Number System (DLS) Conversion 
and DLS to Odd Integer Binary Conversion 



on the downward path. For the integer 13, employing the 
binary value 

! 

b
4
b
3
b
2
b
1
b
0

= 01101  as input in Figure 1A 

yields the DLS string output 
4 3 2 1 0

10101a a a a a = . 
Reversing the conversion by inputting the DLS string 
10101 into Figure 1B for DLS-to-binary conversion with 
the same navigation yields the standard binary integer 
output 

! 

b
4
b
3
b
2
b
1
b
0

= 01101 . 
    The one-to-one and conditional complementation 
properties hold for these conversions and are evident as 
symmetries in the lookup trees. With elementary pre- and 
post-processing logic, these properties can be employed to 
reduce lookup tree size for 16-bit DLS-to-binary and 
binary-to-DLS conversions to 2 Kbytes each. 

 
3. Hardware Implementation  

Table lookup allows for direct conversions between 
binary and DLS encodings resulting in fast performance. 
Figure 2 shows the generic table lookup architecture. In 
this section, we focus in detail on the example of binary-
to-DLS conversion, although the methods pertain 
similarly to DLS-to-binary conversion, the modular 
multiplicative inverse, and the square function. The 
hardware comprises three major components: the pre-
process block, the post-process block and a ROM. The 
pre-process block produces the ROM address based on 
the input operand. After the data in the ROM is read, the 
post-process block will select the correct bit fields and 
perform some additional processing, such as selective 
complementation. Two schemes for table lookup are 
compared here. One scheme uses a larger table 
supplemented by post-process logic, while the other one 
uses a smaller table with both pre-process and post-
process logic.  
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Figure 2. Table lookup architecture 

3.1 Direct lookup with unnormalized table index 
For the unnormalized index larger sized table 

implementation, we only exploit the hereditary and one-to-
one mapping properties of binary-to-DLS conversion. Due 
to the one-to-one property, only left children of the lookup 
tree need be stored. No pre-processing is required before 
table lookup occurs. For post-processing, conditional 
complementation is required on the table output value with 
the input value since only left children values are stored in 

the table. The circuit structure and then the hardware 
implementation are discussed next. 

The ROM structure and select logic are shown in 
Figure 3. The ROM is equivalent to 3-level trees. The first 
level forms 256 rows where the low 8-bits ([a0:a7]) are 
used as address bits. In the second level, four sub-trees 
between levels 8 and 9 are formed as four bytes.  [a8:a9] 
are used to select one of four bytes. After the byte is 
determined, [a10] and [a10:a11] are used to select one bit 
from the byte respectively, while the other two bits are 
extracted directly without selection. Therefore, a total of 4 
bits are extracted from the selected byte. In the third level, 
there are 32 sub-trees between level 8 and level 12 formed 
as 32 7-bit fields. [a8:a12] are used to select one of the 32 
7-bit fields. [a13] and [a13:a14] are used to select one bit 
from the selected field respectively, while the single 
rightmost bit is extracted directly without selection. 
Therefore, a total of 3 bits are extracted from the selected 
7-bit field. Finally, a 15-bit output is produced from the 
select logic.  

The post-processing logic for this un-normalized index 
table lookup scheme is simple. Since we only store left 
children, only 15 bits are extracted from the ROM. A one 
is padded to the Least Significant Bit (LSB) position to 
produce a 16-bit output. Also 16 2-bit-input XOR gates 
serve as conditional complement logic where the 
corresponding bit from the result of the padding and the 
input are connected to the inputs of the XOR gates. 
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Figure 3. 15-bit table lookup architecture for (e,s,p) 

3.2 Direct lookup with normalized table index 
The ROM table size may be reduced by utilizing more 

properties of our discrete-log encoding. For normalized 
binary-to-DLS conversion, the inheritance principle, one-
to-one mapping property, normalization to odd factor 
argument, and conditional complementation [6] are used.  

Pre-processing consists of even-power and sign bit 
extraction. Normalization is used to produce the p  field 
of the DLS triple. It is accomplished by shifting right and 
counting the number of trailing zeros. In the worst case, 
16 shifts are required. A divide and conquer approach is 



adopted in our implementation. We first shift right 8 bits 
to check whether in the lower 8 bits or the higher 8 bits. 
Next, we shift right 4 bits of the selected 8-bit field from 
the previous step to check whether in the lower 4 bits or 
the higher 4 bits. This procedure continues until the 
binary exponent p of the operand is obtained. Another 
operation is sign extraction. The sign bit is the third bit of 
the normalized operand. If the sign bit is asserted, it is 
required to conditionally complement the normalized 
operand. Since normalization (odd number, no need 
for 0a ) and sign-symmetry (sign bit 2a  is out), the index 
for address and select logic in the  next step are formed as  
[ 1 3 : 14]a a a! ! !  after conditional complementation.     

The ROM structure and select logic are shown in 
Figure 4. The ROM is equivalent to 3-level trees. The first 
level forms 128 rows where the low 7-bits ([a’1a’3:a’8]) 
are used as address bits. In the second level, sub-trees 
between level 7 and 8 are represented as a 6-bit field. 
[ 9]a!  and [ 9 : 10]a a! !  are used to select one bit from the 
selected field respectively. Therefore, a total of 2 bits are 
extracted from the 6-bit field. In the third level, 16 sub-
trees between level 7 and level 10 are formed as 16 bytes. 
[ 9 : 12]a a! !  are used to select one of 17 bytes. [ 13]a!  and 
[ 13 : 14]a a! !  are used to select two bits from the selected 
byte respectively, while the other two bits are extracted 
directly without selection. Therefore, a total of 4 bits are 
extracted from the selected 7-bits byte. Finally, a 13-bit 
output is formed from the select logic. 
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Post-processing for the normalized index smaller 
table lookup scheme is more complex as compared to the 
larger table approach. Since normalization is performed in 
the pre-processing circuitry, de-normalization is 
necessary. All bits whose index is less than the power of 
the original operand are padded with zeros, while all bits 
whose index is larger than this power are filled with 
lookup values. 16 2-bit-input XOR gates are used for 
conditional complementation as described previously. 

4. Experimental Results  
We described the circuits shown in Figures 3 and 4 in 

a Verilog module using the tool set (Design Compiler and 
Physical Compiler) based on a standard cell library 
obtained from the Synopsys tutorial files [5].  

Table 2 shows the comparison between the two 
schemes for direct lookup table conversion for k=16. The 
ROM size is given in KB. The core area is the area of 
standard cell implementation for all other logic except 
ROM. Both circuits have the same minimal clock period 
of 1.7ns but the larger table implementation requires one 
less cycle for post-processing.  Due to the extra 
processing before and after accessing the ROM, the 
normalized version of the circuit requires 3 clock periods 
of latency versus the 2 required for the unnormalized 
version; however, the ROM size is only 27% as large.  

 
Table 2. Comparison for two conversions 
k=16 

(wordsize) 
ROM 
(KB) 

area (µm2) Period (ns) Lat. 

Unnormalized 8.25 21011.2 1.70 2 
Normalized  2.25 19003.5 1.70 3 

 
5. Conclusion  

In this paper we have investigated standard cell 
implementations of a new table lookup procedure for 
binary-to-discrete log conversion.  This method is equally 
applicable to realizing any integer function satisfying the 
inheritance principal that can be described with a “tree-
like” lookup table structure.  Our investigation indicates 
that this table lookup procedure is practical and allows for 
significant reductions in table size. 
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