
 Performance Evaluation of a Novel Direct Table Lookup Method and Architecture
With Application to 16-bit Integer Functions

L. Li, Alex Fit-Florea, M. A. Thornton, D. W. Matula

Southern Methodist University, {lli,alex,mitch,matula}@engr.smu.edu

Abstract

We describe several integer function properties
which in combination allow direct lookup tables to be
reduced in size and structure to simpler lookup trees.
Our principal result is a novel table lookup method
based on a mapping of a lookup tree to a row-by-
column ROM with pre and post processing logic
substantially reducing the table size. Our lookup
architecture allows common 16-bit integer functions
such as multiplicative inverse, square, and the
discrete log to be realized with table size of order 2-8
Kbytes, in comparison to the 128 Kbyte size of an
arbitrary 16-bits-in 16-bits-out function table. The
lookup methodology is illustrated with specific
development of the 16-bit integer discrete log
function. Implementation for both unnormalized and
normalized indices are synthesized into standard cell
netlists and performance and area results are given
that demonstrate their effectiveness.

1. Introduction

This paper investigates new table lookup
architectures to extend the range of options for table
assisted computation in optimizing an ALU design.
The focus is on integer function evaluation where
recent results have identified needs for new lookup
architectures to exploit the potential savings
available.
 The distinction between real and integer
arithmetic in an ALU is conveniently described with
reference to the multiplication of two k-bit integer
operands. The exact product fits in a 2k-bit field. The
real (e.g. floating point) result typically provides a
normalized high order (approximate) part with the
low part rounded off. The integer result is the k-bit
low order part providing an exact result in a modular
system with the modulus determined by the word size
implicitly truncating the high order part.

Integer functions determined modulo 2k for k-bit
word results generally have properties allowing much
smaller tables for exhaustive storage of k-bits-in k-
bits-out function evaluation than corresponding real
valued k-bit functions. The following four properties
of integer functions have been recently identified in
combination to fundamentally redefine and reduce
the size of lookup tables for exhaustive storage. For

16-bit arguments, the advantages for integer function
lookup can be as large as 32 to 1 or even 64 to 1,
allowing 5 or 6 more index bits for comparable table
size.

(1) Inheritance principle: Briefly this principle states

that the low order k-bits of the result depend only
on the low order k-bits of the integer argument for
all k. In practice the inheritance principle for integer
functions means that a k-bits-in, k-bits-out lookup
table can be reduced from a generic k×2k bits ROM
table to a lookup tree structure of size 2×2k bits.
This reduces table size by a factor of k/2 (e.g.
reduction to 1/8 the size for 16-bit integers).

(2) One-to-one correspondence: This property holds
when distinct k-bit inputs have distinct k-bit
outputs. This property holds for multiplicative
inverse and the discrete log of odd integers, and is
extended to a discrete log encoding of all k-bit
integers as illustrated in Section 2. With the
inheritance principle, this property allows pre- and
post-processing logic to reduce the table size by
another half.

(3) Normalization (separating odd and even factors):
Employing a right-normalized binary integer
representation, n = i×2p (where i is the odd factor
and 2p is the even-power factor), integer functions
can often be determined in a separable fashion by
applying table lookup to the argument’s odd factor
followed by function specific post-processing
responsive to the even-power factor.

(4) Conditional complementation: This property states
that the result of the operation on the conditional
2’s complement of the input is the conditional 2’s
complement of the output. Conditional
complementation often applies only to selected bits
of the odd factor of the normalized integer
argument. When applicable, this allows one half or
more further table size reduction.

 To fully benefit from this implicit compression,
new table lookup procedures responsive to alternative
“lookup tree” table architectures must be developed.

Lookup trees were introduced with regards to the
multiplicative inverse function for odd integers modulo
2k in [6]. Preceding properties (1), (2), and (4) were
shown to result in substantial table size reduction, but a

method and architecture for efficient lookup was left
open. The integer square function satisfies the
inheritance principle, with argument normalization
and appropriate conditional complementation further
reducing the size of the lookup tree. In section 2, we
summarize needed background on the integer
discrete-log binary representation and a preferred
encoding allowing the discrete logarithm to satisfy
and benefit from all four preceding integer function
properties.

Our focus shifts in section 3 to the main issue of
presenting an efficient architecture for implementing
lookup trees for integer functions. Employing the
discrete log function for illustration, our principal
result is given by showing how a rectangular row-by-
column bit array similar to a ROM can be designed to
store a lookup tree, with the details realized in the
novel selection architecture for extracting and
concatenating the bits of the result into the output
register. Un-normalized and normalized argument
versions employing various amounts of pre and post
processing logic to effect table size reduction are
described. Section 4 describes comparative results of
standard cell implementations of the two versions and
information about the cell library employed, and
Section 5 provides a brief conclusion.

2. Normalization and Discrete Log Encoding
 Any positive integer has a unique factorization
into odd and even-power factors, n = i×2p, which
provides a right-normalized format for binary integer
representation. For integers in the “k-bit” range
[1,2k-1], note that the 2k-2 members of the sequence
0 1 2 2 1

2
3 ,3 ,3 ,...,3

k
!

! reduce modulo 2k to a sequence of
distinct odd numbers covering half the odd numbers
in [1,2k-1]. The complementary values

2
(1) 3

k

s e
! for

0 ≤ e ≤ 2k-2 - 1 cover the other half of the odd
numbers where

2
k• denotes the standard residue

modulo 2k. For example, for k=5, the reduced
sequence is 1,3,9,27,17,19,25,11, and the
complementary sequence is 31,29,23,5,15,13,7,21.
Benschop combined these observations in [2] noting
that any integer n satisfying
1 ≤ n ≤ 2k-1 has a “modular factorization”

2
(1) 2 3

k

s p en = ! . Benschop then represents every

(non-zero) k-bit integer by the “discrete log”
exponent triple (s,p,e). The triple is unique with 0 ≤
p ≤ k-1 employing a minimum e always in the range
0 ≤ e ≤ 2k-2 -1.
 Benschop left open two fundamental questions
regarding implementation of a discrete-log number
system (DLS).

(1) Conversion: How do we implement the binary-
integer-to- (, ,)s p e triple conversion? Specifically
how do we efficiently implement determination of
the (,)s e pair for an odd integer

!

i such that

!

i = ("1)
s
3
e

2
k
in a scalable manner?

(2) Encoding: How do we encode the triple (, ,)s p e
into a word with an appropriate integer range and
convenient scalability for variable word sizes?
Efficient scalable iterative solutions of the integer-

to-discrete-log conversion and deconversion questions
were presented at the algorithmic level in [1][3] with
hardware implementation in [4][7]. In this paper we
present two direct table lookup conversion solutions
applicable for precisions up to 16 bits. Our solutions
include resolution of the encoding question in a manner
facilitating reducing the size of the table lookup
structure with a novel lookup architecture.

The encoding employs variable length fields for the
encodings of p and e and provides a one-to-one
“hereditary” mapping between k-bit discrete-log
numbers and k-bit unsigned binary integers. Details and
proofs are beyond the scope of this paper. We utilize
example tables and figures to illustrate the encoding and
some of its significant properties.

The one-to-one mapping between 5-bit discrete-log
numbers comprising a 5-bit DLS and 5-bit integers is
given in Table 1. The DLS bit string is partitioned as
follows to determine the three exponents p, e, and s.

Consider the line in the table for DLS string 10110.
The parsing begins from the right hand side determining
the variable length field identifying 1

2 2
p
= by counting

zeros until the first unit bit is encountered. The next bit
is a separation bit providing the logical value

0
s e! .

The remaining leading bits are the 3-p bits of the
exponent 0 ≤ e ≤ 23-p-1 sufficient to determine the odd
factor

!

i = ("1)
s
3
e

2
k
. Thus, n = i×2p is the integer

represented with 0 ≤ x ≤ 25-1 uniquely determined. In
this example, e=102=210, and then s=1 is determined
from e0=0 and

0
1s e! = . Then

1 1 2

3232
(1) 2 3 18 14! = ! = , or

!

b
4
b
3
b
2
b
1
b
0

= 01110 .

The conversions for odd integers in Table 1 can be
visualized by the lookup trees illustrated in Figures 1A
and 1B. Navigation in Figure 1A for binary-to-DLS
conversion occurs by reading down with edge direction
determined by the 5-bit odd integer string read right-to-
left. The DLS output string

!

a
4
a
3
a
2
a
1
a
0

 is obtained
(right-to-left) from the bits extracted from the vertices

Table 1 Conversion Table from the 5-bit Discrete Log Number Encoding (DLS) to the 5-bit Integers
Partitioned DLS Bit Strings Integer Value Discrete Log

Number System
(DLS) Encoding e

0
 e xor s 2

p 32
(1) 2 3s p e
!

Standard
Binary

Integer
Parity

00001 000 0 1 1 00001
00011 000 1 1 31 11111
00101 001 0 1 29 11101
00111 001 1 1 3 00011
01001 010 0 1 9 01001
01011 010 1 1 23 10111
01101 011 0 1 5 00101
01111 011 1 1 27 11011
10001 100 0 1 17 10001
10011 100 1 1 15 01111
10101 101 0 1 13 01101
10111 101 1 1 19 10011
11001 110 0 1 25 11001
11011 110 1 1 7 00111
11101 111 0 1 21 10101
11111 111 1 1 11 01011

Odd

00010 00 0 10 2 00010
00110 00 1 10 30 11110
01010 01 0 10 26 11010
01110 01 1 10 6 00110
10010 10 0 10 18 10010
10110 10 1 10 14 01110
11010 11 0 10 10 01010
11110 11 1 10 22 10110

Singly Even

00100 0 0 100 4 00100
01100 0 1 100 28 11100
10100 1 0 100 20 10100
11100 1 1 100 12 01100

Doubly
Even

01000 0 1000 8 01000
11000 1 1000 24 11000 Triply Even

10000 10000 16 10000 Quad. Even
00000 00000 0 00000 Zero

I

O

O I

O I I O

O I O I O I I O

I

I O

O I I O

O I I O I O I O

a3

a1

a
2

a
0

a4

0

0 1

0 1 0 1

0 1

b
0
=1

 1

0 1

0 1 0 1

Input Binary Index:

01101

Output DLS string: 10101

b1

b2

b
3

0 1 0 1 0 1 0 1 0 1 0 1 0 1 b
4

 Figure 1A and 1B: Lookup Trees for Odd Integer Binary to Discrete Log Number System (DLS) Conversion
and DLS to Odd Integer Binary Conversion

on the downward path. For the integer 13, employing the
binary value

!

b
4
b
3
b
2
b
1
b
0

= 01101 as input in Figure 1A

yields the DLS string output
4 3 2 1 0

10101a a a a a = .
Reversing the conversion by inputting the DLS string
10101 into Figure 1B for DLS-to-binary conversion with
the same navigation yields the standard binary integer
output

!

b
4
b
3
b
2
b
1
b
0

= 01101 .
 The one-to-one and conditional complementation
properties hold for these conversions and are evident as
symmetries in the lookup trees. With elementary pre- and
post-processing logic, these properties can be employed to
reduce lookup tree size for 16-bit DLS-to-binary and
binary-to-DLS conversions to 2 Kbytes each.

3. Hardware Implementation

Table lookup allows for direct conversions between
binary and DLS encodings resulting in fast performance.
Figure 2 shows the generic table lookup architecture. In
this section, we focus in detail on the example of binary-
to-DLS conversion, although the methods pertain
similarly to DLS-to-binary conversion, the modular
multiplicative inverse, and the square function. The
hardware comprises three major components: the pre-
process block, the post-process block and a ROM. The
pre-process block produces the ROM address based on
the input operand. After the data in the ROM is read, the
post-process block will select the correct bit fields and
perform some additional processing, such as selective
complementation. Two schemes for table lookup are
compared here. One scheme uses a larger table
supplemented by post-process logic, while the other one
uses a smaller table with both pre-process and post-
process logic.

Pre-

process

&

Row

Select

Decoder

Select Logic, Post-process, Xor

with input, Cond. Complement, etc

operand

Function

Value

n!2
n

Storage cell

Figure 2. Table lookup architecture

3.1 Direct lookup with unnormalized table index
For the unnormalized index larger sized table

implementation, we only exploit the hereditary and one-to-
one mapping properties of binary-to-DLS conversion. Due
to the one-to-one property, only left children of the lookup
tree need be stored. No pre-processing is required before
table lookup occurs. For post-processing, conditional
complementation is required on the table output value with
the input value since only left children values are stored in

the table. The circuit structure and then the hardware
implementation are discussed next.

The ROM structure and select logic are shown in
Figure 3. The ROM is equivalent to 3-level trees. The first
level forms 256 rows where the low 8-bits ([a0:a7]) are
used as address bits. In the second level, four sub-trees
between levels 8 and 9 are formed as four bytes. [a8:a9]
are used to select one of four bytes. After the byte is
determined, [a10] and [a10:a11] are used to select one bit
from the byte respectively, while the other two bits are
extracted directly without selection. Therefore, a total of 4
bits are extracted from the selected byte. In the third level,
there are 32 sub-trees between level 8 and level 12 formed
as 32 7-bit fields. [a8:a12] are used to select one of the 32
7-bit fields. [a13] and [a13:a14] are used to select one bit
from the selected field respectively, while the single
rightmost bit is extracted directly without selection.
Therefore, a total of 3 bits are extracted from the selected
7-bit field. Finally, a 15-bit output is produced from the
select logic.

The post-processing logic for this un-normalized index
table lookup scheme is simple. Since we only store left
children, only 15 bits are extracted from the ROM. A one
is padded to the Least Significant Bit (LSB) position to
produce a 16-bit output. Also 16 2-bit-input XOR gates
serve as conditional complement logic where the
corresponding bit from the result of the padding and the
input are connected to the inputs of the XOR gates.

8-bit

Index

row

select

low (8 bits)

mid

high

extract 3 bits

••• •••

(256 ! 264)-bits ~ 8.25 Kbytes

[15-bits-out]

extract 4 bits

• •• •

• •

•

• • • • • • • • •

• • • • • • • • •

•••••••

•••••••• ……

••••••••

••••••••

select 1 of 32 fields

……

select 1 of 4 bytes

•••••••••••••••

• •• •

• •

• •••

a1

a2

a3

a4

a5

a6

a7

a8

a9

a8

a9
a8

a12

a10

a11

a12

a13

a14

•••

Table look-up

Select logic

••• •• • • •

•• •• • • •

a0

Figure 3. 15-bit table lookup architecture for (e,s,p)

3.2 Direct lookup with normalized table index
The ROM table size may be reduced by utilizing more

properties of our discrete-log encoding. For normalized
binary-to-DLS conversion, the inheritance principle, one-
to-one mapping property, normalization to odd factor
argument, and conditional complementation [6] are used.

Pre-processing consists of even-power and sign bit
extraction. Normalization is used to produce the p field
of the DLS triple. It is accomplished by shifting right and
counting the number of trailing zeros. In the worst case,
16 shifts are required. A divide and conquer approach is

adopted in our implementation. We first shift right 8 bits
to check whether in the lower 8 bits or the higher 8 bits.
Next, we shift right 4 bits of the selected 8-bit field from
the previous step to check whether in the lower 4 bits or
the higher 4 bits. This procedure continues until the
binary exponent p of the operand is obtained. Another
operation is sign extraction. The sign bit is the third bit of
the normalized operand. If the sign bit is asserted, it is
required to conditionally complement the normalized
operand. Since normalization (odd number, no need
for 0a) and sign-symmetry (sign bit 2a is out), the index
for address and select logic in the next step are formed as
[1 3 : 14]a a a! ! ! after conditional complementation.

The ROM structure and select logic are shown in
Figure 4. The ROM is equivalent to 3-level trees. The first
level forms 128 rows where the low 7-bits ([a’1a’3:a’8])
are used as address bits. In the second level, sub-trees
between level 7 and 8 are represented as a 6-bit field.
[9]a! and [9 : 10]a a! ! are used to select one bit from the
selected field respectively. Therefore, a total of 2 bits are
extracted from the 6-bit field. In the third level, 16 sub-
trees between level 7 and level 10 are formed as 16 bytes.
[9 : 12]a a! ! are used to select one of 17 bytes. [13]a! and
[13 : 14]a a! ! are used to select two bits from the selected
byte respectively, while the other two bits are extracted
directly without selection. Therefore, a total of 4 bits are
extracted from the selected 7-bits byte. Finally, a 13-bit
output is formed from the select logic.

••••••••

……•••••••• ……••••••••

7-bit

Index

row

select

low (7 bits)

mid
select 1 of 16 bytes

extract 2 bits

(128 ! 142)-bits ~ 2.25 Kbytes

[13-bits-out]

• • • • • • • • •

• • • • • • • • •

high

••• •••

••••••••••••••••••••••

• • • •

• •

a'3

a'4

a'5

a'6

a'7

a'8

a'9

a'10

a'12

a'13

a'14

a'9

a'12

extract 4 bits

• •

• •••

a'11

• • • •

a'9

•••

Table look-up

Select logic

••• • • •

••• •• • • •

a'[9:10]

a'1

Figure 4. 13-bit table lookup architecture for e

Post-processing for the normalized index smaller
table lookup scheme is more complex as compared to the
larger table approach. Since normalization is performed in
the pre-processing circuitry, de-normalization is
necessary. All bits whose index is less than the power of
the original operand are padded with zeros, while all bits
whose index is larger than this power are filled with
lookup values. 16 2-bit-input XOR gates are used for
conditional complementation as described previously.

4. Experimental Results
We described the circuits shown in Figures 3 and 4 in

a Verilog module using the tool set (Design Compiler and
Physical Compiler) based on a standard cell library
obtained from the Synopsys tutorial files [5].

Table 2 shows the comparison between the two
schemes for direct lookup table conversion for k=16. The
ROM size is given in KB. The core area is the area of
standard cell implementation for all other logic except
ROM. Both circuits have the same minimal clock period
of 1.7ns but the larger table implementation requires one
less cycle for post-processing. Due to the extra
processing before and after accessing the ROM, the
normalized version of the circuit requires 3 clock periods
of latency versus the 2 required for the unnormalized
version; however, the ROM size is only 27% as large.

Table 2. Comparison for two conversions
k=16

(wordsize)
ROM
(KB)

area (µm2) Period (ns) Lat.

Unnormalized 8.25 21011.2 1.70 2
Normalized 2.25 19003.5 1.70 3

5. Conclusion

In this paper we have investigated standard cell
implementations of a new table lookup procedure for
binary-to-discrete log conversion. This method is equally
applicable to realizing any integer function satisfying the
inheritance principal that can be described with a “tree-
like” lookup table structure. Our investigation indicates
that this table lookup procedure is practical and allows for
significant reductions in table size.

Acknowledgement

We thank the Synopsys Corporation for the donation
of their tools and the use of their standard cell library.

6. References
[1] A. Fit-Florea, D.W. Matula, M.A. Thornton, “Additive Bit-

serial Algorithm for the Discrete Logarithm Modulo 2k ,”
IEE Electronics Letters, Jan. 2005, Vol.41, No.2, pp.57-59.

[2] N.F. Benschop, “Multiplier for the multiplication of at least
two figures in an original format,” US Patent 5,923,888,
July 1999.

[3] A. Fit-Florea, D.W. Matula, M.A. Thornton, “Addition-
Based Exponentiation Modulo 2k ,” IEE Electronics Letters,
Jan. 2005, Vol.41, No.2, pp.56-57.

[4] L. Li, A. Fit-Florea, M.A. Thornton, D.W. Matula,
“Hardware Implementation of an Additive Bit-Serial
Algorithm for the Discrete Logarithm Modulo 2k ,” Proc.
ISVLSI, 2005, pp.130-135.

[5] Synopsys Design/physical Compiler Student Guide. 2003.
[6] D.W. Matula, A. Fit-Florea, M.A. Thornton, “Lookup

Table Structures for Multiplicative Inverses Modulo 2k ,”
Proc. 17th IEEE Symp. Comp. Arith., 2005, pp.130-135.

[7] L Li, M.A. Thornton, D.W. Matula “A Fast Algorithm for
the Integer Powering Operation,” Proc. GLSVLSI, 2006,
pp. 302-307.

